1 /*
2 * jidctred-neon.c - reduced-size IDCT (Arm Neon)
3 *
4 * Copyright (C) 2020, Arm Limited. All Rights Reserved.
5 * Copyright (C) 2020, D. R. Commander. All Rights Reserved.
6 *
7 * This software is provided 'as-is', without any express or implied
8 * warranty. In no event will the authors be held liable for any damages
9 * arising from the use of this software.
10 *
11 * Permission is granted to anyone to use this software for any purpose,
12 * including commercial applications, and to alter it and redistribute it
13 * freely, subject to the following restrictions:
14 *
15 * 1. The origin of this software must not be misrepresented; you must not
16 * claim that you wrote the original software. If you use this software
17 * in a product, an acknowledgment in the product documentation would be
18 * appreciated but is not required.
19 * 2. Altered source versions must be plainly marked as such, and must not be
20 * misrepresented as being the original software.
21 * 3. This notice may not be removed or altered from any source distribution.
22 */
23
24 #define JPEG_INTERNALS
25 #include "../../jinclude.h"
26 #include "../../jpeglib.h"
27 #include "../../jsimd.h"
28 #include "../../jdct.h"
29 #include "../../jsimddct.h"
30 #include "../jsimd.h"
31 #include "align.h"
32 #include "neon-compat.h"
33
34 #include <arm_neon.h>
35
36
37 #define CONST_BITS 13
38 #define PASS1_BITS 2
39
40 #define F_0_211 1730
41 #define F_0_509 4176
42 #define F_0_601 4926
43 #define F_0_720 5906
44 #define F_0_765 6270
45 #define F_0_850 6967
46 #define F_0_899 7373
47 #define F_1_061 8697
48 #define F_1_272 10426
49 #define F_1_451 11893
50 #define F_1_847 15137
51 #define F_2_172 17799
52 #define F_2_562 20995
53 #define F_3_624 29692
54
55
56 /* jsimd_idct_2x2_neon() is an inverse DCT function that produces reduced-size
57 * 2x2 output from an 8x8 DCT block. It uses the same calculations and
58 * produces exactly the same output as IJG's original jpeg_idct_2x2() function
59 * from jpeg-6b, which can be found in jidctred.c.
60 *
61 * Scaled integer constants are used to avoid floating-point arithmetic:
62 * 0.720959822 = 5906 * 2^-13
63 * 0.850430095 = 6967 * 2^-13
64 * 1.272758580 = 10426 * 2^-13
65 * 3.624509785 = 29692 * 2^-13
66 *
67 * See jidctred.c for further details of the 2x2 IDCT algorithm. Where
68 * possible, the variable names and comments here in jsimd_idct_2x2_neon()
69 * match up with those in jpeg_idct_2x2().
70 */
71
72 ALIGN(16) static const int16_t jsimd_idct_2x2_neon_consts[] = {
73 -F_0_720, F_0_850, -F_1_272, F_3_624
74 };
75
jsimd_idct_2x2_neon(void * dct_table,JCOEFPTR coef_block,JSAMPARRAY output_buf,JDIMENSION output_col)76 void jsimd_idct_2x2_neon(void *dct_table, JCOEFPTR coef_block,
77 JSAMPARRAY output_buf, JDIMENSION output_col)
78 {
79 ISLOW_MULT_TYPE *quantptr = dct_table;
80
81 /* Load DCT coefficients. */
82 int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE);
83 int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE);
84 int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE);
85 int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE);
86 int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE);
87
88 /* Load quantization table values. */
89 int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE);
90 int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE);
91 int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE);
92 int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE);
93 int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE);
94
95 /* Dequantize DCT coefficients. */
96 row0 = vmulq_s16(row0, quant_row0);
97 row1 = vmulq_s16(row1, quant_row1);
98 row3 = vmulq_s16(row3, quant_row3);
99 row5 = vmulq_s16(row5, quant_row5);
100 row7 = vmulq_s16(row7, quant_row7);
101
102 /* Load IDCT conversion constants. */
103 const int16x4_t consts = vld1_s16(jsimd_idct_2x2_neon_consts);
104
105 /* Pass 1: process columns from input, put results in vectors row0 and
106 * row1.
