1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for Objective C declarations.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/RecursiveASTVisitor.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/Scope.h"
26 #include "clang/Sema/ScopeInfo.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30
31 using namespace clang;
32
33 /// Check whether the given method, which must be in the 'init'
34 /// family, is a valid member of that family.
35 ///
36 /// \param receiverTypeIfCall - if null, check this as if declaring it;
37 /// if non-null, check this as if making a call to it with the given
38 /// receiver type
39 ///
40 /// \return true to indicate that there was an error and appropriate
41 /// actions were taken
checkInitMethod(ObjCMethodDecl * method,QualType receiverTypeIfCall)42 bool Sema::checkInitMethod(ObjCMethodDecl *method,
43 QualType receiverTypeIfCall) {
44 if (method->isInvalidDecl()) return true;
45
46 // This castAs is safe: methods that don't return an object
47 // pointer won't be inferred as inits and will reject an explicit
48 // objc_method_family(init).
49
50 // We ignore protocols here. Should we? What about Class?
51
52 const ObjCObjectType *result =
53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55 if (result->isObjCId()) {
56 return false;
57 } else if (result->isObjCClass()) {
58 // fall through: always an error
59 } else {
60 ObjCInterfaceDecl *resultClass = result->getInterface();
61 assert(resultClass && "unexpected object type!");
62
63 // It's okay for the result type to still be a forward declaration
64 // if we're checking an interface declaration.
65 if (!resultClass->hasDefinition()) {
66 if (receiverTypeIfCall.isNull() &&
67 !isa<ObjCImplementationDecl>(method->getDeclContext()))
68 return false;
69
70 // Otherwise, we try to compare class types.
71 } else {
72 // If this method was declared in a protocol, we can't check
73 // anything unless we have a receiver type that's an interface.
74 const ObjCInterfaceDecl *receiverClass = nullptr;
75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76 if (receiverTypeIfCall.isNull())
77 return false;
78
79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80 ->getInterfaceDecl();
81
82 // This can be null for calls to e.g. id<Foo>.
83 if (!receiverClass) return false;
84 } else {
85 receiverClass = method->getClassInterface();
86 assert(receiverClass && "method not associated with a class!");
87 }
88
89 // If either class is a subclass of the other, it's fine.
90 if (receiverClass->isSuperClassOf(resultClass) ||
91 resultClass->isSuperClassOf(receiverClass))
92 return false;
93 }
94 }
95
96 SourceLocation loc = method->getLocation();
97
98 // If we're in a system header, and this is not a call, just make
99 // the method unusable.
100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103 return true;
104 }
105
106 // Otherwise, it's an error.
107 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108 method->setInvalidDecl();
109 return true;
110 }
111
112 /// Issue a warning if the parameter of the overridden method is non-escaping
113 /// but the parameter of the overriding method is not.
diagnoseNoescape(const ParmVarDecl * NewD,const ParmVarDecl * OldD,Sema & S)114 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
115 Sema &S) {
116 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
117 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
118 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
119 return false;
120 }
121
122 return true;
123 }
124
125 /// Produce additional diagnostics if a category conforms to a protocol that
126 /// defines a method taking a non-escaping parameter.
diagnoseNoescape(const ParmVarDecl * NewD,const ParmVarDecl * OldD,const ObjCCategoryDecl * CD,const ObjCProtocolDecl * PD,Sema & S)127 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
128 const ObjCCategoryDecl *CD,
129 const ObjCProtocolDecl *PD, Sema &S) {
130 if (!diagnoseNoescape(NewD, OldD, S))
131 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
132 << CD->IsClassExtension() << PD
133 << cast<ObjCMethodDecl>(NewD->getDeclContext());
134 }
135
CheckObjCMethodOverride(ObjCMethodDecl * NewMethod,const ObjCMethodDecl * Overridden)136 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
137 const ObjCMethodDecl *Overridden) {
138 if (Overridden->hasRelatedResultType() &&
139 !NewMethod->hasRelatedResultType()) {
140 // This can only happen when the method follows a naming convention that
141 // implies a related result type, and the original (overridden) method has
142 // a suitable return type, but the new (overriding) method does not have
143 // a suitable return type.
144 QualType ResultType = NewMethod->getReturnType();
145 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
146
147 // Figure out which class this method is part of, if any.
148 ObjCInterfaceDecl *CurrentClass
149 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
150 if (!CurrentClass) {
151 DeclContext *DC = NewMethod->getDeclContext();
152 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
153 CurrentClass = Cat->getClassInterface();
154 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
155 CurrentClass = Impl->getClassInterface();
156 else if (ObjCCategoryImplDecl *CatImpl
157 = dyn_cast<ObjCCategoryImplDecl>(DC))
158 CurrentClass = CatImpl->getClassInterface();
159 }
160
161 if (CurrentClass) {
162 Diag(NewMethod->getLocation(),
163 diag::warn_related_result_type_compatibility_class)
164 << Context.getObjCInterfaceType(CurrentClass)
165 << ResultType
166 << ResultTypeRange;
167 } else {
168 Diag(NewMethod->getLocation(),
169 diag::warn_related_result_type_compatibility_protocol)
170 << ResultType
171 << ResultTypeRange;
172 }
173
174 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
175 Diag(Overridden->getLocation(),
176 diag::note_related_result_type_family)
177 << /*overridden method*/ 0
178 << Family;
179 else
180 Diag(Overridden->getLocation(),
181 diag::note_related_result_type_overridden);
182 }
183
184 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
185 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
186 Diag(NewMethod->getLocation(),
187 getLangOpts().ObjCAutoRefCount
188 ? diag::err_nsreturns_retained_attribute_mismatch
189 : diag::warn_nsreturns_retained_attribute_mismatch)
190 << 1;
191 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
192 }
193 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
194 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
195 Diag(NewMethod->getLocation(),
196 getLangOpts().ObjCAutoRefCount
197 ? diag::err_nsreturns_retained_attribute_mismatch
198 : diag::warn_nsreturns_retained_attribute_mismatch)
199 << 0;
200 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
201 }
202
203 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
204 oe = Overridden->param_end();
205 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
206 ne = NewMethod->param_end();
207 ni != ne && oi != oe; ++ni, ++oi) {
208 const ParmVarDecl *oldDecl = (*oi);
209 ParmVarDecl *newDecl = (*ni);
210 if (newDecl->hasAttr<NSConsumedAttr>() !=
211 oldDecl->hasAttr<NSConsumedAttr>()) {
212 Diag(newDecl->getLocation(),
213 getLangOpts().ObjCAutoRefCount
214 ? diag::err_nsconsumed_attribute_mismatch
215 : diag::warn_nsconsumed_attribute_mismatch);
216 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
217 }
218
219 diagnoseNoescape(newDecl, oldDecl, *this);
220 }
221 }
222
223 /// Check a method declaration for compatibility with the Objective-C
224 /// ARC conventions.
CheckARCMethodDecl(ObjCMethodDecl * method)225 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
226 ObjCMethodFamily family = method->getMethodFamily();
227 switch (family) {
228 case OMF_None:
229 case OMF_finalize:
230 case OMF_retain:
231 case OMF_release:
232 case OMF_autorelease:
233 case OMF_retainCount:
234 case OMF_self:
235 case OMF_initialize:
236 case OMF_performSelector:
237 return false;
238
239 case OMF_dealloc:
240 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
241 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
242 if (ResultTypeRange.isInvalid())
243 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
244 << method->getReturnType()
245 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
246 else
247 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
248 << method->getReturnType()
249 << FixItHint::CreateReplacement(ResultTypeRange, "void");
250 return true;
251 }
252 return false;
253
254 case OMF_init:
255 // If the method doesn't obey the init rules, don't bother annotating it.
256 if (checkInitMethod(method, QualType()))
257 return true;
258
259 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
260
261 // Don't add a second copy of this attribute, but otherwise don't
262 // let it be suppressed.
263 if (method->hasAttr<NSReturnsRetainedAttr>())
264 return false;
265 break;
266
267 case OMF_alloc:
268 case OMF_copy:
269 case OMF_mutableCopy:
270 case OMF_new:
271 if (method->hasAttr<NSReturnsRetainedAttr>() ||
272 method->hasAttr<NSReturnsNotRetainedAttr>() ||
273 method->hasAttr<NSReturnsAutoreleasedAttr>())
274 return false;
275 break;
276 }
277
278 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
279 return false;
280 }
281
DiagnoseObjCImplementedDeprecations(Sema & S,const NamedDecl * ND,SourceLocation ImplLoc)282 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
283 SourceLocation ImplLoc) {
284 if (!ND)
285 return;
286 bool IsCategory = false;
287 StringRef RealizedPlatform;
288 AvailabilityResult Availability = ND->getAvailability(
289 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
290 &RealizedPlatform);
291 if (Availability != AR_Deprecated) {
292 if (isa<ObjCMethodDecl>(ND)) {
293 if (Availability != AR_Unavailable)
294 return;
295 if (RealizedPlatform.empty())
296 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
297 // Warn about implementing unavailable methods, unless the unavailable
298 // is for an app extension.
299 if (RealizedPlatform.endswith("_app_extension"))
300 return;
301 S.Diag(ImplLoc, diag::warn_unavailable_def);
302 S.Diag(ND->getLocation(), diag::note_method_declared_at)
303 << ND->getDeclName();
304 return;
305 }
306 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
307 if (!CD->getClassInterface()->isDeprecated())
308 return;
309 ND = CD->getClassInterface();
310 IsCategory = true;
311 } else
312 return;
313 }
314 S.Diag(ImplLoc, diag::warn_deprecated_def)
315 << (isa<ObjCMethodDecl>(ND)
316 ? /*Method*/ 0
317 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
318 : /*Class*/ 1);
319 if (isa<ObjCMethodDecl>(ND))
320 S.Diag(ND->getLocation(), diag::note_method_declared_at)
321 << ND->getDeclName();
322 else
323 S.Diag(ND->getLocation(), diag::note_previous_decl)
324 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
325 }
326
327 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
328 /// pool.
AddAnyMethodToGlobalPool(Decl * D)329 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
330 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
331
332 // If we don't have a valid method decl, simply return.
333 if (!MDecl)
334 return;
335 if (MDecl->isInstanceMethod())
336 AddInstanceMethodToGlobalPool(MDecl, true);
337 else
338 AddFactoryMethodToGlobalPool(MDecl, true);
339 }
340
341 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
342 /// has explicit ownership attribute; false otherwise.
343 static bool
HasExplicitOwnershipAttr(Sema & S,ParmVarDecl * Param)344 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
345 QualType T = Param->getType();
346
347 if (const PointerType *PT = T->getAs<PointerType>()) {
348 T = PT->getPointeeType();
349 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
350 T = RT->getPointeeType();
351 } else {
352 return true;
353 }
354
355 // If we have a lifetime qualifier, but it's local, we must have
356 // inferred it. So, it is implicit.
357 return !T.getLocalQualifiers().hasObjCLifetime();
358 }
359
360 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
361 /// and user declared, in the method definition's AST.
ActOnStartOfObjCMethodDef(Scope * FnBodyScope,Decl * D)362 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
363 ImplicitlyRetainedSelfLocs.clear();
364 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
365 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
366
367 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
368
369 // If we don't have a valid method decl, simply return.
370 if (!MDecl)
371 return;
372
373 QualType ResultType = MDecl->getReturnType();
374 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
375 !MDecl->isInvalidDecl() &&
376 RequireCompleteType(MDecl->getLocation(), ResultType,
377 diag::err_func_def_incomplete_result))
378 MDecl->setInvalidDecl();
379
380 // Allow all of Sema to see that we are entering a method definition.
381 PushDeclContext(FnBodyScope, MDecl);
382 PushFunctionScope();
383
384 // Create Decl objects for each parameter, entrring them in the scope for
385 // binding to their use.
386
387 // Insert the invisible arguments, self and _cmd!
388 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
389
390 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
391 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
392
393 // The ObjC parser requires parameter names so there's no need to check.
394 CheckParmsForFunctionDef(MDecl->parameters(),
395 /*CheckParameterNames=*/false);
396
397 // Introduce all of the other parameters into this scope.
398 for (auto *Param : MDecl->parameters()) {
399 if (!Param->isInvalidDecl() &&
400 getLangOpts().ObjCAutoRefCount &&
401 !HasExplicitOwnershipAttr(*this, Param))
402 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
403 Param->getType();
404
405 if (Param->getIdentifier())
406 PushOnScopeChains(Param, FnBodyScope);
407 }
408
409 // In ARC, disallow definition of retain/release/autorelease/retainCount
410 if (getLangOpts().ObjCAutoRefCount) {
411 switch (MDecl->getMethodFamily()) {
412 case OMF_retain:
413 case OMF_retainCount:
414 case OMF_release:
415 case OMF_autorelease:
416 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
417 << 0 << MDecl->getSelector();
418 break;
419
420 case OMF_None:
421 case OMF_dealloc:
422 case OMF_finalize:
423 case OMF_alloc:
424 case OMF_init:
425 case OMF_mutableCopy:
426 case OMF_copy:
427 case OMF_new:
428 case OMF_self:
429 case OMF_initialize:
430 case OMF_performSelector:
431 break;
432 }
433 }
434
435 // Warn on deprecated methods under -Wdeprecated-implementations,
436 // and prepare for warning on missing super calls.
437 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
438 ObjCMethodDecl *IMD =
439 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
440
441 if (IMD) {
442 ObjCImplDecl *ImplDeclOfMethodDef =
443 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
444 ObjCContainerDecl *ContDeclOfMethodDecl =
445 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
446 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
447 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
448 ImplDeclOfMethodDecl = OID->getImplementation();
449 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
450 if (CD->IsClassExtension()) {
451 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
452 ImplDeclOfMethodDecl = OID->getImplementation();
453 } else
454 ImplDeclOfMethodDecl = CD->getImplementation();
455 }
456 // No need to issue deprecated warning if deprecated mehod in class/category
457 // is being implemented in its own implementation (no overriding is involved).
458 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
459 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
460 }
461
462 if (MDecl->getMethodFamily() == OMF_init) {
463 if (MDecl->isDesignatedInitializerForTheInterface()) {
464 getCurFunction()->ObjCIsDesignatedInit = true;
465 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
466 IC->getSuperClass() != nullptr;
467 } else if (IC->hasDesignatedInitializers()) {
468 getCurFunction()->ObjCIsSecondaryInit = true;
469 getCurFunction()->ObjCWarnForNoInitDelegation = true;
470 }
471 }
472
473 // If this is "dealloc" or "finalize", set some bit here.
474 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
475 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
476 // Only do this if the current class actually has a superclass.
477 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
478 ObjCMethodFamily Family = MDecl->getMethodFamily();
479 if (Family == OMF_dealloc) {
480 if (!(getLangOpts().ObjCAutoRefCount ||
481 getLangOpts().getGC() == LangOptions::GCOnly))
482 getCurFunction()->ObjCShouldCallSuper = true;
483
484 } else if (Family == OMF_finalize) {
485 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
486 getCurFunction()->ObjCShouldCallSuper = true;
487
488 } else {
489 const ObjCMethodDecl *SuperMethod =
490 SuperClass->lookupMethod(MDecl->getSelector(),
491 MDecl->isInstanceMethod());
492 getCurFunction()->ObjCShouldCallSuper =
493 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
494 }
495 }
496 }
497 }
498
499 namespace {
500
501 // Callback to only accept typo corrections that are Objective-C classes.
502 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
503 // function will reject corrections to that class.
504 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
505 public:
ObjCInterfaceValidatorCCC()506 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
ObjCInterfaceValidatorCCC(ObjCInterfaceDecl * IDecl)507 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
508 : CurrentIDecl(IDecl) {}
509
ValidateCandidate(const TypoCorrection & candidate)510 bool ValidateCandidate(const TypoCorrection &candidate) override {
511 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
512 return ID && !declaresSameEntity(ID, CurrentIDecl);
513 }
514
clone()515 std::unique_ptr<CorrectionCandidateCallback> clone() override {
516 return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
517 }
518
519 private:
520 ObjCInterfaceDecl *CurrentIDecl;
521 };
522
523 } // end anonymous namespace
524
diagnoseUseOfProtocols(Sema & TheSema,ObjCContainerDecl * CD,ObjCProtocolDecl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs)525 static void diagnoseUseOfProtocols(Sema &TheSema,
526 ObjCContainerDecl *CD,
527 ObjCProtocolDecl *const *ProtoRefs,
528 unsigned NumProtoRefs,
529 const SourceLocation *ProtoLocs) {
530 assert(ProtoRefs);
531 // Diagnose availability in the context of the ObjC container.
532 Sema::ContextRAII SavedContext(TheSema, CD);
533 for (unsigned i = 0; i < NumProtoRefs; ++i) {
534 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
535 /*UnknownObjCClass=*/nullptr,
536 /*ObjCPropertyAccess=*/false,
537 /*AvoidPartialAvailabilityChecks=*/true);
538 }
539 }
540
541 void Sema::
ActOnSuperClassOfClassInterface(Scope * S,SourceLocation AtInterfaceLoc,ObjCInterfaceDecl * IDecl,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperName,SourceLocation SuperLoc,ArrayRef<ParsedType> SuperTypeArgs,SourceRange SuperTypeArgsRange)542 ActOnSuperClassOfClassInterface(Scope *S,
543 SourceLocation AtInterfaceLoc,
544 ObjCInterfaceDecl *IDecl,
545 IdentifierInfo *ClassName,
546 SourceLocation ClassLoc,
547 IdentifierInfo *SuperName,
548 SourceLocation SuperLoc,
549 ArrayRef<ParsedType> SuperTypeArgs,
550 SourceRange SuperTypeArgsRange) {
551 // Check if a different kind of symbol declared in this scope.
552 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
553 LookupOrdinaryName);
554
555 if (!PrevDecl) {
556 // Try to correct for a typo in the superclass name without correcting
557 // to the class we're defining.
558 ObjCInterfaceValidatorCCC CCC(IDecl);
559 if (TypoCorrection Corrected = CorrectTypo(
560 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
561 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
562 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
563 << SuperName << ClassName);
564 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
565 }
566 }
567
568 if (declaresSameEntity(PrevDecl, IDecl)) {
569 Diag(SuperLoc, diag::err_recursive_superclass)
570 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
571 IDecl->setEndOfDefinitionLoc(ClassLoc);
572 } else {
573 ObjCInterfaceDecl *SuperClassDecl =
574 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
575 QualType SuperClassType;
576
577 // Diagnose classes that inherit from deprecated classes.
578 if (SuperClassDecl) {
579 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
580 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
581 }
582
583 if (PrevDecl && !SuperClassDecl) {
584 // The previous declaration was not a class decl. Check if we have a
585 // typedef. If we do, get the underlying class type.
586 if (const TypedefNameDecl *TDecl =
587 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
588 QualType T = TDecl->getUnderlyingType();
589 if (T->isObjCObjectType()) {
590 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
591 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
592 SuperClassType = Context.getTypeDeclType(TDecl);
593
594 // This handles the following case:
595 // @interface NewI @end
596 // typedef NewI DeprI __attribute__((deprecated("blah")))
597 // @interface SI : DeprI /* warn here */ @end
598 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
599 }
600 }
601 }
602
603 // This handles the following case:
604 //
605 // typedef int SuperClass;
606 // @interface MyClass : SuperClass {} @end
607 //
608 if (!SuperClassDecl) {
609 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
610 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
611 }
612 }
613
614 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
615 if (!SuperClassDecl)
616 Diag(SuperLoc, diag::err_undef_superclass)
617 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
618 else if (RequireCompleteType(SuperLoc,
619 SuperClassType,
620 diag::err_forward_superclass,
621 SuperClassDecl->getDeclName(),
622 ClassName,
623 SourceRange(AtInterfaceLoc, ClassLoc))) {
624 SuperClassDecl = nullptr;
625 SuperClassType = QualType();
626 }
627 }
628
629 if (SuperClassType.isNull()) {
630 assert(!SuperClassDecl && "Failed to set SuperClassType?");
631 return;
632 }
633
634 // Handle type arguments on the superclass.
635 TypeSourceInfo *SuperClassTInfo = nullptr;
636 if (!SuperTypeArgs.empty()) {
637 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
638 S,
639 SuperLoc,
640 CreateParsedType(SuperClassType,
641 nullptr),
642 SuperTypeArgsRange.getBegin(),
643 SuperTypeArgs,
644 SuperTypeArgsRange.getEnd(),
645 SourceLocation(),
646 { },
647 { },
648 SourceLocation());
649 if (!fullSuperClassType.isUsable())
650 return;
651
652 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
653 &SuperClassTInfo);
654 }
655
656 if (!SuperClassTInfo) {
657 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
658 SuperLoc);
659 }
660
661 IDecl->setSuperClass(SuperClassTInfo);
662 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
663 }
664 }
665
actOnObjCTypeParam(Scope * S,ObjCTypeParamVariance variance,SourceLocation varianceLoc,unsigned index,IdentifierInfo * paramName,SourceLocation paramLoc,SourceLocation colonLoc,ParsedType parsedTypeBound)666 DeclResult Sema::actOnObjCTypeParam(Scope *S,
667 ObjCTypeParamVariance variance,
668 SourceLocation varianceLoc,
669 unsigned index,
670 IdentifierInfo *paramName,
671 SourceLocation paramLoc,
672 SourceLocation colonLoc,
673 ParsedType parsedTypeBound) {
674 // If there was an explicitly-provided type bound, check it.
675 TypeSourceInfo *typeBoundInfo = nullptr;
676 if (parsedTypeBound) {
677 // The type bound can be any Objective-C pointer type.
678 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
679 if (typeBound->isObjCObjectPointerType()) {
680 // okay
681 } else if (typeBound->isObjCObjectType()) {
682 // The user forgot the * on an Objective-C pointer type, e.g.,
683 // "T : NSView".
684 SourceLocation starLoc = getLocForEndOfToken(
685 typeBoundInfo->getTypeLoc().getEndLoc());
686 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
687 diag::err_objc_type_param_bound_missing_pointer)
688 << typeBound << paramName
689 << FixItHint::CreateInsertion(starLoc, " *");
690
691 // Create a new type location builder so we can update the type
692 // location information we have.
693 TypeLocBuilder builder;
694 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
695
696 // Create the Objective-C pointer type.
697 typeBound = Context.getObjCObjectPointerType(typeBound);
698 ObjCObjectPointerTypeLoc newT
699 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
700 newT.setStarLoc(starLoc);
701
702 // Form the new type source information.
703 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
704 } else {
705 // Not a valid type bound.
706 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
707 diag::err_objc_type_param_bound_nonobject)
708 << typeBound << paramName;
709
710 // Forget the bound; we'll default to id later.
711 typeBoundInfo = nullptr;
712 }
713
714 // Type bounds cannot have qualifiers (even indirectly) or explicit
715 // nullability.
