1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library. First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression. These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 // Chains of recurrences -- a method to expedite the evaluation
42 // of closed-form functions
43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 // On computational properties of chains of recurrences
46 // Eugene V. Zima
47 //
48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 // Robert A. van Engelen
50 //
51 // Efficient Symbolic Analysis for Optimizing Compilers
52 // Robert A. van Engelen
53 //
54 // Using the chains of recurrences algebra for data dependence testing and
55 // induction variable substitution
56 // MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136
137 using namespace llvm;
138
139 #define DEBUG_TYPE "scalar-evolution"
140
141 STATISTIC(NumArrayLenItCounts,
142 "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144 "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146 "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148 "Number of loops with trip counts computed by force");
149
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152 cl::ZeroOrMore,
153 cl::desc("Maximum number of iterations SCEV will "
154 "symbolically execute a constant "
155 "derived loop"),
156 cl::init(100));
157
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160 "verify-scev", cl::Hidden,
161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163 "verify-scev-strict", cl::Hidden,
164 cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166 VerifySCEVMap("verify-scev-maps", cl::Hidden,
167 cl::desc("Verify no dangling value in ScalarEvolution's "
168 "ExprValueMap (slow)"));
169
170 static cl::opt<bool> VerifyIR(
171 "scev-verify-ir", cl::Hidden,
172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173 cl::init(false));
174
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176 "scev-mulops-inline-threshold", cl::Hidden,
177 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178 cl::init(32));
179
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181 "scev-addops-inline-threshold", cl::Hidden,
182 cl::desc("Threshold for inlining addition operands into a SCEV"),
183 cl::init(500));
184
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186 "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188 cl::init(32));
189
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193 cl::init(2));
194
195 static cl::opt<unsigned> MaxValueCompareDepth(
196 "scalar-evolution-max-value-compare-depth", cl::Hidden,
197 cl::desc("Maximum depth of recursive value complexity comparisons"),
198 cl::init(2));
199
200 static cl::opt<unsigned>
201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202 cl::desc("Maximum depth of recursive arithmetics"),
203 cl::init(32));
204
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208
209 static cl::opt<unsigned>
210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212 cl::init(8));
213
214 static cl::opt<unsigned>
215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216 cl::desc("Max coefficients in AddRec during evolving"),
217 cl::init(8));
218
219 static cl::opt<unsigned>
220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221 cl::desc("Size of the expression which is considered huge"),
222 cl::init(4096));
223
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226 cl::Hidden, cl::init(true),
227 cl::desc("When printing analysis, include information on every instruction"));
228
229 static cl::opt<bool> UseExpensiveRangeSharpening(
230 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
231 cl::init(false),
232 cl::desc("Use more powerful methods of sharpening expression ranges. May "
233 "be costly in terms of compile time"));
234
235 //===----------------------------------------------------------------------===//
236 // SCEV class definitions
237 //===----------------------------------------------------------------------===//
238
239 //===----------------------------------------------------------------------===//
240 // Implementation of the SCEV class.
241 //
242
243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const244 LLVM_DUMP_METHOD void SCEV::dump() const {
245 print(dbgs());
246 dbgs() << '\n';
247 }
248 #endif
249
print(raw_ostream & OS) const250 void SCEV::print(raw_ostream &OS) const {
251 switch (getSCEVType()) {
252 case scConstant:
253 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
254 return;
255 case scPtrToInt: {
256 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
257 const SCEV *Op = PtrToInt->getOperand();
258 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
259 << *PtrToInt->getType() << ")";
260 return;
261 }
262 case scTruncate: {
263 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
264 const SCEV *Op = Trunc->getOperand();
265 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
266 << *Trunc->getType() << ")";
267 return;
268 }
269 case scZeroExtend: {
270 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
271 const SCEV *Op = ZExt->getOperand();
272 OS << "(zext " << *Op->getType() << " " << *Op << " to "
273 << *ZExt->getType() << ")";
274 return;
275 }
276 case scSignExtend: {
277 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
278 const SCEV *Op = SExt->getOperand();
279 OS << "(sext " << *Op->getType() << " " << *Op << " to "
280 << *SExt->getType() << ")";
281 return;
282 }
283 case scAddRecExpr: {
284 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
285 OS << "{" << *AR->getOperand(0);
286 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
287 OS << ",+," << *AR->getOperand(i);
288 OS << "}<";
289 if (AR->hasNoUnsignedWrap())
290 OS << "nuw><";
291 if (AR->hasNoSignedWrap())
292 OS << "nsw><";
293 if (AR->hasNoSelfWrap() &&
294 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
295 OS << "nw><";
296 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
297 OS << ">";
298 return;
299 }
300 case scAddExpr:
301 case scMulExpr:
302 case scUMaxExpr:
303 case scSMaxExpr:
304 case scUMinExpr:
305 case scSMinExpr: {
306 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
307 const char *OpStr = nullptr;
308 switch (NAry->getSCEVType()) {
309 case scAddExpr: OpStr = " + "; break;
310 case scMulExpr: OpStr = " * "; break;
311 case scUMaxExpr: OpStr = " umax "; break;
312 case scSMaxExpr: OpStr = " smax "; break;
313 case scUMinExpr:
314 OpStr = " umin ";
315 break;
316 case scSMinExpr:
317 OpStr = " smin ";
318 break;
319 default:
320 llvm_unreachable("There are no other nary expression types.");
321 }
322 OS << "(";
323 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
324 I != E; ++I) {
325 OS << **I;
326 if (std::next(I) != E)
327 OS << OpStr;
328 }
329 OS << ")";
330 switch (NAry->getSCEVType()) {
331 case scAddExpr:
332 case scMulExpr:
333 if (NAry->hasNoUnsignedWrap())
334 OS << "<nuw>";
335 if (NAry->hasNoSignedWrap())
336 OS << "<nsw>";
337 break;
338 default:
339 // Nothing to print for other nary expressions.
340 break;
341 }
342 return;
343 }
344 case scUDivExpr: {
345 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
346 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
347 return;
348 }
349 case scUnknown: {
350 const SCEVUnknown *U = cast<SCEVUnknown>(this);
351 Type *AllocTy;
352 if (U->isSizeOf(AllocTy)) {
353 OS << "sizeof(" << *AllocTy << ")";
354 return;
355 }
356 if (U->isAlignOf(AllocTy)) {
357 OS << "alignof(" << *AllocTy << ")";
358 return;
359 }
360
361 Type *CTy;
362 Constant *FieldNo;
363 if (U->isOffsetOf(CTy, FieldNo)) {
364 OS << "offsetof(" << *CTy << ", ";
365 FieldNo->printAsOperand(OS, false);
366 OS << ")";
367 return;
368 }
369
370 // Otherwise just print it normally.
371 U->getValue()->printAsOperand(OS, false);
372 return;
373 }
374 case scCouldNotCompute:
375 OS << "***COULDNOTCOMPUTE***";
376 return;
377 }
378 llvm_unreachable("Unknown SCEV kind!");
379 }
380
getType() const381 Type *SCEV::getType() const {
382 switch (getSCEVType()) {
383 case scConstant:
384 return cast<SCEVConstant>(this)->getType();
385 case scPtrToInt:
386 case scTruncate:
387 case scZeroExtend:
388 case scSignExtend:
389 return cast<SCEVCastExpr>(this)->getType();
390 case scAddRecExpr:
391 case scMulExpr:
392 case scUMaxExpr:
393 case scSMaxExpr:
394 case scUMinExpr:
395 case scSMinExpr:
396 return cast<SCEVNAryExpr>(this)->getType();
397 case scAddExpr:
398 return cast<SCEVAddExpr>(this)->getType();
399 case scUDivExpr:
400 return cast<SCEVUDivExpr>(this)->getType();
401 case scUnknown:
402 return cast<SCEVUnknown>(this)->getType();
403 case scCouldNotCompute:
404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
405 }
406 llvm_unreachable("Unknown SCEV kind!");
407 }
408
isZero() const409 bool SCEV::isZero() const {
410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
411 return SC->getValue()->isZero();
412 return false;
413 }
414
isOne() const415 bool SCEV::isOne() const {
416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
417 return SC->getValue()->isOne();
418 return false;
419 }
420
isAllOnesValue() const421 bool SCEV::isAllOnesValue() const {
422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423 return SC->getValue()->isMinusOne();
424 return false;
425 }
426
isNonConstantNegative() const427 bool SCEV::isNonConstantNegative() const {
428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
429 if (!Mul) return false;
430
431 // If there is a constant factor, it will be first.
432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
433 if (!SC) return false;
434
435 // Return true if the value is negative, this matches things like (-42 * V).
436 return SC->getAPInt().isNegative();
437 }
438
SCEVCouldNotCompute()439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
441
classof(const SCEV * S)442 bool SCEVCouldNotCompute::classof(const SCEV *S) {
443 return S->getSCEVType() == scCouldNotCompute;
444 }
445
getConstant(ConstantInt * V)446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
447 FoldingSetNodeID ID;
448 ID.AddInteger(scConstant);
449 ID.AddPointer(V);
450 void *IP = nullptr;
451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
453 UniqueSCEVs.InsertNode(S, IP);
454 return S;
455 }
456
getConstant(const APInt & Val)457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
458 return getConstant(ConstantInt::get(getContext(), Val));
459 }
460
461 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
464 return getConstant(ConstantInt::get(ITy, V, isSigned));
465 }
466
SCEVCastExpr(const FoldingSetNodeIDRef ID,SCEVTypes SCEVTy,const SCEV * op,Type * ty)467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
468 const SCEV *op, Type *ty)
469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
470 Operands[0] = op;
471 }
472
SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID,const SCEV * Op,Type * ITy)473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
474 Type *ITy)
475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
477 "Must be a non-bit-width-changing pointer-to-integer cast!");
478 }
479
SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,SCEVTypes SCEVTy,const SCEV * op,Type * ty)480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
481 SCEVTypes SCEVTy, const SCEV *op,
482 Type *ty)
483 : SCEVCastExpr(ID, SCEVTy, op, ty) {}
484
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
486 Type *ty)
487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
489 "Cannot truncate non-integer value!");
490 }
491
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
493 const SCEV *op, Type *ty)
494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
496 "Cannot zero extend non-integer value!");
497 }
498
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
500 const SCEV *op, Type *ty)
501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
503 "Cannot sign extend non-integer value!");
504 }
505
deleted()506 void SCEVUnknown::deleted() {
507 // Clear this SCEVUnknown from various maps.
508 SE->forgetMemoizedResults(this);
509
510 // Remove this SCEVUnknown from the uniquing map.
511 SE->UniqueSCEVs.RemoveNode(this);
512
513 // Release the value.
514 setValPtr(nullptr);
515 }
516
allUsesReplacedWith(Value * New)517 void SCEVUnknown::allUsesReplacedWith(Value *New) {
518 // Remove this SCEVUnknown from the uniquing map.
519 SE->UniqueSCEVs.RemoveNode(this);
520
521 // Update this SCEVUnknown to point to the new value. This is needed
522 // because there may still be outstanding SCEVs which still point to
523 // this SCEVUnknown.
524 setValPtr(New);
525 }
526
isSizeOf(Type * & AllocTy) const527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
529 if (VCE->getOpcode() == Instruction::PtrToInt)
530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
531 if (CE->getOpcode() == Instruction::GetElementPtr &&
532 CE->getOperand(0)->isNullValue() &&
533 CE->getNumOperands() == 2)
534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
535 if (CI->isOne()) {
536 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
537 ->getElementType();
538 return true;
539 }
540
541 return false;
542 }
543
isAlignOf(Type * & AllocTy) const544 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
546 if (VCE->getOpcode() == Instruction::PtrToInt)
547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
548 if (CE->getOpcode() == Instruction::GetElementPtr &&
549 CE->getOperand(0)->isNullValue()) {
550 Type *Ty =
551 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
552 if (StructType *STy = dyn_cast<StructType>(Ty))
553 if (!STy->isPacked() &&
554 CE->getNumOperands() == 3 &&
555 CE->getOperand(1)->isNullValue()) {
556 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
557 if (CI->isOne() &&
558 STy->getNumElements() == 2 &&
559 STy->getElementType(0)->isIntegerTy(1)) {
560 AllocTy = STy->getElementType(1);
561 return true;
562 }
563 }
564 }
565
566 return false;
567 }
568
isOffsetOf(Type * & CTy,Constant * & FieldNo) const569 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
570 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
571 if (VCE->getOpcode() == Instruction::PtrToInt)
572 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
573 if (CE->getOpcode() == Instruction::GetElementPtr &&
574 CE->getNumOperands() == 3 &&
575 CE->getOperand(0)->isNullValue() &&
576 CE->getOperand(1)->isNullValue()) {
577 Type *Ty =
578 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
579 // Ignore vector types here so that ScalarEvolutionExpander doesn't
580 // emit getelementptrs that index into vectors.
581 if (Ty->isStructTy() || Ty->isArrayTy()) {
582 CTy = Ty;
583 FieldNo = CE->getOperand(2);
584 return true;
585 }
586 }
587
588 return false;
589 }
590
591 //===----------------------------------------------------------------------===//
592 // SCEV Utilities
593 //===----------------------------------------------------------------------===//
594
595 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
596 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
597 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
598 /// have been previously deemed to be "equally complex" by this routine. It is
599 /// intended to avoid exponential time complexity in cases like:
600 ///
601 /// %a = f(%x, %y)
602 /// %b = f(%a, %a)
603 /// %c = f(%b, %b)
604 ///
605 /// %d = f(%x, %y)
606 /// %e = f(%d, %d)
607 /// %f = f(%e, %e)
608 ///
609 /// CompareValueComplexity(%f, %c)
610 ///
611 /// Since we do not continue running this routine on expression trees once we
612 /// have seen unequal values, there is no need to track them in the cache.
613 static int
CompareValueComplexity(EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,Value * LV,Value * RV,unsigned Depth)614 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
615 const LoopInfo *const LI, Value *LV, Value *RV,
616 unsigned Depth) {
617 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
618 return 0;
619
620 // Order pointer values after integer values. This helps SCEVExpander form
621 // GEPs.
622 bool LIsPointer = LV->getType()->isPointerTy(),
623 RIsPointer = RV->getType()->isPointerTy();
624 if (LIsPointer != RIsPointer)
625 return (int)LIsPointer - (int)RIsPointer;
626
627 // Compare getValueID values.
628 unsigned LID = LV->getValueID(), RID = RV->getValueID();
629 if (LID != RID)
630 return (int)LID - (int)RID;
631
632 // Sort arguments by their position.
633 if (const auto *LA = dyn_cast<Argument>(LV)) {
634 const auto *RA = cast<Argument>(RV);
635 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
636 return (int)LArgNo - (int)RArgNo;
637 }
638
639 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
640 const auto *RGV = cast<GlobalValue>(RV);
641
642 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
643 auto LT = GV->getLinkage();
644 return !(GlobalValue::isPrivateLinkage(LT) ||
645 GlobalValue::isInternalLinkage(LT));
646 };
647
648 // Use the names to distinguish the two values, but only if the
649 // names are semantically important.
650 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
651 return LGV->getName().compare(RGV->getName());
652 }
653
654 // For instructions, compare their loop depth, and their operand count. This
655 // is pretty loose.
656 if (const auto *LInst = dyn_cast<Instruction>(LV)) {
657 const auto *RInst = cast<Instruction>(RV);
658
659 // Compare loop depths.
660 const BasicBlock *LParent = LInst->getParent(),
661 *RParent = RInst->getParent();
662 if (LParent != RParent) {
663 unsigned LDepth = LI->getLoopDepth(LParent),
664 RDepth = LI->getLoopDepth(RParent);
665 if (LDepth != RDepth)
666 return (int)LDepth - (int)RDepth;
667 }
668
669 // Compare the number of operands.
670 unsigned LNumOps = LInst->getNumOperands(),
671 RNumOps = RInst->getNumOperands();
672 if (LNumOps != RNumOps)
673 return (int)LNumOps - (int)RNumOps;
674
675 for (unsigned Idx : seq(0u, LNumOps)) {
676 int Result =
677 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
678 RInst->getOperand(Idx), Depth + 1);
679 if (Result != 0)
680 return Result;
681 }
682 }
683
684 EqCacheValue.unionSets(LV, RV);
685 return 0;
686 }
687
688 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
689 // than RHS, respectively. A three-way result allows recursive comparisons to be
690 // more efficient.