107 */
108
109 /* Even part */
110 int32x4_t tmp10_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 2);
111 int32x4_t tmp10_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 2);
112
113 /* Odd part */
114 int32x4_t tmp0_l = vmull_lane_s16(vget_low_s16(row1), consts, 3);
115 tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row3), consts, 2);
116 tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row5), consts, 1);
117 tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row7), consts, 0);
118 int32x4_t tmp0_h = vmull_lane_s16(vget_high_s16(row1), consts, 3);
119 tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row3), consts, 2);
120 tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row5), consts, 1);
121 tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row7), consts, 0);
122
123 /* Final output stage: descale and narrow to 16-bit. */
124 row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp0_l), CONST_BITS),
125 vrshrn_n_s32(vaddq_s32(tmp10_h, tmp0_h), CONST_BITS));
126 row1 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp0_l), CONST_BITS),
127 vrshrn_n_s32(vsubq_s32(tmp10_h, tmp0_h), CONST_BITS));
128
129 /* Transpose two rows, ready for second pass. */
130 int16x8x2_t cols_0246_1357 = vtrnq_s16(row0, row1);
131 int16x8_t cols_0246 = cols_0246_1357.val[0];
132 int16x8_t cols_1357 = cols_0246_1357.val[1];
133 /* Duplicate columns such that each is accessible in its own vector. */
134 int32x4x2_t cols_1155_3377 = vtrnq_s32(vreinterpretq_s32_s16(cols_1357),
135 vreinterpretq_s32_s16(cols_1357));
136 int16x8_t cols_1155 = vreinterpretq_s16_s32(cols_1155_3377.val[0]);
137 int16x8_t cols_3377 = vreinterpretq_s16_s32(cols_1155_3377.val[1]);
138
139 /* Pass 2: process two rows, store to output array. */
140
141 /* Even part: we're only interested in col0; the top half of tmp10 is "don't
142 * care."
143 */
144 int32x4_t tmp10 = vshll_n_s16(vget_low_s16(cols_0246), CONST_BITS + 2);
145
146 /* Odd part: we're only interested in the bottom half of tmp0. */
147 int32x4_t tmp0 = vmull_lane_s16(vget_low_s16(cols_1155), consts, 3);
148 tmp0 = vmlal_lane_s16(tmp0, vget_low_s16(cols_3377), consts, 2);
149 tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_1155), consts, 1);
150 tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_3377), consts, 0);
151
152 /* Final output stage: descale and clamp to range [0-255]. */
153 int16x8_t output_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp0),
154 vsubhn_s32(tmp10, tmp0));
155 output_s16 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_s16,
156 CONST_BITS + PASS1_BITS + 3 + 2 - 16);
157 /* Narrow to 8-bit and convert to unsigned. */
158 uint8x8_t output_u8 = vqmovun_s16(output_s16);
159
160 /* Store 2x2 block to memory. */
161 vst1_lane_u8(output_buf[0] + output_col, output_u8, 0);
162 vst1_lane_u8(output_buf[1] + output_col, output_u8, 1);
163 vst1_lane_u8(output_buf[0] + output_col + 1, output_u8, 4);
164 vst1_lane_u8(output_buf[1] + output_col + 1, output_u8, 5);
165 }
166
167
168 /* jsimd_idct_4x4_neon() is an inverse DCT function that produces reduced-size
169 * 4x4 output from an 8x8 DCT block. It uses the same calculations and
170 * produces exactly the same output as IJG's original jpeg_idct_4x4() function
171 * from jpeg-6b, which can be found in jidctred.c.
172 *
173 * Scaled integer constants are used to avoid floating-point arithmetic:
174 * 0.211164243 = 1730 * 2^-13
175 * 0.509795579 = 4176 * 2^-13
176 * 0.601344887 = 4926 * 2^-13
177 * 0.765366865 = 6270 * 2^-13
178 * 0.899976223 = 7373 * 2^-13
179 * 1.061594337 = 8697 * 2^-13
180 * 1.451774981 = 11893 * 2^-13
181 * 1.847759065 = 15137 * 2^-13
182 * 2.172734803 = 17799 * 2^-13
183 * 2.562915447 = 20995 * 2^-13
184 *
185 * See jidctred.c for further details of the 4x4 IDCT algorithm. Where
186 * possible, the variable names and comments here in jsimd_idct_4x4_neon()
187 * match up with those in jpeg_idct_4x4().