716 if (typeBoundInfo) {
717 QualType typeBound = typeBoundInfo->getType();
718 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
719 if (qual || typeBound.hasQualifiers()) {
720 bool diagnosed = false;
721 SourceRange rangeToRemove;
722 if (qual) {
723 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
724 rangeToRemove = attr.getLocalSourceRange();
725 if (attr.getTypePtr()->getImmediateNullability()) {
726 Diag(attr.getBeginLoc(),
727 diag::err_objc_type_param_bound_explicit_nullability)
728 << paramName << typeBound
729 << FixItHint::CreateRemoval(rangeToRemove);
730 diagnosed = true;
731 }
732 }
733 }
734
735 if (!diagnosed) {
736 Diag(qual ? qual.getBeginLoc()
737 : typeBoundInfo->getTypeLoc().getBeginLoc(),
738 diag::err_objc_type_param_bound_qualified)
739 << paramName << typeBound
740 << typeBound.getQualifiers().getAsString()
741 << FixItHint::CreateRemoval(rangeToRemove);
742 }
743
744 // If the type bound has qualifiers other than CVR, we need to strip
745 // them or we'll probably assert later when trying to apply new
746 // qualifiers.
747 Qualifiers quals = typeBound.getQualifiers();
748 quals.removeCVRQualifiers();
749 if (!quals.empty()) {
750 typeBoundInfo =
751 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
752 }
753 }
754 }
755 }
756
757 // If there was no explicit type bound (or we removed it due to an error),
758 // use 'id' instead.
759 if (!typeBoundInfo) {
760 colonLoc = SourceLocation();
761 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
762 }
763
764 // Create the type parameter.
765 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
766 index, paramLoc, paramName, colonLoc,
767 typeBoundInfo);
768 }
769
actOnObjCTypeParamList(Scope * S,SourceLocation lAngleLoc,ArrayRef<Decl * > typeParamsIn,SourceLocation rAngleLoc)770 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
771 SourceLocation lAngleLoc,
772 ArrayRef<Decl *> typeParamsIn,
773 SourceLocation rAngleLoc) {
774 // We know that the array only contains Objective-C type parameters.
775 ArrayRef<ObjCTypeParamDecl *>
776 typeParams(
777 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
778 typeParamsIn.size());
779
780 // Diagnose redeclarations of type parameters.
781 // We do this now because Objective-C type parameters aren't pushed into
782 // scope until later (after the instance variable block), but we want the
783 // diagnostics to occur right after we parse the type parameter list.
784 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
785 for (auto typeParam : typeParams) {
786 auto known = knownParams.find(typeParam->getIdentifier());
787 if (known != knownParams.end()) {
788 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
789 << typeParam->getIdentifier()
790 << SourceRange(known->second->getLocation());
791
792 typeParam->setInvalidDecl();
793 } else {
794 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
795
796 // Push the type parameter into scope.
797 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
798 }
799 }
800
801 // Create the parameter list.
802 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
803 }
804
popObjCTypeParamList(Scope * S,ObjCTypeParamList * typeParamList)805 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
806 for (auto typeParam : *typeParamList) {
807 if (!typeParam->isInvalidDecl()) {
808 S->RemoveDecl(typeParam);
809 IdResolver.RemoveDecl(typeParam);
810 }
811 }
812 }
813
814 namespace {
815 /// The context in which an Objective-C type parameter list occurs, for use
816 /// in diagnostics.
817 enum class TypeParamListContext {
818 ForwardDeclaration,
819 Definition,
820 Category,
821 Extension
822 };
823 } // end anonymous namespace
824
825 /// Check consistency between two Objective-C type parameter lists, e.g.,
826 /// between a category/extension and an \@interface or between an \@class and an
827 /// \@interface.
checkTypeParamListConsistency(Sema & S,ObjCTypeParamList * prevTypeParams,ObjCTypeParamList * newTypeParams,TypeParamListContext newContext)828 static bool checkTypeParamListConsistency(Sema &S,
829 ObjCTypeParamList *prevTypeParams,
830 ObjCTypeParamList *newTypeParams,
831 TypeParamListContext newContext) {
832 // If the sizes don't match, complain about that.
833 if (prevTypeParams->size() != newTypeParams->size()) {
834 SourceLocation diagLoc;
835 if (newTypeParams->size() > prevTypeParams->size()) {
836 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
837 } else {
838 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
839 }
840
841 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
842 << static_cast<unsigned>(newContext)
843 << (newTypeParams->size() > prevTypeParams->size())
844 << prevTypeParams->size()
845 << newTypeParams->size();
846
847 return true;
848 }
849
850 // Match up the type parameters.
851 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
852 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
853 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
854
855 // Check for consistency of the variance.
856 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
857 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
858 newContext != TypeParamListContext::Definition) {
859 // When the new type parameter is invariant and is not part
860 // of the definition, just propagate the variance.
861 newTypeParam->setVariance(prevTypeParam->getVariance());
862 } else if (prevTypeParam->getVariance()
863 == ObjCTypeParamVariance::Invariant &&
864 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
865 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
866 ->getDefinition() == prevTypeParam->getDeclContext())) {
867 // When the old parameter is invariant and was not part of the
868 // definition, just ignore the difference because it doesn't
869 // matter.
870 } else {
871 {
872 // Diagnose the conflict and update the second declaration.
873 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
874 if (diagLoc.isInvalid())
875 diagLoc = newTypeParam->getBeginLoc();
876
877 auto diag = S.Diag(diagLoc,
878 diag::err_objc_type_param_variance_conflict)
879 << static_cast<unsigned>(newTypeParam->getVariance())
880 << newTypeParam->getDeclName()
881 << static_cast<unsigned>(prevTypeParam->getVariance())
882 << prevTypeParam->getDeclName();
883 switch (prevTypeParam->getVariance()) {
884 case ObjCTypeParamVariance::Invariant:
885 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
886 break;
887
888 case ObjCTypeParamVariance::Covariant:
889 case ObjCTypeParamVariance::Contravariant: {
890 StringRef newVarianceStr
891 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
892 ? "__covariant"
893 : "__contravariant";
894 if (newTypeParam->getVariance()
895 == ObjCTypeParamVariance::Invariant) {
896 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
897 (newVarianceStr + " ").str());
898 } else {
899 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
900 newVarianceStr);
901 }
902 }
903 }
904 }
905
906 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
907 << prevTypeParam->getDeclName();
908
909 // Override the variance.
910 newTypeParam->setVariance(prevTypeParam->getVariance());
911 }
912 }
913
914 // If the bound types match, there's nothing to do.
915 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
916 newTypeParam->getUnderlyingType()))
917 continue;
918
919 // If the new type parameter's bound was explicit, complain about it being
920 // different from the original.
921 if (newTypeParam->hasExplicitBound()) {
922 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923 ->getTypeLoc().getSourceRange();
924 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
925 << newTypeParam->getUnderlyingType()
926 << newTypeParam->getDeclName()
927 << prevTypeParam->hasExplicitBound()
928 << prevTypeParam->getUnderlyingType()
929 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
930 << prevTypeParam->getDeclName()
931 << FixItHint::CreateReplacement(
932 newBoundRange,
933 prevTypeParam->getUnderlyingType().getAsString(
934 S.Context.getPrintingPolicy()));
935
936 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
937 << prevTypeParam->getDeclName();
938
939 // Override the new type parameter's bound type with the previous type,
940 // so that it's consistent.
941 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
942 continue;
943 }
944
945 // The new type parameter got the implicit bound of 'id'. That's okay for
946 // categories and extensions (overwrite it later), but not for forward
947 // declarations and @interfaces, because those must be standalone.
948 if (newContext == TypeParamListContext::ForwardDeclaration ||
949 newContext == TypeParamListContext::Definition) {
950 // Diagnose this problem for forward declarations and definitions.
951 SourceLocation insertionLoc
952 = S.getLocForEndOfToken(newTypeParam->getLocation());
953 std::string newCode
954 = " : " + prevTypeParam->getUnderlyingType().getAsString(
955 S.Context.getPrintingPolicy());
956 S.Diag(newTypeParam->getLocation(),
957 diag::err_objc_type_param_bound_missing)
958 << prevTypeParam->getUnderlyingType()
959 << newTypeParam->getDeclName()
960 << (newContext == TypeParamListContext::ForwardDeclaration)
961 << FixItHint::CreateInsertion(insertionLoc, newCode);
962
963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964 << prevTypeParam->getDeclName();
965 }
966
967 // Update the new type parameter's bound to match the previous one.
968 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
969 }
970
971 return false;
972 }
973
ActOnStartClassInterface(Scope * S,SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,ObjCTypeParamList * typeParamList,IdentifierInfo * SuperName,SourceLocation SuperLoc,ArrayRef<ParsedType> SuperTypeArgs,SourceRange SuperTypeArgsRange,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,const ParsedAttributesView & AttrList)974 Decl *Sema::ActOnStartClassInterface(
975 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
976 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
977 IdentifierInfo *SuperName, SourceLocation SuperLoc,
978 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
979 Decl *const *ProtoRefs, unsigned NumProtoRefs,
980 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
981 const ParsedAttributesView &AttrList) {
982 assert(ClassName && "Missing class identifier");
983
984 // Check for another declaration kind with the same name.
985 NamedDecl *PrevDecl =
986 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
987 forRedeclarationInCurContext());
988
989 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
990 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
991 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
992 }
993
994 // Create a declaration to describe this @interface.
995 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
996
997 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
998 // A previous decl with a different name is because of
999 // @compatibility_alias, for example:
1000 // \code
1001 // @class NewImage;
1002 // @compatibility_alias OldImage NewImage;
1003 // \endcode
1004 // A lookup for 'OldImage' will return the 'NewImage' decl.
1005 //
1006 // In such a case use the real declaration name, instead of the alias one,
1007 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1008 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1009 // has been aliased.
1010 ClassName = PrevIDecl->getIdentifier();
1011 }
1012
1013 // If there was a forward declaration with type parameters, check
1014 // for consistency.
1015 if (PrevIDecl) {
1016 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1017 if (typeParamList) {
1018 // Both have type parameter lists; check for consistency.
1019 if (checkTypeParamListConsistency(*this, prevTypeParamList,
1020 typeParamList,
1021 TypeParamListContext::Definition)) {
1022 typeParamList = nullptr;
1023 }
1024 } else {
1025 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1026 << ClassName;
1027 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1028 << ClassName;
1029
1030 // Clone the type parameter list.
1031 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1032 for (auto typeParam : *prevTypeParamList) {
1033 clonedTypeParams.push_back(
1034 ObjCTypeParamDecl::Create(
1035 Context,
1036 CurContext,
1037 typeParam->getVariance(),
1038 SourceLocation(),
1039 typeParam->getIndex(),
1040 SourceLocation(),
1041 typeParam->getIdentifier(),
1042 SourceLocation(),
1043 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1044 }
1045
1046 typeParamList = ObjCTypeParamList::create(Context,
1047 SourceLocation(),
1048 clonedTypeParams,
1049 SourceLocation());
1050 }
1051 }
1052 }
1053
1054 ObjCInterfaceDecl *IDecl
1055 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1056 typeParamList, PrevIDecl, ClassLoc);
1057 if (PrevIDecl) {
1058 // Class already seen. Was it a definition?
1059 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1060 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1061 << PrevIDecl->getDeclName();
1062 Diag(Def->getLocation(), diag::note_previous_definition);
1063 IDecl->setInvalidDecl();
1064 }
1065 }
1066
1067 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1068 AddPragmaAttributes(TUScope, IDecl);
1069
1070 // Merge attributes from previous declarations.
1071 if (PrevIDecl)
1072 mergeDeclAttributes(IDecl, PrevIDecl);
1073
1074 PushOnScopeChains(IDecl, TUScope);
1075
1076 // Start the definition of this class. If we're in a redefinition case, there
1077 // may already be a definition, so we'll end up adding to it.
1078 if (!IDecl->hasDefinition())
1079 IDecl->startDefinition();
1080
1081 if (SuperName) {
1082 // Diagnose availability in the context of the @interface.
1083 ContextRAII SavedContext(*this, IDecl);
1084
1085 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1086 ClassName, ClassLoc,
1087 SuperName, SuperLoc, SuperTypeArgs,
1088 SuperTypeArgsRange);
1089 } else { // we have a root class.
1090 IDecl->setEndOfDefinitionLoc(ClassLoc);
1091 }
1092
1093 // Check then save referenced protocols.
1094 if (NumProtoRefs) {
1095 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1096 NumProtoRefs, ProtoLocs);
1097 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1098 ProtoLocs, Context);
1099 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1100 }
1101
1102 CheckObjCDeclScope(IDecl);
1103 return ActOnObjCContainerStartDefinition(IDecl);
1104 }
1105
1106 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1107 /// typedef'ed use for a qualified super class and adds them to the list
1108 /// of the protocols.
ActOnTypedefedProtocols(SmallVectorImpl<Decl * > & ProtocolRefs,SmallVectorImpl<SourceLocation> & ProtocolLocs,IdentifierInfo * SuperName,SourceLocation SuperLoc)1109 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1110 SmallVectorImpl<SourceLocation> &ProtocolLocs,
1111 IdentifierInfo *SuperName,
1112 SourceLocation SuperLoc) {
1113 if (!SuperName)
1114 return;
1115 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1116 LookupOrdinaryName);
1117 if (!IDecl)
1118 return;
1119
1120 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1121 QualType T = TDecl->getUnderlyingType();
1122 if (T->isObjCObjectType())
1123 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1124 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1125 // FIXME: Consider whether this should be an invalid loc since the loc
1126 // is not actually pointing to a protocol name reference but to the
1127 // typedef reference. Note that the base class name loc is also pointing
1128 // at the typedef.
1129 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1130 }
1131 }
1132 }
1133
1134 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1135 /// a \@compatibility_alias declaration. It sets up the alias relationships.
ActOnCompatibilityAlias(SourceLocation AtLoc,IdentifierInfo * AliasName,SourceLocation AliasLocation,IdentifierInfo * ClassName,SourceLocation ClassLocation)1136 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1137 IdentifierInfo *AliasName,
1138 SourceLocation AliasLocation,
1139 IdentifierInfo *ClassName,
1140 SourceLocation ClassLocation) {
1141 // Look for previous declaration of alias name
1142 NamedDecl *ADecl =
1143 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1144 forRedeclarationInCurContext());
1145 if (ADecl) {
1146 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1147 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1148 return nullptr;
1149 }
1150 // Check for class declaration
1151 NamedDecl *CDeclU =
1152 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1153 forRedeclarationInCurContext());
1154 if (const TypedefNameDecl *TDecl =
1155 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1156 QualType T = TDecl->getUnderlyingType();
1157 if (T->isObjCObjectType()) {
1158 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1159 ClassName = IDecl->getIdentifier();
1160 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1161 LookupOrdinaryName,
1162 forRedeclarationInCurContext());
1163 }
1164 }
1165 }
1166 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1167 if (!CDecl) {
1168 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1169 if (CDeclU)
1170 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1171 return nullptr;
1172 }
1173
1174 // Everything checked out, instantiate a new alias declaration AST.
1175 ObjCCompatibleAliasDecl *AliasDecl =
1176 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1177
1178 if (!CheckObjCDeclScope(AliasDecl))
1179 PushOnScopeChains(AliasDecl, TUScope);
1180
1181 return AliasDecl;
1182 }
1183
CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo * PName,SourceLocation & Ploc,SourceLocation PrevLoc,const ObjCList<ObjCProtocolDecl> & PList)1184 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1185 IdentifierInfo *PName,
1186 SourceLocation &Ploc, SourceLocation PrevLoc,
1187 const ObjCList<ObjCProtocolDecl> &PList) {
1188
1189 bool res = false;
1190 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1191 E = PList.end(); I != E; ++I) {
1192 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1193 Ploc)) {
1194 if (PDecl->getIdentifier() == PName) {
1195 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1196 Diag(PrevLoc, diag::note_previous_definition);
1197 res = true;
1198 }
1199
1200 if (!PDecl->hasDefinition())
1201 continue;
1202
1203 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1204 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1205 res = true;
1206 }
1207 }
1208 return res;
1209 }
1210
ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,IdentifierInfo * ProtocolName,SourceLocation ProtocolLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,const ParsedAttributesView & AttrList)1211 Decl *Sema::ActOnStartProtocolInterface(
1212 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1213 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1214 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1215 const ParsedAttributesView &AttrList) {
1216 bool err = false;
1217 // FIXME: Deal with AttrList.
1218 assert(ProtocolName && "Missing protocol identifier");
1219 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1220 forRedeclarationInCurContext());
1221 ObjCProtocolDecl *PDecl = nullptr;
1222 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1223 // If we already have a definition, complain.
1224 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1225 Diag(Def->getLocation(), diag::note_previous_definition);
1226
1227 // Create a new protocol that is completely distinct from previous
1228 // declarations, and do not make this protocol available for name lookup.
1229 // That way, we'll end up completely ignoring the duplicate.
1230 // FIXME: Can we turn this into an error?
1231 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1232 ProtocolLoc, AtProtoInterfaceLoc,
1233 /*PrevDecl=*/nullptr);
1234
1235 // If we are using modules, add the decl to the context in order to
1236 // serialize something meaningful.
1237 if (getLangOpts().Modules)
1238 PushOnScopeChains(PDecl, TUScope);
1239 PDecl->startDefinition();
1240 } else {
1241 if (PrevDecl) {
1242 // Check for circular dependencies among protocol declarations. This can
1243 // only happen if this protocol was forward-declared.
1244 ObjCList<ObjCProtocolDecl> PList;
1245 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1246 err = CheckForwardProtocolDeclarationForCircularDependency(
1247 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1248 }
1249
1250 // Create the new declaration.
1251 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1252 ProtocolLoc, AtProtoInterfaceLoc,
1253 /*PrevDecl=*/PrevDecl);
1254
1255 PushOnScopeChains(PDecl, TUScope);
1256 PDecl->startDefinition();
1257 }
1258
1259 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1260 AddPragmaAttributes(TUScope, PDecl);
1261
1262 // Merge attributes from previous declarations.
1263 if (PrevDecl)
1264 mergeDeclAttributes(PDecl, PrevDecl);
1265
1266 if (!err && NumProtoRefs ) {
1267 /// Check then save referenced protocols.
1268 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1269 NumProtoRefs, ProtoLocs);
1270 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1271 ProtoLocs, Context);
1272 }
1273
1274 CheckObjCDeclScope(PDecl);
1275 return ActOnObjCContainerStartDefinition(PDecl);
1276 }
1277
NestedProtocolHasNoDefinition(ObjCProtocolDecl * PDecl,ObjCProtocolDecl * & UndefinedProtocol)1278 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1279 ObjCProtocolDecl *&UndefinedProtocol) {
1280 if (!PDecl->hasDefinition() ||
1281 !PDecl->getDefinition()->isUnconditionallyVisible()) {
1282 UndefinedProtocol = PDecl;
1283 return true;
1284 }
1285
1286 for (auto *PI : PDecl->protocols())
1287 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1288 UndefinedProtocol = PI;
1289 return true;
1290 }
1291 return false;
1292 }
1293
1294 /// FindProtocolDeclaration - This routine looks up protocols and
1295 /// issues an error if they are not declared. It returns list of
1296 /// protocol declarations in its 'Protocols' argument.
1297 void
FindProtocolDeclaration(bool WarnOnDeclarations,bool ForObjCContainer,ArrayRef<IdentifierLocPair> ProtocolId,SmallVectorImpl<Decl * > & Protocols)1298 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1299 ArrayRef<IdentifierLocPair> ProtocolId,
1300 SmallVectorImpl<Decl *> &Protocols) {
1301 for (const IdentifierLocPair &Pair : ProtocolId) {
1302 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1303 if (!PDecl) {
1304 DeclFilterCCC<ObjCProtocolDecl> CCC{};
1305 TypoCorrection Corrected = CorrectTypo(
1306 DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
1307 TUScope, nullptr, CCC, CTK_ErrorRecovery);
1308 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1309 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1310 << Pair.first);
1311 }
1312
1313 if (!PDecl) {
1314 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1315 continue;
1316 }
1317 // If this is a forward protocol declaration, get its definition.
1318 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1319 PDecl = PDecl->getDefinition();
1320
1321 // For an objc container, delay protocol reference checking until after we
1322 // can set the objc decl as the availability context, otherwise check now.
1323 if (!ForObjCContainer) {
1324 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1325 }
1326
1327 // If this is a forward declaration and we are supposed to warn in this
1328 // case, do it.
1329 // FIXME: Recover nicely in the hidden case.
1330 ObjCProtocolDecl *UndefinedProtocol;
1331
1332 if (WarnOnDeclarations &&
1333 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1334 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1335 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1336 << UndefinedProtocol;
1337 }
1338 Protocols.push_back(PDecl);
1339 }
1340 }
1341
1342 namespace {
1343 // Callback to only accept typo corrections that are either
1344 // Objective-C protocols or valid Objective-C type arguments.
1345 class ObjCTypeArgOrProtocolValidatorCCC final
1346 : public CorrectionCandidateCallback {
1347 ASTContext &Context;
1348 Sema::LookupNameKind LookupKind;
1349 public:
ObjCTypeArgOrProtocolValidatorCCC(ASTContext & context,Sema::LookupNameKind lookupKind)1350 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1351 Sema::LookupNameKind lookupKind)
1352 : Context(context), LookupKind(lookupKind) { }
1353
ValidateCandidate(const TypoCorrection & candidate)1354 bool ValidateCandidate(const TypoCorrection &candidate) override {
1355 // If we're allowed to find protocols and we have a protocol, accept it.
1356 if (LookupKind != Sema::LookupOrdinaryName) {
1357 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1358 return true;
1359 }
1360
1361 // If we're allowed to find type names and we have one, accept it.
1362 if (LookupKind != Sema::LookupObjCProtocolName) {
1363 // If we have a type declaration, we might accept this result.
1364 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1365 // If we found a tag declaration outside of C++, skip it. This
1366 // can happy because we look for any name when there is no
1367 // bias to protocol or type names.
1368 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1369 return false;
1370
1371 // Make sure the type is something we would accept as a type
1372 // argument.
1373 auto type = Context.getTypeDeclType(typeDecl);
1374 if (type->isObjCObjectPointerType() ||
1375 type->isBlockPointerType() ||
1376 type->isDependentType() ||
1377 type->isObjCObjectType())
1378 return true;
1379
1380 return false;
1381 }
1382
1383 // If we have an Objective-C class type, accept it; there will
1384 // be another fix to add the '*'.