CompareSCEVComplexity(EquivalenceClasses<const SCEV * > & EqCacheSCEV,EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,const SCEV * LHS,const SCEV * RHS,DominatorTree & DT,unsigned Depth=0)691 static int CompareSCEVComplexity(
692 EquivalenceClasses<const SCEV *> &EqCacheSCEV,
693 EquivalenceClasses<const Value *> &EqCacheValue,
694 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
695 DominatorTree &DT, unsigned Depth = 0) {
696 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
697 if (LHS == RHS)
698 return 0;
699
700 // Primarily, sort the SCEVs by their getSCEVType().
701 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
702 if (LType != RType)
703 return (int)LType - (int)RType;
704
705 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
706 return 0;
707 // Aside from the getSCEVType() ordering, the particular ordering
708 // isn't very important except that it's beneficial to be consistent,
709 // so that (a + b) and (b + a) don't end up as different expressions.
710 switch (LType) {
711 case scUnknown: {
712 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
713 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
714
715 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
716 RU->getValue(), Depth + 1);
717 if (X == 0)
718 EqCacheSCEV.unionSets(LHS, RHS);
719 return X;
720 }
721
722 case scConstant: {
723 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
724 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
725
726 // Compare constant values.
727 const APInt &LA = LC->getAPInt();
728 const APInt &RA = RC->getAPInt();
729 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
730 if (LBitWidth != RBitWidth)
731 return (int)LBitWidth - (int)RBitWidth;
732 return LA.ult(RA) ? -1 : 1;
733 }
734
735 case scAddRecExpr: {
736 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
737 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
738
739 // There is always a dominance between two recs that are used by one SCEV,
740 // so we can safely sort recs by loop header dominance. We require such
741 // order in getAddExpr.
742 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
743 if (LLoop != RLoop) {
744 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
745 assert(LHead != RHead && "Two loops share the same header?");
746 if (DT.dominates(LHead, RHead))
747 return 1;
748 else
749 assert(DT.dominates(RHead, LHead) &&
750 "No dominance between recurrences used by one SCEV?");
751 return -1;
752 }
753
754 // Addrec complexity grows with operand count.
755 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
756 if (LNumOps != RNumOps)
757 return (int)LNumOps - (int)RNumOps;
758
759 // Lexicographically compare.
760 for (unsigned i = 0; i != LNumOps; ++i) {
761 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
762 LA->getOperand(i), RA->getOperand(i), DT,
763 Depth + 1);
764 if (X != 0)
765 return X;
766 }
767 EqCacheSCEV.unionSets(LHS, RHS);
768 return 0;
769 }
770
771 case scAddExpr:
772 case scMulExpr:
773 case scSMaxExpr:
774 case scUMaxExpr:
775 case scSMinExpr:
776 case scUMinExpr: {
777 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
778 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
779
780 // Lexicographically compare n-ary expressions.
781 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
782 if (LNumOps != RNumOps)
783 return (int)LNumOps - (int)RNumOps;
784
785 for (unsigned i = 0; i != LNumOps; ++i) {
786 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
787 LC->getOperand(i), RC->getOperand(i), DT,
788 Depth + 1);
789 if (X != 0)
790 return X;
791 }
792 EqCacheSCEV.unionSets(LHS, RHS);
793 return 0;
794 }
795
796 case scUDivExpr: {
797 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
798 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
799
800 // Lexicographically compare udiv expressions.
801 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
802 RC->getLHS(), DT, Depth + 1);
803 if (X != 0)
804 return X;
805 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
806 RC->getRHS(), DT, Depth + 1);
807 if (X == 0)
808 EqCacheSCEV.unionSets(LHS, RHS);
809 return X;
810 }
811
812 case scPtrToInt:
813 case scTruncate:
814 case scZeroExtend:
815 case scSignExtend: {
816 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
817 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
818
819 // Compare cast expressions by operand.
820 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
821 LC->getOperand(), RC->getOperand(), DT,
822 Depth + 1);
823 if (X == 0)
824 EqCacheSCEV.unionSets(LHS, RHS);
825 return X;
826 }
827
828 case scCouldNotCompute:
829 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
830 }
831 llvm_unreachable("Unknown SCEV kind!");
832 }
833
834 /// Given a list of SCEV objects, order them by their complexity, and group
835 /// objects of the same complexity together by value. When this routine is
836 /// finished, we know that any duplicates in the vector are consecutive and that
837 /// complexity is monotonically increasing.
838 ///
839 /// Note that we go take special precautions to ensure that we get deterministic
840 /// results from this routine. In other words, we don't want the results of
841 /// this to depend on where the addresses of various SCEV objects happened to
842 /// land in memory.
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI,DominatorTree & DT)843 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
844 LoopInfo *LI, DominatorTree &DT) {
845 if (Ops.size() < 2) return; // Noop
846
847 EquivalenceClasses<const SCEV *> EqCacheSCEV;
848 EquivalenceClasses<const Value *> EqCacheValue;
849 if (Ops.size() == 2) {
850 // This is the common case, which also happens to be trivially simple.
851 // Special case it.
852 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
853 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
854 std::swap(LHS, RHS);
855 return;
856 }
857
858 // Do the rough sort by complexity.
859 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
860 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
861 0;
862 });
863
864 // Now that we are sorted by complexity, group elements of the same
865 // complexity. Note that this is, at worst, N^2, but the vector is likely to
866 // be extremely short in practice. Note that we take this approach because we
867 // do not want to depend on the addresses of the objects we are grouping.
868 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
869 const SCEV *S = Ops[i];
870 unsigned Complexity = S->getSCEVType();
871
872 // If there are any objects of the same complexity and same value as this
873 // one, group them.
874 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
875 if (Ops[j] == S) { // Found a duplicate.
876 // Move it to immediately after i'th element.
877 std::swap(Ops[i+1], Ops[j]);
878 ++i; // no need to rescan it.
879 if (i == e-2) return; // Done!
880 }
881 }
882 }
883 }
884
885 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
886 /// least HugeExprThreshold nodes).
hasHugeExpression(ArrayRef<const SCEV * > Ops)887 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
888 return any_of(Ops, [](const SCEV *S) {
889 return S->getExpressionSize() >= HugeExprThreshold;
890 });
891 }
892
893 //===----------------------------------------------------------------------===//
894 // Simple SCEV method implementations
895 //===----------------------------------------------------------------------===//
896
897 /// Compute BC(It, K). The result has width W. Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)898 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
899 ScalarEvolution &SE,
900 Type *ResultTy) {
901 // Handle the simplest case efficiently.
902 if (K == 1)
903 return SE.getTruncateOrZeroExtend(It, ResultTy);
904
905 // We are using the following formula for BC(It, K):
906 //
907 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
908 //
909 // Suppose, W is the bitwidth of the return value. We must be prepared for
910 // overflow. Hence, we must assure that the result of our computation is
911 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
912 // safe in modular arithmetic.
913 //
914 // However, this code doesn't use exactly that formula; the formula it uses
915 // is something like the following, where T is the number of factors of 2 in
916 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
917 // exponentiation:
918 //
919 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
920 //
921 // This formula is trivially equivalent to the previous formula. However,
922 // this formula can be implemented much more efficiently. The trick is that
923 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
924 // arithmetic. To do exact division in modular arithmetic, all we have
925 // to do is multiply by the inverse. Therefore, this step can be done at
926 // width W.
927 //
928 // The next issue is how to safely do the division by 2^T. The way this
929 // is done is by doing the multiplication step at a width of at least W + T
930 // bits. This way, the bottom W+T bits of the product are accurate. Then,
931 // when we perform the division by 2^T (which is equivalent to a right shift
932 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
933 // truncated out after the division by 2^T.
934 //
935 // In comparison to just directly using the first formula, this technique
936 // is much more efficient; using the first formula requires W * K bits,
937 // but this formula less than W + K bits. Also, the first formula requires
938 // a division step, whereas this formula only requires multiplies and shifts.
939 //
940 // It doesn't matter whether the subtraction step is done in the calculation
941 // width or the input iteration count's width; if the subtraction overflows,
942 // the result must be zero anyway. We prefer here to do it in the width of
943 // the induction variable because it helps a lot for certain cases; CodeGen
944 // isn't smart enough to ignore the overflow, which leads to much less
945 // efficient code if the width of the subtraction is wider than the native
946 // register width.
947 //
948 // (It's possible to not widen at all by pulling out factors of 2 before
949 // the multiplication; for example, K=2 can be calculated as
950 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
951 // extra arithmetic, so it's not an obvious win, and it gets
952 // much more complicated for K > 3.)
953
954 // Protection from insane SCEVs; this bound is conservative,
955 // but it probably doesn't matter.
956 if (K > 1000)
957 return SE.getCouldNotCompute();
958
959 unsigned W = SE.getTypeSizeInBits(ResultTy);
960
961 // Calculate K! / 2^T and T; we divide out the factors of two before
962 // multiplying for calculating K! / 2^T to avoid overflow.
963 // Other overflow doesn't matter because we only care about the bottom
964 // W bits of the result.
965 APInt OddFactorial(W, 1);
966 unsigned T = 1;
967 for (unsigned i = 3; i <= K; ++i) {
968 APInt Mult(W, i);
969 unsigned TwoFactors = Mult.countTrailingZeros();
970 T += TwoFactors;
971 Mult.lshrInPlace(TwoFactors);
972 OddFactorial *= Mult;
973 }
974
975 // We need at least W + T bits for the multiplication step
976 unsigned CalculationBits = W + T;
977
978 // Calculate 2^T, at width T+W.
979 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
980
981 // Calculate the multiplicative inverse of K! / 2^T;
982 // this multiplication factor will perform the exact division by
983 // K! / 2^T.
984 APInt Mod = APInt::getSignedMinValue(W+1);
985 APInt MultiplyFactor = OddFactorial.zext(W+1);
986 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
987 MultiplyFactor = MultiplyFactor.trunc(W);
988
989 // Calculate the product, at width T+W
990 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
991 CalculationBits);
992 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
993 for (unsigned i = 1; i != K; ++i) {
994 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
995 Dividend = SE.getMulExpr(Dividend,
996 SE.getTruncateOrZeroExtend(S, CalculationTy));
997 }
998
999 // Divide by 2^T
1000 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1001
1002 // Truncate the result, and divide by K! / 2^T.
1003
1004 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1005 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1006 }
1007
1008 /// Return the value of this chain of recurrences at the specified iteration
1009 /// number. We can evaluate this recurrence by multiplying each element in the
1010 /// chain by the binomial coefficient corresponding to it. In other words, we
1011 /// can evaluate {A,+,B,+,C,+,D} as:
1012 ///
1013 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1014 ///
1015 /// where BC(It, k) stands for binomial coefficient.
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const1016 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1017 ScalarEvolution &SE) const {
1018 const SCEV *Result = getStart();
1019 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1020 // The computation is correct in the face of overflow provided that the
1021 // multiplication is performed _after_ the evaluation of the binomial
1022 // coefficient.
1023 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1024 if (isa<SCEVCouldNotCompute>(Coeff))
1025 return Coeff;
1026
1027 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1028 }
1029 return Result;
1030 }
1031
1032 //===----------------------------------------------------------------------===//
1033 // SCEV Expression folder implementations
1034 //===----------------------------------------------------------------------===//
1035
getPtrToIntExpr(const SCEV * Op,Type * Ty,unsigned Depth)1036 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty,
1037 unsigned Depth) {
1038 assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1039 assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once.");
1040
1041 // We could be called with an integer-typed operands during SCEV rewrites.
1042 // Since the operand is an integer already, just perform zext/trunc/self cast.
1043 if (!Op->getType()->isPointerTy())
1044 return getTruncateOrZeroExtend(Op, Ty);
1045
1046 // What would be an ID for such a SCEV cast expression?
1047 FoldingSetNodeID ID;
1048 ID.AddInteger(scPtrToInt);
1049 ID.AddPointer(Op);
1050
1051 void *IP = nullptr;
1052
1053 // Is there already an expression for such a cast?
1054 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1055 return getTruncateOrZeroExtend(S, Ty);
1056
1057 // If not, is this expression something we can't reduce any further?
1058 if (isa<SCEVUnknown>(Op)) {
1059 // Create an explicit cast node.
1060 // We can reuse the existing insert position since if we get here,
1061 // we won't have made any changes which would invalidate it.
1062 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1063 assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(
1064 Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) &&
1065 "We can only model ptrtoint if SCEV's effective (integer) type is "
1066 "sufficiently wide to represent all possible pointer values.");
1067 SCEV *S = new (SCEVAllocator)
1068 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1069 UniqueSCEVs.InsertNode(S, IP);
1070 addToLoopUseLists(S);
1071 return getTruncateOrZeroExtend(S, Ty);
1072 }
1073
1074 assert(Depth == 0 &&
1075 "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's.");
1076
1077 // Otherwise, we've got some expression that is more complex than just a
1078 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1079 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1080 // only, and the expressions must otherwise be integer-typed.
1081 // So sink the cast down to the SCEVUnknown's.
1082
1083 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1084 /// which computes a pointer-typed value, and rewrites the whole expression
1085 /// tree so that *all* the computations are done on integers, and the only
1086 /// pointer-typed operands in the expression are SCEVUnknown.
1087 class SCEVPtrToIntSinkingRewriter
1088 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1089 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1090
1091 public:
1092 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1093
1094 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1095 SCEVPtrToIntSinkingRewriter Rewriter(SE);
1096 return Rewriter.visit(Scev);
1097 }
1098
1099 const SCEV *visit(const SCEV *S) {
1100 Type *STy = S->getType();
1101 // If the expression is not pointer-typed, just keep it as-is.
1102 if (!STy->isPointerTy())
1103 return S;
1104 // Else, recursively sink the cast down into it.
1105 return Base::visit(S);
1106 }
1107
1108 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1109 SmallVector<const SCEV *, 2> Operands;
1110 bool Changed = false;
1111 for (auto *Op : Expr->operands()) {
1112 Operands.push_back(visit(Op));
1113 Changed |= Op != Operands.back();
1114 }
1115 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1116 }
1117
1118 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1119 SmallVector<const SCEV *, 2> Operands;
1120 bool Changed = false;
1121 for (auto *Op : Expr->operands()) {
1122 Operands.push_back(visit(Op));
1123 Changed |= Op != Operands.back();
1124 }
1125 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1126 }
1127
1128 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1129 Type *ExprPtrTy = Expr->getType();
1130 assert(ExprPtrTy->isPointerTy() &&
1131 "Should only reach pointer-typed SCEVUnknown's.");
1132 Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy);
1133 return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1);
1134 }
1135 };
1136
1137 // And actually perform the cast sinking.
1138 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1139 assert(IntOp->getType()->isIntegerTy() &&
1140 "We must have succeeded in sinking the cast, "
1141 "and ending up with an integer-typed expression!");
1142 return getTruncateOrZeroExtend(IntOp, Ty);
1143 }
1144
getTruncateExpr(const SCEV * Op,Type * Ty,unsigned Depth)1145 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1146 unsigned Depth) {
1147 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1148 "This is not a truncating conversion!");
1149 assert(isSCEVable(Ty) &&
1150 "This is not a conversion to a SCEVable type!");
1151 Ty = getEffectiveSCEVType(Ty);
1152
1153 FoldingSetNodeID ID;
1154 ID.AddInteger(scTruncate);
1155 ID.AddPointer(Op);
1156 ID.AddPointer(Ty);
1157 void *IP = nullptr;
1158 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1159
1160 // Fold if the operand is constant.
1161 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1162 return getConstant(
1163 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1164
1165 // trunc(trunc(x)) --> trunc(x)
1166 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1167 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1168
1169 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1170 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1171 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1172
1173 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1174 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1175 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1176
1177 if (Depth > MaxCastDepth) {
1178 SCEV *S =
1179 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1180 UniqueSCEVs.InsertNode(S, IP);
1181 addToLoopUseLists(S);
1182 return S;
1183 }
1184
1185 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1186 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1187 // if after transforming we have at most one truncate, not counting truncates
1188 // that replace other casts.
1189 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1190 auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1191 SmallVector<const SCEV *, 4> Operands;
1192 unsigned numTruncs = 0;
1193 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1194 ++i) {
1195 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1196 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1197 isa<SCEVTruncateExpr>(S))
1198 numTruncs++;
1199 Operands.push_back(S);
1200 }
1201 if (numTruncs < 2) {
1202 if (isa<SCEVAddExpr>(Op))
1203 return getAddExpr(Operands);
1204 else if (isa<SCEVMulExpr>(Op))
1205 return getMulExpr(Operands);
1206 else
1207 llvm_unreachable("Unexpected SCEV type for Op.");
1208 }
1209 // Although we checked in the beginning that ID is not in the cache, it is
1210 // possible that during recursion and different modification ID was inserted
1211 // into the cache. So if we find it, just return it.