188 */
189
190 ALIGN(16) static const int16_t jsimd_idct_4x4_neon_consts[] = {
191 F_1_847, -F_0_765, -F_0_211, F_1_451,
192 -F_2_172, F_1_061, -F_0_509, -F_0_601,
193 F_0_899, F_2_562, 0, 0
194 };
195
jsimd_idct_4x4_neon(void * dct_table,JCOEFPTR coef_block,JSAMPARRAY output_buf,JDIMENSION output_col)196 void jsimd_idct_4x4_neon(void *dct_table, JCOEFPTR coef_block,
197 JSAMPARRAY output_buf, JDIMENSION output_col)
198 {
199 ISLOW_MULT_TYPE *quantptr = dct_table;
200
201 /* Load DCT coefficients. */
202 int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE);
203 int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE);
204 int16x8_t row2 = vld1q_s16(coef_block + 2 * DCTSIZE);
205 int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE);
206 int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE);
207 int16x8_t row6 = vld1q_s16(coef_block + 6 * DCTSIZE);
208 int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE);
209
210 /* Load quantization table values for DC coefficients. */
211 int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE);
212 /* Dequantize DC coefficients. */
213 row0 = vmulq_s16(row0, quant_row0);
214
215 /* Construct bitmap to test if all AC coefficients are 0. */
216 int16x8_t bitmap = vorrq_s16(row1, row2);
217 bitmap = vorrq_s16(bitmap, row3);
218 bitmap = vorrq_s16(bitmap, row5);
219 bitmap = vorrq_s16(bitmap, row6);
220 bitmap = vorrq_s16(bitmap, row7);
221
222 int64_t left_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 0);
223 int64_t right_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 1);
224
225 /* Load constants for IDCT computation. */
226 #ifdef HAVE_VLD1_S16_X3
227 const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_4x4_neon_consts);
228 #else
229 /* GCC does not currently support the intrinsic vld1_<type>_x3(). */
230 const int16x4_t consts1 = vld1_s16(jsimd_idct_4x4_neon_consts);
231 const int16x4_t consts2 = vld1_s16(jsimd_idct_4x4_neon_consts + 4);
232 const int16x4_t consts3 = vld1_s16(jsimd_idct_4x4_neon_consts + 8);
233 const int16x4x3_t consts = { { consts1, consts2, consts3 } };
234 #endif
235
236 if (left_ac_bitmap == 0 && right_ac_bitmap == 0) {
237 /* All AC coefficients are zero.
238 * Compute DC values and duplicate into row vectors 0, 1, 2, and 3.
239 */
240 int16x8_t dcval = vshlq_n_s16(row0, PASS1_BITS);
241 row0 = dcval;
242 row1 = dcval;
243 row2 = dcval;
244 row3 = dcval;
245 } else if (left_ac_bitmap == 0) {
246 /* AC coefficients are zero for columns 0, 1, 2, and 3.
247 * Compute DC values for these columns.
248 */
249 int16x4_t dcval = vshl_n_s16(vget_low_s16(row0), PASS1_BITS);
250
251 /* Commence regular IDCT computation for columns 4, 5, 6, and 7. */
252
253 /* Load quantization table. */
254 int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4);
255 int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4);
256 int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4);
257 int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4);
258 int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4);
259 int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4);
260
261 /* Even part */
262 int32x4_t tmp0 = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1);
263
264 int16x4_t z2 = vmul_s16(vget_high_s16(row2), quant_row2);
265 int16x4_t z3 = vmul_s16(vget_high_s16(row6), quant_row6);
266
267 int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0);
268 tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1);
269
270 int32x4_t tmp10 = vaddq_s32(tmp0, tmp2);
271 int32x4_t tmp12 = vsubq_s32(tmp0, tmp2);
272
273 /* Odd part */
274 int16x4_t z1 = vmul_s16(vget_high_s16(row7), quant_row7);
275 z2 = vmul_s16(vget_high_s16(row5), quant_row5);
276 z3 = vmul_s16(vget_high_s16(row3), quant_row3);
277 int16x4_t z4 = vmul_s16(vget_high_s16(row1), quant_row1);
278
279 tmp0 = vmull_lane_s16(z1, consts.val[0], 2);
280 tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3);
281 tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0);
282 tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1);
283
284 tmp2 = vmull_lane_s16(z1, consts.val[1], 2);
285 tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3);
286 tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0);
287 tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1);
288
289 /* Final output stage: descale and narrow to 16-bit. */
290 row0 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp10, tmp2),
291 CONST_BITS - PASS1_BITS + 1));
292 row3 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp10, tmp2),
293 CONST_BITS - PASS1_BITS + 1));
294 row1 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp12, tmp0),
295 CONST_BITS - PASS1_BITS + 1));
296 row2 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp12, tmp0),
297 CONST_BITS - PASS1_BITS + 1));
298 } else if (right_ac_bitmap == 0) {
299 /* AC coefficients are zero for columns 4, 5, 6, and 7.
300 * Compute DC values for these columns.