1385 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1386 return true;
1387
1388 return false;
1389 }
1390
1391 return false;
1392 }
1393
clone()1394 std::unique_ptr<CorrectionCandidateCallback> clone() override {
1395 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1396 }
1397 };
1398 } // end anonymous namespace
1399
DiagnoseTypeArgsAndProtocols(IdentifierInfo * ProtocolId,SourceLocation ProtocolLoc,IdentifierInfo * TypeArgId,SourceLocation TypeArgLoc,bool SelectProtocolFirst)1400 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1401 SourceLocation ProtocolLoc,
1402 IdentifierInfo *TypeArgId,
1403 SourceLocation TypeArgLoc,
1404 bool SelectProtocolFirst) {
1405 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1406 << SelectProtocolFirst << TypeArgId << ProtocolId
1407 << SourceRange(ProtocolLoc);
1408 }
1409
actOnObjCTypeArgsOrProtocolQualifiers(Scope * S,ParsedType baseType,SourceLocation lAngleLoc,ArrayRef<IdentifierInfo * > identifiers,ArrayRef<SourceLocation> identifierLocs,SourceLocation rAngleLoc,SourceLocation & typeArgsLAngleLoc,SmallVectorImpl<ParsedType> & typeArgs,SourceLocation & typeArgsRAngleLoc,SourceLocation & protocolLAngleLoc,SmallVectorImpl<Decl * > & protocols,SourceLocation & protocolRAngleLoc,bool warnOnIncompleteProtocols)1410 void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1411 Scope *S,
1412 ParsedType baseType,
1413 SourceLocation lAngleLoc,
1414 ArrayRef<IdentifierInfo *> identifiers,
1415 ArrayRef<SourceLocation> identifierLocs,
1416 SourceLocation rAngleLoc,
1417 SourceLocation &typeArgsLAngleLoc,
1418 SmallVectorImpl<ParsedType> &typeArgs,
1419 SourceLocation &typeArgsRAngleLoc,
1420 SourceLocation &protocolLAngleLoc,
1421 SmallVectorImpl<Decl *> &protocols,
1422 SourceLocation &protocolRAngleLoc,
1423 bool warnOnIncompleteProtocols) {
1424 // Local function that updates the declaration specifiers with
1425 // protocol information.
1426 unsigned numProtocolsResolved = 0;
1427 auto resolvedAsProtocols = [&] {
1428 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1429
1430 // Determine whether the base type is a parameterized class, in
1431 // which case we want to warn about typos such as
1432 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1433 ObjCInterfaceDecl *baseClass = nullptr;
1434 QualType base = GetTypeFromParser(baseType, nullptr);
1435 bool allAreTypeNames = false;
1436 SourceLocation firstClassNameLoc;
1437 if (!base.isNull()) {
1438 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1439 baseClass = objcObjectType->getInterface();
1440 if (baseClass) {
1441 if (auto typeParams = baseClass->getTypeParamList()) {
1442 if (typeParams->size() == numProtocolsResolved) {
1443 // Note that we should be looking for type names, too.
1444 allAreTypeNames = true;
1445 }
1446 }
1447 }
1448 }
1449 }
1450
1451 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1452 ObjCProtocolDecl *&proto
1453 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1454 // For an objc container, delay protocol reference checking until after we
1455 // can set the objc decl as the availability context, otherwise check now.
1456 if (!warnOnIncompleteProtocols) {
1457 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1458 }
1459
1460 // If this is a forward protocol declaration, get its definition.
1461 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1462 proto = proto->getDefinition();
1463
1464 // If this is a forward declaration and we are supposed to warn in this
1465 // case, do it.
1466 // FIXME: Recover nicely in the hidden case.
1467 ObjCProtocolDecl *forwardDecl = nullptr;
1468 if (warnOnIncompleteProtocols &&
1469 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1470 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1471 << proto->getDeclName();
1472 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1473 << forwardDecl;
1474 }
1475
1476 // If everything this far has been a type name (and we care
1477 // about such things), check whether this name refers to a type
1478 // as well.
1479 if (allAreTypeNames) {
1480 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1481 LookupOrdinaryName)) {
1482 if (isa<ObjCInterfaceDecl>(decl)) {
1483 if (firstClassNameLoc.isInvalid())
1484 firstClassNameLoc = identifierLocs[i];
1485 } else if (!isa<TypeDecl>(decl)) {
1486 // Not a type.
1487 allAreTypeNames = false;
1488 }
1489 } else {
1490 allAreTypeNames = false;
1491 }
1492 }
1493 }
1494
1495 // All of the protocols listed also have type names, and at least
1496 // one is an Objective-C class name. Check whether all of the
1497 // protocol conformances are declared by the base class itself, in
1498 // which case we warn.
1499 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1500 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1501 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1502 bool allProtocolsDeclared = true;
1503 for (auto proto : protocols) {
1504 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1505 allProtocolsDeclared = false;
1506 break;
1507 }
1508 }
1509
1510 if (allProtocolsDeclared) {
1511 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1512 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1513 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1514 " *");
1515 }
1516 }
1517
1518 protocolLAngleLoc = lAngleLoc;
1519 protocolRAngleLoc = rAngleLoc;
1520 assert(protocols.size() == identifierLocs.size());
1521 };
1522
1523 // Attempt to resolve all of the identifiers as protocols.
1524 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1525 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1526 protocols.push_back(proto);
1527 if (proto)
1528 ++numProtocolsResolved;
1529 }
1530
1531 // If all of the names were protocols, these were protocol qualifiers.
1532 if (numProtocolsResolved == identifiers.size())
1533 return resolvedAsProtocols();
1534
1535 // Attempt to resolve all of the identifiers as type names or
1536 // Objective-C class names. The latter is technically ill-formed,
1537 // but is probably something like \c NSArray<NSView *> missing the
1538 // \c*.
1539 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1540 SmallVector<TypeOrClassDecl, 4> typeDecls;
1541 unsigned numTypeDeclsResolved = 0;
1542 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1543 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1544 LookupOrdinaryName);
1545 if (!decl) {
1546 typeDecls.push_back(TypeOrClassDecl());
1547 continue;
1548 }
1549
1550 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1551 typeDecls.push_back(typeDecl);
1552 ++numTypeDeclsResolved;
1553 continue;
1554 }
1555
1556 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1557 typeDecls.push_back(objcClass);
1558 ++numTypeDeclsResolved;
1559 continue;
1560 }
1561
1562 typeDecls.push_back(TypeOrClassDecl());
1563 }
1564
1565 AttributeFactory attrFactory;
1566
1567 // Local function that forms a reference to the given type or
1568 // Objective-C class declaration.
1569 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1570 -> TypeResult {
1571 // Form declaration specifiers. They simply refer to the type.
1572 DeclSpec DS(attrFactory);
1573 const char* prevSpec; // unused
1574 unsigned diagID; // unused
1575 QualType type;
1576 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1577 type = Context.getTypeDeclType(actualTypeDecl);
1578 else
1579 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1580 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1581 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1582 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1583 parsedType, Context.getPrintingPolicy());
1584 // Use the identifier location for the type source range.
1585 DS.SetRangeStart(loc);
1586 DS.SetRangeEnd(loc);
1587
1588 // Form the declarator.
1589 Declarator D(DS, DeclaratorContext::TypeName);
1590
1591 // If we have a typedef of an Objective-C class type that is missing a '*',
1592 // add the '*'.
1593 if (type->getAs<ObjCInterfaceType>()) {
1594 SourceLocation starLoc = getLocForEndOfToken(loc);
1595 D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1596 SourceLocation(),
1597 SourceLocation(),
1598 SourceLocation(),
1599 SourceLocation(),
1600 SourceLocation()),
1601 starLoc);
1602
1603 // Diagnose the missing '*'.
1604 Diag(loc, diag::err_objc_type_arg_missing_star)
1605 << type
1606 << FixItHint::CreateInsertion(starLoc, " *");
1607 }
1608
1609 // Convert this to a type.
1610 return ActOnTypeName(S, D);
1611 };
1612
1613 // Local function that updates the declaration specifiers with
1614 // type argument information.
1615 auto resolvedAsTypeDecls = [&] {
1616 // We did not resolve these as protocols.
1617 protocols.clear();
1618
1619 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1620 // Map type declarations to type arguments.
1621 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1622 // Map type reference to a type.
1623 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1624 if (!type.isUsable()) {
1625 typeArgs.clear();
1626 return;
1627 }
1628
1629 typeArgs.push_back(type.get());
1630 }
1631
1632 typeArgsLAngleLoc = lAngleLoc;
1633 typeArgsRAngleLoc = rAngleLoc;
1634 };
1635
1636 // If all of the identifiers can be resolved as type names or
1637 // Objective-C class names, we have type arguments.
1638 if (numTypeDeclsResolved == identifiers.size())
1639 return resolvedAsTypeDecls();
1640
1641 // Error recovery: some names weren't found, or we have a mix of
1642 // type and protocol names. Go resolve all of the unresolved names
1643 // and complain if we can't find a consistent answer.
1644 LookupNameKind lookupKind = LookupAnyName;
1645 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1646 // If we already have a protocol or type. Check whether it is the
1647 // right thing.
1648 if (protocols[i] || typeDecls[i]) {
1649 // If we haven't figured out whether we want types or protocols
1650 // yet, try to figure it out from this name.
1651 if (lookupKind == LookupAnyName) {
1652 // If this name refers to both a protocol and a type (e.g., \c
1653 // NSObject), don't conclude anything yet.
1654 if (protocols[i] && typeDecls[i])
1655 continue;
1656
1657 // Otherwise, let this name decide whether we'll be correcting
1658 // toward types or protocols.
1659 lookupKind = protocols[i] ? LookupObjCProtocolName
1660 : LookupOrdinaryName;
1661 continue;
1662 }
1663
1664 // If we want protocols and we have a protocol, there's nothing
1665 // more to do.
1666 if (lookupKind == LookupObjCProtocolName && protocols[i])
1667 continue;
1668
1669 // If we want types and we have a type declaration, there's
1670 // nothing more to do.
1671 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1672 continue;
1673
1674 // We have a conflict: some names refer to protocols and others
1675 // refer to types.
1676 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1677 identifiers[i], identifierLocs[i],
1678 protocols[i] != nullptr);
1679
1680 protocols.clear();
1681 typeArgs.clear();
1682 return;
1683 }
1684
1685 // Perform typo correction on the name.
1686 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1687 TypoCorrection corrected =
1688 CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1689 lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
1690 if (corrected) {
1691 // Did we find a protocol?
1692 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1693 diagnoseTypo(corrected,
1694 PDiag(diag::err_undeclared_protocol_suggest)
1695 << identifiers[i]);
1696 lookupKind = LookupObjCProtocolName;
1697 protocols[i] = proto;
1698 ++numProtocolsResolved;
1699 continue;
1700 }
1701
1702 // Did we find a type?
1703 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1704 diagnoseTypo(corrected,
1705 PDiag(diag::err_unknown_typename_suggest)
1706 << identifiers[i]);
1707 lookupKind = LookupOrdinaryName;
1708 typeDecls[i] = typeDecl;
1709 ++numTypeDeclsResolved;
1710 continue;
1711 }
1712
1713 // Did we find an Objective-C class?
1714 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1715 diagnoseTypo(corrected,
1716 PDiag(diag::err_unknown_type_or_class_name_suggest)
1717 << identifiers[i] << true);
1718 lookupKind = LookupOrdinaryName;
1719 typeDecls[i] = objcClass;
1720 ++numTypeDeclsResolved;
1721 continue;
1722 }
1723 }
1724
1725 // We couldn't find anything.
1726 Diag(identifierLocs[i],
1727 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1728 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1729 : diag::err_unknown_typename))
1730 << identifiers[i];
1731 protocols.clear();
1732 typeArgs.clear();
1733 return;
1734 }
1735
1736 // If all of the names were (corrected to) protocols, these were
1737 // protocol qualifiers.
1738 if (numProtocolsResolved == identifiers.size())
1739 return resolvedAsProtocols();
1740
1741 // Otherwise, all of the names were (corrected to) types.
1742 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1743 return resolvedAsTypeDecls();
1744 }
1745
1746 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1747 /// a class method in its extension.
1748 ///
DiagnoseClassExtensionDupMethods(ObjCCategoryDecl * CAT,ObjCInterfaceDecl * ID)1749 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1750 ObjCInterfaceDecl *ID) {
1751 if (!ID)
1752 return; // Possibly due to previous error
1753
1754 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1755 for (auto *MD : ID->methods())
1756 MethodMap[MD->getSelector()] = MD;
1757
1758 if (MethodMap.empty())
1759 return;
1760 for (const auto *Method : CAT->methods()) {
1761 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1762 if (PrevMethod &&
1763 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1764 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1765 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1766 << Method->getDeclName();
1767 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1768 }
1769 }
1770 }
1771
1772 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1773 Sema::DeclGroupPtrTy
ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,ArrayRef<IdentifierLocPair> IdentList,const ParsedAttributesView & attrList)1774 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1775 ArrayRef<IdentifierLocPair> IdentList,
1776 const ParsedAttributesView &attrList) {
1777 SmallVector<Decl *, 8> DeclsInGroup;
1778 for (const IdentifierLocPair &IdentPair : IdentList) {
1779 IdentifierInfo *Ident = IdentPair.first;
1780 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1781 forRedeclarationInCurContext());
1782 ObjCProtocolDecl *PDecl
1783 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1784 IdentPair.second, AtProtocolLoc,
1785 PrevDecl);
1786
1787 PushOnScopeChains(PDecl, TUScope);
1788 CheckObjCDeclScope(PDecl);
1789
1790 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1791 AddPragmaAttributes(TUScope, PDecl);
1792
1793 if (PrevDecl)
1794 mergeDeclAttributes(PDecl, PrevDecl);
1795
1796 DeclsInGroup.push_back(PDecl);
1797 }
1798
1799 return BuildDeclaratorGroup(DeclsInGroup);
1800 }
1801
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,ObjCTypeParamList * typeParamList,IdentifierInfo * CategoryName,SourceLocation CategoryLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,const ParsedAttributesView & AttrList)1802 Decl *Sema::ActOnStartCategoryInterface(
1803 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1804 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1805 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1806 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1807 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1808 const ParsedAttributesView &AttrList) {
1809 ObjCCategoryDecl *CDecl;
1810 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1811
1812 /// Check that class of this category is already completely declared.
1813
1814 if (!IDecl
1815 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1816 diag::err_category_forward_interface,
1817 CategoryName == nullptr)) {
1818 // Create an invalid ObjCCategoryDecl to serve as context for
1819 // the enclosing method declarations. We mark the decl invalid
1820 // to make it clear that this isn't a valid AST.
1821 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1822 ClassLoc, CategoryLoc, CategoryName,
1823 IDecl, typeParamList);
1824 CDecl->setInvalidDecl();
1825 CurContext->addDecl(CDecl);
1826
1827 if (!IDecl)
1828 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1829 return ActOnObjCContainerStartDefinition(CDecl);
1830 }
1831
1832 if (!CategoryName && IDecl->getImplementation()) {
1833 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1834 Diag(IDecl->getImplementation()->getLocation(),
1835 diag::note_implementation_declared);
1836 }
1837
1838 if (CategoryName) {
1839 /// Check for duplicate interface declaration for this category
1840 if (ObjCCategoryDecl *Previous
1841 = IDecl->FindCategoryDeclaration(CategoryName)) {
1842 // Class extensions can be declared multiple times, categories cannot.
1843 Diag(CategoryLoc, diag::warn_dup_category_def)
1844 << ClassName << CategoryName;
1845 Diag(Previous->getLocation(), diag::note_previous_definition);
1846 }
1847 }
1848
1849 // If we have a type parameter list, check it.
1850 if (typeParamList) {
1851 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1852 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1853 CategoryName
1854 ? TypeParamListContext::Category
1855 : TypeParamListContext::Extension))
1856 typeParamList = nullptr;
1857 } else {
1858 Diag(typeParamList->getLAngleLoc(),
1859 diag::err_objc_parameterized_category_nonclass)
1860 << (CategoryName != nullptr)
1861 << ClassName
1862 << typeParamList->getSourceRange();
1863
1864 typeParamList = nullptr;
1865 }
1866 }
1867
1868 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1869 ClassLoc, CategoryLoc, CategoryName, IDecl,
1870 typeParamList);
1871 // FIXME: PushOnScopeChains?
1872 CurContext->addDecl(CDecl);
1873
1874 // Process the attributes before looking at protocols to ensure that the
1875 // availability attribute is attached to the category to provide availability
1876 // checking for protocol uses.
1877 ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1878 AddPragmaAttributes(TUScope, CDecl);
1879
1880 if (NumProtoRefs) {
1881 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1882 NumProtoRefs, ProtoLocs);
1883 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1884 ProtoLocs, Context);
1885 // Protocols in the class extension belong to the class.
1886 if (CDecl->IsClassExtension())
1887 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1888 NumProtoRefs, Context);
1889 }
1890
1891 CheckObjCDeclScope(CDecl);
1892 return ActOnObjCContainerStartDefinition(CDecl);
1893 }
1894
1895 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1896 /// category implementation declaration and build an ObjCCategoryImplDecl
1897 /// object.
ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CatName,SourceLocation CatLoc,const ParsedAttributesView & Attrs)1898 Decl *Sema::ActOnStartCategoryImplementation(
1899 SourceLocation AtCatImplLoc,
1900 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1901 IdentifierInfo *CatName, SourceLocation CatLoc,
1902 const ParsedAttributesView &Attrs) {
1903 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1904 ObjCCategoryDecl *CatIDecl = nullptr;
1905 if (IDecl && IDecl->hasDefinition()) {
1906 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1907 if (!CatIDecl) {
1908 // Category @implementation with no corresponding @interface.
1909 // Create and install one.
1910 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1911 ClassLoc, CatLoc,
1912 CatName, IDecl,
1913 /*typeParamList=*/nullptr);
1914 CatIDecl->setImplicit();
1915 }
1916 }
1917
1918 ObjCCategoryImplDecl *CDecl =
1919 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1920 ClassLoc, AtCatImplLoc, CatLoc);
1921 /// Check that class of this category is already completely declared.
1922 if (!IDecl) {
1923 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1924 CDecl->setInvalidDecl();
1925 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1926 diag::err_undef_interface)) {
1927 CDecl->setInvalidDecl();
1928 }
1929
1930 ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1931 AddPragmaAttributes(TUScope, CDecl);
1932
1933 // FIXME: PushOnScopeChains?
1934 CurContext->addDecl(CDecl);
1935
1936 // If the interface has the objc_runtime_visible attribute, we
1937 // cannot implement a category for it.
1938 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1939 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1940 << IDecl->getDeclName();
1941 }
1942
1943 /// Check that CatName, category name, is not used in another implementation.
1944 if (CatIDecl) {
1945 if (CatIDecl->getImplementation()) {
1946 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1947 << CatName;
1948 Diag(CatIDecl->getImplementation()->getLocation(),
1949 diag::note_previous_definition);
1950 CDecl->setInvalidDecl();
1951 } else {
1952 CatIDecl->setImplementation(CDecl);
1953 // Warn on implementating category of deprecated class under
1954 // -Wdeprecated-implementations flag.
1955 DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1956 CDecl->getLocation());
1957 }
1958 }
1959
1960 CheckObjCDeclScope(CDecl);
1961 return ActOnObjCContainerStartDefinition(CDecl);
1962 }
1963
ActOnStartClassImplementation(SourceLocation AtClassImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperClassname,SourceLocation SuperClassLoc,const ParsedAttributesView & Attrs)1964 Decl *Sema::ActOnStartClassImplementation(
1965 SourceLocation AtClassImplLoc,
1966 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1967 IdentifierInfo *SuperClassname,
1968 SourceLocation SuperClassLoc,
1969 const ParsedAttributesView &Attrs) {
1970 ObjCInterfaceDecl *IDecl = nullptr;
1971 // Check for another declaration kind with the same name.
1972 NamedDecl *PrevDecl
1973 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1974 forRedeclarationInCurContext());
1975 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1976 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1977 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1978 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1979 // FIXME: This will produce an error if the definition of the interface has
1980 // been imported from a module but is not visible.
1981 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1982 diag::warn_undef_interface);
1983 } else {
1984 // We did not find anything with the name ClassName; try to correct for
1985 // typos in the class name.
1986 ObjCInterfaceValidatorCCC CCC{};
1987 TypoCorrection Corrected =
1988 CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1989 LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
1990 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1991 // Suggest the (potentially) correct interface name. Don't provide a
1992 // code-modification hint or use the typo name for recovery, because
1993 // this is just a warning. The program may actually be correct.
1994 diagnoseTypo(Corrected,
1995 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1996 /*ErrorRecovery*/false);
1997 } else {
1998 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1999 }
2000 }
2001
2002 // Check that super class name is valid class name
2003 ObjCInterfaceDecl *SDecl = nullptr;
2004 if (SuperClassname) {
2005 // Check if a different kind of symbol declared in this scope.
2006 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
2007 LookupOrdinaryName);
2008 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2009 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2010 << SuperClassname;
2011 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2012 } else {
2013 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2014 if (SDecl && !SDecl->hasDefinition())
2015 SDecl = nullptr;
2016 if (!SDecl)
2017 Diag(SuperClassLoc, diag::err_undef_superclass)
2018 << SuperClassname << ClassName;
2019 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2020 // This implementation and its interface do not have the same
2021 // super class.
2022 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2023 << SDecl->getDeclName();
2024 Diag(SDecl->getLocation(), diag::note_previous_definition);
2025 }
2026 }
2027 }
2028
2029 if (!IDecl) {
2030 // Legacy case of @implementation with no corresponding @interface.
2031 // Build, chain & install the interface decl into the identifier.
2032
2033 // FIXME: Do we support attributes on the @implementation? If so we should
2034 // copy them over.
2035 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2036 ClassName, /*typeParamList=*/nullptr,
2037 /*PrevDecl=*/nullptr, ClassLoc,
2038 true);
2039 AddPragmaAttributes(TUScope, IDecl);
2040 IDecl->startDefinition();
2041 if (SDecl) {
2042 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2043 Context.getObjCInterfaceType(SDecl),
2044 SuperClassLoc));
2045 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2046 } else {
2047 IDecl->setEndOfDefinitionLoc(ClassLoc);
2048 }
2049
2050 PushOnScopeChains(IDecl, TUScope);
2051 } else {
2052 // Mark the interface as being completed, even if it was just as
2053 // @class ....;
2054 // declaration; the user cannot reopen it.
2055 if (!IDecl->hasDefinition())
2056 IDecl->startDefinition();
2057 }
2058
2059 ObjCImplementationDecl* IMPDecl =
2060 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2061 ClassLoc, AtClassImplLoc, SuperClassLoc);
2062
2063 ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2064 AddPragmaAttributes(TUScope, IMPDecl);
2065
2066 if (CheckObjCDeclScope(IMPDecl))
2067 return ActOnObjCContainerStartDefinition(IMPDecl);
2068
2069 // Check that there is no duplicate implementation of this class.
2070 if (IDecl->getImplementation()) {
2071 // FIXME: Don't leak everything!
2072 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2073 Diag(IDecl->getImplementation()->getLocation(),
2074 diag::note_previous_definition);
2075 IMPDecl->setInvalidDecl();
2076 } else { // add it to the list.