1212 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1213 return S;
1214 }
1215
1216 // If the input value is a chrec scev, truncate the chrec's operands.
1217 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1218 SmallVector<const SCEV *, 4> Operands;
1219 for (const SCEV *Op : AddRec->operands())
1220 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1221 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1222 }
1223
1224 // The cast wasn't folded; create an explicit cast node. We can reuse
1225 // the existing insert position since if we get here, we won't have
1226 // made any changes which would invalidate it.
1227 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1228 Op, Ty);
1229 UniqueSCEVs.InsertNode(S, IP);
1230 addToLoopUseLists(S);
1231 return S;
1232 }
1233
1234 // Get the limit of a recurrence such that incrementing by Step cannot cause
1235 // signed overflow as long as the value of the recurrence within the
1236 // loop does not exceed this limit before incrementing.
getSignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1237 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1238 ICmpInst::Predicate *Pred,
1239 ScalarEvolution *SE) {
1240 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1241 if (SE->isKnownPositive(Step)) {
1242 *Pred = ICmpInst::ICMP_SLT;
1243 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1244 SE->getSignedRangeMax(Step));
1245 }
1246 if (SE->isKnownNegative(Step)) {
1247 *Pred = ICmpInst::ICMP_SGT;
1248 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1249 SE->getSignedRangeMin(Step));
1250 }
1251 return nullptr;
1252 }
1253
1254 // Get the limit of a recurrence such that incrementing by Step cannot cause
1255 // unsigned overflow as long as the value of the recurrence within the loop does
1256 // not exceed this limit before incrementing.
getUnsignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1257 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1258 ICmpInst::Predicate *Pred,
1259 ScalarEvolution *SE) {
1260 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1261 *Pred = ICmpInst::ICMP_ULT;
1262
1263 return SE->getConstant(APInt::getMinValue(BitWidth) -
1264 SE->getUnsignedRangeMax(Step));
1265 }
1266
1267 namespace {
1268
1269 struct ExtendOpTraitsBase {
1270 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1271 unsigned);
1272 };
1273
1274 // Used to make code generic over signed and unsigned overflow.
1275 template <typename ExtendOp> struct ExtendOpTraits {
1276 // Members present:
1277 //
1278 // static const SCEV::NoWrapFlags WrapType;
1279 //
1280 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1281 //
1282 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1283 // ICmpInst::Predicate *Pred,
1284 // ScalarEvolution *SE);
1285 };
1286
1287 template <>
1288 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1289 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1290
1291 static const GetExtendExprTy GetExtendExpr;
1292
getOverflowLimitForStep__anonb2da948e0411::ExtendOpTraits1293 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1294 ICmpInst::Predicate *Pred,
1295 ScalarEvolution *SE) {
1296 return getSignedOverflowLimitForStep(Step, Pred, SE);
1297 }
1298 };
1299
1300 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1301 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1302
1303 template <>
1304 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1305 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1306
1307 static const GetExtendExprTy GetExtendExpr;
1308
getOverflowLimitForStep__anonb2da948e0411::ExtendOpTraits1309 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1310 ICmpInst::Predicate *Pred,
1311 ScalarEvolution *SE) {
1312 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1313 }
1314 };
1315
1316 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1317 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1318
1319 } // end anonymous namespace
1320
1321 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1322 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1323 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1324 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1325 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1326 // expression "Step + sext/zext(PreIncAR)" is congruent with
1327 // "sext/zext(PostIncAR)"
1328 template <typename ExtendOpTy>
getPreStartForExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1329 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1330 ScalarEvolution *SE, unsigned Depth) {
1331 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1332 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1333
1334 const Loop *L = AR->getLoop();
1335 const SCEV *Start = AR->getStart();
1336 const SCEV *Step = AR->getStepRecurrence(*SE);
1337
1338 // Check for a simple looking step prior to loop entry.
1339 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1340 if (!SA)
1341 return nullptr;
1342
1343 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1344 // subtraction is expensive. For this purpose, perform a quick and dirty
1345 // difference, by checking for Step in the operand list.
1346 SmallVector<const SCEV *, 4> DiffOps;
1347 for (const SCEV *Op : SA->operands())
1348 if (Op != Step)
1349 DiffOps.push_back(Op);
1350
1351 if (DiffOps.size() == SA->getNumOperands())
1352 return nullptr;
1353
1354 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1355 // `Step`:
1356
1357 // 1. NSW/NUW flags on the step increment.
1358 auto PreStartFlags =
1359 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1360 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1361 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1362 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1363
1364 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1365 // "S+X does not sign/unsign-overflow".
1366 //
1367
1368 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1369 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1370 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1371 return PreStart;
1372
1373 // 2. Direct overflow check on the step operation's expression.
1374 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1375 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1376 const SCEV *OperandExtendedStart =
1377 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1378 (SE->*GetExtendExpr)(Step, WideTy, Depth));
1379 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1380 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1381 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1382 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1383 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1384 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1385 }
1386 return PreStart;
1387 }
1388
1389 // 3. Loop precondition.
1390 ICmpInst::Predicate Pred;
1391 const SCEV *OverflowLimit =
1392 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1393
1394 if (OverflowLimit &&
1395 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1396 return PreStart;
1397
1398 return nullptr;
1399 }
1400
1401 // Get the normalized zero or sign extended expression for this AddRec's Start.
1402 template <typename ExtendOpTy>
getExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1403 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1404 ScalarEvolution *SE,
1405 unsigned Depth) {
1406 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1407
1408 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1409 if (!PreStart)
1410 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1411
1412 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1413 Depth),
1414 (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1415 }
1416
1417 // Try to prove away overflow by looking at "nearby" add recurrences. A
1418 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1419 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1420 //
1421 // Formally:
1422 //
1423 // {S,+,X} == {S-T,+,X} + T
1424 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1425 //
1426 // If ({S-T,+,X} + T) does not overflow ... (1)
1427 //
1428 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1429 //
1430 // If {S-T,+,X} does not overflow ... (2)
1431 //
1432 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1433 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1434 //
1435 // If (S-T)+T does not overflow ... (3)
1436 //
1437 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1438 // == {Ext(S),+,Ext(X)} == LHS
1439 //
1440 // Thus, if (1), (2) and (3) are true for some T, then
1441 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1442 //
1443 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1444 // does not overflow" restricted to the 0th iteration. Therefore we only need
1445 // to check for (1) and (2).
1446 //
1447 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1448 // is `Delta` (defined below).
1449 template <typename ExtendOpTy>
proveNoWrapByVaryingStart(const SCEV * Start,const SCEV * Step,const Loop * L)1450 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1451 const SCEV *Step,
1452 const Loop *L) {
1453 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1454
1455 // We restrict `Start` to a constant to prevent SCEV from spending too much
1456 // time here. It is correct (but more expensive) to continue with a
1457 // non-constant `Start` and do a general SCEV subtraction to compute
1458 // `PreStart` below.
1459 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1460 if (!StartC)
1461 return false;
1462
1463 APInt StartAI = StartC->getAPInt();
1464
1465 for (unsigned Delta : {-2, -1, 1, 2}) {
1466 const SCEV *PreStart = getConstant(StartAI - Delta);
1467
1468 FoldingSetNodeID ID;
1469 ID.AddInteger(scAddRecExpr);
1470 ID.AddPointer(PreStart);
1471 ID.AddPointer(Step);
1472 ID.AddPointer(L);
1473 void *IP = nullptr;
1474 const auto *PreAR =
1475 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1476
1477 // Give up if we don't already have the add recurrence we need because
1478 // actually constructing an add recurrence is relatively expensive.
1479 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1480 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1481 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1482 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1483 DeltaS, &Pred, this);
1484 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1485 return true;
1486 }
1487 }
1488
1489 return false;
1490 }
1491
1492 // Finds an integer D for an expression (C + x + y + ...) such that the top
1493 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1494 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1495 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1496 // the (C + x + y + ...) expression is \p WholeAddExpr.
extractConstantWithoutWrapping(ScalarEvolution & SE,const SCEVConstant * ConstantTerm,const SCEVAddExpr * WholeAddExpr)1497 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1498 const SCEVConstant *ConstantTerm,
1499 const SCEVAddExpr *WholeAddExpr) {
1500 const APInt &C = ConstantTerm->getAPInt();
1501 const unsigned BitWidth = C.getBitWidth();
1502 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1503 uint32_t TZ = BitWidth;
1504 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1505 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1506 if (TZ) {
1507 // Set D to be as many least significant bits of C as possible while still
1508 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1509 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1510 }
1511 return APInt(BitWidth, 0);
1512 }
1513
1514 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1515 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1516 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1517 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
extractConstantWithoutWrapping(ScalarEvolution & SE,const APInt & ConstantStart,const SCEV * Step)1518 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1519 const APInt &ConstantStart,
1520 const SCEV *Step) {
1521 const unsigned BitWidth = ConstantStart.getBitWidth();
1522 const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1523 if (TZ)
1524 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1525 : ConstantStart;
1526 return APInt(BitWidth, 0);
1527 }
1528
1529 const SCEV *
getZeroExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1530 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1531 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1532 "This is not an extending conversion!");
1533 assert(isSCEVable(Ty) &&
1534 "This is not a conversion to a SCEVable type!");
1535 Ty = getEffectiveSCEVType(Ty);
1536
1537 // Fold if the operand is constant.
1538 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1539 return getConstant(
1540 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1541
1542 // zext(zext(x)) --> zext(x)
1543 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1544 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1545
1546 // Before doing any expensive analysis, check to see if we've already
1547 // computed a SCEV for this Op and Ty.
1548 FoldingSetNodeID ID;
1549 ID.AddInteger(scZeroExtend);
1550 ID.AddPointer(Op);
1551 ID.AddPointer(Ty);
1552 void *IP = nullptr;
1553 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1554 if (Depth > MaxCastDepth) {
1555 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1556 Op, Ty);
1557 UniqueSCEVs.InsertNode(S, IP);
1558 addToLoopUseLists(S);
1559 return S;
1560 }
1561
1562 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1563 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1564 // It's possible the bits taken off by the truncate were all zero bits. If
1565 // so, we should be able to simplify this further.
1566 const SCEV *X = ST->getOperand();
1567 ConstantRange CR = getUnsignedRange(X);
1568 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1569 unsigned NewBits = getTypeSizeInBits(Ty);
1570 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1571 CR.zextOrTrunc(NewBits)))
1572 return getTruncateOrZeroExtend(X, Ty, Depth);
1573 }
1574
1575 // If the input value is a chrec scev, and we can prove that the value
1576 // did not overflow the old, smaller, value, we can zero extend all of the
1577 // operands (often constants). This allows analysis of something like
1578 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1579 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1580 if (AR->isAffine()) {
1581 const SCEV *Start = AR->getStart();
1582 const SCEV *Step = AR->getStepRecurrence(*this);
1583 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1584 const Loop *L = AR->getLoop();
1585
1586 if (!AR->hasNoUnsignedWrap()) {
1587 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1588 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1589 }
1590
1591 // If we have special knowledge that this addrec won't overflow,
1592 // we don't need to do any further analysis.
1593 if (AR->hasNoUnsignedWrap())
1594 return getAddRecExpr(
1595 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1596 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1597
1598 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1599 // Note that this serves two purposes: It filters out loops that are
1600 // simply not analyzable, and it covers the case where this code is
1601 // being called from within backedge-taken count analysis, such that
1602 // attempting to ask for the backedge-taken count would likely result
1603 // in infinite recursion. In the later case, the analysis code will
1604 // cope with a conservative value, and it will take care to purge
1605 // that value once it has finished.
1606 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1607 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1608 // Manually compute the final value for AR, checking for overflow.
1609
1610 // Check whether the backedge-taken count can be losslessly casted to
1611 // the addrec's type. The count is always unsigned.
1612 const SCEV *CastedMaxBECount =
1613 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1614 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1615 CastedMaxBECount, MaxBECount->getType(), Depth);
1616 if (MaxBECount == RecastedMaxBECount) {
1617 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1618 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1619 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1620 SCEV::FlagAnyWrap, Depth + 1);
1621 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1622 SCEV::FlagAnyWrap,
1623 Depth + 1),
1624 WideTy, Depth + 1);
1625 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1626 const SCEV *WideMaxBECount =
1627 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1628 const SCEV *OperandExtendedAdd =
1629 getAddExpr(WideStart,
1630 getMulExpr(WideMaxBECount,
1631 getZeroExtendExpr(Step, WideTy, Depth + 1),
1632 SCEV::FlagAnyWrap, Depth + 1),
1633 SCEV::FlagAnyWrap, Depth + 1);
1634 if (ZAdd == OperandExtendedAdd) {
1635 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1636 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1637 // Return the expression with the addrec on the outside.
1638 return getAddRecExpr(
1639 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1640 Depth + 1),
1641 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1642 AR->getNoWrapFlags());
1643 }
1644 // Similar to above, only this time treat the step value as signed.
1645 // This covers loops that count down.
1646 OperandExtendedAdd =
1647 getAddExpr(WideStart,
1648 getMulExpr(WideMaxBECount,
1649 getSignExtendExpr(Step, WideTy, Depth + 1),
1650 SCEV::FlagAnyWrap, Depth + 1),
1651 SCEV::FlagAnyWrap, Depth + 1);
1652 if (ZAdd == OperandExtendedAdd) {
1653 // Cache knowledge of AR NW, which is propagated to this AddRec.
1654 // Negative step causes unsigned wrap, but it still can't self-wrap.
1655 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1656 // Return the expression with the addrec on the outside.
1657 return getAddRecExpr(
1658 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1659 Depth + 1),
1660 getSignExtendExpr(Step, Ty, Depth + 1), L,
1661 AR->getNoWrapFlags());
1662 }
1663 }
1664 }
1665
1666 // Normally, in the cases we can prove no-overflow via a
1667 // backedge guarding condition, we can also compute a backedge
1668 // taken count for the loop. The exceptions are assumptions and
1669 // guards present in the loop -- SCEV is not great at exploiting
1670 // these to compute max backedge taken counts, but can still use
1671 // these to prove lack of overflow. Use this fact to avoid
1672 // doing extra work that may not pay off.
1673 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1674 !AC.assumptions().empty()) {
1675
1676 auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1677 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1678 if (AR->hasNoUnsignedWrap()) {
1679 // Same as nuw case above - duplicated here to avoid a compile time
1680 // issue. It's not clear that the order of checks does matter, but
1681 // it's one of two issue possible causes for a change which was
1682 // reverted. Be conservative for the moment.
1683 return getAddRecExpr(
1684 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1685 Depth + 1),
1686 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1687 AR->getNoWrapFlags());
1688 }
1689
1690 // For a negative step, we can extend the operands iff doing so only
1691 // traverses values in the range zext([0,UINT_MAX]).
1692 if (isKnownNegative(Step)) {
1693 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1694 getSignedRangeMin(Step));
1695 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1696 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1697 // Cache knowledge of AR NW, which is propagated to this
1698 // AddRec. Negative step causes unsigned wrap, but it
1699 // still can't self-wrap.
1700 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1701 // Return the expression with the addrec on the outside.
1702 return getAddRecExpr(
1703 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1704 Depth + 1),
1705 getSignExtendExpr(Step, Ty, Depth + 1), L,
1706 AR->getNoWrapFlags());
1707 }
1708 }
1709 }
1710
1711 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1712 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1713 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1714 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1715 const APInt &C = SC->getAPInt();
1716 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1717 if (D != 0) {
1718 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1719 const SCEV *SResidual =
1720 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1721 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1722 return getAddExpr(SZExtD, SZExtR,
1723 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1724 Depth + 1);
1725 }
1726 }
1727
1728 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1729 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1730 return getAddRecExpr(
1731 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1732 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1733 }
1734 }
1735
1736 // zext(A % B) --> zext(A) % zext(B)
1737 {
1738 const SCEV *LHS;
1739 const SCEV *RHS;
1740 if (matchURem(Op, LHS, RHS))
1741 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1742 getZeroExtendExpr(RHS, Ty, Depth + 1));
1743 }
1744
1745 // zext(A / B) --> zext(A) / zext(B).
1746 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1747 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1748 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1749
1750 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1751 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1752 if (SA->hasNoUnsignedWrap()) {
1753 // If the addition does not unsign overflow then we can, by definition,
1754 // commute the zero extension with the addition operation.