301 */
302 int16x4_t dcval = vshl_n_s16(vget_high_s16(row0), PASS1_BITS);
303
304 /* Commence regular IDCT computation for columns 0, 1, 2, and 3. */
305
306 /* Load quantization table. */
307 int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE);
308 int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE);
309 int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE);
310 int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE);
311 int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE);
312 int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE);
313
314 /* Even part */
315 int32x4_t tmp0 = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1);
316
317 int16x4_t z2 = vmul_s16(vget_low_s16(row2), quant_row2);
318 int16x4_t z3 = vmul_s16(vget_low_s16(row6), quant_row6);
319
320 int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0);
321 tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1);
322
323 int32x4_t tmp10 = vaddq_s32(tmp0, tmp2);
324 int32x4_t tmp12 = vsubq_s32(tmp0, tmp2);
325
326 /* Odd part */
327 int16x4_t z1 = vmul_s16(vget_low_s16(row7), quant_row7);
328 z2 = vmul_s16(vget_low_s16(row5), quant_row5);
329 z3 = vmul_s16(vget_low_s16(row3), quant_row3);
330 int16x4_t z4 = vmul_s16(vget_low_s16(row1), quant_row1);
331
332 tmp0 = vmull_lane_s16(z1, consts.val[0], 2);
333 tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3);
334 tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0);
335 tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1);
336
337 tmp2 = vmull_lane_s16(z1, consts.val[1], 2);
338 tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3);
339 tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0);
340 tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1);
341
342 /* Final output stage: descale and narrow to 16-bit. */
343 row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10, tmp2),
344 CONST_BITS - PASS1_BITS + 1), dcval);
345 row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10, tmp2),
346 CONST_BITS - PASS1_BITS + 1), dcval);
347 row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12, tmp0),
348 CONST_BITS - PASS1_BITS + 1), dcval);
349 row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12, tmp0),
350 CONST_BITS - PASS1_BITS + 1), dcval);
351 } else {
352 /* All AC coefficients are non-zero; full IDCT calculation required. */
353 int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE);
354 int16x8_t quant_row2 = vld1q_s16(quantptr + 2 * DCTSIZE);
355 int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE);
356 int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE);
357 int16x8_t quant_row6 = vld1q_s16(quantptr + 6 * DCTSIZE);
358 int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE);
359
360 /* Even part */
361 int32x4_t tmp0_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1);
362 int32x4_t tmp0_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1);
363
364 int16x8_t z2 = vmulq_s16(row2, quant_row2);
365 int16x8_t z3 = vmulq_s16(row6, quant_row6);
366
367 int32x4_t tmp2_l = vmull_lane_s16(vget_low_s16(z2), consts.val[0], 0);
368 int32x4_t tmp2_h = vmull_lane_s16(vget_high_s16(z2), consts.val[0], 0);
369 tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[0], 1);
370 tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[0], 1);
371
372 int32x4_t tmp10_l = vaddq_s32(tmp0_l, tmp2_l);
373 int32x4_t tmp10_h = vaddq_s32(tmp0_h, tmp2_h);
374 int32x4_t tmp12_l = vsubq_s32(tmp0_l, tmp2_l);
375 int32x4_t tmp12_h = vsubq_s32(tmp0_h, tmp2_h);
376
377 /* Odd part */
378 int16x8_t z1 = vmulq_s16(row7, quant_row7);
379 z2 = vmulq_s16(row5, quant_row5);
380 z3 = vmulq_s16(row3, quant_row3);
381 int16x8_t z4 = vmulq_s16(row1, quant_row1);
382
383 tmp0_l = vmull_lane_s16(vget_low_s16(z1), consts.val[0], 2);
384 tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z2), consts.val[0], 3);
385 tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z3), consts.val[1], 0);
386 tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z4), consts.val[1], 1);
387 tmp0_h = vmull_lane_s16(vget_high_s16(z1), consts.val[0], 2);
388 tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z2), consts.val[0], 3);
389 tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z3), consts.val[1], 0);
390 tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z4), consts.val[1], 1);
391
392 tmp2_l = vmull_lane_s16(vget_low_s16(z1), consts.val[1], 2);
393 tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z2), consts.val[1], 3);
