/external/tensorflow/tensorflow/lite/delegates/xnnpack/ |
D | depthwise_conv_2d_test.cc | 28 TEST(DepthwiseConv2D, 1x1) { 49 TEST(DepthwiseConv2D, 2x2) { 71 TEST(DepthwiseConv2D, 3x3) { 93 TEST(DepthwiseConv2D, 3x3Stride2) { 117 TEST(DepthwiseConv2D, 5x5) { 139 TEST(DepthwiseConv2D, 5x5Stride2) { 163 TEST(DepthwiseConv2D, SmallKernelWithSamePadding) { in TEST() argument 190 TEST(DepthwiseConv2D, SmallKernelWithValidPadding) { in TEST() argument 217 TEST(DepthwiseConv2D, StrideWithSamePadding) { in TEST() argument 248 TEST(DepthwiseConv2D, StrideWithValidPadding) { in TEST() argument [all …]
|
/external/tensorflow/tensorflow/lite/micro/kernels/vexriscv/doc/ |
D | DepthwiseConv2D_int8.md | 1 # Design of DepthwiseConv2D for VexRISCV 29 among the models deployed on edge devices: DepthwiseConv2D (see 30 [TensorFlow Python API](https://www.tensorflow.org/api_docs/python/tf/keras/layers/DepthwiseConv2D); 65 with DepthwiseConv2D layers using TensorFlow Lite Micro will benefit from this 88 beneficial to implement DepthwiseConv2D in a depth-centric manner, namely, 100 * Relating sequential memory access to DepthwiseConv2D 103 ### Relating sequential memory access to DepthwiseConv2D
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.layers.-depthwise-conv2-d.pbtxt | 1 path: "tensorflow.keras.layers.DepthwiseConv2D" 3 is_instance: "<class \'tensorflow.python.keras.layers.convolutional.DepthwiseConv2D\'>"
|
D | tensorflow.keras.layers.pbtxt | 144 name: "DepthwiseConv2D"
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.layers.-depthwise-conv2-d.pbtxt | 1 path: "tensorflow.keras.layers.DepthwiseConv2D" 3 is_instance: "<class \'tensorflow.python.keras.layers.convolutional.DepthwiseConv2D\'>"
|
D | tensorflow.keras.layers.pbtxt | 152 name: "DepthwiseConv2D"
|
/external/tensorflow/tensorflow/lite/micro/kernels/vexriscv/ |
D | README.md | 49 * [DepthwiseConv2D](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/ke…
|
/external/tensorflow/tensorflow/lite/g3doc/guide/ |
D | ops_version.md | 167 we implemented a new op kernel which can handle `DepthwiseConv2D` version 1 and 220 `DepthwiseConv2D`:
|
/external/tensorflow/tensorflow/lite/delegates/hexagon/ |
D | README.md | 71 * DepthwiseConv2D:
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/ |
D | layer_correctness_test.py | 89 ('DepthwiseConv2D', lambda: convolutional.DepthwiseConv2D(2, 2),
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | mobilenet.py | 418 x = layers.DepthwiseConv2D((3, 3),
|
D | mobilenet_v2.py | 449 x = layers.DepthwiseConv2D(
|
D | efficientnet.py | 468 x = layers.DepthwiseConv2D(
|
D | mobilenet_v3.py | 518 x = layers.DepthwiseConv2D(
|
D | resnet.py | 402 x = layers.DepthwiseConv2D(
|
/external/tensorflow/tensorflow/lite/delegates/coreml/ |
D | README.md | 73 * DepthwiseConv2D
|
/external/tensorflow/tensorflow/python/keras/benchmarks/layer_benchmarks/ |
D | layer_benchmarks_test.py | 111 ("DepthwiseConv2D_small_shape", tf.keras.layers.DepthwiseConv2D,
|
/external/tensorflow/tensorflow/compiler/mlir/lite/transforms/ |
D | prepare_patterns.td | 131 [(UsedBy<"DepthwiseConv2D"> $old_value)], (addBenefit 10)>;
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | __init__.py | 103 from tensorflow.python.keras.layers.convolutional import DepthwiseConv2D
|
D | convolutional.py | 2258 class DepthwiseConv2D(Conv2D): class 2362 super(DepthwiseConv2D, self).__init__( 2461 config = super(DepthwiseConv2D, self).get_config()
|
D | convolutional_test.py | 1157 keras.layers.DepthwiseConv2D,
|
/external/tensorflow/tensorflow/core/kernels/mkl/ |
D | mkl_quantized_conv_ops_test.cc | 642 TEST_F(QuantizedConv2DTest, DepthwiseConv2D) { in TEST_F() argument
|
/external/tensorflow/tensorflow/lite/g3doc/performance/ |
D | coreml_delegate.md | 250 * DepthwiseConv2D
|
/external/tensorflow/tensorflow/compiler/mlir/tosa/transforms/ |
D | legalize_tfl.cc | 107 DECL_CONVERT_OP(DepthwiseConv2D);
|