1755 SmallVector<const SCEV *, 4> Ops;
1756 for (const auto *Op : SA->operands())
1757 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1758 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1759 }
1760
1761 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1762 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1763 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1764 //
1765 // Often address arithmetics contain expressions like
1766 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1767 // This transformation is useful while proving that such expressions are
1768 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1769 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1770 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1771 if (D != 0) {
1772 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1773 const SCEV *SResidual =
1774 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1775 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1776 return getAddExpr(SZExtD, SZExtR,
1777 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1778 Depth + 1);
1779 }
1780 }
1781 }
1782
1783 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1784 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1785 if (SM->hasNoUnsignedWrap()) {
1786 // If the multiply does not unsign overflow then we can, by definition,
1787 // commute the zero extension with the multiply operation.
1788 SmallVector<const SCEV *, 4> Ops;
1789 for (const auto *Op : SM->operands())
1790 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1791 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1792 }
1793
1794 // zext(2^K * (trunc X to iN)) to iM ->
1795 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1796 //
1797 // Proof:
1798 //
1799 // zext(2^K * (trunc X to iN)) to iM
1800 // = zext((trunc X to iN) << K) to iM
1801 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1802 // (because shl removes the top K bits)
1803 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1804 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1805 //
1806 if (SM->getNumOperands() == 2)
1807 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1808 if (MulLHS->getAPInt().isPowerOf2())
1809 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1810 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1811 MulLHS->getAPInt().logBase2();
1812 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1813 return getMulExpr(
1814 getZeroExtendExpr(MulLHS, Ty),
1815 getZeroExtendExpr(
1816 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1817 SCEV::FlagNUW, Depth + 1);
1818 }
1819 }
1820
1821 // The cast wasn't folded; create an explicit cast node.
1822 // Recompute the insert position, as it may have been invalidated.
1823 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1824 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1825 Op, Ty);
1826 UniqueSCEVs.InsertNode(S, IP);
1827 addToLoopUseLists(S);
1828 return S;
1829 }
1830
1831 const SCEV *
getSignExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1832 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1833 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1834 "This is not an extending conversion!");
1835 assert(isSCEVable(Ty) &&
1836 "This is not a conversion to a SCEVable type!");
1837 Ty = getEffectiveSCEVType(Ty);
1838
1839 // Fold if the operand is constant.
1840 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1841 return getConstant(
1842 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1843
1844 // sext(sext(x)) --> sext(x)
1845 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1846 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1847
1848 // sext(zext(x)) --> zext(x)
1849 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1850 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1851
1852 // Before doing any expensive analysis, check to see if we've already
1853 // computed a SCEV for this Op and Ty.
1854 FoldingSetNodeID ID;
1855 ID.AddInteger(scSignExtend);
1856 ID.AddPointer(Op);
1857 ID.AddPointer(Ty);
1858 void *IP = nullptr;
1859 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1860 // Limit recursion depth.
1861 if (Depth > MaxCastDepth) {
1862 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1863 Op, Ty);
1864 UniqueSCEVs.InsertNode(S, IP);
1865 addToLoopUseLists(S);
1866 return S;
1867 }
1868
1869 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1870 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1871 // It's possible the bits taken off by the truncate were all sign bits. If
1872 // so, we should be able to simplify this further.
1873 const SCEV *X = ST->getOperand();
1874 ConstantRange CR = getSignedRange(X);
1875 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1876 unsigned NewBits = getTypeSizeInBits(Ty);
1877 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1878 CR.sextOrTrunc(NewBits)))
1879 return getTruncateOrSignExtend(X, Ty, Depth);
1880 }
1881
1882 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1883 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1884 if (SA->hasNoSignedWrap()) {
1885 // If the addition does not sign overflow then we can, by definition,
1886 // commute the sign extension with the addition operation.
1887 SmallVector<const SCEV *, 4> Ops;
1888 for (const auto *Op : SA->operands())
1889 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1890 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1891 }
1892
1893 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1894 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1895 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1896 //
1897 // For instance, this will bring two seemingly different expressions:
1898 // 1 + sext(5 + 20 * %x + 24 * %y) and
1899 // sext(6 + 20 * %x + 24 * %y)
1900 // to the same form:
1901 // 2 + sext(4 + 20 * %x + 24 * %y)
1902 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1903 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1904 if (D != 0) {
1905 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1906 const SCEV *SResidual =
1907 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1908 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1909 return getAddExpr(SSExtD, SSExtR,
1910 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1911 Depth + 1);
1912 }
1913 }
1914 }
1915 // If the input value is a chrec scev, and we can prove that the value
1916 // did not overflow the old, smaller, value, we can sign extend all of the
1917 // operands (often constants). This allows analysis of something like
1918 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1919 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1920 if (AR->isAffine()) {
1921 const SCEV *Start = AR->getStart();
1922 const SCEV *Step = AR->getStepRecurrence(*this);
1923 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1924 const Loop *L = AR->getLoop();
1925
1926 if (!AR->hasNoSignedWrap()) {
1927 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1928 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1929 }
1930
1931 // If we have special knowledge that this addrec won't overflow,
1932 // we don't need to do any further analysis.
1933 if (AR->hasNoSignedWrap())
1934 return getAddRecExpr(
1935 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1936 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1937
1938 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1939 // Note that this serves two purposes: It filters out loops that are
1940 // simply not analyzable, and it covers the case where this code is
1941 // being called from within backedge-taken count analysis, such that
1942 // attempting to ask for the backedge-taken count would likely result
1943 // in infinite recursion. In the later case, the analysis code will
1944 // cope with a conservative value, and it will take care to purge
1945 // that value once it has finished.
1946 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1947 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1948 // Manually compute the final value for AR, checking for
1949 // overflow.
1950
1951 // Check whether the backedge-taken count can be losslessly casted to
1952 // the addrec's type. The count is always unsigned.
1953 const SCEV *CastedMaxBECount =
1954 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1955 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1956 CastedMaxBECount, MaxBECount->getType(), Depth);
1957 if (MaxBECount == RecastedMaxBECount) {
1958 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1959 // Check whether Start+Step*MaxBECount has no signed overflow.
1960 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1961 SCEV::FlagAnyWrap, Depth + 1);
1962 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1963 SCEV::FlagAnyWrap,
1964 Depth + 1),
1965 WideTy, Depth + 1);
1966 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1967 const SCEV *WideMaxBECount =
1968 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1969 const SCEV *OperandExtendedAdd =
1970 getAddExpr(WideStart,
1971 getMulExpr(WideMaxBECount,
1972 getSignExtendExpr(Step, WideTy, Depth + 1),
1973 SCEV::FlagAnyWrap, Depth + 1),
1974 SCEV::FlagAnyWrap, Depth + 1);
1975 if (SAdd == OperandExtendedAdd) {
1976 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1977 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
1978 // Return the expression with the addrec on the outside.
1979 return getAddRecExpr(
1980 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1981 Depth + 1),
1982 getSignExtendExpr(Step, Ty, Depth + 1), L,
1983 AR->getNoWrapFlags());
1984 }
1985 // Similar to above, only this time treat the step value as unsigned.
1986 // This covers loops that count up with an unsigned step.
1987 OperandExtendedAdd =
1988 getAddExpr(WideStart,
1989 getMulExpr(WideMaxBECount,
1990 getZeroExtendExpr(Step, WideTy, Depth + 1),
1991 SCEV::FlagAnyWrap, Depth + 1),
1992 SCEV::FlagAnyWrap, Depth + 1);
1993 if (SAdd == OperandExtendedAdd) {
1994 // If AR wraps around then
1995 //
1996 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1997 // => SAdd != OperandExtendedAdd
1998 //
1999 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2000 // (SAdd == OperandExtendedAdd => AR is NW)
2001
2002 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2003
2004 // Return the expression with the addrec on the outside.
2005 return getAddRecExpr(
2006 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2007 Depth + 1),
2008 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2009 AR->getNoWrapFlags());
2010 }
2011 }
2012 }
2013
2014 auto NewFlags = proveNoSignedWrapViaInduction(AR);
2015 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2016 if (AR->hasNoSignedWrap()) {
2017 // Same as nsw case above - duplicated here to avoid a compile time
2018 // issue. It's not clear that the order of checks does matter, but
2019 // it's one of two issue possible causes for a change which was
2020 // reverted. Be conservative for the moment.
2021 return getAddRecExpr(
2022 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2023 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2024 }
2025
2026 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2027 // if D + (C - D + Step * n) could be proven to not signed wrap
2028 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2029 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2030 const APInt &C = SC->getAPInt();
2031 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2032 if (D != 0) {
2033 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2034 const SCEV *SResidual =
2035 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2036 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2037 return getAddExpr(SSExtD, SSExtR,
2038 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2039 Depth + 1);
2040 }
2041 }
2042
2043 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2044 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2045 return getAddRecExpr(
2046 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2047 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2048 }
2049 }
2050
2051 // If the input value is provably positive and we could not simplify
2052 // away the sext build a zext instead.
2053 if (isKnownNonNegative(Op))
2054 return getZeroExtendExpr(Op, Ty, Depth + 1);
2055
2056 // The cast wasn't folded; create an explicit cast node.
2057 // Recompute the insert position, as it may have been invalidated.
2058 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2059 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2060 Op, Ty);
2061 UniqueSCEVs.InsertNode(S, IP);
2062 addToLoopUseLists(S);
2063 return S;
2064 }
2065
2066 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2067 /// unspecified bits out to the given type.
getAnyExtendExpr(const SCEV * Op,Type * Ty)2068 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2069 Type *Ty) {
2070 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2071 "This is not an extending conversion!");
2072 assert(isSCEVable(Ty) &&
2073 "This is not a conversion to a SCEVable type!");
2074 Ty = getEffectiveSCEVType(Ty);
2075
2076 // Sign-extend negative constants.
2077 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2078 if (SC->getAPInt().isNegative())
2079 return getSignExtendExpr(Op, Ty);
2080
2081 // Peel off a truncate cast.
2082 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2083 const SCEV *NewOp = T->getOperand();
2084 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2085 return getAnyExtendExpr(NewOp, Ty);
2086 return getTruncateOrNoop(NewOp, Ty);
2087 }
2088
2089 // Next try a zext cast. If the cast is folded, use it.
2090 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2091 if (!isa<SCEVZeroExtendExpr>(ZExt))
2092 return ZExt;
2093
2094 // Next try a sext cast. If the cast is folded, use it.
2095 const SCEV *SExt = getSignExtendExpr(Op, Ty);
2096 if (!isa<SCEVSignExtendExpr>(SExt))
2097 return SExt;
2098
2099 // Force the cast to be folded into the operands of an addrec.
2100 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2101 SmallVector<const SCEV *, 4> Ops;
2102 for (const SCEV *Op : AR->operands())
2103 Ops.push_back(getAnyExtendExpr(Op, Ty));
2104 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2105 }
2106
2107 // If the expression is obviously signed, use the sext cast value.
2108 if (isa<SCEVSMaxExpr>(Op))
2109 return SExt;
2110
2111 // Absent any other information, use the zext cast value.
2112 return ZExt;
2113 }
2114
2115 /// Process the given Ops list, which is a list of operands to be added under
2116 /// the given scale, update the given map. This is a helper function for
2117 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2118 /// that would form an add expression like this:
2119 ///
2120 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2121 ///
2122 /// where A and B are constants, update the map with these values:
2123 ///
2124 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2125 ///
2126 /// and add 13 + A*B*29 to AccumulatedConstant.
2127 /// This will allow getAddRecExpr to produce this:
2128 ///
2129 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2130 ///
2131 /// This form often exposes folding opportunities that are hidden in
2132 /// the original operand list.
2133 ///
2134 /// Return true iff it appears that any interesting folding opportunities
2135 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2136 /// the common case where no interesting opportunities are present, and
2137 /// is also used as a check to avoid infinite recursion.
2138 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,const SCEV * const * Ops,size_t NumOperands,const APInt & Scale,ScalarEvolution & SE)2139 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2140 SmallVectorImpl<const SCEV *> &NewOps,
2141 APInt &AccumulatedConstant,
2142 const SCEV *const *Ops, size_t NumOperands,
2143 const APInt &Scale,
2144 ScalarEvolution &SE) {
2145 bool Interesting = false;
2146
2147 // Iterate over the add operands. They are sorted, with constants first.
2148 unsigned i = 0;
2149 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2150 ++i;
2151 // Pull a buried constant out to the outside.
2152 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2153 Interesting = true;
2154 AccumulatedConstant += Scale * C->getAPInt();
2155 }
2156
2157 // Next comes everything else. We're especially interested in multiplies
2158 // here, but they're in the middle, so just visit the rest with one loop.
2159 for (; i != NumOperands; ++i) {
2160 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2161 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2162 APInt NewScale =
2163 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2164 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2165 // A multiplication of a constant with another add; recurse.
2166 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2167 Interesting |=
2168 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2169 Add->op_begin(), Add->getNumOperands(),
2170 NewScale, SE);
2171 } else {
2172 // A multiplication of a constant with some other value. Update
2173 // the map.
2174 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2175 const SCEV *Key = SE.getMulExpr(MulOps);
2176 auto Pair = M.insert({Key, NewScale});
2177 if (Pair.second) {
2178 NewOps.push_back(Pair.first->first);
2179 } else {
2180 Pair.first->second += NewScale;
2181 // The map already had an entry for this value, which may indicate
2182 // a folding opportunity.
2183 Interesting = true;
2184 }
2185 }
2186 } else {
2187 // An ordinary operand. Update the map.
2188 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2189 M.insert({Ops[i], Scale});
2190 if (Pair.second) {
2191 NewOps.push_back(Pair.first->first);
2192 } else {
2193 Pair.first->second += Scale;
2194 // The map already had an entry for this value, which may indicate
2195 // a folding opportunity.
2196 Interesting = true;
2197 }
2198 }
2199 }
2200
2201 return Interesting;
2202 }
2203
2204 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2205 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2206 // can't-overflow flags for the operation if possible.
2207 static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution * SE,SCEVTypes Type,const ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2208 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2209 const ArrayRef<const SCEV *> Ops,
2210 SCEV::NoWrapFlags Flags) {
2211 using namespace std::placeholders;
2212
2213 using OBO = OverflowingBinaryOperator;
2214
2215 bool CanAnalyze =
2216 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2217 (void)CanAnalyze;
2218 assert(CanAnalyze && "don't call from other places!");
2219
2220 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2221 SCEV::NoWrapFlags SignOrUnsignWrap =
2222 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2223
2224 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2225 auto IsKnownNonNegative = [&](const SCEV *S) {
2226 return SE->isKnownNonNegative(S);
2227 };
2228
2229 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2230 Flags =
2231 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2232
2233 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2234
2235 if (SignOrUnsignWrap != SignOrUnsignMask &&
2236 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2237 isa<SCEVConstant>(Ops[0])) {
2238
2239 auto Opcode = [&] {
2240 switch (Type) {
2241 case scAddExpr:
2242 return Instruction::Add;
2243 case scMulExpr:
2244 return Instruction::Mul;
2245 default:
2246 llvm_unreachable("Unexpected SCEV op.");
2247 }
2248 }();
2249
2250 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2251
2252 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2253 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2254 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2255 Opcode, C, OBO::NoSignedWrap);
2256 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2257 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2258 }
2259
2260 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2261 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2262 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2263 Opcode, C, OBO::NoUnsignedWrap);
2264 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2265 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2266 }
2267 }
2268
2269 return Flags;
2270 }
2271
isAvailableAtLoopEntry(const SCEV * S,const Loop * L)2272 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2273 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2274 }
2275
2276 /// Get a canonical add expression, or something simpler if possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags OrigFlags,unsigned Depth)2277 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2278 SCEV::NoWrapFlags OrigFlags,
2279 unsigned Depth) {
2280 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2281 "only nuw or nsw allowed");
2282 assert(!Ops.empty() && "Cannot get empty add!");
2283 if (Ops.size() == 1) return Ops[0];
2284 #ifndef NDEBUG
2285 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2286 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2287 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2288 "SCEVAddExpr operand types don't match!");
2289 #endif
2290
2291 // Sort by complexity, this groups all similar expression types together.
2292 GroupByComplexity(Ops, &LI, DT);
2293
2294 // If there are any constants, fold them together.
2295 unsigned Idx = 0;
2296 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2297 ++Idx;
2298 assert(Idx < Ops.size());
2299 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2300 // We found two constants, fold them together!
2301 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2302 if (Ops.size() == 2) return Ops[0];
2303 Ops.erase(Ops.begin()+1); // Erase the folded element
2304 LHSC = cast<SCEVConstant>(Ops[0]);
2305 }
2306
2307 // If we are left with a constant zero being added, strip it off.
2308 if (LHSC->getValue()->isZero()) {
2309 Ops.erase(Ops.begin());
2310 --Idx;
2311 }
2312
2313 if (Ops.size() == 1) return Ops[0];
2314 }
2315
2316 // Delay expensive flag strengthening until necessary.