2077 IDecl->setImplementation(IMPDecl);
2078 PushOnScopeChains(IMPDecl, TUScope);
2079 // Warn on implementating deprecated class under
2080 // -Wdeprecated-implementations flag.
2081 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2082 }
2083
2084 // If the superclass has the objc_runtime_visible attribute, we
2085 // cannot implement a subclass of it.
2086 if (IDecl->getSuperClass() &&
2087 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2088 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2089 << IDecl->getDeclName()
2090 << IDecl->getSuperClass()->getDeclName();
2091 }
2092
2093 return ActOnObjCContainerStartDefinition(IMPDecl);
2094 }
2095
2096 Sema::DeclGroupPtrTy
ActOnFinishObjCImplementation(Decl * ObjCImpDecl,ArrayRef<Decl * > Decls)2097 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2098 SmallVector<Decl *, 64> DeclsInGroup;
2099 DeclsInGroup.reserve(Decls.size() + 1);
2100
2101 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2102 Decl *Dcl = Decls[i];
2103 if (!Dcl)
2104 continue;
2105 if (Dcl->getDeclContext()->isFileContext())
2106 Dcl->setTopLevelDeclInObjCContainer();
2107 DeclsInGroup.push_back(Dcl);
2108 }
2109
2110 DeclsInGroup.push_back(ObjCImpDecl);
2111
2112 return BuildDeclaratorGroup(DeclsInGroup);
2113 }
2114
CheckImplementationIvars(ObjCImplementationDecl * ImpDecl,ObjCIvarDecl ** ivars,unsigned numIvars,SourceLocation RBrace)2115 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2116 ObjCIvarDecl **ivars, unsigned numIvars,
2117 SourceLocation RBrace) {
2118 assert(ImpDecl && "missing implementation decl");
2119 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2120 if (!IDecl)
2121 return;
2122 /// Check case of non-existing \@interface decl.
2123 /// (legacy objective-c \@implementation decl without an \@interface decl).
2124 /// Add implementations's ivar to the synthesize class's ivar list.
2125 if (IDecl->isImplicitInterfaceDecl()) {
2126 IDecl->setEndOfDefinitionLoc(RBrace);
2127 // Add ivar's to class's DeclContext.
2128 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2129 ivars[i]->setLexicalDeclContext(ImpDecl);
2130 // In a 'fragile' runtime the ivar was added to the implicit
2131 // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2132 // only in the ObjCImplementationDecl. In the non-fragile case the ivar
2133 // therefore also needs to be propagated to the ObjCInterfaceDecl.
2134 if (!LangOpts.ObjCRuntime.isFragile())
2135 IDecl->makeDeclVisibleInContext(ivars[i]);
2136 ImpDecl->addDecl(ivars[i]);
2137 }
2138
2139 return;
2140 }
2141 // If implementation has empty ivar list, just return.
2142 if (numIvars == 0)
2143 return;
2144
2145 assert(ivars && "missing @implementation ivars");
2146 if (LangOpts.ObjCRuntime.isNonFragile()) {
2147 if (ImpDecl->getSuperClass())
2148 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2149 for (unsigned i = 0; i < numIvars; i++) {
2150 ObjCIvarDecl* ImplIvar = ivars[i];
2151 if (const ObjCIvarDecl *ClsIvar =
2152 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2153 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2154 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2155 continue;
2156 }
2157 // Check class extensions (unnamed categories) for duplicate ivars.
2158 for (const auto *CDecl : IDecl->visible_extensions()) {
2159 if (const ObjCIvarDecl *ClsExtIvar =
2160 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2161 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2162 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2163 continue;
2164 }
2165 }
2166 // Instance ivar to Implementation's DeclContext.
2167 ImplIvar->setLexicalDeclContext(ImpDecl);
2168 IDecl->makeDeclVisibleInContext(ImplIvar);
2169 ImpDecl->addDecl(ImplIvar);
2170 }
2171 return;
2172 }
2173 // Check interface's Ivar list against those in the implementation.
2174 // names and types must match.
2175 //
2176 unsigned j = 0;
2177 ObjCInterfaceDecl::ivar_iterator
2178 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2179 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2180 ObjCIvarDecl* ImplIvar = ivars[j++];
2181 ObjCIvarDecl* ClsIvar = *IVI;
2182 assert (ImplIvar && "missing implementation ivar");
2183 assert (ClsIvar && "missing class ivar");
2184
2185 // First, make sure the types match.
2186 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2187 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2188 << ImplIvar->getIdentifier()
2189 << ImplIvar->getType() << ClsIvar->getType();
2190 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2191 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2192 ImplIvar->getBitWidthValue(Context) !=
2193 ClsIvar->getBitWidthValue(Context)) {
2194 Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2195 diag::err_conflicting_ivar_bitwidth)
2196 << ImplIvar->getIdentifier();
2197 Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2198 diag::note_previous_definition);
2199 }
2200 // Make sure the names are identical.
2201 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2202 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2203 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2204 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2205 }
2206 --numIvars;
2207 }
2208
2209 if (numIvars > 0)
2210 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2211 else if (IVI != IVE)
2212 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2213 }
2214
WarnUndefinedMethod(Sema & S,SourceLocation ImpLoc,ObjCMethodDecl * method,bool & IncompleteImpl,unsigned DiagID,NamedDecl * NeededFor=nullptr)2215 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2216 ObjCMethodDecl *method,
2217 bool &IncompleteImpl,
2218 unsigned DiagID,
2219 NamedDecl *NeededFor = nullptr) {
2220 // No point warning no definition of method which is 'unavailable'.
2221 if (method->getAvailability() == AR_Unavailable)
2222 return;
2223
2224 // FIXME: For now ignore 'IncompleteImpl'.
2225 // Previously we grouped all unimplemented methods under a single
2226 // warning, but some users strongly voiced that they would prefer
2227 // separate warnings. We will give that approach a try, as that
2228 // matches what we do with protocols.
2229 {
2230 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2231 B << method;
2232 if (NeededFor)
2233 B << NeededFor;
2234 }
2235
2236 // Issue a note to the original declaration.
2237 SourceLocation MethodLoc = method->getBeginLoc();
2238 if (MethodLoc.isValid())
2239 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2240 }
2241
2242 /// Determines if type B can be substituted for type A. Returns true if we can
2243 /// guarantee that anything that the user will do to an object of type A can
2244 /// also be done to an object of type B. This is trivially true if the two
2245 /// types are the same, or if B is a subclass of A. It becomes more complex
2246 /// in cases where protocols are involved.
2247 ///
2248 /// Object types in Objective-C describe the minimum requirements for an
2249 /// object, rather than providing a complete description of a type. For
2250 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2251 /// The principle of substitutability means that we may use an instance of A
2252 /// anywhere that we may use an instance of B - it will implement all of the
2253 /// ivars of B and all of the methods of B.
2254 ///
2255 /// This substitutability is important when type checking methods, because
2256 /// the implementation may have stricter type definitions than the interface.
2257 /// The interface specifies minimum requirements, but the implementation may
2258 /// have more accurate ones. For example, a method may privately accept
2259 /// instances of B, but only publish that it accepts instances of A. Any
2260 /// object passed to it will be type checked against B, and so will implicitly
2261 /// by a valid A*. Similarly, a method may return a subclass of the class that
2262 /// it is declared as returning.
2263 ///
2264 /// This is most important when considering subclassing. A method in a
2265 /// subclass must accept any object as an argument that its superclass's
2266 /// implementation accepts. It may, however, accept a more general type
2267 /// without breaking substitutability (i.e. you can still use the subclass
2268 /// anywhere that you can use the superclass, but not vice versa). The
2269 /// converse requirement applies to return types: the return type for a
2270 /// subclass method must be a valid object of the kind that the superclass
2271 /// advertises, but it may be specified more accurately. This avoids the need
2272 /// for explicit down-casting by callers.
2273 ///
2274 /// Note: This is a stricter requirement than for assignment.
isObjCTypeSubstitutable(ASTContext & Context,const ObjCObjectPointerType * A,const ObjCObjectPointerType * B,bool rejectId)2275 static bool isObjCTypeSubstitutable(ASTContext &Context,
2276 const ObjCObjectPointerType *A,
2277 const ObjCObjectPointerType *B,
2278 bool rejectId) {
2279 // Reject a protocol-unqualified id.
2280 if (rejectId && B->isObjCIdType()) return false;
2281
2282 // If B is a qualified id, then A must also be a qualified id and it must
2283 // implement all of the protocols in B. It may not be a qualified class.
2284 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2285 // stricter definition so it is not substitutable for id<A>.
2286 if (B->isObjCQualifiedIdType()) {
2287 return A->isObjCQualifiedIdType() &&
2288 Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2289 }
2290
2291 /*
2292 // id is a special type that bypasses type checking completely. We want a
2293 // warning when it is used in one place but not another.
2294 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2295
2296
2297 // If B is a qualified id, then A must also be a qualified id (which it isn't
2298 // if we've got this far)
2299 if (B->isObjCQualifiedIdType()) return false;
2300 */
2301
2302 // Now we know that A and B are (potentially-qualified) class types. The
2303 // normal rules for assignment apply.
2304 return Context.canAssignObjCInterfaces(A, B);
2305 }
2306
getTypeRange(TypeSourceInfo * TSI)2307 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2308 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2309 }
2310
2311 /// Determine whether two set of Objective-C declaration qualifiers conflict.
objcModifiersConflict(Decl::ObjCDeclQualifier x,Decl::ObjCDeclQualifier y)2312 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2313 Decl::ObjCDeclQualifier y) {
2314 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2315 (y & ~Decl::OBJC_TQ_CSNullability);
2316 }
2317
CheckMethodOverrideReturn(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)2318 static bool CheckMethodOverrideReturn(Sema &S,
2319 ObjCMethodDecl *MethodImpl,
2320 ObjCMethodDecl *MethodDecl,
2321 bool IsProtocolMethodDecl,
2322 bool IsOverridingMode,
2323 bool Warn) {
2324 if (IsProtocolMethodDecl &&
2325 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2326 MethodImpl->getObjCDeclQualifier())) {
2327 if (Warn) {
2328 S.Diag(MethodImpl->getLocation(),
2329 (IsOverridingMode
2330 ? diag::warn_conflicting_overriding_ret_type_modifiers
2331 : diag::warn_conflicting_ret_type_modifiers))
2332 << MethodImpl->getDeclName()
2333 << MethodImpl->getReturnTypeSourceRange();
2334 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2335 << MethodDecl->getReturnTypeSourceRange();
2336 }
2337 else
2338 return false;
2339 }
2340 if (Warn && IsOverridingMode &&
2341 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2342 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2343 MethodDecl->getReturnType(),
2344 false)) {
2345 auto nullabilityMethodImpl =
2346 *MethodImpl->getReturnType()->getNullability(S.Context);
2347 auto nullabilityMethodDecl =
2348 *MethodDecl->getReturnType()->getNullability(S.Context);
2349 S.Diag(MethodImpl->getLocation(),
2350 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2351 << DiagNullabilityKind(
2352 nullabilityMethodImpl,
2353 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2354 != 0))
2355 << DiagNullabilityKind(
2356 nullabilityMethodDecl,
2357 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2358 != 0));
2359 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2360 }
2361
2362 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2363 MethodDecl->getReturnType()))
2364 return true;
2365 if (!Warn)
2366 return false;
2367
2368 unsigned DiagID =
2369 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2370 : diag::warn_conflicting_ret_types;
2371
2372 // Mismatches between ObjC pointers go into a different warning
2373 // category, and sometimes they're even completely explicitly allowed.
2374 if (const ObjCObjectPointerType *ImplPtrTy =
2375 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2376 if (const ObjCObjectPointerType *IfacePtrTy =
2377 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2378 // Allow non-matching return types as long as they don't violate
2379 // the principle of substitutability. Specifically, we permit
2380 // return types that are subclasses of the declared return type,
2381 // or that are more-qualified versions of the declared type.
2382 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2383 return false;
2384
2385 DiagID =
2386 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2387 : diag::warn_non_covariant_ret_types;
2388 }
2389 }
2390
2391 S.Diag(MethodImpl->getLocation(), DiagID)
2392 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2393 << MethodImpl->getReturnType()
2394 << MethodImpl->getReturnTypeSourceRange();
2395 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2396 ? diag::note_previous_declaration
2397 : diag::note_previous_definition)
2398 << MethodDecl->getReturnTypeSourceRange();
2399 return false;
2400 }
2401
CheckMethodOverrideParam(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,ParmVarDecl * ImplVar,ParmVarDecl * IfaceVar,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)2402 static bool CheckMethodOverrideParam(Sema &S,
2403 ObjCMethodDecl *MethodImpl,
2404 ObjCMethodDecl *MethodDecl,
2405 ParmVarDecl *ImplVar,
2406 ParmVarDecl *IfaceVar,
2407 bool IsProtocolMethodDecl,
2408 bool IsOverridingMode,
2409 bool Warn) {
2410 if (IsProtocolMethodDecl &&
2411 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2412 IfaceVar->getObjCDeclQualifier())) {
2413 if (Warn) {
2414 if (IsOverridingMode)
2415 S.Diag(ImplVar->getLocation(),
2416 diag::warn_conflicting_overriding_param_modifiers)
2417 << getTypeRange(ImplVar->getTypeSourceInfo())
2418 << MethodImpl->getDeclName();
2419 else S.Diag(ImplVar->getLocation(),
2420 diag::warn_conflicting_param_modifiers)
2421 << getTypeRange(ImplVar->getTypeSourceInfo())
2422 << MethodImpl->getDeclName();
2423 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2424 << getTypeRange(IfaceVar->getTypeSourceInfo());
2425 }
2426 else
2427 return false;
2428 }
2429
2430 QualType ImplTy = ImplVar->getType();
2431 QualType IfaceTy = IfaceVar->getType();
2432 if (Warn && IsOverridingMode &&
2433 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2434 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2435 S.Diag(ImplVar->getLocation(),
2436 diag::warn_conflicting_nullability_attr_overriding_param_types)
2437 << DiagNullabilityKind(
2438 *ImplTy->getNullability(S.Context),
2439 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2440 != 0))
2441 << DiagNullabilityKind(
2442 *IfaceTy->getNullability(S.Context),
2443 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2444 != 0));
2445 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2446 }
2447 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2448 return true;
2449
2450 if (!Warn)
2451 return false;
2452 unsigned DiagID =
2453 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2454 : diag::warn_conflicting_param_types;
2455
2456 // Mismatches between ObjC pointers go into a different warning
2457 // category, and sometimes they're even completely explicitly allowed..
2458 if (const ObjCObjectPointerType *ImplPtrTy =
2459 ImplTy->getAs<ObjCObjectPointerType>()) {
2460 if (const ObjCObjectPointerType *IfacePtrTy =
2461 IfaceTy->getAs<ObjCObjectPointerType>()) {
2462 // Allow non-matching argument types as long as they don't
2463 // violate the principle of substitutability. Specifically, the
2464 // implementation must accept any objects that the superclass
2465 // accepts, however it may also accept others.
2466 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2467 return false;
2468
2469 DiagID =
2470 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2471 : diag::warn_non_contravariant_param_types;
2472 }
2473 }
2474
2475 S.Diag(ImplVar->getLocation(), DiagID)
2476 << getTypeRange(ImplVar->getTypeSourceInfo())
2477 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2478 S.Diag(IfaceVar->getLocation(),
2479 (IsOverridingMode ? diag::note_previous_declaration
2480 : diag::note_previous_definition))
2481 << getTypeRange(IfaceVar->getTypeSourceInfo());
2482 return false;
2483 }
2484
2485 /// In ARC, check whether the conventional meanings of the two methods
2486 /// match. If they don't, it's a hard error.
checkMethodFamilyMismatch(Sema & S,ObjCMethodDecl * impl,ObjCMethodDecl * decl)2487 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2488 ObjCMethodDecl *decl) {
2489 ObjCMethodFamily implFamily = impl->getMethodFamily();
2490 ObjCMethodFamily declFamily = decl->getMethodFamily();
2491 if (implFamily == declFamily) return false;
2492
2493 // Since conventions are sorted by selector, the only possibility is
2494 // that the types differ enough to cause one selector or the other
2495 // to fall out of the family.
2496 assert(implFamily == OMF_None || declFamily == OMF_None);
2497
2498 // No further diagnostics required on invalid declarations.
2499 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2500
2501 const ObjCMethodDecl *unmatched = impl;
2502 ObjCMethodFamily family = declFamily;
2503 unsigned errorID = diag::err_arc_lost_method_convention;
2504 unsigned noteID = diag::note_arc_lost_method_convention;
2505 if (declFamily == OMF_None) {
2506 unmatched = decl;
2507 family = implFamily;
2508 errorID = diag::err_arc_gained_method_convention;
2509 noteID = diag::note_arc_gained_method_convention;
2510 }
2511
2512 // Indexes into a %select clause in the diagnostic.
2513 enum FamilySelector {
2514 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2515 };
2516 FamilySelector familySelector = FamilySelector();
2517
2518 switch (family) {
2519 case OMF_None: llvm_unreachable("logic error, no method convention");
2520 case OMF_retain:
2521 case OMF_release:
2522 case OMF_autorelease:
2523 case OMF_dealloc:
2524 case OMF_finalize:
2525 case OMF_retainCount:
2526 case OMF_self:
2527 case OMF_initialize:
2528 case OMF_performSelector:
2529 // Mismatches for these methods don't change ownership
2530 // conventions, so we don't care.
2531 return false;
2532
2533 case OMF_init: familySelector = F_init; break;
2534 case OMF_alloc: familySelector = F_alloc; break;
2535 case OMF_copy: familySelector = F_copy; break;
2536 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2537 case OMF_new: familySelector = F_new; break;
2538 }
2539
2540 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2541 ReasonSelector reasonSelector;
2542
2543 // The only reason these methods don't fall within their families is
2544 // due to unusual result types.
2545 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2546 reasonSelector = R_UnrelatedReturn;
2547 } else {
2548 reasonSelector = R_NonObjectReturn;
2549 }
2550
2551 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2552 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2553
2554 return true;
2555 }
2556
WarnConflictingTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)2557 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2558 ObjCMethodDecl *MethodDecl,
2559 bool IsProtocolMethodDecl) {
2560 if (getLangOpts().ObjCAutoRefCount &&
2561 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2562 return;
2563
2564 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2565 IsProtocolMethodDecl, false,
2566 true);
2567
2568 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2569 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2570 EF = MethodDecl->param_end();
2571 IM != EM && IF != EF; ++IM, ++IF) {
2572 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2573 IsProtocolMethodDecl, false, true);
2574 }
2575
2576 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2577 Diag(ImpMethodDecl->getLocation(),
2578 diag::warn_conflicting_variadic);
2579 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2580 }
2581 }
2582
CheckConflictingOverridingMethod(ObjCMethodDecl * Method,ObjCMethodDecl * Overridden,bool IsProtocolMethodDecl)2583 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2584 ObjCMethodDecl *Overridden,
2585 bool IsProtocolMethodDecl) {
2586
2587 CheckMethodOverrideReturn(*this, Method, Overridden,
2588 IsProtocolMethodDecl, true,
2589 true);
2590
2591 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2592 IF = Overridden->param_begin(), EM = Method->param_end(),
2593 EF = Overridden->param_end();
2594 IM != EM && IF != EF; ++IM, ++IF) {
2595 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2596 IsProtocolMethodDecl, true, true);
2597 }
2598
2599 if (Method->isVariadic() != Overridden->isVariadic()) {
2600 Diag(Method->getLocation(),
2601 diag::warn_conflicting_overriding_variadic);
2602 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2603 }
2604 }
2605
2606 /// WarnExactTypedMethods - This routine issues a warning if method
2607 /// implementation declaration matches exactly that of its declaration.
WarnExactTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)2608 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2609 ObjCMethodDecl *MethodDecl,
2610 bool IsProtocolMethodDecl) {
2611 // don't issue warning when protocol method is optional because primary
2612 // class is not required to implement it and it is safe for protocol
2613 // to implement it.
2614 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2615 return;
2616 // don't issue warning when primary class's method is
2617 // depecated/unavailable.
2618 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2619 MethodDecl->hasAttr<DeprecatedAttr>())
2620 return;
2621
2622 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2623 IsProtocolMethodDecl, false, false);
2624 if (match)
2625 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2626 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2627 EF = MethodDecl->param_end();
2628 IM != EM && IF != EF; ++IM, ++IF) {
2629 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2630 *IM, *IF,
2631 IsProtocolMethodDecl, false, false);
2632 if (!match)
2633 break;
2634 }
2635 if (match)
2636 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2637 if (match)
2638 match = !(MethodDecl->isClassMethod() &&
2639 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2640
2641 if (match) {
2642 Diag(ImpMethodDecl->getLocation(),
2643 diag::warn_category_method_impl_match);
2644 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2645 << MethodDecl->getDeclName();
2646 }
2647 }
2648
2649 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2650 /// improve the efficiency of selector lookups and type checking by associating
2651 /// with each protocol / interface / category the flattened instance tables. If
2652 /// we used an immutable set to keep the table then it wouldn't add significant
2653 /// memory cost and it would be handy for lookups.
2654
2655 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2656 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2657
findProtocolsWithExplicitImpls(const ObjCProtocolDecl * PDecl,ProtocolNameSet & PNS)2658 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2659 ProtocolNameSet &PNS) {
2660 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2661 PNS.insert(PDecl->getIdentifier());
2662 for (const auto *PI : PDecl->protocols())
2663 findProtocolsWithExplicitImpls(PI, PNS);
2664 }
2665
2666 /// Recursively populates a set with all conformed protocols in a class
2667 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2668 /// attribute.
findProtocolsWithExplicitImpls(const ObjCInterfaceDecl * Super,ProtocolNameSet & PNS)2669 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2670 ProtocolNameSet &PNS) {
2671 if (!Super)
2672 return;
2673
2674 for (const auto *I : Super->all_referenced_protocols())
2675 findProtocolsWithExplicitImpls(I, PNS);
2676
2677 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2678 }
2679
2680 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2681 /// Declared in protocol, and those referenced by it.
CheckProtocolMethodDefs(Sema & S,SourceLocation ImpLoc,ObjCProtocolDecl * PDecl,bool & IncompleteImpl,const Sema::SelectorSet & InsMap,const Sema::SelectorSet & ClsMap,ObjCContainerDecl * CDecl,LazyProtocolNameSet & ProtocolsExplictImpl)2682 static void CheckProtocolMethodDefs(Sema &S,
2683 SourceLocation ImpLoc,
2684 ObjCProtocolDecl *PDecl,
2685 bool& IncompleteImpl,
2686 const Sema::SelectorSet &InsMap,
2687 const Sema::SelectorSet &ClsMap,
2688 ObjCContainerDecl *CDecl,
2689 LazyProtocolNameSet &ProtocolsExplictImpl) {
2690 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2691 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2692 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2693 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2694
2695 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2696 ObjCInterfaceDecl *NSIDecl = nullptr;
2697
2698 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2699 // then we should check if any class in the super class hierarchy also
2700 // conforms to this protocol, either directly or via protocol inheritance.