394 tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[2], 0);
395 tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z4), consts.val[2], 1);
396 tmp2_h = vmull_lane_s16(vget_high_s16(z1), consts.val[1], 2);
397 tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z2), consts.val[1], 3);
398 tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[2], 0);
399 tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z4), consts.val[2], 1);
400
401 /* Final output stage: descale and narrow to 16-bit. */
402 row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp2_l),
403 CONST_BITS - PASS1_BITS + 1),
404 vrshrn_n_s32(vaddq_s32(tmp10_h, tmp2_h),
405 CONST_BITS - PASS1_BITS + 1));
406 row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp2_l),
407 CONST_BITS - PASS1_BITS + 1),
408 vrshrn_n_s32(vsubq_s32(tmp10_h, tmp2_h),
409 CONST_BITS - PASS1_BITS + 1));
410 row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12_l, tmp0_l),
411 CONST_BITS - PASS1_BITS + 1),
412 vrshrn_n_s32(vaddq_s32(tmp12_h, tmp0_h),
413 CONST_BITS - PASS1_BITS + 1));
414 row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12_l, tmp0_l),
415 CONST_BITS - PASS1_BITS + 1),
416 vrshrn_n_s32(vsubq_s32(tmp12_h, tmp0_h),
417 CONST_BITS - PASS1_BITS + 1));
418 }
419
420 /* Transpose 8x4 block to perform IDCT on rows in second pass. */
421 int16x8x2_t row_01 = vtrnq_s16(row0, row1);
422 int16x8x2_t row_23 = vtrnq_s16(row2, row3);
423
424 int32x4x2_t cols_0426 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[0]),
425 vreinterpretq_s32_s16(row_23.val[0]));
426 int32x4x2_t cols_1537 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[1]),
427 vreinterpretq_s32_s16(row_23.val[1]));
428
429 int16x4_t col0 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[0]));
430 int16x4_t col1 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[0]));
431 int16x4_t col2 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[1]));
432 int16x4_t col3 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[1]));
433 int16x4_t col5 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[0]));
434 int16x4_t col6 = vreinterpret_s16_s32(vget_high_s32(cols_0426.val[1]));
435 int16x4_t col7 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[1]));
436
437 /* Commence second pass of IDCT. */
438
439 /* Even part */
440 int32x4_t tmp0 = vshll_n_s16(col0, CONST_BITS + 1);
441 int32x4_t tmp2 = vmull_lane_s16(col2, consts.val[0], 0);
442 tmp2 = vmlal_lane_s16(tmp2, col6, consts.val[0], 1);
443
444 int32x4_t tmp10 = vaddq_s32(tmp0, tmp2);
445 int32x4_t tmp12 = vsubq_s32(tmp0, tmp2);
446
447 /* Odd part */
448 tmp0 = vmull_lane_s16(col7, consts.val[0], 2);
449 tmp0 = vmlal_lane_s16(tmp0, col5, consts.val[0], 3);
450 tmp0 = vmlal_lane_s16(tmp0, col3, consts.val[1], 0);
451 tmp0 = vmlal_lane_s16(tmp0, col1, consts.val[1], 1);
452
453 tmp2 = vmull_lane_s16(col7, consts.val[1], 2);
454 tmp2 = vmlal_lane_s16(tmp2, col5, consts.val[1], 3);
455 tmp2 = vmlal_lane_s16(tmp2, col3, consts.val[2], 0);
456 tmp2 = vmlal_lane_s16(tmp2, col1, consts.val[2], 1);
457
458 /* Final output stage: descale and clamp to range [0-255]. */
459 int16x8_t output_cols_02 = vcombine_s16(vaddhn_s32(tmp10, tmp2),
460 vsubhn_s32(tmp12, tmp0));
461 int16x8_t output_cols_13 = vcombine_s16(vaddhn_s32(tmp12, tmp0),
462 vsubhn_s32(tmp10, tmp2));
463 output_cols_02 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_02,
464 CONST_BITS + PASS1_BITS + 3 + 1 - 16);
465 output_cols_13 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_13,
466 CONST_BITS + PASS1_BITS + 3 + 1 - 16);
467 /* Narrow to 8-bit and convert to unsigned while zipping 8-bit elements.
468 * An interleaving store completes the transpose.
469 */
470 uint8x8x2_t output_0123 = vzip_u8(vqmovun_s16(output_cols_02),
471 vqmovun_s16(output_cols_13));
472 uint16x4x2_t output_01_23 = { {
473 vreinterpret_u16_u8(output_0123.val[0]),
474 vreinterpret_u16_u8(output_0123.val[1])
475 } };
476
477 /* Store 4x4 block to memory. */
478 JSAMPROW outptr0 = output_buf[0] + output_col;
479 JSAMPROW outptr1 = output_buf[1] + output_col;
480 JSAMPROW outptr2 = output_buf[2] + output_col;
481 JSAMPROW outptr3 = output_buf[3] + output_col;
482 vst2_lane_u16((uint16_t *)outptr0, output_01_23, 0);
483 vst2_lane_u16((uint16_t *)outptr1, output_01_23, 1);
484 vst2_lane_u16((uint16_t *)outptr2, output_01_23, 2);
485 vst2_lane_u16((uint16_t *)outptr3, output_01_23, 3);
486 }
487