2317 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2318 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2319 };
2320
2321 // Limit recursion calls depth.
2322 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2323 return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2324
2325 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2326 // Don't strengthen flags if we have no new information.
2327 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2328 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2329 Add->setNoWrapFlags(ComputeFlags(Ops));
2330 return S;
2331 }
2332
2333 // Okay, check to see if the same value occurs in the operand list more than
2334 // once. If so, merge them together into an multiply expression. Since we
2335 // sorted the list, these values are required to be adjacent.
2336 Type *Ty = Ops[0]->getType();
2337 bool FoundMatch = false;
2338 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2339 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2340 // Scan ahead to count how many equal operands there are.
2341 unsigned Count = 2;
2342 while (i+Count != e && Ops[i+Count] == Ops[i])
2343 ++Count;
2344 // Merge the values into a multiply.
2345 const SCEV *Scale = getConstant(Ty, Count);
2346 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2347 if (Ops.size() == Count)
2348 return Mul;
2349 Ops[i] = Mul;
2350 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2351 --i; e -= Count - 1;
2352 FoundMatch = true;
2353 }
2354 if (FoundMatch)
2355 return getAddExpr(Ops, OrigFlags, Depth + 1);
2356
2357 // Check for truncates. If all the operands are truncated from the same
2358 // type, see if factoring out the truncate would permit the result to be
2359 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2360 // if the contents of the resulting outer trunc fold to something simple.
2361 auto FindTruncSrcType = [&]() -> Type * {
2362 // We're ultimately looking to fold an addrec of truncs and muls of only
2363 // constants and truncs, so if we find any other types of SCEV
2364 // as operands of the addrec then we bail and return nullptr here.
2365 // Otherwise, we return the type of the operand of a trunc that we find.
2366 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2367 return T->getOperand()->getType();
2368 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2369 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2370 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2371 return T->getOperand()->getType();
2372 }
2373 return nullptr;
2374 };
2375 if (auto *SrcType = FindTruncSrcType()) {
2376 SmallVector<const SCEV *, 8> LargeOps;
2377 bool Ok = true;
2378 // Check all the operands to see if they can be represented in the
2379 // source type of the truncate.
2380 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2381 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2382 if (T->getOperand()->getType() != SrcType) {
2383 Ok = false;
2384 break;
2385 }
2386 LargeOps.push_back(T->getOperand());
2387 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2388 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2389 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2390 SmallVector<const SCEV *, 8> LargeMulOps;
2391 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2392 if (const SCEVTruncateExpr *T =
2393 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2394 if (T->getOperand()->getType() != SrcType) {
2395 Ok = false;
2396 break;
2397 }
2398 LargeMulOps.push_back(T->getOperand());
2399 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2400 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2401 } else {
2402 Ok = false;
2403 break;
2404 }
2405 }
2406 if (Ok)
2407 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2408 } else {
2409 Ok = false;
2410 break;
2411 }
2412 }
2413 if (Ok) {
2414 // Evaluate the expression in the larger type.
2415 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2416 // If it folds to something simple, use it. Otherwise, don't.
2417 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2418 return getTruncateExpr(Fold, Ty);
2419 }
2420 }
2421
2422 // Skip past any other cast SCEVs.
2423 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2424 ++Idx;
2425
2426 // If there are add operands they would be next.
2427 if (Idx < Ops.size()) {
2428 bool DeletedAdd = false;
2429 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2430 if (Ops.size() > AddOpsInlineThreshold ||
2431 Add->getNumOperands() > AddOpsInlineThreshold)
2432 break;
2433 // If we have an add, expand the add operands onto the end of the operands
2434 // list.
2435 Ops.erase(Ops.begin()+Idx);
2436 Ops.append(Add->op_begin(), Add->op_end());
2437 DeletedAdd = true;
2438 }
2439
2440 // If we deleted at least one add, we added operands to the end of the list,
2441 // and they are not necessarily sorted. Recurse to resort and resimplify
2442 // any operands we just acquired.
2443 if (DeletedAdd)
2444 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2445 }
2446
2447 // Skip over the add expression until we get to a multiply.
2448 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2449 ++Idx;
2450
2451 // Check to see if there are any folding opportunities present with
2452 // operands multiplied by constant values.
2453 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2454 uint64_t BitWidth = getTypeSizeInBits(Ty);
2455 DenseMap<const SCEV *, APInt> M;
2456 SmallVector<const SCEV *, 8> NewOps;
2457 APInt AccumulatedConstant(BitWidth, 0);
2458 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2459 Ops.data(), Ops.size(),
2460 APInt(BitWidth, 1), *this)) {
2461 struct APIntCompare {
2462 bool operator()(const APInt &LHS, const APInt &RHS) const {
2463 return LHS.ult(RHS);
2464 }
2465 };
2466
2467 // Some interesting folding opportunity is present, so its worthwhile to
2468 // re-generate the operands list. Group the operands by constant scale,
2469 // to avoid multiplying by the same constant scale multiple times.
2470 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2471 for (const SCEV *NewOp : NewOps)
2472 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2473 // Re-generate the operands list.
2474 Ops.clear();
2475 if (AccumulatedConstant != 0)
2476 Ops.push_back(getConstant(AccumulatedConstant));
2477 for (auto &MulOp : MulOpLists)
2478 if (MulOp.first != 0)
2479 Ops.push_back(getMulExpr(
2480 getConstant(MulOp.first),
2481 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2482 SCEV::FlagAnyWrap, Depth + 1));
2483 if (Ops.empty())
2484 return getZero(Ty);
2485 if (Ops.size() == 1)
2486 return Ops[0];
2487 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2488 }
2489 }
2490
2491 // If we are adding something to a multiply expression, make sure the
2492 // something is not already an operand of the multiply. If so, merge it into
2493 // the multiply.
2494 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2495 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2496 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2497 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2498 if (isa<SCEVConstant>(MulOpSCEV))
2499 continue;
2500 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2501 if (MulOpSCEV == Ops[AddOp]) {
2502 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2503 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2504 if (Mul->getNumOperands() != 2) {
2505 // If the multiply has more than two operands, we must get the
2506 // Y*Z term.
2507 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2508 Mul->op_begin()+MulOp);
2509 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2510 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2511 }
2512 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2513 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2514 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2515 SCEV::FlagAnyWrap, Depth + 1);
2516 if (Ops.size() == 2) return OuterMul;
2517 if (AddOp < Idx) {
2518 Ops.erase(Ops.begin()+AddOp);
2519 Ops.erase(Ops.begin()+Idx-1);
2520 } else {
2521 Ops.erase(Ops.begin()+Idx);
2522 Ops.erase(Ops.begin()+AddOp-1);
2523 }
2524 Ops.push_back(OuterMul);
2525 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2526 }
2527
2528 // Check this multiply against other multiplies being added together.
2529 for (unsigned OtherMulIdx = Idx+1;
2530 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2531 ++OtherMulIdx) {
2532 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2533 // If MulOp occurs in OtherMul, we can fold the two multiplies
2534 // together.
2535 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2536 OMulOp != e; ++OMulOp)
2537 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2538 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2539 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2540 if (Mul->getNumOperands() != 2) {
2541 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2542 Mul->op_begin()+MulOp);
2543 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2544 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2545 }
2546 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2547 if (OtherMul->getNumOperands() != 2) {
2548 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2549 OtherMul->op_begin()+OMulOp);
2550 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2551 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2552 }
2553 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2554 const SCEV *InnerMulSum =
2555 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2556 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2557 SCEV::FlagAnyWrap, Depth + 1);
2558 if (Ops.size() == 2) return OuterMul;
2559 Ops.erase(Ops.begin()+Idx);
2560 Ops.erase(Ops.begin()+OtherMulIdx-1);
2561 Ops.push_back(OuterMul);
2562 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2563 }
2564 }
2565 }
2566 }
2567
2568 // If there are any add recurrences in the operands list, see if any other
2569 // added values are loop invariant. If so, we can fold them into the
2570 // recurrence.
2571 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2572 ++Idx;
2573
2574 // Scan over all recurrences, trying to fold loop invariants into them.
2575 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2576 // Scan all of the other operands to this add and add them to the vector if
2577 // they are loop invariant w.r.t. the recurrence.
2578 SmallVector<const SCEV *, 8> LIOps;
2579 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2580 const Loop *AddRecLoop = AddRec->getLoop();
2581 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2582 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2583 LIOps.push_back(Ops[i]);
2584 Ops.erase(Ops.begin()+i);
2585 --i; --e;
2586 }
2587
2588 // If we found some loop invariants, fold them into the recurrence.
2589 if (!LIOps.empty()) {
2590 // Compute nowrap flags for the addition of the loop-invariant ops and
2591 // the addrec. Temporarily push it as an operand for that purpose.
2592 LIOps.push_back(AddRec);
2593 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2594 LIOps.pop_back();
2595
2596 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2597 LIOps.push_back(AddRec->getStart());
2598
2599 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2600 AddRec->op_end());
2601 // This follows from the fact that the no-wrap flags on the outer add
2602 // expression are applicable on the 0th iteration, when the add recurrence
2603 // will be equal to its start value.
2604 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2605
2606 // Build the new addrec. Propagate the NUW and NSW flags if both the
2607 // outer add and the inner addrec are guaranteed to have no overflow.
2608 // Always propagate NW.
2609 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2610 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2611
2612 // If all of the other operands were loop invariant, we are done.
2613 if (Ops.size() == 1) return NewRec;
2614
2615 // Otherwise, add the folded AddRec by the non-invariant parts.
2616 for (unsigned i = 0;; ++i)
2617 if (Ops[i] == AddRec) {
2618 Ops[i] = NewRec;
2619 break;
2620 }
2621 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2622 }
2623
2624 // Okay, if there weren't any loop invariants to be folded, check to see if
2625 // there are multiple AddRec's with the same loop induction variable being
2626 // added together. If so, we can fold them.
2627 for (unsigned OtherIdx = Idx+1;
2628 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2629 ++OtherIdx) {
2630 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2631 // so that the 1st found AddRecExpr is dominated by all others.
2632 assert(DT.dominates(
2633 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2634 AddRec->getLoop()->getHeader()) &&
2635 "AddRecExprs are not sorted in reverse dominance order?");
2636 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2637 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2638 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2639 AddRec->op_end());
2640 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2641 ++OtherIdx) {
2642 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2643 if (OtherAddRec->getLoop() == AddRecLoop) {
2644 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2645 i != e; ++i) {
2646 if (i >= AddRecOps.size()) {
2647 AddRecOps.append(OtherAddRec->op_begin()+i,
2648 OtherAddRec->op_end());
2649 break;
2650 }
2651 SmallVector<const SCEV *, 2> TwoOps = {
2652 AddRecOps[i], OtherAddRec->getOperand(i)};
2653 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2654 }
2655 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2656 }
2657 }
2658 // Step size has changed, so we cannot guarantee no self-wraparound.
2659 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2660 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2661 }
2662 }
2663
2664 // Otherwise couldn't fold anything into this recurrence. Move onto the
2665 // next one.
2666 }
2667
2668 // Okay, it looks like we really DO need an add expr. Check to see if we
2669 // already have one, otherwise create a new one.
2670 return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2671 }
2672
2673 const SCEV *
getOrCreateAddExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2674 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2675 SCEV::NoWrapFlags Flags) {
2676 FoldingSetNodeID ID;
2677 ID.AddInteger(scAddExpr);
2678 for (const SCEV *Op : Ops)
2679 ID.AddPointer(Op);
2680 void *IP = nullptr;
2681 SCEVAddExpr *S =
2682 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2683 if (!S) {
2684 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2685 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2686 S = new (SCEVAllocator)
2687 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2688 UniqueSCEVs.InsertNode(S, IP);
2689 addToLoopUseLists(S);
2690 }
2691 S->setNoWrapFlags(Flags);
2692 return S;
2693 }
2694
2695 const SCEV *
getOrCreateAddRecExpr(ArrayRef<const SCEV * > Ops,const Loop * L,SCEV::NoWrapFlags Flags)2696 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2697 const Loop *L, SCEV::NoWrapFlags Flags) {
2698 FoldingSetNodeID ID;
2699 ID.AddInteger(scAddRecExpr);
2700 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2701 ID.AddPointer(Ops[i]);
2702 ID.AddPointer(L);
2703 void *IP = nullptr;
2704 SCEVAddRecExpr *S =
2705 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2706 if (!S) {
2707 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2708 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2709 S = new (SCEVAllocator)
2710 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2711 UniqueSCEVs.InsertNode(S, IP);
2712 addToLoopUseLists(S);
2713 }
2714 setNoWrapFlags(S, Flags);
2715 return S;
2716 }
2717
2718 const SCEV *
getOrCreateMulExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2719 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2720 SCEV::NoWrapFlags Flags) {
2721 FoldingSetNodeID ID;
2722 ID.AddInteger(scMulExpr);
2723 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2724 ID.AddPointer(Ops[i]);
2725 void *IP = nullptr;
2726 SCEVMulExpr *S =
2727 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2728 if (!S) {
2729 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2730 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2731 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2732 O, Ops.size());
2733 UniqueSCEVs.InsertNode(S, IP);
2734 addToLoopUseLists(S);
2735 }
2736 S->setNoWrapFlags(Flags);
2737 return S;
2738 }
2739
umul_ov(uint64_t i,uint64_t j,bool & Overflow)2740 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2741 uint64_t k = i*j;
2742 if (j > 1 && k / j != i) Overflow = true;
2743 return k;
2744 }
2745
2746 /// Compute the result of "n choose k", the binomial coefficient. If an
2747 /// intermediate computation overflows, Overflow will be set and the return will
2748 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)2749 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2750 // We use the multiplicative formula:
2751 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2752 // At each iteration, we take the n-th term of the numeral and divide by the
2753 // (k-n)th term of the denominator. This division will always produce an
2754 // integral result, and helps reduce the chance of overflow in the
2755 // intermediate computations. However, we can still overflow even when the
2756 // final result would fit.
2757
2758 if (n == 0 || n == k) return 1;
2759 if (k > n) return 0;
2760
2761 if (k > n/2)
2762 k = n-k;
2763
2764 uint64_t r = 1;
2765 for (uint64_t i = 1; i <= k; ++i) {
2766 r = umul_ov(r, n-(i-1), Overflow);
2767 r /= i;
2768 }
2769 return r;
2770 }
2771
2772 /// Determine if any of the operands in this SCEV are a constant or if
2773 /// any of the add or multiply expressions in this SCEV contain a constant.
containsConstantInAddMulChain(const SCEV * StartExpr)2774 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2775 struct FindConstantInAddMulChain {
2776 bool FoundConstant = false;
2777
2778 bool follow(const SCEV *S) {
2779 FoundConstant |= isa<SCEVConstant>(S);
2780 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2781 }
2782
2783 bool isDone() const {
2784 return FoundConstant;
2785 }
2786 };
2787
2788 FindConstantInAddMulChain F;
2789 SCEVTraversal<FindConstantInAddMulChain> ST(F);
2790 ST.visitAll(StartExpr);
2791 return F.FoundConstant;
2792 }
2793
2794 /// Get a canonical multiply expression, or something simpler if possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags OrigFlags,unsigned Depth)2795 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2796 SCEV::NoWrapFlags OrigFlags,
2797 unsigned Depth) {
2798 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2799 "only nuw or nsw allowed");
2800 assert(!Ops.empty() && "Cannot get empty mul!");
2801 if (Ops.size() == 1) return Ops[0];
2802 #ifndef NDEBUG
2803 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2804 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2805 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2806 "SCEVMulExpr operand types don't match!");
2807 #endif
2808
2809 // Sort by complexity, this groups all similar expression types together.
2810 GroupByComplexity(Ops, &LI, DT);
2811
2812 // If there are any constants, fold them together.
2813 unsigned Idx = 0;
2814 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2815 ++Idx;
2816 assert(Idx < Ops.size());
2817 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2818 // We found two constants, fold them together!
2819 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
2820 if (Ops.size() == 2) return Ops[0];
2821 Ops.erase(Ops.begin()+1); // Erase the folded element
2822 LHSC = cast<SCEVConstant>(Ops[0]);
2823 }
2824
2825 // If we have a multiply of zero, it will always be zero.
2826 if (LHSC->getValue()->isZero())
2827 return LHSC;
2828
2829 // If we are left with a constant one being multiplied, strip it off.
2830 if (LHSC->getValue()->isOne()) {
2831 Ops.erase(Ops.begin());
2832 --Idx;
2833 }
2834
2835 if (Ops.size() == 1)
2836 return Ops[0];
2837 }
2838
2839 // Delay expensive flag strengthening until necessary.