2701 // If so, we can skip checking this protocol completely because we
2702 // know that a parent class already satisfies this protocol.
2703 //
2704 // Note: we could generalize this logic for all protocols, and merely
2705 // add the limit on looking at the super class chain for just
2706 // specially marked protocols. This may be a good optimization. This
2707 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2708 // protocols for now for controlled evaluation.
2709 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2710 if (!ProtocolsExplictImpl) {
2711 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2712 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2713 }
2714 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2715 ProtocolsExplictImpl->end())
2716 return;
2717
2718 // If no super class conforms to the protocol, we should not search
2719 // for methods in the super class to implicitly satisfy the protocol.
2720 Super = nullptr;
2721 }
2722
2723 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2724 // check to see if class implements forwardInvocation method and objects
2725 // of this class are derived from 'NSProxy' so that to forward requests
2726 // from one object to another.
2727 // Under such conditions, which means that every method possible is
2728 // implemented in the class, we should not issue "Method definition not
2729 // found" warnings.
2730 // FIXME: Use a general GetUnarySelector method for this.
2731 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2732 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2733 if (InsMap.count(fISelector))
2734 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2735 // need be implemented in the implementation.
2736 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2737 }
2738
2739 // If this is a forward protocol declaration, get its definition.
2740 if (!PDecl->isThisDeclarationADefinition() &&
2741 PDecl->getDefinition())
2742 PDecl = PDecl->getDefinition();
2743
2744 // If a method lookup fails locally we still need to look and see if
2745 // the method was implemented by a base class or an inherited
2746 // protocol. This lookup is slow, but occurs rarely in correct code
2747 // and otherwise would terminate in a warning.
2748
2749 // check unimplemented instance methods.
2750 if (!NSIDecl)
2751 for (auto *method : PDecl->instance_methods()) {
2752 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2753 !method->isPropertyAccessor() &&
2754 !InsMap.count(method->getSelector()) &&
2755 (!Super || !Super->lookupMethod(method->getSelector(),
2756 true /* instance */,
2757 false /* shallowCategory */,
2758 true /* followsSuper */,
2759 nullptr /* category */))) {
2760 // If a method is not implemented in the category implementation but
2761 // has been declared in its primary class, superclass,
2762 // or in one of their protocols, no need to issue the warning.
2763 // This is because method will be implemented in the primary class
2764 // or one of its super class implementation.
2765
2766 // Ugly, but necessary. Method declared in protocol might have
2767 // have been synthesized due to a property declared in the class which
2768 // uses the protocol.
2769 if (ObjCMethodDecl *MethodInClass =
2770 IDecl->lookupMethod(method->getSelector(),
2771 true /* instance */,
2772 true /* shallowCategoryLookup */,
2773 false /* followSuper */))
2774 if (C || MethodInClass->isPropertyAccessor())
2775 continue;
2776 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2777 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2778 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2779 PDecl);
2780 }
2781 }
2782 }
2783 // check unimplemented class methods
2784 for (auto *method : PDecl->class_methods()) {
2785 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2786 !ClsMap.count(method->getSelector()) &&
2787 (!Super || !Super->lookupMethod(method->getSelector(),
2788 false /* class method */,
2789 false /* shallowCategoryLookup */,
2790 true /* followSuper */,
2791 nullptr /* category */))) {
2792 // See above comment for instance method lookups.
2793 if (C && IDecl->lookupMethod(method->getSelector(),
2794 false /* class */,
2795 true /* shallowCategoryLookup */,
2796 false /* followSuper */))
2797 continue;
2798
2799 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2800 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2801 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2802 }
2803 }
2804 }
2805 // Check on this protocols's referenced protocols, recursively.
2806 for (auto *PI : PDecl->protocols())
2807 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2808 CDecl, ProtocolsExplictImpl);
2809 }
2810
2811 /// MatchAllMethodDeclarations - Check methods declared in interface
2812 /// or protocol against those declared in their implementations.
2813 ///
MatchAllMethodDeclarations(const SelectorSet & InsMap,const SelectorSet & ClsMap,SelectorSet & InsMapSeen,SelectorSet & ClsMapSeen,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool & IncompleteImpl,bool ImmediateClass,bool WarnCategoryMethodImpl)2814 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2815 const SelectorSet &ClsMap,
2816 SelectorSet &InsMapSeen,
2817 SelectorSet &ClsMapSeen,
2818 ObjCImplDecl* IMPDecl,
2819 ObjCContainerDecl* CDecl,
2820 bool &IncompleteImpl,
2821 bool ImmediateClass,
2822 bool WarnCategoryMethodImpl) {
2823 // Check and see if instance methods in class interface have been
2824 // implemented in the implementation class. If so, their types match.
2825 for (auto *I : CDecl->instance_methods()) {
2826 if (!InsMapSeen.insert(I->getSelector()).second)
2827 continue;
2828 if (!I->isPropertyAccessor() &&
2829 !InsMap.count(I->getSelector())) {
2830 if (ImmediateClass)
2831 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2832 diag::warn_undef_method_impl);
2833 continue;
2834 } else {
2835 ObjCMethodDecl *ImpMethodDecl =
2836 IMPDecl->getInstanceMethod(I->getSelector());
2837 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2838 "Expected to find the method through lookup as well");
2839 // ImpMethodDecl may be null as in a @dynamic property.
2840 if (ImpMethodDecl) {
2841 // Skip property accessor function stubs.
2842 if (ImpMethodDecl->isSynthesizedAccessorStub())
2843 continue;
2844 if (!WarnCategoryMethodImpl)
2845 WarnConflictingTypedMethods(ImpMethodDecl, I,
2846 isa<ObjCProtocolDecl>(CDecl));
2847 else if (!I->isPropertyAccessor())
2848 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2849 }
2850 }
2851 }
2852
2853 // Check and see if class methods in class interface have been
2854 // implemented in the implementation class. If so, their types match.
2855 for (auto *I : CDecl->class_methods()) {
2856 if (!ClsMapSeen.insert(I->getSelector()).second)
2857 continue;
2858 if (!I->isPropertyAccessor() &&
2859 !ClsMap.count(I->getSelector())) {
2860 if (ImmediateClass)
2861 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2862 diag::warn_undef_method_impl);
2863 } else {
2864 ObjCMethodDecl *ImpMethodDecl =
2865 IMPDecl->getClassMethod(I->getSelector());
2866 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2867 "Expected to find the method through lookup as well");
2868 // ImpMethodDecl may be null as in a @dynamic property.
2869 if (ImpMethodDecl) {
2870 // Skip property accessor function stubs.
2871 if (ImpMethodDecl->isSynthesizedAccessorStub())
2872 continue;
2873 if (!WarnCategoryMethodImpl)
2874 WarnConflictingTypedMethods(ImpMethodDecl, I,
2875 isa<ObjCProtocolDecl>(CDecl));
2876 else if (!I->isPropertyAccessor())
2877 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2878 }
2879 }
2880 }
2881
2882 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2883 // Also, check for methods declared in protocols inherited by
2884 // this protocol.
2885 for (auto *PI : PD->protocols())
2886 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2887 IMPDecl, PI, IncompleteImpl, false,
2888 WarnCategoryMethodImpl);
2889 }
2890
2891 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2892 // when checking that methods in implementation match their declaration,
2893 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2894 // extension; as well as those in categories.
2895 if (!WarnCategoryMethodImpl) {
2896 for (auto *Cat : I->visible_categories())
2897 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2898 IMPDecl, Cat, IncompleteImpl,
2899 ImmediateClass && Cat->IsClassExtension(),
2900 WarnCategoryMethodImpl);
2901 } else {
2902 // Also methods in class extensions need be looked at next.
2903 for (auto *Ext : I->visible_extensions())
2904 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2905 IMPDecl, Ext, IncompleteImpl, false,
2906 WarnCategoryMethodImpl);
2907 }
2908
2909 // Check for any implementation of a methods declared in protocol.
2910 for (auto *PI : I->all_referenced_protocols())
2911 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2912 IMPDecl, PI, IncompleteImpl, false,
2913 WarnCategoryMethodImpl);
2914
2915 // FIXME. For now, we are not checking for exact match of methods
2916 // in category implementation and its primary class's super class.
2917 if (!WarnCategoryMethodImpl && I->getSuperClass())
2918 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2919 IMPDecl,
2920 I->getSuperClass(), IncompleteImpl, false);
2921 }
2922 }
2923
2924 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2925 /// category matches with those implemented in its primary class and
2926 /// warns each time an exact match is found.
CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl * CatIMPDecl)2927 void Sema::CheckCategoryVsClassMethodMatches(
2928 ObjCCategoryImplDecl *CatIMPDecl) {
2929 // Get category's primary class.
2930 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2931 if (!CatDecl)
2932 return;
2933 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2934 if (!IDecl)
2935 return;
2936 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2937 SelectorSet InsMap, ClsMap;
2938
2939 for (const auto *I : CatIMPDecl->instance_methods()) {
2940 Selector Sel = I->getSelector();
2941 // When checking for methods implemented in the category, skip over
2942 // those declared in category class's super class. This is because
2943 // the super class must implement the method.
2944 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2945 continue;
2946 InsMap.insert(Sel);
2947 }
2948
2949 for (const auto *I : CatIMPDecl->class_methods()) {
2950 Selector Sel = I->getSelector();
2951 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2952 continue;
2953 ClsMap.insert(Sel);
2954 }
2955 if (InsMap.empty() && ClsMap.empty())
2956 return;
2957
2958 SelectorSet InsMapSeen, ClsMapSeen;
2959 bool IncompleteImpl = false;
2960 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2961 CatIMPDecl, IDecl,
2962 IncompleteImpl, false,
2963 true /*WarnCategoryMethodImpl*/);
2964 }
2965
ImplMethodsVsClassMethods(Scope * S,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool IncompleteImpl)2966 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2967 ObjCContainerDecl* CDecl,
2968 bool IncompleteImpl) {
2969 SelectorSet InsMap;
2970 // Check and see if instance methods in class interface have been
2971 // implemented in the implementation class.
2972 for (const auto *I : IMPDecl->instance_methods())
2973 InsMap.insert(I->getSelector());
2974
2975 // Add the selectors for getters/setters of @dynamic properties.
2976 for (const auto *PImpl : IMPDecl->property_impls()) {
2977 // We only care about @dynamic implementations.
2978 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2979 continue;
2980
2981 const auto *P = PImpl->getPropertyDecl();
2982 if (!P) continue;
2983
2984 InsMap.insert(P->getGetterName());
2985 if (!P->getSetterName().isNull())
2986 InsMap.insert(P->getSetterName());
2987 }
2988
2989 // Check and see if properties declared in the interface have either 1)
2990 // an implementation or 2) there is a @synthesize/@dynamic implementation
2991 // of the property in the @implementation.
2992 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2993 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2994 LangOpts.ObjCRuntime.isNonFragile() &&
2995 !IDecl->isObjCRequiresPropertyDefs();
2996 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2997 }
2998
2999 // Diagnose null-resettable synthesized setters.
3000 diagnoseNullResettableSynthesizedSetters(IMPDecl);
3001
3002 SelectorSet ClsMap;
3003 for (const auto *I : IMPDecl->class_methods())
3004 ClsMap.insert(I->getSelector());
3005
3006 // Check for type conflict of methods declared in a class/protocol and
3007 // its implementation; if any.
3008 SelectorSet InsMapSeen, ClsMapSeen;
3009 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3010 IMPDecl, CDecl,
3011 IncompleteImpl, true);
3012
3013 // check all methods implemented in category against those declared
3014 // in its primary class.
3015 if (ObjCCategoryImplDecl *CatDecl =
3016 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3017 CheckCategoryVsClassMethodMatches(CatDecl);
3018
3019 // Check the protocol list for unimplemented methods in the @implementation
3020 // class.
3021 // Check and see if class methods in class interface have been
3022 // implemented in the implementation class.
3023
3024 LazyProtocolNameSet ExplicitImplProtocols;
3025
3026 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3027 for (auto *PI : I->all_referenced_protocols())
3028 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
3029 InsMap, ClsMap, I, ExplicitImplProtocols);
3030 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3031 // For extended class, unimplemented methods in its protocols will
3032 // be reported in the primary class.
3033 if (!C->IsClassExtension()) {
3034 for (auto *P : C->protocols())
3035 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3036 IncompleteImpl, InsMap, ClsMap, CDecl,
3037 ExplicitImplProtocols);
3038 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3039 /*SynthesizeProperties=*/false);
3040 }
3041 } else
3042 llvm_unreachable("invalid ObjCContainerDecl type.");
3043 }
3044
3045 Sema::DeclGroupPtrTy
ActOnForwardClassDeclaration(SourceLocation AtClassLoc,IdentifierInfo ** IdentList,SourceLocation * IdentLocs,ArrayRef<ObjCTypeParamList * > TypeParamLists,unsigned NumElts)3046 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3047 IdentifierInfo **IdentList,
3048 SourceLocation *IdentLocs,
3049 ArrayRef<ObjCTypeParamList *> TypeParamLists,
3050 unsigned NumElts) {
3051 SmallVector<Decl *, 8> DeclsInGroup;
3052 for (unsigned i = 0; i != NumElts; ++i) {
3053 // Check for another declaration kind with the same name.
3054 NamedDecl *PrevDecl
3055 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3056 LookupOrdinaryName, forRedeclarationInCurContext());
3057 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3058 // GCC apparently allows the following idiom:
3059 //
3060 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3061 // @class XCElementToggler;
3062 //
3063 // Here we have chosen to ignore the forward class declaration
3064 // with a warning. Since this is the implied behavior.
3065 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3066 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3067 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3068 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3069 } else {
3070 // a forward class declaration matching a typedef name of a class refers
3071 // to the underlying class. Just ignore the forward class with a warning
3072 // as this will force the intended behavior which is to lookup the
3073 // typedef name.
3074 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3075 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3076 << IdentList[i];
3077 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3078 continue;
3079 }
3080 }
3081 }
3082
3083 // Create a declaration to describe this forward declaration.
3084 ObjCInterfaceDecl *PrevIDecl
3085 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3086
3087 IdentifierInfo *ClassName = IdentList[i];
3088 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3089 // A previous decl with a different name is because of
3090 // @compatibility_alias, for example:
3091 // \code
3092 // @class NewImage;
3093 // @compatibility_alias OldImage NewImage;
3094 // \endcode
3095 // A lookup for 'OldImage' will return the 'NewImage' decl.
3096 //
3097 // In such a case use the real declaration name, instead of the alias one,
3098 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3099 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3100 // has been aliased.
3101 ClassName = PrevIDecl->getIdentifier();
3102 }
3103
3104 // If this forward declaration has type parameters, compare them with the
3105 // type parameters of the previous declaration.
3106 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3107 if (PrevIDecl && TypeParams) {
3108 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3109 // Check for consistency with the previous declaration.
3110 if (checkTypeParamListConsistency(
3111 *this, PrevTypeParams, TypeParams,
3112 TypeParamListContext::ForwardDeclaration)) {
3113 TypeParams = nullptr;
3114 }
3115 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3116 // The @interface does not have type parameters. Complain.
3117 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3118 << ClassName
3119 << TypeParams->getSourceRange();
3120 Diag(Def->getLocation(), diag::note_defined_here)
3121 << ClassName;
3122
3123 TypeParams = nullptr;
3124 }
3125 }
3126
3127 ObjCInterfaceDecl *IDecl
3128 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3129 ClassName, TypeParams, PrevIDecl,
3130 IdentLocs[i]);
3131 IDecl->setAtEndRange(IdentLocs[i]);
3132
3133 if (PrevIDecl)
3134 mergeDeclAttributes(IDecl, PrevIDecl);
3135
3136 PushOnScopeChains(IDecl, TUScope);
3137 CheckObjCDeclScope(IDecl);
3138 DeclsInGroup.push_back(IDecl);
3139 }
3140
3141 return BuildDeclaratorGroup(DeclsInGroup);
3142 }
3143
3144 static bool tryMatchRecordTypes(ASTContext &Context,
3145 Sema::MethodMatchStrategy strategy,
3146 const Type *left, const Type *right);
3147
matchTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,QualType leftQT,QualType rightQT)3148 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3149 QualType leftQT, QualType rightQT) {
3150 const Type *left =
3151 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3152 const Type *right =
3153 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3154
3155 if (left == right) return true;
3156
3157 // If we're doing a strict match, the types have to match exactly.
3158 if (strategy == Sema::MMS_strict) return false;
3159
3160 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3161
3162 // Otherwise, use this absurdly complicated algorithm to try to
3163 // validate the basic, low-level compatibility of the two types.
3164
3165 // As a minimum, require the sizes and alignments to match.
3166 TypeInfo LeftTI = Context.getTypeInfo(left);
3167 TypeInfo RightTI = Context.getTypeInfo(right);
3168 if (LeftTI.Width != RightTI.Width)
3169 return false;
3170
3171 if (LeftTI.Align != RightTI.Align)
3172 return false;
3173
3174 // Consider all the kinds of non-dependent canonical types:
3175 // - functions and arrays aren't possible as return and parameter types
3176
3177 // - vector types of equal size can be arbitrarily mixed
3178 if (isa<VectorType>(left)) return isa<VectorType>(right);
3179 if (isa<VectorType>(right)) return false;
3180
3181 // - references should only match references of identical type
3182 // - structs, unions, and Objective-C objects must match more-or-less
3183 // exactly
3184 // - everything else should be a scalar
3185 if (!left->isScalarType() || !right->isScalarType())
3186 return tryMatchRecordTypes(Context, strategy, left, right);
3187
3188 // Make scalars agree in kind, except count bools as chars, and group
3189 // all non-member pointers together.
3190 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3191 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3192 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3193 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3194 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3195 leftSK = Type::STK_ObjCObjectPointer;
3196 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3197 rightSK = Type::STK_ObjCObjectPointer;
3198
3199 // Note that data member pointers and function member pointers don't
3200 // intermix because of the size differences.
3201
3202 return (leftSK == rightSK);
3203 }
3204
tryMatchRecordTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,const Type * lt,const Type * rt)3205 static bool tryMatchRecordTypes(ASTContext &Context,
3206 Sema::MethodMatchStrategy strategy,
3207 const Type *lt, const Type *rt) {
3208 assert(lt && rt && lt != rt);
3209
3210 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3211 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3212 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3213
3214 // Require union-hood to match.
3215 if (left->isUnion() != right->isUnion()) return false;
3216
3217 // Require an exact match if either is non-POD.
3218 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3219 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3220 return false;
3221
3222 // Require size and alignment to match.
3223 TypeInfo LeftTI = Context.getTypeInfo(lt);
3224 TypeInfo RightTI = Context.getTypeInfo(rt);
3225 if (LeftTI.Width != RightTI.Width)
3226 return false;
3227
3228 if (LeftTI.Align != RightTI.Align)
3229 return false;
3230
3231 // Require fields to match.
3232 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3233 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3234 for (; li != le && ri != re; ++li, ++ri) {
3235 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3236 return false;
3237 }
3238 return (li == le && ri == re);
3239 }
3240
3241 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3242 /// returns true, or false, accordingly.
3243 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
MatchTwoMethodDeclarations(const ObjCMethodDecl * left,const ObjCMethodDecl * right,MethodMatchStrategy strategy)3244 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3245 const ObjCMethodDecl *right,
3246 MethodMatchStrategy strategy) {
3247 if (!matchTypes(Context, strategy, left->getReturnType(),
3248 right->getReturnType()))
3249 return false;
3250
3251 // If either is hidden, it is not considered to match.
3252 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3253 return false;
3254
3255 if (left->isDirectMethod() != right->isDirectMethod())
3256 return false;
3257
3258 if (getLangOpts().ObjCAutoRefCount &&
3259 (left->hasAttr<NSReturnsRetainedAttr>()
3260 != right->hasAttr<NSReturnsRetainedAttr>() ||
3261 left->hasAttr<NSConsumesSelfAttr>()
3262 != right->hasAttr<NSConsumesSelfAttr>()))
3263 return false;
3264
3265 ObjCMethodDecl::param_const_iterator
3266 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3267 re = right->param_end();
3268
3269 for (; li != le && ri != re; ++li, ++ri) {
3270 assert(ri != right->param_end() && "Param mismatch");
3271 const ParmVarDecl *lparm = *li, *rparm = *ri;
3272
3273 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3274 return false;
3275
3276 if (getLangOpts().ObjCAutoRefCount &&
3277 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3278 return false;
3279 }
3280 return true;
3281 }
3282
isMethodContextSameForKindofLookup(ObjCMethodDecl * Method,ObjCMethodDecl * MethodInList)3283 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3284 ObjCMethodDecl *MethodInList) {
3285 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3286 auto *MethodInListProtocol =
3287 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3288 // If this method belongs to a protocol but the method in list does not, or
3289 // vice versa, we say the context is not the same.
3290 if ((MethodProtocol && !MethodInListProtocol) ||
3291 (!MethodProtocol && MethodInListProtocol))
3292 return false;
3293
3294 if (MethodProtocol && MethodInListProtocol)
3295 return true;
3296
3297 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3298 ObjCInterfaceDecl *MethodInListInterface =
3299 MethodInList->getClassInterface();
3300 return MethodInterface == MethodInListInterface;
3301 }
3302
addMethodToGlobalList(ObjCMethodList * List,ObjCMethodDecl * Method)3303 void Sema::addMethodToGlobalList(ObjCMethodList *List,
3304 ObjCMethodDecl *Method) {
3305 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3306 // inside categories.
3307 if (ObjCCategoryDecl *CD =
3308 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3309 if (!CD->IsClassExtension() && List->getBits() < 2)
3310 List->setBits(List->getBits() + 1);
3311
3312 // If the list is empty, make it a singleton list.
3313 if (List->getMethod() == nullptr) {
3314 List->setMethod(Method);
3315 List->setNext(nullptr);
3316 return;
3317 }
3318
3319 // We've seen a method with this name, see if we have already seen this type
3320 // signature.
3321 ObjCMethodList *Previous = List;
3322 ObjCMethodList *ListWithSameDeclaration = nullptr;
3323 for (; List; Previous = List, List = List->getNext()) {
3324 // If we are building a module, keep all of the methods.
3325 if (getLangOpts().isCompilingModule())
3326 continue;
3327
3328 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3329 List->getMethod());
3330 // Looking for method with a type bound requires the correct context exists.
3331 // We need to insert a method into the list if the context is different.
3332 // If the method's declaration matches the list
3333 // a> the method belongs to a different context: we need to insert it, in
3334 // order to emit the availability message, we need to prioritize over
3335 // availability among the methods with the same declaration.
3336 // b> the method belongs to the same context: there is no need to insert a
3337 // new entry.
3338 // If the method's declaration does not match the list, we insert it to the
3339 // end.