2840 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2841 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
2842 };
2843
2844 // Limit recursion calls depth.
2845 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2846 return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
2847
2848 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2849 // Don't strengthen flags if we have no new information.
2850 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
2851 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
2852 Mul->setNoWrapFlags(ComputeFlags(Ops));
2853 return S;
2854 }
2855
2856 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2857 if (Ops.size() == 2) {
2858 // C1*(C2+V) -> C1*C2 + C1*V
2859 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2860 // If any of Add's ops are Adds or Muls with a constant, apply this
2861 // transformation as well.
2862 //
2863 // TODO: There are some cases where this transformation is not
2864 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
2865 // this transformation should be narrowed down.
2866 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2867 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2868 SCEV::FlagAnyWrap, Depth + 1),
2869 getMulExpr(LHSC, Add->getOperand(1),
2870 SCEV::FlagAnyWrap, Depth + 1),
2871 SCEV::FlagAnyWrap, Depth + 1);
2872
2873 if (Ops[0]->isAllOnesValue()) {
2874 // If we have a mul by -1 of an add, try distributing the -1 among the
2875 // add operands.
2876 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2877 SmallVector<const SCEV *, 4> NewOps;
2878 bool AnyFolded = false;
2879 for (const SCEV *AddOp : Add->operands()) {
2880 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2881 Depth + 1);
2882 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2883 NewOps.push_back(Mul);
2884 }
2885 if (AnyFolded)
2886 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2887 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2888 // Negation preserves a recurrence's no self-wrap property.
2889 SmallVector<const SCEV *, 4> Operands;
2890 for (const SCEV *AddRecOp : AddRec->operands())
2891 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2892 Depth + 1));
2893
2894 return getAddRecExpr(Operands, AddRec->getLoop(),
2895 AddRec->getNoWrapFlags(SCEV::FlagNW));
2896 }
2897 }
2898 }
2899 }
2900
2901 // Skip over the add expression until we get to a multiply.
2902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2903 ++Idx;
2904
2905 // If there are mul operands inline them all into this expression.
2906 if (Idx < Ops.size()) {
2907 bool DeletedMul = false;
2908 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2909 if (Ops.size() > MulOpsInlineThreshold)
2910 break;
2911 // If we have an mul, expand the mul operands onto the end of the
2912 // operands list.
2913 Ops.erase(Ops.begin()+Idx);
2914 Ops.append(Mul->op_begin(), Mul->op_end());
2915 DeletedMul = true;
2916 }
2917
2918 // If we deleted at least one mul, we added operands to the end of the
2919 // list, and they are not necessarily sorted. Recurse to resort and
2920 // resimplify any operands we just acquired.
2921 if (DeletedMul)
2922 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2923 }
2924
2925 // If there are any add recurrences in the operands list, see if any other
2926 // added values are loop invariant. If so, we can fold them into the
2927 // recurrence.
2928 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2929 ++Idx;
2930
2931 // Scan over all recurrences, trying to fold loop invariants into them.
2932 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2933 // Scan all of the other operands to this mul and add them to the vector
2934 // if they are loop invariant w.r.t. the recurrence.
2935 SmallVector<const SCEV *, 8> LIOps;
2936 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2937 const Loop *AddRecLoop = AddRec->getLoop();
2938 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2939 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2940 LIOps.push_back(Ops[i]);
2941 Ops.erase(Ops.begin()+i);
2942 --i; --e;
2943 }
2944
2945 // If we found some loop invariants, fold them into the recurrence.
2946 if (!LIOps.empty()) {
2947 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
2948 SmallVector<const SCEV *, 4> NewOps;
2949 NewOps.reserve(AddRec->getNumOperands());
2950 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2951 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2952 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2953 SCEV::FlagAnyWrap, Depth + 1));
2954
2955 // Build the new addrec. Propagate the NUW and NSW flags if both the
2956 // outer mul and the inner addrec are guaranteed to have no overflow.
2957 //
2958 // No self-wrap cannot be guaranteed after changing the step size, but
2959 // will be inferred if either NUW or NSW is true.
2960 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
2961 const SCEV *NewRec = getAddRecExpr(
2962 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
2963
2964 // If all of the other operands were loop invariant, we are done.
2965 if (Ops.size() == 1) return NewRec;
2966
2967 // Otherwise, multiply the folded AddRec by the non-invariant parts.
2968 for (unsigned i = 0;; ++i)
2969 if (Ops[i] == AddRec) {
2970 Ops[i] = NewRec;
2971 break;
2972 }
2973 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2974 }
2975
2976 // Okay, if there weren't any loop invariants to be folded, check to see
2977 // if there are multiple AddRec's with the same loop induction variable
2978 // being multiplied together. If so, we can fold them.
2979
2980 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2981 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2982 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2983 // ]]],+,...up to x=2n}.
2984 // Note that the arguments to choose() are always integers with values
2985 // known at compile time, never SCEV objects.
2986 //
2987 // The implementation avoids pointless extra computations when the two
2988 // addrec's are of different length (mathematically, it's equivalent to
2989 // an infinite stream of zeros on the right).
2990 bool OpsModified = false;
2991 for (unsigned OtherIdx = Idx+1;
2992 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2993 ++OtherIdx) {
2994 const SCEVAddRecExpr *OtherAddRec =
2995 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2996 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2997 continue;
2998
2999 // Limit max number of arguments to avoid creation of unreasonably big
3000 // SCEVAddRecs with very complex operands.
3001 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3002 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3003 continue;
3004
3005 bool Overflow = false;
3006 Type *Ty = AddRec->getType();
3007 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3008 SmallVector<const SCEV*, 7> AddRecOps;
3009 for (int x = 0, xe = AddRec->getNumOperands() +
3010 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3011 SmallVector <const SCEV *, 7> SumOps;
3012 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3013 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3014 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3015 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3016 z < ze && !Overflow; ++z) {
3017 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3018 uint64_t Coeff;
3019 if (LargerThan64Bits)
3020 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3021 else
3022 Coeff = Coeff1*Coeff2;
3023 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3024 const SCEV *Term1 = AddRec->getOperand(y-z);
3025 const SCEV *Term2 = OtherAddRec->getOperand(z);
3026 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3027 SCEV::FlagAnyWrap, Depth + 1));
3028 }
3029 }
3030 if (SumOps.empty())
3031 SumOps.push_back(getZero(Ty));
3032 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3033 }
3034 if (!Overflow) {
3035 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3036 SCEV::FlagAnyWrap);
3037 if (Ops.size() == 2) return NewAddRec;
3038 Ops[Idx] = NewAddRec;
3039 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3040 OpsModified = true;
3041 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3042 if (!AddRec)
3043 break;
3044 }
3045 }
3046 if (OpsModified)
3047 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3048
3049 // Otherwise couldn't fold anything into this recurrence. Move onto the
3050 // next one.
3051 }
3052
3053 // Okay, it looks like we really DO need an mul expr. Check to see if we
3054 // already have one, otherwise create a new one.
3055 return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3056 }
3057
3058 /// Represents an unsigned remainder expression based on unsigned division.
getURemExpr(const SCEV * LHS,const SCEV * RHS)3059 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3060 const SCEV *RHS) {
3061 assert(getEffectiveSCEVType(LHS->getType()) ==
3062 getEffectiveSCEVType(RHS->getType()) &&
3063 "SCEVURemExpr operand types don't match!");
3064
3065 // Short-circuit easy cases
3066 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3067 // If constant is one, the result is trivial
3068 if (RHSC->getValue()->isOne())
3069 return getZero(LHS->getType()); // X urem 1 --> 0
3070
3071 // If constant is a power of two, fold into a zext(trunc(LHS)).
3072 if (RHSC->getAPInt().isPowerOf2()) {
3073 Type *FullTy = LHS->getType();
3074 Type *TruncTy =
3075 IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3076 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3077 }
3078 }
3079
3080 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3081 const SCEV *UDiv = getUDivExpr(LHS, RHS);
3082 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3083 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3084 }
3085
3086 /// Get a canonical unsigned division expression, or something simpler if
3087 /// possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)3088 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3089 const SCEV *RHS) {
3090 assert(getEffectiveSCEVType(LHS->getType()) ==
3091 getEffectiveSCEVType(RHS->getType()) &&
3092 "SCEVUDivExpr operand types don't match!");
3093
3094 FoldingSetNodeID ID;
3095 ID.AddInteger(scUDivExpr);
3096 ID.AddPointer(LHS);
3097 ID.AddPointer(RHS);
3098 void *IP = nullptr;
3099 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3100 return S;
3101
3102 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3103 if (RHSC->getValue()->isOne())
3104 return LHS; // X udiv 1 --> x
3105 // If the denominator is zero, the result of the udiv is undefined. Don't
3106 // try to analyze it, because the resolution chosen here may differ from
3107 // the resolution chosen in other parts of the compiler.
3108 if (!RHSC->getValue()->isZero()) {
3109 // Determine if the division can be folded into the operands of
3110 // its operands.
3111 // TODO: Generalize this to non-constants by using known-bits information.
3112 Type *Ty = LHS->getType();
3113 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3114 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3115 // For non-power-of-two values, effectively round the value up to the
3116 // nearest power of two.
3117 if (!RHSC->getAPInt().isPowerOf2())
3118 ++MaxShiftAmt;
3119 IntegerType *ExtTy =
3120 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3121 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3122 if (const SCEVConstant *Step =
3123 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3124 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3125 const APInt &StepInt = Step->getAPInt();
3126 const APInt &DivInt = RHSC->getAPInt();
3127 if (!StepInt.urem(DivInt) &&
3128 getZeroExtendExpr(AR, ExtTy) ==
3129 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3130 getZeroExtendExpr(Step, ExtTy),
3131 AR->getLoop(), SCEV::FlagAnyWrap)) {
3132 SmallVector<const SCEV *, 4> Operands;
3133 for (const SCEV *Op : AR->operands())
3134 Operands.push_back(getUDivExpr(Op, RHS));
3135 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3136 }
3137 /// Get a canonical UDivExpr for a recurrence.
3138 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3139 // We can currently only fold X%N if X is constant.
3140 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3141 if (StartC && !DivInt.urem(StepInt) &&
3142 getZeroExtendExpr(AR, ExtTy) ==
3143 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3144 getZeroExtendExpr(Step, ExtTy),
3145 AR->getLoop(), SCEV::FlagAnyWrap)) {
3146 const APInt &StartInt = StartC->getAPInt();
3147 const APInt &StartRem = StartInt.urem(StepInt);
3148 if (StartRem != 0) {
3149 const SCEV *NewLHS =
3150 getAddRecExpr(getConstant(StartInt - StartRem), Step,
3151 AR->getLoop(), SCEV::FlagNW);
3152 if (LHS != NewLHS) {
3153 LHS = NewLHS;
3154
3155 // Reset the ID to include the new LHS, and check if it is
3156 // already cached.
3157 ID.clear();
3158 ID.AddInteger(scUDivExpr);
3159 ID.AddPointer(LHS);
3160 ID.AddPointer(RHS);
3161 IP = nullptr;
3162 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3163 return S;
3164 }
3165 }
3166 }
3167 }
3168 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3169 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3170 SmallVector<const SCEV *, 4> Operands;
3171 for (const SCEV *Op : M->operands())
3172 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3173 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3174 // Find an operand that's safely divisible.
3175 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3176 const SCEV *Op = M->getOperand(i);
3177 const SCEV *Div = getUDivExpr(Op, RHSC);
3178 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3179 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3180 M->op_end());
3181 Operands[i] = Div;
3182 return getMulExpr(Operands);
3183 }
3184 }
3185 }
3186
3187 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3188 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3189 if (auto *DivisorConstant =
3190 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3191 bool Overflow = false;
3192 APInt NewRHS =
3193 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3194 if (Overflow) {
3195 return getConstant(RHSC->getType(), 0, false);
3196 }
3197 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3198 }
3199 }
3200
3201 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3202 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3203 SmallVector<const SCEV *, 4> Operands;
3204 for (const SCEV *Op : A->operands())
3205 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3206 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3207 Operands.clear();
3208 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3209 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3210 if (isa<SCEVUDivExpr>(Op) ||
3211 getMulExpr(Op, RHS) != A->getOperand(i))
3212 break;
3213 Operands.push_back(Op);
3214 }
3215 if (Operands.size() == A->getNumOperands())
3216 return getAddExpr(Operands);
3217 }
3218 }
3219
3220 // Fold if both operands are constant.
3221 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3222 Constant *LHSCV = LHSC->getValue();
3223 Constant *RHSCV = RHSC->getValue();
3224 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3225 RHSCV)));
3226 }
3227 }
3228 }
3229
3230 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3231 // changes). Make sure we get a new one.
3232 IP = nullptr;
3233 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3234 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3235 LHS, RHS);
3236 UniqueSCEVs.InsertNode(S, IP);
3237 addToLoopUseLists(S);
3238 return S;
3239 }
3240
gcd(const SCEVConstant * C1,const SCEVConstant * C2)3241 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3242 APInt A = C1->getAPInt().abs();
3243 APInt B = C2->getAPInt().abs();
3244 uint32_t ABW = A.getBitWidth();
3245 uint32_t BBW = B.getBitWidth();
3246
3247 if (ABW > BBW)
3248 B = B.zext(ABW);
3249 else if (ABW < BBW)
3250 A = A.zext(BBW);
3251
3252 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3253 }
3254
3255 /// Get a canonical unsigned division expression, or something simpler if
3256 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3257 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3258 /// it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)3259 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3260 const SCEV *RHS) {
3261 // TODO: we could try to find factors in all sorts of things, but for now we
3262 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3263 // end of this file for inspiration.
3264
3265 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3266 if (!Mul || !Mul->hasNoUnsignedWrap())
3267 return getUDivExpr(LHS, RHS);
3268
3269 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3270 // If the mulexpr multiplies by a constant, then that constant must be the
3271 // first element of the mulexpr.
3272 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3273 if (LHSCst == RHSCst) {
3274 SmallVector<const SCEV *, 2> Operands;
3275 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3276 return getMulExpr(Operands);
3277 }
3278
3279 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3280 // that there's a factor provided by one of the other terms. We need to
3281 // check.
3282 APInt Factor = gcd(LHSCst, RHSCst);
3283 if (!Factor.isIntN(1)) {
3284 LHSCst =
3285 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3286 RHSCst =
3287 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3288 SmallVector<const SCEV *, 2> Operands;
3289 Operands.push_back(LHSCst);
3290 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3291 LHS = getMulExpr(Operands);
3292 RHS = RHSCst;
3293 Mul = dyn_cast<SCEVMulExpr>(LHS);
3294 if (!Mul)
3295 return getUDivExactExpr(LHS, RHS);
3296 }
3297 }
3298 }
3299
3300 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3301 if (Mul->getOperand(i) == RHS) {
3302 SmallVector<const SCEV *, 2> Operands;
3303 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3304 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3305 return getMulExpr(Operands);
3306 }
3307 }
3308
3309 return getUDivExpr(LHS, RHS);
3310 }
3311
3312 /// Get an add recurrence expression for the specified loop. Simplify the
3313 /// expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)3314 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3315 const Loop *L,
3316 SCEV::NoWrapFlags Flags) {
3317 SmallVector<const SCEV *, 4> Operands;
3318 Operands.push_back(Start);
3319 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3320 if (StepChrec->getLoop() == L) {
3321 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3322 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3323 }
3324
3325 Operands.push_back(Step);
3326 return getAddRecExpr(Operands, L, Flags);
3327 }
3328
3329 /// Get an add recurrence expression for the specified loop. Simplify the
3330 /// expression as much as possible.
3331 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)3332 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3333 const Loop *L, SCEV::NoWrapFlags Flags) {
3334 if (Operands.size() == 1) return Operands[0];
3335 #ifndef NDEBUG
3336 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3337 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3338 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3339 "SCEVAddRecExpr operand types don't match!");
3340 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3341 assert(isLoopInvariant(Operands[i], L) &&
3342 "SCEVAddRecExpr operand is not loop-invariant!");
3343 #endif
3344
3345 if (Operands.back()->isZero()) {
3346 Operands.pop_back();
3347 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
3348 }
3349
3350 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3351 // use that information to infer NUW and NSW flags. However, computing a
3352 // BE count requires calling getAddRecExpr, so we may not yet have a
3353 // meaningful BE count at this point (and if we don't, we'd be stuck
3354 // with a SCEVCouldNotCompute as the cached BE count).