3340 if (!SameDeclaration ||
3341 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3342 // Even if two method types do not match, we would like to say
3343 // there is more than one declaration so unavailability/deprecated
3344 // warning is not too noisy.
3345 if (!Method->isDefined())
3346 List->setHasMoreThanOneDecl(true);
3347
3348 // For methods with the same declaration, the one that is deprecated
3349 // should be put in the front for better diagnostics.
3350 if (Method->isDeprecated() && SameDeclaration &&
3351 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3352 ListWithSameDeclaration = List;
3353
3354 if (Method->isUnavailable() && SameDeclaration &&
3355 !ListWithSameDeclaration &&
3356 List->getMethod()->getAvailability() < AR_Deprecated)
3357 ListWithSameDeclaration = List;
3358 continue;
3359 }
3360
3361 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3362
3363 // Propagate the 'defined' bit.
3364 if (Method->isDefined())
3365 PrevObjCMethod->setDefined(true);
3366 else {
3367 // Objective-C doesn't allow an @interface for a class after its
3368 // @implementation. So if Method is not defined and there already is
3369 // an entry for this type signature, Method has to be for a different
3370 // class than PrevObjCMethod.
3371 List->setHasMoreThanOneDecl(true);
3372 }
3373
3374 // If a method is deprecated, push it in the global pool.
3375 // This is used for better diagnostics.
3376 if (Method->isDeprecated()) {
3377 if (!PrevObjCMethod->isDeprecated())
3378 List->setMethod(Method);
3379 }
3380 // If the new method is unavailable, push it into global pool
3381 // unless previous one is deprecated.
3382 if (Method->isUnavailable()) {
3383 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3384 List->setMethod(Method);
3385 }
3386
3387 return;
3388 }
3389
3390 // We have a new signature for an existing method - add it.
3391 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3392 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3393
3394 // We insert it right before ListWithSameDeclaration.
3395 if (ListWithSameDeclaration) {
3396 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3397 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3398 ListWithSameDeclaration->setMethod(Method);
3399 ListWithSameDeclaration->setNext(List);
3400 return;
3401 }
3402
3403 Previous->setNext(new (Mem) ObjCMethodList(Method));
3404 }
3405
3406 /// Read the contents of the method pool for a given selector from
3407 /// external storage.
ReadMethodPool(Selector Sel)3408 void Sema::ReadMethodPool(Selector Sel) {
3409 assert(ExternalSource && "We need an external AST source");
3410 ExternalSource->ReadMethodPool(Sel);
3411 }
3412
updateOutOfDateSelector(Selector Sel)3413 void Sema::updateOutOfDateSelector(Selector Sel) {
3414 if (!ExternalSource)
3415 return;
3416 ExternalSource->updateOutOfDateSelector(Sel);
3417 }
3418
AddMethodToGlobalPool(ObjCMethodDecl * Method,bool impl,bool instance)3419 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3420 bool instance) {
3421 // Ignore methods of invalid containers.
3422 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3423 return;
3424
3425 if (ExternalSource)
3426 ReadMethodPool(Method->getSelector());
3427
3428 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3429 if (Pos == MethodPool.end())
3430 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3431 GlobalMethods())).first;
3432
3433 Method->setDefined(impl);
3434
3435 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3436 addMethodToGlobalList(&Entry, Method);
3437 }
3438
3439 /// Determines if this is an "acceptable" loose mismatch in the global
3440 /// method pool. This exists mostly as a hack to get around certain
3441 /// global mismatches which we can't afford to make warnings / errors.
3442 /// Really, what we want is a way to take a method out of the global
3443 /// method pool.
isAcceptableMethodMismatch(ObjCMethodDecl * chosen,ObjCMethodDecl * other)3444 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3445 ObjCMethodDecl *other) {
3446 if (!chosen->isInstanceMethod())
3447 return false;
3448
3449 if (chosen->isDirectMethod() != other->isDirectMethod())
3450 return false;
3451
3452 Selector sel = chosen->getSelector();
3453 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3454 return false;
3455
3456 // Don't complain about mismatches for -length if the method we
3457 // chose has an integral result type.
3458 return (chosen->getReturnType()->isIntegerType());
3459 }
3460
3461 /// Return true if the given method is wthin the type bound.
FilterMethodsByTypeBound(ObjCMethodDecl * Method,const ObjCObjectType * TypeBound)3462 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3463 const ObjCObjectType *TypeBound) {
3464 if (!TypeBound)
3465 return true;
3466
3467 if (TypeBound->isObjCId())
3468 // FIXME: should we handle the case of bounding to id<A, B> differently?
3469 return true;
3470
3471 auto *BoundInterface = TypeBound->getInterface();
3472 assert(BoundInterface && "unexpected object type!");
3473
3474 // Check if the Method belongs to a protocol. We should allow any method
3475 // defined in any protocol, because any subclass could adopt the protocol.
3476 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3477 if (MethodProtocol) {
3478 return true;
3479 }
3480
3481 // If the Method belongs to a class, check if it belongs to the class
3482 // hierarchy of the class bound.
3483 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3484 // We allow methods declared within classes that are part of the hierarchy
3485 // of the class bound (superclass of, subclass of, or the same as the class
3486 // bound).
3487 return MethodInterface == BoundInterface ||
3488 MethodInterface->isSuperClassOf(BoundInterface) ||
3489 BoundInterface->isSuperClassOf(MethodInterface);
3490 }
3491 llvm_unreachable("unknown method context");
3492 }
3493
3494 /// We first select the type of the method: Instance or Factory, then collect
3495 /// all methods with that type.
CollectMultipleMethodsInGlobalPool(Selector Sel,SmallVectorImpl<ObjCMethodDecl * > & Methods,bool InstanceFirst,bool CheckTheOther,const ObjCObjectType * TypeBound)3496 bool Sema::CollectMultipleMethodsInGlobalPool(
3497 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3498 bool InstanceFirst, bool CheckTheOther,
3499 const ObjCObjectType *TypeBound) {
3500 if (ExternalSource)
3501 ReadMethodPool(Sel);
3502
3503 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3504 if (Pos == MethodPool.end())
3505 return false;
3506
3507 // Gather the non-hidden methods.
3508 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3509 Pos->second.second;
3510 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3511 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3512 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3513 Methods.push_back(M->getMethod());
3514 }
3515
3516 // Return if we find any method with the desired kind.
3517 if (!Methods.empty())
3518 return Methods.size() > 1;
3519
3520 if (!CheckTheOther)
3521 return false;
3522
3523 // Gather the other kind.
3524 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3525 Pos->second.first;
3526 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3527 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3528 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3529 Methods.push_back(M->getMethod());
3530 }
3531
3532 return Methods.size() > 1;
3533 }
3534
AreMultipleMethodsInGlobalPool(Selector Sel,ObjCMethodDecl * BestMethod,SourceRange R,bool receiverIdOrClass,SmallVectorImpl<ObjCMethodDecl * > & Methods)3535 bool Sema::AreMultipleMethodsInGlobalPool(
3536 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3537 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3538 // Diagnose finding more than one method in global pool.
3539 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3540 FilteredMethods.push_back(BestMethod);
3541
3542 for (auto *M : Methods)
3543 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3544 FilteredMethods.push_back(M);
3545
3546 if (FilteredMethods.size() > 1)
3547 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3548 receiverIdOrClass);
3549
3550 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3551 // Test for no method in the pool which should not trigger any warning by
3552 // caller.
3553 if (Pos == MethodPool.end())
3554 return true;
3555 ObjCMethodList &MethList =
3556 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3557 return MethList.hasMoreThanOneDecl();
3558 }
3559
LookupMethodInGlobalPool(Selector Sel,SourceRange R,bool receiverIdOrClass,bool instance)3560 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3561 bool receiverIdOrClass,
3562 bool instance) {
3563 if (ExternalSource)
3564 ReadMethodPool(Sel);
3565
3566 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3567 if (Pos == MethodPool.end())
3568 return nullptr;
3569
3570 // Gather the non-hidden methods.
3571 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3572 SmallVector<ObjCMethodDecl *, 4> Methods;
3573 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3574 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3575 return M->getMethod();
3576 }
3577 return nullptr;
3578 }
3579
DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl * > & Methods,Selector Sel,SourceRange R,bool receiverIdOrClass)3580 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3581 Selector Sel, SourceRange R,
3582 bool receiverIdOrClass) {
3583 // We found multiple methods, so we may have to complain.
3584 bool issueDiagnostic = false, issueError = false;
3585
3586 // We support a warning which complains about *any* difference in
3587 // method signature.
3588 bool strictSelectorMatch =
3589 receiverIdOrClass &&
3590 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3591 if (strictSelectorMatch) {
3592 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3593 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3594 issueDiagnostic = true;
3595 break;
3596 }
3597 }
3598 }
3599
3600 // If we didn't see any strict differences, we won't see any loose
3601 // differences. In ARC, however, we also need to check for loose
3602 // mismatches, because most of them are errors.
3603 if (!strictSelectorMatch ||
3604 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3605 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3606 // This checks if the methods differ in type mismatch.
3607 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3608 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3609 issueDiagnostic = true;
3610 if (getLangOpts().ObjCAutoRefCount)
3611 issueError = true;
3612 break;
3613 }
3614 }
3615
3616 if (issueDiagnostic) {
3617 if (issueError)
3618 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3619 else if (strictSelectorMatch)
3620 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3621 else
3622 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3623
3624 Diag(Methods[0]->getBeginLoc(),
3625 issueError ? diag::note_possibility : diag::note_using)
3626 << Methods[0]->getSourceRange();
3627 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3628 Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3629 << Methods[I]->getSourceRange();
3630 }
3631 }
3632 }
3633
LookupImplementedMethodInGlobalPool(Selector Sel)3634 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3635 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3636 if (Pos == MethodPool.end())
3637 return nullptr;
3638
3639 GlobalMethods &Methods = Pos->second;
3640 for (const ObjCMethodList *Method = &Methods.first; Method;
3641 Method = Method->getNext())
3642 if (Method->getMethod() &&
3643 (Method->getMethod()->isDefined() ||
3644 Method->getMethod()->isPropertyAccessor()))
3645 return Method->getMethod();
3646
3647 for (const ObjCMethodList *Method = &Methods.second; Method;
3648 Method = Method->getNext())
3649 if (Method->getMethod() &&
3650 (Method->getMethod()->isDefined() ||
3651 Method->getMethod()->isPropertyAccessor()))
3652 return Method->getMethod();
3653 return nullptr;
3654 }
3655
3656 static void
HelperSelectorsForTypoCorrection(SmallVectorImpl<const ObjCMethodDecl * > & BestMethod,StringRef Typo,const ObjCMethodDecl * Method)3657 HelperSelectorsForTypoCorrection(
3658 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3659 StringRef Typo, const ObjCMethodDecl * Method) {
3660 const unsigned MaxEditDistance = 1;
3661 unsigned BestEditDistance = MaxEditDistance + 1;
3662 std::string MethodName = Method->getSelector().getAsString();
3663
3664 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3665 if (MinPossibleEditDistance > 0 &&
3666 Typo.size() / MinPossibleEditDistance < 1)
3667 return;
3668 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3669 if (EditDistance > MaxEditDistance)
3670 return;
3671 if (EditDistance == BestEditDistance)
3672 BestMethod.push_back(Method);
3673 else if (EditDistance < BestEditDistance) {
3674 BestMethod.clear();
3675 BestMethod.push_back(Method);
3676 }
3677 }
3678
HelperIsMethodInObjCType(Sema & S,Selector Sel,QualType ObjectType)3679 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3680 QualType ObjectType) {
3681 if (ObjectType.isNull())
3682 return true;
3683 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3684 return true;
3685 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3686 nullptr;
3687 }
3688
3689 const ObjCMethodDecl *
SelectorsForTypoCorrection(Selector Sel,QualType ObjectType)3690 Sema::SelectorsForTypoCorrection(Selector Sel,
3691 QualType ObjectType) {
3692 unsigned NumArgs = Sel.getNumArgs();
3693 SmallVector<const ObjCMethodDecl *, 8> Methods;
3694 bool ObjectIsId = true, ObjectIsClass = true;
3695 if (ObjectType.isNull())
3696 ObjectIsId = ObjectIsClass = false;
3697 else if (!ObjectType->isObjCObjectPointerType())
3698 return nullptr;
3699 else if (const ObjCObjectPointerType *ObjCPtr =
3700 ObjectType->getAsObjCInterfacePointerType()) {
3701 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3702 ObjectIsId = ObjectIsClass = false;
3703 }
3704 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3705 ObjectIsClass = false;
3706 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3707 ObjectIsId = false;
3708 else
3709 return nullptr;
3710
3711 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3712 e = MethodPool.end(); b != e; b++) {
3713 // instance methods
3714 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3715 if (M->getMethod() &&
3716 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3717 (M->getMethod()->getSelector() != Sel)) {
3718 if (ObjectIsId)
3719 Methods.push_back(M->getMethod());
3720 else if (!ObjectIsClass &&
3721 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3722 ObjectType))
3723 Methods.push_back(M->getMethod());
3724 }
3725 // class methods
3726 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3727 if (M->getMethod() &&
3728 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3729 (M->getMethod()->getSelector() != Sel)) {
3730 if (ObjectIsClass)
3731 Methods.push_back(M->getMethod());
3732 else if (!ObjectIsId &&
3733 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3734 ObjectType))
3735 Methods.push_back(M->getMethod());
3736 }
3737 }
3738
3739 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3740 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3741 HelperSelectorsForTypoCorrection(SelectedMethods,
3742 Sel.getAsString(), Methods[i]);
3743 }
3744 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3745 }
3746
3747 /// DiagnoseDuplicateIvars -
3748 /// Check for duplicate ivars in the entire class at the start of
3749 /// \@implementation. This becomes necesssary because class extension can
3750 /// add ivars to a class in random order which will not be known until
3751 /// class's \@implementation is seen.
DiagnoseDuplicateIvars(ObjCInterfaceDecl * ID,ObjCInterfaceDecl * SID)3752 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3753 ObjCInterfaceDecl *SID) {
3754 for (auto *Ivar : ID->ivars()) {
3755 if (Ivar->isInvalidDecl())
3756 continue;
3757 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3758 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3759 if (prevIvar) {
3760 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3761 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3762 Ivar->setInvalidDecl();
3763 }
3764 }
3765 }
3766 }
3767
3768 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
DiagnoseWeakIvars(Sema & S,ObjCImplementationDecl * ID)3769 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3770 if (S.getLangOpts().ObjCWeak) return;
3771
3772 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3773 ivar; ivar = ivar->getNextIvar()) {
3774 if (ivar->isInvalidDecl()) continue;
3775 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3776 if (S.getLangOpts().ObjCWeakRuntime) {
3777 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3778 } else {
3779 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3780 }
3781 }
3782 }
3783 }
3784
3785 /// Diagnose attempts to use flexible array member with retainable object type.
DiagnoseRetainableFlexibleArrayMember(Sema & S,ObjCInterfaceDecl * ID)3786 static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3787 ObjCInterfaceDecl *ID) {
3788 if (!S.getLangOpts().ObjCAutoRefCount)
3789 return;
3790
3791 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3792 ivar = ivar->getNextIvar()) {
3793 if (ivar->isInvalidDecl())
3794 continue;
3795 QualType IvarTy = ivar->getType();
3796 if (IvarTy->isIncompleteArrayType() &&
3797 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3798 IvarTy->isObjCLifetimeType()) {
3799 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3800 ivar->setInvalidDecl();
3801 }
3802 }
3803 }
3804
getObjCContainerKind() const3805 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3806 switch (CurContext->getDeclKind()) {
3807 case Decl::ObjCInterface:
3808 return Sema::OCK_Interface;
3809 case Decl::ObjCProtocol:
3810 return Sema::OCK_Protocol;
3811 case Decl::ObjCCategory:
3812 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3813 return Sema::OCK_ClassExtension;
3814 return Sema::OCK_Category;
3815 case Decl::ObjCImplementation:
3816 return Sema::OCK_Implementation;
3817 case Decl::ObjCCategoryImpl:
3818 return Sema::OCK_CategoryImplementation;
3819
3820 default:
3821 return Sema::OCK_None;
3822 }
3823 }
3824
IsVariableSizedType(QualType T)3825 static bool IsVariableSizedType(QualType T) {
3826 if (T->isIncompleteArrayType())
3827 return true;
3828 const auto *RecordTy = T->getAs<RecordType>();
3829 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3830 }
3831
DiagnoseVariableSizedIvars(Sema & S,ObjCContainerDecl * OCD)3832 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3833 ObjCInterfaceDecl *IntfDecl = nullptr;
3834 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3835 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3836 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3837 Ivars = IntfDecl->ivars();
3838 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3839 IntfDecl = ImplDecl->getClassInterface();
3840 Ivars = ImplDecl->ivars();
3841 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3842 if (CategoryDecl->IsClassExtension()) {
3843 IntfDecl = CategoryDecl->getClassInterface();
3844 Ivars = CategoryDecl->ivars();
3845 }
3846 }
3847
3848 // Check if variable sized ivar is in interface and visible to subclasses.
3849 if (!isa<ObjCInterfaceDecl>(OCD)) {
3850 for (auto ivar : Ivars) {
3851 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3852 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3853 << ivar->getDeclName() << ivar->getType();
3854 }
3855 }
3856 }
3857
3858 // Subsequent checks require interface decl.
3859 if (!IntfDecl)
3860 return;
3861
3862 // Check if variable sized ivar is followed by another ivar.
3863 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3864 ivar = ivar->getNextIvar()) {
3865 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3866 continue;
3867 QualType IvarTy = ivar->getType();
3868 bool IsInvalidIvar = false;
3869 if (IvarTy->isIncompleteArrayType()) {
3870 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3871 << ivar->getDeclName() << IvarTy
3872 << TTK_Class; // Use "class" for Obj-C.
3873 IsInvalidIvar = true;
3874 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3875 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3876 S.Diag(ivar->getLocation(),
3877 diag::err_objc_variable_sized_type_not_at_end)
3878 << ivar->getDeclName() << IvarTy;
3879 IsInvalidIvar = true;
3880 }
3881 }
3882 if (IsInvalidIvar) {
3883 S.Diag(ivar->getNextIvar()->getLocation(),
3884 diag::note_next_ivar_declaration)
3885 << ivar->getNextIvar()->getSynthesize();
3886 ivar->setInvalidDecl();
3887 }
3888 }
3889
3890 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3891 // Perform the check only if OCD is the first container to declare ivars to
3892 // avoid multiple warnings for the same ivar.
3893 ObjCIvarDecl *FirstIvar =
3894 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3895 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3896 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3897 while (SuperClass && SuperClass->ivar_empty())
3898 SuperClass = SuperClass->getSuperClass();
3899 if (SuperClass) {
3900 auto IvarIter = SuperClass->ivar_begin();
3901 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3902 const ObjCIvarDecl *LastIvar = *IvarIter;
3903 if (IsVariableSizedType(LastIvar->getType())) {
3904 S.Diag(FirstIvar->getLocation(),
3905 diag::warn_superclass_variable_sized_type_not_at_end)
3906 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3907 << LastIvar->getType() << SuperClass->getDeclName();
3908 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3909 << LastIvar->getDeclName();
3910 }
3911 }
3912 }
3913 }
3914
3915 static void DiagnoseCategoryDirectMembersProtocolConformance(
3916 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3917
DiagnoseCategoryDirectMembersProtocolConformance(Sema & S,ObjCCategoryDecl * CDecl,const llvm::iterator_range<ObjCProtocolList::iterator> & Protocols)3918 static void DiagnoseCategoryDirectMembersProtocolConformance(
3919 Sema &S, ObjCCategoryDecl *CDecl,
3920 const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3921 for (auto *PI : Protocols)
3922 DiagnoseCategoryDirectMembersProtocolConformance(S, PI, CDecl);
3923 }
3924
DiagnoseCategoryDirectMembersProtocolConformance(Sema & S,ObjCProtocolDecl * PDecl,ObjCCategoryDecl * CDecl)3925 static void DiagnoseCategoryDirectMembersProtocolConformance(
3926 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3927 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3928 PDecl = PDecl->getDefinition();
3929
3930 llvm::SmallVector<const Decl *, 4> DirectMembers;
3931 const auto *IDecl = CDecl->getClassInterface();
3932 for (auto *MD : PDecl->methods()) {
3933 if (!MD->isPropertyAccessor()) {
3934 if (const auto *CMD =
3935 IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
3936 if (CMD->isDirectMethod())
3937 DirectMembers.push_back(CMD);
3938 }
3939 }
3940 }
3941 for (auto *PD : PDecl->properties()) {
3942 if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3943 PD->getIdentifier(),
3944 PD->isClassProperty()
3945 ? ObjCPropertyQueryKind::OBJC_PR_query_class
3946 : ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
3947 if (CPD->isDirectProperty())
3948 DirectMembers.push_back(CPD);
3949 }
3950 }
3951 if (!DirectMembers.empty()) {
3952 S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
3953 << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3954 for (const auto *MD : DirectMembers)
3955 S.Diag(MD->getLocation(), diag::note_direct_member_here);
3956 return;
3957 }
3958
3959 // Check on this protocols's referenced protocols, recursively.
3960 DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl,
3961 PDecl->protocols());
3962 }
3963
3964 // Note: For class/category implementations, allMethods is always null.
ActOnAtEnd(Scope * S,SourceRange AtEnd,ArrayRef<Decl * > allMethods,ArrayRef<DeclGroupPtrTy> allTUVars)3965 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3966 ArrayRef<DeclGroupPtrTy> allTUVars) {
3967 if (getObjCContainerKind() == Sema::OCK_None)
3968 return nullptr;
3969
3970 assert(AtEnd.isValid() && "Invalid location for '@end'");
3971
3972 auto *OCD = cast<ObjCContainerDecl>(CurContext);
3973 Decl *ClassDecl = OCD;
3974
3975 bool isInterfaceDeclKind =
3976 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3977 || isa<ObjCProtocolDecl>(ClassDecl);
3978 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3979
3980 // Make synthesized accessor stub functions visible.
3981 // ActOnPropertyImplDecl() creates them as not visible in case
3982 // they are overridden by an explicit method that is encountered
3983 // later.
3984 if (auto *OID = dyn_cast<ObjCImplementationDecl>(CurContext)) {
3985 for (auto PropImpl : OID->property_impls()) {
3986 if (auto *Getter = PropImpl->getGetterMethodDecl())
3987 if (Getter->isSynthesizedAccessorStub())
3988 OID->addDecl(Getter);
3989 if (auto *Setter = PropImpl->getSetterMethodDecl())
3990 if (Setter->isSynthesizedAccessorStub())
3991 OID->addDecl(Setter);
3992 }
3993 }
3994
3995 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3996 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3997 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3998
3999 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4000 ObjCMethodDecl *Method =
4001 cast_or_null<ObjCMethodDecl>(allMethods[i]);
4002
4003 if (!Method) continue; // Already issued a diagnostic.