3355
3356 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3357
3358 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3359 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3360 const Loop *NestedLoop = NestedAR->getLoop();
3361 if (L->contains(NestedLoop)
3362 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3363 : (!NestedLoop->contains(L) &&
3364 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3365 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3366 NestedAR->op_end());
3367 Operands[0] = NestedAR->getStart();
3368 // AddRecs require their operands be loop-invariant with respect to their
3369 // loops. Don't perform this transformation if it would break this
3370 // requirement.
3371 bool AllInvariant = all_of(
3372 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3373
3374 if (AllInvariant) {
3375 // Create a recurrence for the outer loop with the same step size.
3376 //
3377 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3378 // inner recurrence has the same property.
3379 SCEV::NoWrapFlags OuterFlags =
3380 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3381
3382 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3383 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3384 return isLoopInvariant(Op, NestedLoop);
3385 });
3386
3387 if (AllInvariant) {
3388 // Ok, both add recurrences are valid after the transformation.
3389 //
3390 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3391 // the outer recurrence has the same property.
3392 SCEV::NoWrapFlags InnerFlags =
3393 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3394 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3395 }
3396 }
3397 // Reset Operands to its original state.
3398 Operands[0] = NestedAR;
3399 }
3400 }
3401
3402 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3403 // already have one, otherwise create a new one.
3404 return getOrCreateAddRecExpr(Operands, L, Flags);
3405 }
3406
3407 const SCEV *
getGEPExpr(GEPOperator * GEP,const SmallVectorImpl<const SCEV * > & IndexExprs)3408 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3409 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3410 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3411 // getSCEV(Base)->getType() has the same address space as Base->getType()
3412 // because SCEV::getType() preserves the address space.
3413 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3414 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3415 // instruction to its SCEV, because the Instruction may be guarded by control
3416 // flow and the no-overflow bits may not be valid for the expression in any
3417 // context. This can be fixed similarly to how these flags are handled for
3418 // adds.
3419 SCEV::NoWrapFlags OffsetWrap =
3420 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3421
3422 Type *CurTy = GEP->getType();
3423 bool FirstIter = true;
3424 SmallVector<const SCEV *, 4> Offsets;
3425 for (const SCEV *IndexExpr : IndexExprs) {
3426 // Compute the (potentially symbolic) offset in bytes for this index.
3427 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3428 // For a struct, add the member offset.
3429 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3430 unsigned FieldNo = Index->getZExtValue();
3431 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3432 Offsets.push_back(FieldOffset);
3433
3434 // Update CurTy to the type of the field at Index.
3435 CurTy = STy->getTypeAtIndex(Index);
3436 } else {
3437 // Update CurTy to its element type.
3438 if (FirstIter) {
3439 assert(isa<PointerType>(CurTy) &&
3440 "The first index of a GEP indexes a pointer");
3441 CurTy = GEP->getSourceElementType();
3442 FirstIter = false;
3443 } else {
3444 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3445 }
3446 // For an array, add the element offset, explicitly scaled.
3447 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3448 // Getelementptr indices are signed.
3449 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3450
3451 // Multiply the index by the element size to compute the element offset.
3452 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3453 Offsets.push_back(LocalOffset);
3454 }
3455 }
3456
3457 // Handle degenerate case of GEP without offsets.
3458 if (Offsets.empty())
3459 return BaseExpr;
3460
3461 // Add the offsets together, assuming nsw if inbounds.
3462 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3463 // Add the base address and the offset. We cannot use the nsw flag, as the
3464 // base address is unsigned. However, if we know that the offset is
3465 // non-negative, we can use nuw.
3466 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3467 ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3468 return getAddExpr(BaseExpr, Offset, BaseWrap);
3469 }
3470
3471 std::tuple<SCEV *, FoldingSetNodeID, void *>
findExistingSCEVInCache(SCEVTypes SCEVType,ArrayRef<const SCEV * > Ops)3472 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3473 ArrayRef<const SCEV *> Ops) {
3474 FoldingSetNodeID ID;
3475 void *IP = nullptr;
3476 ID.AddInteger(SCEVType);
3477 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3478 ID.AddPointer(Ops[i]);
3479 return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3480 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3481 }
3482
getAbsExpr(const SCEV * Op,bool IsNSW)3483 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3484 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3485 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3486 }
3487
getSignumExpr(const SCEV * Op)3488 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) {
3489 Type *Ty = Op->getType();
3490 return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty));
3491 }
3492
getMinMaxExpr(SCEVTypes Kind,SmallVectorImpl<const SCEV * > & Ops)3493 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3494 SmallVectorImpl<const SCEV *> &Ops) {
3495 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3496 if (Ops.size() == 1) return Ops[0];
3497 #ifndef NDEBUG
3498 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3499 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3500 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3501 "Operand types don't match!");
3502 #endif
3503
3504 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3505 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3506
3507 // Sort by complexity, this groups all similar expression types together.
3508 GroupByComplexity(Ops, &LI, DT);
3509
3510 // Check if we have created the same expression before.
3511 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3512 return S;
3513 }
3514
3515 // If there are any constants, fold them together.
3516 unsigned Idx = 0;
3517 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3518 ++Idx;
3519 assert(Idx < Ops.size());
3520 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3521 if (Kind == scSMaxExpr)
3522 return APIntOps::smax(LHS, RHS);
3523 else if (Kind == scSMinExpr)
3524 return APIntOps::smin(LHS, RHS);
3525 else if (Kind == scUMaxExpr)
3526 return APIntOps::umax(LHS, RHS);
3527 else if (Kind == scUMinExpr)
3528 return APIntOps::umin(LHS, RHS);
3529 llvm_unreachable("Unknown SCEV min/max opcode");
3530 };
3531
3532 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3533 // We found two constants, fold them together!
3534 ConstantInt *Fold = ConstantInt::get(
3535 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3536 Ops[0] = getConstant(Fold);
3537 Ops.erase(Ops.begin()+1); // Erase the folded element
3538 if (Ops.size() == 1) return Ops[0];
3539 LHSC = cast<SCEVConstant>(Ops[0]);
3540 }
3541
3542 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3543 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3544
3545 if (IsMax ? IsMinV : IsMaxV) {
3546 // If we are left with a constant minimum(/maximum)-int, strip it off.
3547 Ops.erase(Ops.begin());
3548 --Idx;
3549 } else if (IsMax ? IsMaxV : IsMinV) {
3550 // If we have a max(/min) with a constant maximum(/minimum)-int,
3551 // it will always be the extremum.
3552 return LHSC;
3553 }
3554
3555 if (Ops.size() == 1) return Ops[0];
3556 }
3557
3558 // Find the first operation of the same kind
3559 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3560 ++Idx;
3561
3562 // Check to see if one of the operands is of the same kind. If so, expand its
3563 // operands onto our operand list, and recurse to simplify.
3564 if (Idx < Ops.size()) {
3565 bool DeletedAny = false;
3566 while (Ops[Idx]->getSCEVType() == Kind) {
3567 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3568 Ops.erase(Ops.begin()+Idx);
3569 Ops.append(SMME->op_begin(), SMME->op_end());
3570 DeletedAny = true;
3571 }
3572
3573 if (DeletedAny)
3574 return getMinMaxExpr(Kind, Ops);
3575 }
3576
3577 // Okay, check to see if the same value occurs in the operand list twice. If
3578 // so, delete one. Since we sorted the list, these values are required to
3579 // be adjacent.
3580 llvm::CmpInst::Predicate GEPred =
3581 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3582 llvm::CmpInst::Predicate LEPred =
3583 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3584 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3585 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3586 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3587 if (Ops[i] == Ops[i + 1] ||
3588 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3589 // X op Y op Y --> X op Y
3590 // X op Y --> X, if we know X, Y are ordered appropriately
3591 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3592 --i;
3593 --e;
3594 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3595 Ops[i + 1])) {
3596 // X op Y --> Y, if we know X, Y are ordered appropriately
3597 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3598 --i;
3599 --e;
3600 }
3601 }
3602
3603 if (Ops.size() == 1) return Ops[0];
3604
3605 assert(!Ops.empty() && "Reduced smax down to nothing!");
3606
3607 // Okay, it looks like we really DO need an expr. Check to see if we
3608 // already have one, otherwise create a new one.
3609 const SCEV *ExistingSCEV;
3610 FoldingSetNodeID ID;
3611 void *IP;
3612 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3613 if (ExistingSCEV)
3614 return ExistingSCEV;
3615 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3616 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3617 SCEV *S = new (SCEVAllocator)
3618 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3619
3620 UniqueSCEVs.InsertNode(S, IP);
3621 addToLoopUseLists(S);
3622 return S;
3623 }
3624
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)3625 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3626 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3627 return getSMaxExpr(Ops);
3628 }
3629
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3630 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3631 return getMinMaxExpr(scSMaxExpr, Ops);
3632 }
3633
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)3634 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3635 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3636 return getUMaxExpr(Ops);
3637 }
3638
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3639 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3640 return getMinMaxExpr(scUMaxExpr, Ops);
3641 }
3642
getSMinExpr(const SCEV * LHS,const SCEV * RHS)3643 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3644 const SCEV *RHS) {
3645 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3646 return getSMinExpr(Ops);
3647 }
3648
getSMinExpr(SmallVectorImpl<const SCEV * > & Ops)3649 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3650 return getMinMaxExpr(scSMinExpr, Ops);
3651 }
3652
getUMinExpr(const SCEV * LHS,const SCEV * RHS)3653 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3654 const SCEV *RHS) {
3655 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3656 return getUMinExpr(Ops);
3657 }
3658
getUMinExpr(SmallVectorImpl<const SCEV * > & Ops)3659 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3660 return getMinMaxExpr(scUMinExpr, Ops);
3661 }
3662
3663 const SCEV *
getSizeOfScalableVectorExpr(Type * IntTy,ScalableVectorType * ScalableTy)3664 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3665 ScalableVectorType *ScalableTy) {
3666 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3667 Constant *One = ConstantInt::get(IntTy, 1);
3668 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3669 // Note that the expression we created is the final expression, we don't
3670 // want to simplify it any further Also, if we call a normal getSCEV(),
3671 // we'll end up in an endless recursion. So just create an SCEVUnknown.
3672 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3673 }
3674
getSizeOfExpr(Type * IntTy,Type * AllocTy)3675 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3676 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3677 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3678 // We can bypass creating a target-independent constant expression and then
3679 // folding it back into a ConstantInt. This is just a compile-time
3680 // optimization.
3681 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3682 }
3683
getStoreSizeOfExpr(Type * IntTy,Type * StoreTy)3684 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3685 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3686 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3687 // We can bypass creating a target-independent constant expression and then
3688 // folding it back into a ConstantInt. This is just a compile-time
3689 // optimization.
3690 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3691 }
3692
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)3693 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3694 StructType *STy,
3695 unsigned FieldNo) {
3696 // We can bypass creating a target-independent constant expression and then
3697 // folding it back into a ConstantInt. This is just a compile-time
3698 // optimization.
3699 return getConstant(
3700 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3701 }
3702
getUnknown(Value * V)3703 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3704 // Don't attempt to do anything other than create a SCEVUnknown object
3705 // here. createSCEV only calls getUnknown after checking for all other
3706 // interesting possibilities, and any other code that calls getUnknown
3707 // is doing so in order to hide a value from SCEV canonicalization.
3708
3709 FoldingSetNodeID ID;
3710 ID.AddInteger(scUnknown);
3711 ID.AddPointer(V);
3712 void *IP = nullptr;
3713 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3714 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3715 "Stale SCEVUnknown in uniquing map!");
3716 return S;
3717 }
3718 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3719 FirstUnknown);
3720 FirstUnknown = cast<SCEVUnknown>(S);
3721 UniqueSCEVs.InsertNode(S, IP);
3722 return S;
3723 }
3724
3725 //===----------------------------------------------------------------------===//
3726 // Basic SCEV Analysis and PHI Idiom Recognition Code
3727 //
3728
3729 /// Test if values of the given type are analyzable within the SCEV
3730 /// framework. This primarily includes integer types, and it can optionally
3731 /// include pointer types if the ScalarEvolution class has access to
3732 /// target-specific information.
isSCEVable(Type * Ty) const3733 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3734 // Integers and pointers are always SCEVable.
3735 return Ty->isIntOrPtrTy();
3736 }
3737
3738 /// Return the size in bits of the specified type, for which isSCEVable must
3739 /// return true.
getTypeSizeInBits(Type * Ty) const3740 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3741 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3742 if (Ty->isPointerTy())
3743 return getDataLayout().getIndexTypeSizeInBits(Ty);
3744 return getDataLayout().getTypeSizeInBits(Ty);
3745 }
3746
3747 /// Return a type with the same bitwidth as the given type and which represents
3748 /// how SCEV will treat the given type, for which isSCEVable must return
3749 /// true. For pointer types, this is the pointer index sized integer type.
getEffectiveSCEVType(Type * Ty) const3750 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3751 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3752
3753 if (Ty->isIntegerTy())
3754 return Ty;
3755
3756 // The only other support type is pointer.
3757 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3758 return getDataLayout().getIndexType(Ty);
3759 }
3760
getWiderType(Type * T1,Type * T2) const3761 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3762 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3763 }
3764
getCouldNotCompute()3765 const SCEV *ScalarEvolution::getCouldNotCompute() {
3766 return CouldNotCompute.get();
3767 }
3768
checkValidity(const SCEV * S) const3769 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3770 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3771 auto *SU = dyn_cast<SCEVUnknown>(S);
3772 return SU && SU->getValue() == nullptr;
3773 });
3774
3775 return !ContainsNulls;
3776 }
3777
containsAddRecurrence(const SCEV * S)3778 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3779 HasRecMapType::iterator I = HasRecMap.find(S);
3780 if (I != HasRecMap.end())
3781 return I->second;
3782
3783 bool FoundAddRec =
3784 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3785 HasRecMap.insert({S, FoundAddRec});
3786 return FoundAddRec;
3787 }
3788
3789 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3790 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3791 /// offset I, then return {S', I}, else return {\p S, nullptr}.
splitAddExpr(const SCEV * S)3792 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3793 const auto *Add = dyn_cast<SCEVAddExpr>(S);
3794 if (!Add)
3795 return {S, nullptr};
3796
3797 if (Add->getNumOperands() != 2)
3798 return {S, nullptr};
3799
3800 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3801 if (!ConstOp)
3802 return {S, nullptr};
3803
3804 return {Add->getOperand(1), ConstOp->getValue()};
3805 }
3806
3807 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3808 /// by the value and offset from any ValueOffsetPair in the set.
3809 SetVector<ScalarEvolution::ValueOffsetPair> *
getSCEVValues(const SCEV * S)3810 ScalarEvolution::getSCEVValues(const SCEV *S) {
3811 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3812 if (SI == ExprValueMap.end())
3813 return nullptr;
3814 #ifndef NDEBUG
3815 if (VerifySCEVMap) {
3816 // Check there is no dangling Value in the set returned.
3817 for (const auto &VE : SI->second)
3818 assert(ValueExprMap.count(VE.first));
3819 }
3820 #endif
3821 return &SI->second;
3822 }
3823
3824 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3825 /// cannot be used separately. eraseValueFromMap should be used to remove
3826 /// V from ValueExprMap and ExprValueMap at the same time.
eraseValueFromMap(Value * V)3827 void ScalarEvolution::eraseValueFromMap(Value *V) {
3828 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3829 if (I != ValueExprMap.end()) {
3830 const SCEV *S = I->second;
3831 // Remove {V, 0} from the set of ExprValueMap[S]
3832 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3833 SV->remove({V, nullptr});
3834
3835 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3836 const SCEV *Stripped;
3837 ConstantInt *Offset;
3838 std::tie(Stripped, Offset) = splitAddExpr(S);
3839 if (Offset != nullptr) {
3840 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3841 SV->remove({V, Offset});
3842 }
3843 ValueExprMap.erase(V);
3844 }
3845 }
3846
3847 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3848 /// TODO: In reality it is better to check the poison recursively
3849 /// but this is better than nothing.
SCEVLostPoisonFlags(const SCEV * S,const Value * V)3850 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3851 if (auto *I = dyn_cast<Instruction>(V)) {
3852 if (isa<OverflowingBinaryOperator>(I)) {
3853 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3854 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3855 return true;
3856 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3857 return true;
3858 }
3859 } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3860 return true;
3861 }
3862 return false;
3863 }
3864
3865 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3866 /// create a new one.
getSCEV(Value * V)3867 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3868 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3869
3870 const SCEV *S = getExistingSCEV(V);
3871 if (S == nullptr) {
3872 S = createSCEV(V);
3873 // During PHI resolution, it is possible to create two SCEVs for the same
3874 // V, so it is needed to double check whether V->S is inserted into
3875 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3876 std::pair<ValueExprMapType::iterator, bool> Pair =
3877 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3878 if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3879 ExprValueMap[S].insert({V, nullptr});
3880
3881 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3882 // ExprValueMap.