4004 if (Method->isInstanceMethod()) {
4005 /// Check for instance method of the same name with incompatible types
4006 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4007 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4008 : false;
4009 if ((isInterfaceDeclKind && PrevMethod && !match)
4010 || (checkIdenticalMethods && match)) {
4011 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4012 << Method->getDeclName();
4013 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4014 Method->setInvalidDecl();
4015 } else {
4016 if (PrevMethod) {
4017 Method->setAsRedeclaration(PrevMethod);
4018 if (!Context.getSourceManager().isInSystemHeader(
4019 Method->getLocation()))
4020 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4021 << Method->getDeclName();
4022 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4023 }
4024 InsMap[Method->getSelector()] = Method;
4025 /// The following allows us to typecheck messages to "id".
4026 AddInstanceMethodToGlobalPool(Method);
4027 }
4028 } else {
4029 /// Check for class method of the same name with incompatible types
4030 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4031 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4032 : false;
4033 if ((isInterfaceDeclKind && PrevMethod && !match)
4034 || (checkIdenticalMethods && match)) {
4035 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4036 << Method->getDeclName();
4037 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4038 Method->setInvalidDecl();
4039 } else {
4040 if (PrevMethod) {
4041 Method->setAsRedeclaration(PrevMethod);
4042 if (!Context.getSourceManager().isInSystemHeader(
4043 Method->getLocation()))
4044 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4045 << Method->getDeclName();
4046 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4047 }
4048 ClsMap[Method->getSelector()] = Method;
4049 AddFactoryMethodToGlobalPool(Method);
4050 }
4051 }
4052 }
4053 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
4054 // Nothing to do here.
4055 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
4056 // Categories are used to extend the class by declaring new methods.
4057 // By the same token, they are also used to add new properties. No
4058 // need to compare the added property to those in the class.
4059
4060 if (C->IsClassExtension()) {
4061 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4062 DiagnoseClassExtensionDupMethods(C, CCPrimary);
4063 }
4064
4065 DiagnoseCategoryDirectMembersProtocolConformance(*this, C, C->protocols());
4066 }
4067 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
4068 if (CDecl->getIdentifier())
4069 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4070 // user-defined setter/getter. It also synthesizes setter/getter methods
4071 // and adds them to the DeclContext and global method pools.
4072 for (auto *I : CDecl->properties())
4073 ProcessPropertyDecl(I);
4074 CDecl->setAtEndRange(AtEnd);
4075 }
4076 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
4077 IC->setAtEndRange(AtEnd);
4078 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4079 // Any property declared in a class extension might have user
4080 // declared setter or getter in current class extension or one
4081 // of the other class extensions. Mark them as synthesized as
4082 // property will be synthesized when property with same name is
4083 // seen in the @implementation.
4084 for (const auto *Ext : IDecl->visible_extensions()) {
4085 for (const auto *Property : Ext->instance_properties()) {
4086 // Skip over properties declared @dynamic
4087 if (const ObjCPropertyImplDecl *PIDecl
4088 = IC->FindPropertyImplDecl(Property->getIdentifier(),
4089 Property->getQueryKind()))
4090 if (PIDecl->getPropertyImplementation()
4091 == ObjCPropertyImplDecl::Dynamic)
4092 continue;
4093
4094 for (const auto *Ext : IDecl->visible_extensions()) {
4095 if (ObjCMethodDecl *GetterMethod =
4096 Ext->getInstanceMethod(Property->getGetterName()))
4097 GetterMethod->setPropertyAccessor(true);
4098 if (!Property->isReadOnly())
4099 if (ObjCMethodDecl *SetterMethod
4100 = Ext->getInstanceMethod(Property->getSetterName()))
4101 SetterMethod->setPropertyAccessor(true);
4102 }
4103 }
4104 }
4105 ImplMethodsVsClassMethods(S, IC, IDecl);
4106 AtomicPropertySetterGetterRules(IC, IDecl);
4107 DiagnoseOwningPropertyGetterSynthesis(IC);
4108 DiagnoseUnusedBackingIvarInAccessor(S, IC);
4109 if (IDecl->hasDesignatedInitializers())
4110 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4111 DiagnoseWeakIvars(*this, IC);
4112 DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4113
4114 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4115 if (IDecl->getSuperClass() == nullptr) {
4116 // This class has no superclass, so check that it has been marked with
4117 // __attribute((objc_root_class)).
4118 if (!HasRootClassAttr) {
4119 SourceLocation DeclLoc(IDecl->getLocation());
4120 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4121 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4122 << IDecl->getIdentifier();
4123 // See if NSObject is in the current scope, and if it is, suggest
4124 // adding " : NSObject " to the class declaration.
4125 NamedDecl *IF = LookupSingleName(TUScope,
4126 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4127 DeclLoc, LookupOrdinaryName);
4128 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4129 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4130 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4131 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4132 } else {
4133 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4134 }
4135 }
4136 } else if (HasRootClassAttr) {
4137 // Complain that only root classes may have this attribute.
4138 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4139 }
4140
4141 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4142 // An interface can subclass another interface with a
4143 // objc_subclassing_restricted attribute when it has that attribute as
4144 // well (because of interfaces imported from Swift). Therefore we have
4145 // to check if we can subclass in the implementation as well.
4146 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4147 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4148 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4149 Diag(Super->getLocation(), diag::note_class_declared);
4150 }
4151 }
4152
4153 if (IDecl->hasAttr<ObjCClassStubAttr>())
4154 Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4155
4156 if (LangOpts.ObjCRuntime.isNonFragile()) {
4157 while (IDecl->getSuperClass()) {
4158 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4159 IDecl = IDecl->getSuperClass();
4160 }
4161 }
4162 }
4163 SetIvarInitializers(IC);
4164 } else if (ObjCCategoryImplDecl* CatImplClass =
4165 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4166 CatImplClass->setAtEndRange(AtEnd);
4167
4168 // Find category interface decl and then check that all methods declared
4169 // in this interface are implemented in the category @implementation.
4170 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4171 if (ObjCCategoryDecl *Cat
4172 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4173 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4174 }
4175 }
4176 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4177 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4178 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4179 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4180 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4181 Diag(Super->getLocation(), diag::note_class_declared);
4182 }
4183 }
4184
4185 if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4186 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4187 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4188 }
4189 DiagnoseVariableSizedIvars(*this, OCD);
4190 if (isInterfaceDeclKind) {
4191 // Reject invalid vardecls.
4192 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4193 DeclGroupRef DG = allTUVars[i].get();
4194 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4195 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4196 if (!VDecl->hasExternalStorage())
4197 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4198 }
4199 }
4200 }
4201 ActOnObjCContainerFinishDefinition();
4202
4203 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4204 DeclGroupRef DG = allTUVars[i].get();
4205 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4206 (*I)->setTopLevelDeclInObjCContainer();
4207 Consumer.HandleTopLevelDeclInObjCContainer(DG);
4208 }
4209
4210 ActOnDocumentableDecl(ClassDecl);
4211 return ClassDecl;
4212 }
4213
4214 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4215 /// objective-c's type qualifier from the parser version of the same info.
4216 static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal)4217 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4218 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4219 }
4220
4221 /// Check whether the declared result type of the given Objective-C
4222 /// method declaration is compatible with the method's class.
4223 ///
4224 static Sema::ResultTypeCompatibilityKind
CheckRelatedResultTypeCompatibility(Sema & S,ObjCMethodDecl * Method,ObjCInterfaceDecl * CurrentClass)4225 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4226 ObjCInterfaceDecl *CurrentClass) {
4227 QualType ResultType = Method->getReturnType();
4228
4229 // If an Objective-C method inherits its related result type, then its
4230 // declared result type must be compatible with its own class type. The
4231 // declared result type is compatible if:
4232 if (const ObjCObjectPointerType *ResultObjectType
4233 = ResultType->getAs<ObjCObjectPointerType>()) {
4234 // - it is id or qualified id, or
4235 if (ResultObjectType->isObjCIdType() ||
4236 ResultObjectType->isObjCQualifiedIdType())
4237 return Sema::RTC_Compatible;
4238
4239 if (CurrentClass) {
4240 if (ObjCInterfaceDecl *ResultClass
4241 = ResultObjectType->getInterfaceDecl()) {
4242 // - it is the same as the method's class type, or
4243 if (declaresSameEntity(CurrentClass, ResultClass))
4244 return Sema::RTC_Compatible;
4245
4246 // - it is a superclass of the method's class type
4247 if (ResultClass->isSuperClassOf(CurrentClass))
4248 return Sema::RTC_Compatible;
4249 }
4250 } else {
4251 // Any Objective-C pointer type might be acceptable for a protocol
4252 // method; we just don't know.
4253 return Sema::RTC_Unknown;
4254 }
4255 }
4256
4257 return Sema::RTC_Incompatible;
4258 }
4259
4260 namespace {
4261 /// A helper class for searching for methods which a particular method
4262 /// overrides.
4263 class OverrideSearch {
4264 public:
4265 const ObjCMethodDecl *Method;
4266 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4267 bool Recursive;
4268
4269 public:
OverrideSearch(Sema & S,const ObjCMethodDecl * method)4270 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4271 Selector selector = method->getSelector();
4272
4273 // Bypass this search if we've never seen an instance/class method
4274 // with this selector before.
4275 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4276 if (it == S.MethodPool.end()) {
4277 if (!S.getExternalSource()) return;
4278 S.ReadMethodPool(selector);
4279
4280 it = S.MethodPool.find(selector);
4281 if (it == S.MethodPool.end())
4282 return;
4283 }
4284 const ObjCMethodList &list =
4285 method->isInstanceMethod() ? it->second.first : it->second.second;
4286 if (!list.getMethod()) return;
4287
4288 const ObjCContainerDecl *container
4289 = cast<ObjCContainerDecl>(method->getDeclContext());
4290
4291 // Prevent the search from reaching this container again. This is
4292 // important with categories, which override methods from the
4293 // interface and each other.
4294 if (const ObjCCategoryDecl *Category =
4295 dyn_cast<ObjCCategoryDecl>(container)) {
4296 searchFromContainer(container);
4297 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4298 searchFromContainer(Interface);
4299 } else {
4300 searchFromContainer(container);
4301 }
4302 }
4303
4304 typedef decltype(Overridden)::iterator iterator;
begin() const4305 iterator begin() const { return Overridden.begin(); }
end() const4306 iterator end() const { return Overridden.end(); }
4307
4308 private:
searchFromContainer(const ObjCContainerDecl * container)4309 void searchFromContainer(const ObjCContainerDecl *container) {
4310 if (container->isInvalidDecl()) return;
4311
4312 switch (container->getDeclKind()) {
4313 #define OBJCCONTAINER(type, base) \
4314 case Decl::type: \
4315 searchFrom(cast<type##Decl>(container)); \
4316 break;
4317 #define ABSTRACT_DECL(expansion)
4318 #define DECL(type, base) \
4319 case Decl::type:
4320 #include "clang/AST/DeclNodes.inc"
4321 llvm_unreachable("not an ObjC container!");
4322 }
4323 }
4324
searchFrom(const ObjCProtocolDecl * protocol)4325 void searchFrom(const ObjCProtocolDecl *protocol) {
4326 if (!protocol->hasDefinition())
4327 return;
4328
4329 // A method in a protocol declaration overrides declarations from
4330 // referenced ("parent") protocols.
4331 search(protocol->getReferencedProtocols());
4332 }
4333
searchFrom(const ObjCCategoryDecl * category)4334 void searchFrom(const ObjCCategoryDecl *category) {
4335 // A method in a category declaration overrides declarations from
4336 // the main class and from protocols the category references.
4337 // The main class is handled in the constructor.
4338 search(category->getReferencedProtocols());
4339 }
4340
searchFrom(const ObjCCategoryImplDecl * impl)4341 void searchFrom(const ObjCCategoryImplDecl *impl) {
4342 // A method in a category definition that has a category
4343 // declaration overrides declarations from the category
4344 // declaration.
4345 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4346 search(category);
4347 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4348 search(Interface);
4349
4350 // Otherwise it overrides declarations from the class.
4351 } else if (const auto *Interface = impl->getClassInterface()) {
4352 search(Interface);
4353 }
4354 }
4355
searchFrom(const ObjCInterfaceDecl * iface)4356 void searchFrom(const ObjCInterfaceDecl *iface) {
4357 // A method in a class declaration overrides declarations from
4358 if (!iface->hasDefinition())
4359 return;
4360
4361 // - categories,
4362 for (auto *Cat : iface->known_categories())
4363 search(Cat);
4364
4365 // - the super class, and
4366 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4367 search(super);
4368
4369 // - any referenced protocols.
4370 search(iface->getReferencedProtocols());
4371 }
4372
searchFrom(const ObjCImplementationDecl * impl)4373 void searchFrom(const ObjCImplementationDecl *impl) {
4374 // A method in a class implementation overrides declarations from
4375 // the class interface.
4376 if (const auto *Interface = impl->getClassInterface())
4377 search(Interface);
4378 }
4379
search(const ObjCProtocolList & protocols)4380 void search(const ObjCProtocolList &protocols) {
4381 for (const auto *Proto : protocols)
4382 search(Proto);
4383 }
4384
search(const ObjCContainerDecl * container)4385 void search(const ObjCContainerDecl *container) {
4386 // Check for a method in this container which matches this selector.
4387 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4388 Method->isInstanceMethod(),
4389 /*AllowHidden=*/true);
4390
4391 // If we find one, record it and bail out.
4392 if (meth) {
4393 Overridden.insert(meth);
4394 return;
4395 }
4396
4397 // Otherwise, search for methods that a hypothetical method here
4398 // would have overridden.
4399
4400 // Note that we're now in a recursive case.
4401 Recursive = true;
4402
4403 searchFromContainer(container);
4404 }
4405 };
4406 } // end anonymous namespace
4407
CheckObjCMethodDirectOverrides(ObjCMethodDecl * method,ObjCMethodDecl * overridden)4408 void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
4409 ObjCMethodDecl *overridden) {
4410 if (const auto *attr = overridden->getAttr<ObjCDirectAttr>()) {
4411 Diag(method->getLocation(), diag::err_objc_override_direct_method);
4412 Diag(attr->getLocation(), diag::note_previous_declaration);
4413 } else if (const auto *attr = method->getAttr<ObjCDirectAttr>()) {
4414 Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4415 << isa<ObjCProtocolDecl>(overridden->getDeclContext());
4416 Diag(overridden->getLocation(), diag::note_previous_declaration);
4417 }
4418 }
4419
CheckObjCMethodOverrides(ObjCMethodDecl * ObjCMethod,ObjCInterfaceDecl * CurrentClass,ResultTypeCompatibilityKind RTC)4420 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4421 ObjCInterfaceDecl *CurrentClass,
4422 ResultTypeCompatibilityKind RTC) {
4423 if (!ObjCMethod)
4424 return;
4425 // Search for overridden methods and merge information down from them.
4426 OverrideSearch overrides(*this, ObjCMethod);
4427 // Keep track if the method overrides any method in the class's base classes,
4428 // its protocols, or its categories' protocols; we will keep that info
4429 // in the ObjCMethodDecl.
4430 // For this info, a method in an implementation is not considered as
4431 // overriding the same method in the interface or its categories.
4432 bool hasOverriddenMethodsInBaseOrProtocol = false;
4433 for (ObjCMethodDecl *overridden : overrides) {
4434 if (!hasOverriddenMethodsInBaseOrProtocol) {
4435 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4436 CurrentClass != overridden->getClassInterface() ||
4437 overridden->isOverriding()) {
4438 CheckObjCMethodDirectOverrides(ObjCMethod, overridden);
4439 hasOverriddenMethodsInBaseOrProtocol = true;
4440 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4441 // OverrideSearch will return as "overridden" the same method in the
4442 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4443 // check whether a category of a base class introduced a method with the
4444 // same selector, after the interface method declaration.
4445 // To avoid unnecessary lookups in the majority of cases, we use the
4446 // extra info bits in GlobalMethodPool to check whether there were any
4447 // category methods with this selector.
4448 GlobalMethodPool::iterator It =
4449 MethodPool.find(ObjCMethod->getSelector());
4450 if (It != MethodPool.end()) {
4451 ObjCMethodList &List =
4452 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4453 unsigned CategCount = List.getBits();
4454 if (CategCount > 0) {
4455 // If the method is in a category we'll do lookup if there were at
4456 // least 2 category methods recorded, otherwise only one will do.
4457 if (CategCount > 1 ||
4458 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4459 OverrideSearch overrides(*this, overridden);
4460 for (ObjCMethodDecl *SuperOverridden : overrides) {
4461 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4462 CurrentClass != SuperOverridden->getClassInterface()) {
4463 CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden);
4464 hasOverriddenMethodsInBaseOrProtocol = true;
4465 overridden->setOverriding(true);
4466 break;
4467 }
4468 }
4469 }
4470 }
4471 }
4472 }
4473 }
4474
4475 // Propagate down the 'related result type' bit from overridden methods.
4476 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4477 ObjCMethod->setRelatedResultType();
4478
4479 // Then merge the declarations.
4480 mergeObjCMethodDecls(ObjCMethod, overridden);
4481
4482 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4483 continue; // Conflicting properties are detected elsewhere.
4484
4485 // Check for overriding methods
4486 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4487 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4488 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4489 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4490
4491 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4492 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4493 !overridden->isImplicit() /* not meant for properties */) {
4494 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4495 E = ObjCMethod->param_end();
4496 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4497 PrevE = overridden->param_end();
4498 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4499 assert(PrevI != overridden->param_end() && "Param mismatch");
4500 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4501 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4502 // If type of argument of method in this class does not match its
4503 // respective argument type in the super class method, issue warning;
4504 if (!Context.typesAreCompatible(T1, T2)) {
4505 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4506 << T1 << T2;
4507 Diag(overridden->getLocation(), diag::note_previous_declaration);
4508 break;
4509 }
4510 }
4511 }
4512 }
4513
4514 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4515 }
4516
4517 /// Merge type nullability from for a redeclaration of the same entity,
4518 /// producing the updated type of the redeclared entity.
mergeTypeNullabilityForRedecl(Sema & S,SourceLocation loc,QualType type,bool usesCSKeyword,SourceLocation prevLoc,QualType prevType,bool prevUsesCSKeyword)4519 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4520 QualType type,
4521 bool usesCSKeyword,
4522 SourceLocation prevLoc,
4523 QualType prevType,
4524 bool prevUsesCSKeyword) {
4525 // Determine the nullability of both types.
4526 auto nullability = type->getNullability(S.Context);
4527 auto prevNullability = prevType->getNullability(S.Context);
4528
4529 // Easy case: both have nullability.
4530 if (nullability.hasValue() == prevNullability.hasValue()) {
4531 // Neither has nullability; continue.
4532 if (!nullability)
4533 return type;
4534
4535 // The nullabilities are equivalent; do nothing.
4536 if (*nullability == *prevNullability)
4537 return type;
4538
4539 // Complain about mismatched nullability.
4540 S.Diag(loc, diag::err_nullability_conflicting)
4541 << DiagNullabilityKind(*nullability, usesCSKeyword)
4542 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4543 return type;
4544 }
4545
4546 // If it's the redeclaration that has nullability, don't change anything.
4547 if (nullability)
4548 return type;
4549
4550 // Otherwise, provide the result with the same nullability.
4551 return S.Context.getAttributedType(
4552 AttributedType::getNullabilityAttrKind(*prevNullability),
4553 type, type);
4554 }
4555
4556 /// Merge information from the declaration of a method in the \@interface
4557 /// (or a category/extension) into the corresponding method in the
4558 /// @implementation (for a class or category).
mergeInterfaceMethodToImpl(Sema & S,ObjCMethodDecl * method,ObjCMethodDecl * prevMethod)4559 static void mergeInterfaceMethodToImpl(Sema &S,
4560 ObjCMethodDecl *method,
4561 ObjCMethodDecl *prevMethod) {
4562 // Merge the objc_requires_super attribute.
4563 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4564 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4565 // merge the attribute into implementation.
4566 method->addAttr(
4567 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4568 method->getLocation()));
4569 }
4570
4571 // Merge nullability of the result type.
4572 QualType newReturnType
4573 = mergeTypeNullabilityForRedecl(
4574 S, method->getReturnTypeSourceRange().getBegin(),
4575 method->getReturnType(),
4576 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4577 prevMethod->getReturnTypeSourceRange().getBegin(),
4578 prevMethod->getReturnType(),
4579 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4580 method->setReturnType(newReturnType);
4581
4582 // Handle each of the parameters.
4583 unsigned numParams = method->param_size();
4584 unsigned numPrevParams = prevMethod->param_size();
4585 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4586 ParmVarDecl *param = method->param_begin()[i];
4587 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4588
4589 // Merge nullability.
4590 QualType newParamType
4591 = mergeTypeNullabilityForRedecl(
4592 S, param->getLocation(), param->getType(),
4593 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4594 prevParam->getLocation(), prevParam->getType(),
4595 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4596 param->setType(newParamType);
4597 }
4598 }
4599
4600 /// Verify that the method parameters/return value have types that are supported
4601 /// by the x86 target.
checkObjCMethodX86VectorTypes(Sema & SemaRef,const ObjCMethodDecl * Method)4602 static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4603 const ObjCMethodDecl *Method) {
4604 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4605 llvm::Triple::x86 &&
4606 "x86-specific check invoked for a different target");
4607 SourceLocation Loc;
4608 QualType T;
4609 for (const ParmVarDecl *P : Method->parameters()) {
4610 if (P->getType()->isVectorType()) {
4611 Loc = P->getBeginLoc();
4612 T = P->getType();
4613 break;
4614 }
4615 }
4616 if (Loc.isInvalid()) {
4617 if (Method->getReturnType()->isVectorType()) {
4618 Loc = Method->getReturnTypeSourceRange().getBegin();
4619 T = Method->getReturnType();
4620 } else
4621 return;
4622 }
4623
4624 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4625 // iOS < 9 and macOS < 10.11.
4626 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4627 VersionTuple AcceptedInVersion;
4628 if (Triple.getOS() == llvm::Triple::IOS)
4629 AcceptedInVersion = VersionTuple(/*Major=*/9);
4630 else if (Triple.isMacOSX())
4631 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4632 else
4633 return;
4634 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4635 AcceptedInVersion)
4636 return;
4637 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4638 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4639 : /*parameter*/ 0)
4640 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4641 }
4642
mergeObjCDirectMembers(Sema & S,Decl * CD,ObjCMethodDecl * Method)4643 static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4644 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4645 CD->hasAttr<ObjCDirectMembersAttr>()) {
4646 Method->addAttr(
4647 ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4648 }
4649 }
4650
checkObjCDirectMethodClashes(Sema & S,ObjCInterfaceDecl * IDecl,ObjCMethodDecl * Method,ObjCImplDecl * ImpDecl=nullptr)4651 static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
4652 ObjCMethodDecl *Method,
4653 ObjCImplDecl *ImpDecl = nullptr) {
4654 auto Sel = Method->getSelector();
4655 bool isInstance = Method->isInstanceMethod();
4656 bool diagnosed = false;
4657
4658 auto diagClash = [&](const ObjCMethodDecl *IMD) {
4659 if (diagnosed || IMD->isImplicit())
4660 return;
4661 if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4662 S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4663 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4664 << Method->getDeclName();
4665 S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4666 diagnosed = true;
4667 }
4668 };
4669
4670 // Look for any other declaration of this method anywhere we can see in this
4671 // compilation unit.
4672 //
4673 // We do not use IDecl->lookupMethod() because we have specific needs:
4674 //
4675 // - we absolutely do not need to walk protocols, because
4676 // diag::err_objc_direct_on_protocol has already been emitted
4677 // during parsing if there's a conflict,
4678 //
4679 // - when we do not find a match in a given @interface container,
4680 // we need to attempt looking it up in the @implementation block if the
4681 // translation unit sees it to find more clashes.
4682
4683 if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4684 diagClash(IMD);
4685 else if (auto *Impl = IDecl->getImplementation())
4686 if (Impl != ImpDecl)
4687 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4688 diagClash(IMD);
4689
4690 for (const auto *Cat : IDecl->visible_categories())
4691 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4692 diagClash(IMD);
4693 else if (auto CatImpl = Cat->getImplementation())
4694 if (CatImpl != ImpDecl)
4695 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4696 diagClash(IMD);
4697 }
4698
ActOnMethodDeclaration(Scope * S,SourceLocation MethodLoc,SourceLocation EndLoc,tok::TokenKind MethodType,ObjCDeclSpec & ReturnQT,ParsedType ReturnType,ArrayRef<SourceLocation> SelectorLocs,Selector Sel,ObjCArgInfo * ArgInfo,DeclaratorChunk::ParamInfo * CParamInfo,unsigned CNumArgs,const ParsedAttributesView & AttrList,tok::ObjCKeywordKind MethodDeclKind,bool isVariadic,bool MethodDefinition)4699 Decl *Sema::ActOnMethodDeclaration(
4700 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4701 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4702 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4703 // optional arguments. The number of types/arguments is obtained
4704 // from the Sel.getNumArgs().
4705 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4706 unsigned CNumArgs, // c-style args
4707 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4708 bool isVariadic, bool MethodDefinition) {
4709 // Make sure we can establish a context for the method.
4710 if (!CurContext->isObjCContainer()) {
4711 Diag(MethodLoc, diag::err_missing_method_context);
4712 return nullptr;
4713 }
4714
4715 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4716 QualType resultDeclType;
4717
4718 bool HasRelatedResultType = false;
4719 TypeSourceInfo *ReturnTInfo = nullptr;
4720 if (ReturnType) {
4721 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4722
4723 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4724 return nullptr;
4725
4726 QualType bareResultType = resultDeclType;
4727 (void)AttributedType::stripOuterNullability(bareResultType);
4728 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4729 } else { // get the type for "id".
4730 resultDeclType = Context.getObjCIdType();
4731 Diag(MethodLoc, diag::warn_missing_method_return_type)
4732 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4733 }
4734
4735 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4736 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4737 MethodType == tok::minus, isVariadic,
4738 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4739 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4740 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4741 : ObjCMethodDecl::Required,
4742 HasRelatedResultType);
4743
4744 SmallVector<ParmVarDecl*, 16> Params;
4745
4746 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4747 QualType ArgType;
4748 TypeSourceInfo *DI;
4749
4750 if (!ArgInfo[i].Type) {
4751 ArgType = Context.getObjCIdType();
4752 DI = nullptr;
4753 } else {
4754 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4755 }
4756
4757 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4758 LookupOrdinaryName, forRedeclarationInCurContext());
4759 LookupName(R, S);
4760 if (R.isSingleResult()) {
4761 NamedDecl *PrevDecl = R.getFoundDecl();
4762 if (S->isDeclScope(PrevDecl)) {
4763 Diag(ArgInfo[i].NameLoc,
4764 (MethodDefinition ? diag::warn_method_param_redefinition
4765 : diag::warn_method_param_declaration))
4766 << ArgInfo[i].Name;
4767 Diag(PrevDecl->getLocation(),
4768 diag::note_previous_declaration);
4769 }
4770 }
4771
4772 SourceLocation StartLoc = DI
4773 ? DI->getTypeLoc().getBeginLoc()
4774 : ArgInfo[i].NameLoc;
4775
4776 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4777 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4778 ArgType, DI, SC_None);
4779
4780 Param->setObjCMethodScopeInfo(i);
4781
4782 Param->setObjCDeclQualifier(
4783 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4784
4785 // Apply the attributes to the parameter.
4786 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4787 AddPragmaAttributes(TUScope, Param);
4788
4789 if (Param->hasAttr<BlocksAttr>()) {
4790 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4791 Param->setInvalidDecl();
4792 }
4793 S->AddDecl(Param);
4794 IdResolver.AddDecl(Param);
4795
4796 Params.push_back(Param);
4797 }
4798
4799 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4800 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4801 QualType ArgType = Param->getType();
4802 if (ArgType.isNull())
4803 ArgType = Context.getObjCIdType();
4804 else
4805 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4806 ArgType = Context.getAdjustedParameterType(ArgType);
4807
4808 Param->setDeclContext(ObjCMethod);
4809 Params.push_back(Param);
4810 }
4811
4812 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4813 ObjCMethod->setObjCDeclQualifier(
4814 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4815
4816 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4817 AddPragmaAttributes(TUScope, ObjCMethod);
4818
4819 // Add the method now.
4820 const ObjCMethodDecl *PrevMethod = nullptr;
4821 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4822 if (MethodType == tok::minus) {
4823 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4824 ImpDecl->addInstanceMethod(ObjCMethod);
4825 } else {
4826 PrevMethod = ImpDecl->getClassMethod(Sel);
4827 ImpDecl->addClassMethod(ObjCMethod);
4828 }
4829
4830 // If this method overrides a previous @synthesize declaration,
4831 // register it with the property. Linear search through all
4832 // properties here, because the autosynthesized stub hasn't been
4833 // made visible yet, so it can be overriden by a later
4834 // user-specified implementation.
4835 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4836 if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4837 if (Setter->getSelector() == Sel &&
4838 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4839 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4840 PropertyImpl->setSetterMethodDecl(ObjCMethod);
4841 }
4842 if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4843 if (Getter->getSelector() == Sel &&
4844 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4845 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4846 PropertyImpl->setGetterMethodDecl(ObjCMethod);
4847 break;
4848 }
4849 }
4850
4851 // A method is either tagged direct explicitly, or inherits it from its
4852 // canonical declaration.
4853 //
4854 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4855 // because IDecl->lookupMethod() returns more possible matches than just
4856 // the canonical declaration.
4857 if (!ObjCMethod->isDirectMethod()) {
4858 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4859 if (const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>()) {
4860 ObjCMethod->addAttr(
4861 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4862 }
4863 }
4864
4865 // Merge information from the @interface declaration into the
4866 // @implementation.
4867 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4868 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4869 ObjCMethod->isInstanceMethod())) {
4870 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4871
4872 // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4873 // in one of these places:
4874 //
4875 // (1) the canonical declaration in an @interface container paired
4876 // with the ImplDecl,
4877 // (2) non canonical declarations in @interface not paired with the
4878 // ImplDecl for the same Class,
4879 // (3) any superclass container.
4880 //
4881 // Direct methods only allow for canonical declarations in the matching
4882 // container (case 1).
4883 //
4884 // Direct methods overriding a superclass declaration (case 3) is
4885 // handled during overrides checks in CheckObjCMethodOverrides().
4886 //
4887 // We deal with same-class container mismatches (Case 2) here.
4888 if (IDecl == IMD->getClassInterface()) {
4889 auto diagContainerMismatch = [&] {
4890 int decl = 0, impl = 0;
4891
4892 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4893 decl = Cat->IsClassExtension() ? 1 : 2;
4894
4895 if (isa<ObjCCategoryImplDecl>(ImpDecl))
4896 impl = 1 + (decl != 0);
4897
4898 Diag(ObjCMethod->getLocation(),
4899 diag::err_objc_direct_impl_decl_mismatch)
4900 << decl << impl;
4901 Diag(IMD->getLocation(), diag::note_previous_declaration);
4902 };
4903
4904 if (const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>()) {
4905 if (ObjCMethod->getCanonicalDecl() != IMD) {
4906 diagContainerMismatch();
4907 } else if (!IMD->isDirectMethod()) {
4908 Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4909 Diag(IMD->getLocation(), diag::note_previous_declaration);
4910 }
4911 } else if (const auto *attr = IMD->getAttr<ObjCDirectAttr>()) {
4912 if (ObjCMethod->getCanonicalDecl() != IMD) {
4913 diagContainerMismatch();
4914 } else {
4915 ObjCMethod->addAttr(
4916 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4917 }
4918 }
4919 }
4920
4921 // Warn about defining -dealloc in a category.
4922 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4923 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4924 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4925 << ObjCMethod->getDeclName();
4926 }
4927 } else {
4928 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
4929 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod, ImpDecl);
4930 }
4931
4932 // Warn if a method declared in a protocol to which a category or
4933 // extension conforms is non-escaping and the implementation's method is
4934 // escaping.
4935 for (auto *C : IDecl->visible_categories())
4936 for (auto &P : C->protocols())
4937 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4938 ObjCMethod->isInstanceMethod())) {
4939 assert(ObjCMethod->parameters().size() ==
4940 IMD->parameters().size() &&
4941 "Methods have different number of parameters");
4942 auto OI = IMD->param_begin(), OE = IMD->param_end();
4943 auto NI = ObjCMethod->param_begin();
4944 for (; OI != OE; ++OI, ++NI)
4945 diagnoseNoescape(*NI, *OI, C, P, *this);
4946 }
4947 }
4948 } else {
4949 if (!isa<ObjCProtocolDecl>(ClassDecl)) {
4950 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
4951
4952 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4953 if (!IDecl)
4954 IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface();
4955 // For valid code, we should always know the primary interface
4956 // declaration by now, however for invalid code we'll keep parsing
4957 // but we won't find the primary interface and IDecl will be nil.
4958 if (IDecl)
4959 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod);
4960 }
4961
4962 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4963 }
4964
4965 if (PrevMethod) {
4966 // You can never have two method definitions with the same name.
4967 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4968 << ObjCMethod->getDeclName();
4969 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4970 ObjCMethod->setInvalidDecl();
4971 return ObjCMethod;
4972 }
4973
4974 // If this Objective-C method does not have a related result type, but we
4975 // are allowed to infer related result types, try to do so based on the
4976 // method family.
4977 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4978 if (!CurrentClass) {
4979 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4980 CurrentClass = Cat->getClassInterface();
4981 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4982 CurrentClass = Impl->getClassInterface();
4983 else if (ObjCCategoryImplDecl *CatImpl
4984 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4985 CurrentClass = CatImpl->getClassInterface();
4986 }
4987
4988 ResultTypeCompatibilityKind RTC
4989 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4990
4991 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4992
4993 bool ARCError = false;
4994 if (getLangOpts().ObjCAutoRefCount)
4995 ARCError = CheckARCMethodDecl(ObjCMethod);
4996
4997 // Infer the related result type when possible.
4998 if (!ARCError && RTC == Sema::RTC_Compatible &&
4999 !ObjCMethod->hasRelatedResultType() &&
5000 LangOpts.ObjCInferRelatedResultType) {
5001 bool InferRelatedResultType = false;
5002 switch (ObjCMethod->getMethodFamily()) {
5003 case OMF_None:
5004 case OMF_copy:
5005 case OMF_dealloc:
5006 case OMF_finalize:
5007 case OMF_mutableCopy:
5008 case OMF_release:
5009 case OMF_retainCount:
5010 case OMF_initialize:
5011 case OMF_performSelector:
5012 break;
5013
5014 case OMF_alloc:
5015 case OMF_new:
5016 InferRelatedResultType = ObjCMethod->isClassMethod();
5017 break;
5018
5019 case OMF_init:
5020 case OMF_autorelease:
5021 case OMF_retain:
5022 case OMF_self:
5023 InferRelatedResultType = ObjCMethod->isInstanceMethod();
5024 break;
5025 }
5026
5027 if (InferRelatedResultType &&
5028 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
5029 ObjCMethod->setRelatedResultType();
5030 }
5031
5032 if (MethodDefinition &&
5033 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
5034 checkObjCMethodX86VectorTypes(*this, ObjCMethod);
5035
5036 // + load method cannot have availability attributes. It get called on
5037 // startup, so it has to have the availability of the deployment target.
5038 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
5039 if (ObjCMethod->isClassMethod() &&
5040 ObjCMethod->getSelector().getAsString() == "load") {
5041 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
5042 << 0;
5043 ObjCMethod->dropAttr<AvailabilityAttr>();
5044 }
5045 }
5046
5047 // Insert the invisible arguments, self and _cmd!
5048 ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface());
5049
5050 ActOnDocumentableDecl(ObjCMethod);
5051
5052 return ObjCMethod;
5053 }
5054
CheckObjCDeclScope(Decl * D)5055 bool Sema::CheckObjCDeclScope(Decl *D) {
5056 // Following is also an error. But it is caused by a missing @end
5057 // and diagnostic is issued elsewhere.
5058 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
5059 return false;
5060
5061 // If we switched context to translation unit while we are still lexically in
5062 // an objc container, it means the parser missed emitting an error.
5063 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
5064 return false;
5065
5066 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
5067 D->setInvalidDecl();
5068
5069 return true;
5070 }
5071
5072 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
5073 /// instance variables of ClassName into Decls.
ActOnDefs(Scope * S,Decl * TagD,SourceLocation DeclStart,IdentifierInfo * ClassName,SmallVectorImpl<Decl * > & Decls)5074 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
5075 IdentifierInfo *ClassName,
5076 SmallVectorImpl<Decl*> &Decls) {
5077 // Check that ClassName is a valid class
5078 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
5079 if (!Class) {
5080 Diag(DeclStart, diag::err_undef_interface) << ClassName;
5081 return;
5082 }
5083 if (LangOpts.ObjCRuntime.isNonFragile()) {
5084 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
5085 return;
5086 }
5087
5088 // Collect the instance variables
5089 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5090 Context.DeepCollectObjCIvars(Class, true, Ivars);
5091 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
5092 for (unsigned i = 0; i < Ivars.size(); i++) {
5093 const FieldDecl* ID = Ivars[i];
5094 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
5095 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
5096 /*FIXME: StartL=*/ID->getLocation(),
5097 ID->getLocation(),
5098 ID->getIdentifier(), ID->getType(),
5099 ID->getBitWidth());
5100 Decls.push_back(FD);
5101 }
5102
5103 // Introduce all of these fields into the appropriate scope.
5104 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5105 D != Decls.end(); ++D) {
5106 FieldDecl *FD = cast<FieldDecl>(*D);
5107 if (getLangOpts().CPlusPlus)
5108 PushOnScopeChains(FD, S);
5109 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
5110 Record->addDecl(FD);
5111 }
5112 }
5113
5114 /// Build a type-check a new Objective-C exception variable declaration.
BuildObjCExceptionDecl(TypeSourceInfo * TInfo,QualType T,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,bool Invalid)5115 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
5116 SourceLocation StartLoc,
5117 SourceLocation IdLoc,
5118 IdentifierInfo *Id,
5119 bool Invalid) {
5120 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5121 // duration shall not be qualified by an address-space qualifier."
5122 // Since all parameters have automatic store duration, they can not have
5123 // an address space.
5124 if (T.getAddressSpace() != LangAS::Default) {
5125 Diag(IdLoc, diag::err_arg_with_address_space);
5126 Invalid = true;
5127 }
5128
5129 // An @catch parameter must be an unqualified object pointer type;
5130 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5131 if (Invalid) {
5132 // Don't do any further checking.
5133 } else if (T->isDependentType()) {
5134 // Okay: we don't know what this type will instantiate to.
5135 } else if (T->isObjCQualifiedIdType()) {
5136 Invalid = true;
5137 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
5138 } else if (T->isObjCIdType()) {
5139 // Okay: we don't know what this type will instantiate to.
5140 } else if (!T->isObjCObjectPointerType()) {
5141 Invalid = true;
5142 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5143 } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5144 Invalid = true;
5145 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5146 }
5147
5148 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
5149 T, TInfo, SC_None);
5150 New->setExceptionVariable(true);
5151
5152 // In ARC, infer 'retaining' for variables of retainable type.
5153 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
5154 Invalid = true;
5155
5156 if (Invalid)
5157 New->setInvalidDecl();
5158 return New;
5159 }
5160
ActOnObjCExceptionDecl(Scope * S,Declarator & D)5161 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
5162 const DeclSpec &DS = D.getDeclSpec();
5163
5164 // We allow the "register" storage class on exception variables because
5165 // GCC did, but we drop it completely. Any other storage class is an error.
5166 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5167 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
5168 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
5169 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5170 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
5171 << DeclSpec::getSpecifierName(SCS);
5172 }
5173 if (DS.isInlineSpecified())
5174 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5175 << getLangOpts().CPlusPlus17;
5176 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5177 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5178 diag::err_invalid_thread)
5179 << DeclSpec::getSpecifierName(TSCS);
5180 D.getMutableDeclSpec().ClearStorageClassSpecs();
5181
5182 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5183
5184 // Check that there are no default arguments inside the type of this
5185 // exception object (C++ only).
5186 if (getLangOpts().CPlusPlus)
5187 CheckExtraCXXDefaultArguments(D);
5188
5189 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5190 QualType ExceptionType = TInfo->getType();
5191
5192 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
5193 D.getSourceRange().getBegin(),
5194 D.getIdentifierLoc(),
5195 D.getIdentifier(),
5196 D.isInvalidType());
5197
5198 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5199 if (D.getCXXScopeSpec().isSet()) {
5200 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
5201 << D.getCXXScopeSpec().getRange();
5202 New->setInvalidDecl();
5203 }
5204
5205 // Add the parameter declaration into this scope.
5206 S->AddDecl(New);
5207 if (D.getIdentifier())
5208 IdResolver.AddDecl(New);
5209
5210 ProcessDeclAttributes(S, New, D);
5211
5212 if (New->hasAttr<BlocksAttr>())
5213 Diag(New->getLocation(), diag::err_block_on_nonlocal);
5214 return New;
5215 }
5216
5217 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5218 /// initialization.
CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl * OI,SmallVectorImpl<ObjCIvarDecl * > & Ivars)5219 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
5220 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
5221 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5222 Iv= Iv->getNextIvar()) {
5223 QualType QT = Context.getBaseElementType(Iv->getType());
5224 if (QT->isRecordType())
5225 Ivars.push_back(Iv);
5226 }
5227 }
5228
DiagnoseUseOfUnimplementedSelectors()5229 void Sema::DiagnoseUseOfUnimplementedSelectors() {
5230 // Load referenced selectors from the external source.
5231 if (ExternalSource) {
5232 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
5233 ExternalSource->ReadReferencedSelectors(Sels);
5234 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5235 ReferencedSelectors[Sels[I].first] = Sels[I].second;
5236 }
5237
5238 // Warning will be issued only when selector table is
5239 // generated (which means there is at lease one implementation
5240 // in the TU). This is to match gcc's behavior.
5241 if (ReferencedSelectors.empty() ||
5242 !Context.AnyObjCImplementation())
5243 return;
5244 for (auto &SelectorAndLocation : ReferencedSelectors) {
5245 Selector Sel = SelectorAndLocation.first;
5246 SourceLocation Loc = SelectorAndLocation.second;
5247 if (!LookupImplementedMethodInGlobalPool(Sel))
5248 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
5249 }
5250 }
5251
5252 ObjCIvarDecl *
GetIvarBackingPropertyAccessor(const ObjCMethodDecl * Method,const ObjCPropertyDecl * & PDecl) const5253 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
5254 const ObjCPropertyDecl *&PDecl) const {
5255 if (Method->isClassMethod())
5256 return nullptr;
5257 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5258 if (!IDecl)
5259 return nullptr;
5260 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
5261 /*shallowCategoryLookup=*/false,
5262 /*followSuper=*/false);
5263 if (!Method || !Method->isPropertyAccessor())
5264 return nullptr;
5265 if ((PDecl = Method->findPropertyDecl()))
5266 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5267 // property backing ivar must belong to property's class
5268 // or be a private ivar in class's implementation.
5269 // FIXME. fix the const-ness issue.
5270 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5271 IV->getIdentifier());
5272 return IV;
5273 }
5274 return nullptr;
5275 }
5276
5277 namespace {
5278 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5279 /// accessor references the backing ivar.
5280 class UnusedBackingIvarChecker :
5281 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5282 public:
5283 Sema &S;
5284 const ObjCMethodDecl *Method;
5285 const ObjCIvarDecl *IvarD;
5286 bool AccessedIvar;
5287 bool InvokedSelfMethod;
5288
UnusedBackingIvarChecker(Sema & S,const ObjCMethodDecl * Method,const ObjCIvarDecl * IvarD)5289 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5290 const ObjCIvarDecl *IvarD)
5291 : S(S), Method(Method), IvarD(IvarD),
5292 AccessedIvar(false), InvokedSelfMethod(false) {
5293 assert(IvarD);
5294 }
5295
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)5296 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5297 if (E->getDecl() == IvarD) {
5298 AccessedIvar = true;
5299 return false;
5300 }
5301 return true;
5302 }
5303
VisitObjCMessageExpr(ObjCMessageExpr * E)5304 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5305 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5306 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5307 InvokedSelfMethod = true;
5308 }
5309 return true;
5310 }
5311 };
5312 } // end anonymous namespace
5313
DiagnoseUnusedBackingIvarInAccessor(Scope * S,const ObjCImplementationDecl * ImplD)5314 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5315 const ObjCImplementationDecl *ImplD) {
5316 if (S->hasUnrecoverableErrorOccurred())
5317 return;
5318
5319 for (const auto *CurMethod : ImplD->instance_methods()) {
5320 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5321 SourceLocation Loc = CurMethod->getLocation();
5322 if (Diags.isIgnored(DIAG, Loc))
5323 continue;
5324
5325 const ObjCPropertyDecl *PDecl;
5326 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5327 if (!IV)
5328 continue;
5329
5330 if (CurMethod->isSynthesizedAccessorStub())
5331 continue;
5332
5333 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5334 Checker.TraverseStmt(CurMethod->getBody());
5335 if (Checker.AccessedIvar)
5336 continue;
5337
5338 // Do not issue this warning if backing ivar is used somewhere and accessor
5339 // implementation makes a self call. This is to prevent false positive in
5340 // cases where the ivar is accessed by another method that the accessor
5341 // delegates to.
5342 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5343 Diag(Loc, DIAG) << IV;
5344 Diag(PDecl->getLocation(), diag::note_property_declare);
5345 }
5346 }
5347 }
5348