3883 const SCEV *Stripped = S;
3884 ConstantInt *Offset = nullptr;
3885 std::tie(Stripped, Offset) = splitAddExpr(S);
3886 // If stripped is SCEVUnknown, don't bother to save
3887 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3888 // increase the complexity of the expansion code.
3889 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3890 // because it may generate add/sub instead of GEP in SCEV expansion.
3891 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3892 !isa<GetElementPtrInst>(V))
3893 ExprValueMap[Stripped].insert({V, Offset});
3894 }
3895 }
3896 return S;
3897 }
3898
getExistingSCEV(Value * V)3899 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3900 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3901
3902 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3903 if (I != ValueExprMap.end()) {
3904 const SCEV *S = I->second;
3905 if (checkValidity(S))
3906 return S;
3907 eraseValueFromMap(V);
3908 forgetMemoizedResults(S);
3909 }
3910 return nullptr;
3911 }
3912
3913 /// Return a SCEV corresponding to -V = -1*V
getNegativeSCEV(const SCEV * V,SCEV::NoWrapFlags Flags)3914 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3915 SCEV::NoWrapFlags Flags) {
3916 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3917 return getConstant(
3918 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3919
3920 Type *Ty = V->getType();
3921 Ty = getEffectiveSCEVType(Ty);
3922 return getMulExpr(V, getMinusOne(Ty), Flags);
3923 }
3924
3925 /// If Expr computes ~A, return A else return nullptr
MatchNotExpr(const SCEV * Expr)3926 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3927 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3928 if (!Add || Add->getNumOperands() != 2 ||
3929 !Add->getOperand(0)->isAllOnesValue())
3930 return nullptr;
3931
3932 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3933 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3934 !AddRHS->getOperand(0)->isAllOnesValue())
3935 return nullptr;
3936
3937 return AddRHS->getOperand(1);
3938 }
3939
3940 /// Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)3941 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3942 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3943 return getConstant(
3944 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3945
3946 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3947 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3948 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3949 SmallVector<const SCEV *, 2> MatchedOperands;
3950 for (const SCEV *Operand : MME->operands()) {
3951 const SCEV *Matched = MatchNotExpr(Operand);
3952 if (!Matched)
3953 return (const SCEV *)nullptr;
3954 MatchedOperands.push_back(Matched);
3955 }
3956 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
3957 MatchedOperands);
3958 };
3959 if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3960 return Replaced;
3961 }
3962
3963 Type *Ty = V->getType();
3964 Ty = getEffectiveSCEVType(Ty);
3965 return getMinusSCEV(getMinusOne(Ty), V);
3966 }
3967
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags,unsigned Depth)3968 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3969 SCEV::NoWrapFlags Flags,
3970 unsigned Depth) {
3971 // Fast path: X - X --> 0.
3972 if (LHS == RHS)
3973 return getZero(LHS->getType());
3974
3975 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3976 // makes it so that we cannot make much use of NUW.
3977 auto AddFlags = SCEV::FlagAnyWrap;
3978 const bool RHSIsNotMinSigned =
3979 !getSignedRangeMin(RHS).isMinSignedValue();
3980 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3981 // Let M be the minimum representable signed value. Then (-1)*RHS
3982 // signed-wraps if and only if RHS is M. That can happen even for
3983 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3984 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3985 // (-1)*RHS, we need to prove that RHS != M.
3986 //
3987 // If LHS is non-negative and we know that LHS - RHS does not
3988 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3989 // either by proving that RHS > M or that LHS >= 0.
3990 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3991 AddFlags = SCEV::FlagNSW;
3992 }
3993 }
3994
3995 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3996 // RHS is NSW and LHS >= 0.
3997 //
3998 // The difficulty here is that the NSW flag may have been proven
3999 // relative to a loop that is to be found in a recurrence in LHS and
4000 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4001 // larger scope than intended.
4002 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4003
4004 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4005 }
4006
getTruncateOrZeroExtend(const SCEV * V,Type * Ty,unsigned Depth)4007 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4008 unsigned Depth) {
4009 Type *SrcTy = V->getType();
4010 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4011 "Cannot truncate or zero extend with non-integer arguments!");
4012 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4013 return V; // No conversion
4014 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4015 return getTruncateExpr(V, Ty, Depth);
4016 return getZeroExtendExpr(V, Ty, Depth);
4017 }
4018
getTruncateOrSignExtend(const SCEV * V,Type * Ty,unsigned Depth)4019 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4020 unsigned Depth) {
4021 Type *SrcTy = V->getType();
4022 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4023 "Cannot truncate or zero extend with non-integer arguments!");
4024 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4025 return V; // No conversion
4026 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4027 return getTruncateExpr(V, Ty, Depth);
4028 return getSignExtendExpr(V, Ty, Depth);
4029 }
4030
4031 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)4032 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4033 Type *SrcTy = V->getType();
4034 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4035 "Cannot noop or zero extend with non-integer arguments!");
4036 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4037 "getNoopOrZeroExtend cannot truncate!");
4038 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4039 return V; // No conversion
4040 return getZeroExtendExpr(V, Ty);
4041 }
4042
4043 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)4044 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4045 Type *SrcTy = V->getType();
4046 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4047 "Cannot noop or sign extend with non-integer arguments!");
4048 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4049 "getNoopOrSignExtend cannot truncate!");
4050 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4051 return V; // No conversion
4052 return getSignExtendExpr(V, Ty);
4053 }
4054
4055 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)4056 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4057 Type *SrcTy = V->getType();
4058 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4059 "Cannot noop or any extend with non-integer arguments!");
4060 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4061 "getNoopOrAnyExtend cannot truncate!");
4062 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4063 return V; // No conversion
4064 return getAnyExtendExpr(V, Ty);
4065 }
4066
4067 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)4068 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4069 Type *SrcTy = V->getType();
4070 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4071 "Cannot truncate or noop with non-integer arguments!");
4072 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4073 "getTruncateOrNoop cannot extend!");
4074 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4075 return V; // No conversion
4076 return getTruncateExpr(V, Ty);
4077 }
4078
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4079 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4080 const SCEV *RHS) {
4081 const SCEV *PromotedLHS = LHS;
4082 const SCEV *PromotedRHS = RHS;
4083
4084 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4085 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4086 else
4087 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4088
4089 return getUMaxExpr(PromotedLHS, PromotedRHS);
4090 }
4091
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4092 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4093 const SCEV *RHS) {
4094 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4095 return getUMinFromMismatchedTypes(Ops);
4096 }
4097
getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV * > & Ops)4098 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4099 SmallVectorImpl<const SCEV *> &Ops) {
4100 assert(!Ops.empty() && "At least one operand must be!");
4101 // Trivial case.
4102 if (Ops.size() == 1)
4103 return Ops[0];
4104
4105 // Find the max type first.
4106 Type *MaxType = nullptr;
4107 for (auto *S : Ops)
4108 if (MaxType)
4109 MaxType = getWiderType(MaxType, S->getType());
4110 else
4111 MaxType = S->getType();
4112 assert(MaxType && "Failed to find maximum type!");
4113
4114 // Extend all ops to max type.
4115 SmallVector<const SCEV *, 2> PromotedOps;
4116 for (auto *S : Ops)
4117 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4118
4119 // Generate umin.
4120 return getUMinExpr(PromotedOps);
4121 }
4122
getPointerBase(const SCEV * V)4123 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4124 // A pointer operand may evaluate to a nonpointer expression, such as null.
4125 if (!V->getType()->isPointerTy())
4126 return V;
4127
4128 while (true) {
4129 if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) {
4130 V = Cast->getOperand();
4131 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4132 const SCEV *PtrOp = nullptr;
4133 for (const SCEV *NAryOp : NAry->operands()) {
4134 if (NAryOp->getType()->isPointerTy()) {
4135 // Cannot find the base of an expression with multiple pointer ops.
4136 if (PtrOp)
4137 return V;
4138 PtrOp = NAryOp;
4139 }
4140 }
4141 if (!PtrOp) // All operands were non-pointer.
4142 return V;
4143 V = PtrOp;
4144 } else // Not something we can look further into.
4145 return V;
4146 }
4147 }
4148
4149 /// Push users of the given Instruction onto the given Worklist.
4150 static void
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist)4151 PushDefUseChildren(Instruction *I,
4152 SmallVectorImpl<Instruction *> &Worklist) {
4153 // Push the def-use children onto the Worklist stack.
4154 for (User *U : I->users())
4155 Worklist.push_back(cast<Instruction>(U));
4156 }
4157
forgetSymbolicName(Instruction * PN,const SCEV * SymName)4158 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4159 SmallVector<Instruction *, 16> Worklist;
4160 PushDefUseChildren(PN, Worklist);
4161
4162 SmallPtrSet<Instruction *, 8> Visited;
4163 Visited.insert(PN);
4164 while (!Worklist.empty()) {
4165 Instruction *I = Worklist.pop_back_val();
4166 if (!Visited.insert(I).second)
4167 continue;
4168
4169 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4170 if (It != ValueExprMap.end()) {
4171 const SCEV *Old = It->second;
4172
4173 // Short-circuit the def-use traversal if the symbolic name
4174 // ceases to appear in expressions.
4175 if (Old != SymName && !hasOperand(Old, SymName))
4176 continue;
4177
4178 // SCEVUnknown for a PHI either means that it has an unrecognized
4179 // structure, it's a PHI that's in the progress of being computed
4180 // by createNodeForPHI, or it's a single-value PHI. In the first case,
4181 // additional loop trip count information isn't going to change anything.
4182 // In the second case, createNodeForPHI will perform the necessary
4183 // updates on its own when it gets to that point. In the third, we do
4184 // want to forget the SCEVUnknown.
4185 if (!isa<PHINode>(I) ||
4186 !isa<SCEVUnknown>(Old) ||
4187 (I != PN && Old == SymName)) {
4188 eraseValueFromMap(It->first);
4189 forgetMemoizedResults(Old);
4190 }
4191 }
4192
4193 PushDefUseChildren(I, Worklist);
4194 }
4195 }
4196
4197 namespace {
4198
4199 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4200 /// expression in case its Loop is L. If it is not L then
4201 /// if IgnoreOtherLoops is true then use AddRec itself
4202 /// otherwise rewrite cannot be done.
4203 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4204 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4205 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool IgnoreOtherLoops=true)4206 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4207 bool IgnoreOtherLoops = true) {
4208 SCEVInitRewriter Rewriter(L, SE);
4209 const SCEV *Result = Rewriter.visit(S);
4210 if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4211 return SE.getCouldNotCompute();
4212 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4213 ? SE.getCouldNotCompute()
4214 : Result;
4215 }
4216
visitUnknown(const SCEVUnknown * Expr)4217 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4218 if (!SE.isLoopInvariant(Expr, L))
4219 SeenLoopVariantSCEVUnknown = true;
4220 return Expr;
4221 }
4222
visitAddRecExpr(const SCEVAddRecExpr * Expr)4223 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4224 // Only re-write AddRecExprs for this loop.
4225 if (Expr->getLoop() == L)
4226 return Expr->getStart();
4227 SeenOtherLoops = true;
4228 return Expr;
4229 }
4230
hasSeenLoopVariantSCEVUnknown()4231 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4232
hasSeenOtherLoops()4233 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4234
4235 private:
SCEVInitRewriter(const Loop * L,ScalarEvolution & SE)4236 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4237 : SCEVRewriteVisitor(SE), L(L) {}
4238
4239 const Loop *L;
4240 bool SeenLoopVariantSCEVUnknown = false;
4241 bool SeenOtherLoops = false;
4242 };
4243
4244 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4245 /// increment expression in case its Loop is L. If it is not L then
4246 /// use AddRec itself.
4247 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4248 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4249 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4250 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4251 SCEVPostIncRewriter Rewriter(L, SE);
4252 const SCEV *Result = Rewriter.visit(S);
4253 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4254 ? SE.getCouldNotCompute()
4255 : Result;
4256 }
4257
visitUnknown(const SCEVUnknown * Expr)4258 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4259 if (!SE.isLoopInvariant(Expr, L))
4260 SeenLoopVariantSCEVUnknown = true;
4261 return Expr;
4262 }
4263
visitAddRecExpr(const SCEVAddRecExpr * Expr)4264 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4265 // Only re-write AddRecExprs for this loop.
4266 if (Expr->getLoop() == L)
4267 return Expr->getPostIncExpr(SE);
4268 SeenOtherLoops = true;
4269 return Expr;
4270 }
4271
hasSeenLoopVariantSCEVUnknown()4272 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4273
hasSeenOtherLoops()4274 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4275
4276 private:
SCEVPostIncRewriter(const Loop * L,ScalarEvolution & SE)4277 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4278 : SCEVRewriteVisitor(SE), L(L) {}
4279
4280 const Loop *L;
4281 bool SeenLoopVariantSCEVUnknown = false;
4282 bool SeenOtherLoops = false;
4283 };
4284
4285 /// This class evaluates the compare condition by matching it against the
4286 /// condition of loop latch. If there is a match we assume a true value
4287 /// for the condition while building SCEV nodes.
4288 class SCEVBackedgeConditionFolder
4289 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4290 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4291 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4292 ScalarEvolution &SE) {
4293 bool IsPosBECond = false;
4294 Value *BECond = nullptr;
4295 if (BasicBlock *Latch = L->getLoopLatch()) {
4296 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4297 if (BI && BI->isConditional()) {
4298 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4299 "Both outgoing branches should not target same header!");
4300 BECond = BI->getCondition();
4301 IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4302 } else {
4303 return S;
4304 }
4305 }
4306 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4307 return Rewriter.visit(S);
4308 }
4309
visitUnknown(const SCEVUnknown * Expr)4310 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4311 const SCEV *Result = Expr;
4312 bool InvariantF = SE.isLoopInvariant(Expr, L);
4313
4314 if (!InvariantF) {
4315 Instruction *I = cast<Instruction>(Expr->getValue());
4316 switch (I->getOpcode()) {
4317 case Instruction::Select: {
4318 SelectInst *SI = cast<SelectInst>(I);
4319 Optional<const SCEV *> Res =
4320 compareWithBackedgeCondition(SI->getCondition());
4321 if (Res.hasValue()) {
4322 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4323 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4324 }
4325 break;
4326 }
4327 default: {
4328 Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4329 if (Res.hasValue())
4330 Result = Res.getValue();
4331 break;
4332 }
4333 }
4334 }
4335 return Result;
4336 }
4337
4338 private:
SCEVBackedgeConditionFolder(const Loop * L,Value * BECond,bool IsPosBECond,ScalarEvolution & SE)4339 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4340 bool IsPosBECond, ScalarEvolution &SE)
4341 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4342 IsPositiveBECond(IsPosBECond) {}
4343
4344 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4345
4346 const Loop *L;
4347 /// Loop back condition.
4348 Value *BackedgeCond = nullptr;
4349 /// Set to true if loop back is on positive branch condition.
4350 bool IsPositiveBECond;
4351 };
4352
4353 Optional<const SCEV *>
compareWithBackedgeCondition(Value * IC)4354 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4355
4356 // If value matches the backedge condition for loop latch,
4357 // then return a constant evolution node based on loopback
4358 // branch taken.
4359 if (BackedgeCond == IC)
4360 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4361 : SE.getZero(Type::getInt1Ty(SE.getContext()));
4362 return None;
4363 }
4364
4365 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4366 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4367 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4368 ScalarEvolution &SE) {
4369 SCEVShiftRewriter Rewriter(L, SE);
4370 const SCEV *Result = Rewriter.visit(S);
4371 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4372 }
4373
visitUnknown(const SCEVUnknown * Expr)4374 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4375 // Only allow AddRecExprs for this loop.
4376 if (!SE.isLoopInvariant(Expr, L))
4377 Valid = false;
4378 return Expr;
4379 }
4380
visitAddRecExpr(const SCEVAddRecExpr * Expr)4381 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4382 if (Expr->getLoop() == L && Expr->isAffine())
4383 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4384 Valid = false;
4385 return Expr;
4386 }
4387
isValid()4388 bool isValid() { return Valid; }
4389
4390 private:
SCEVShiftRewriter(const Loop * L,ScalarEvolution & SE)4391 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4392 : SCEVRewriteVisitor(SE), L(L) {}
4393
4394 const Loop *L;
4395 bool Valid = true;
4396 };
4397
4398 } // end anonymous namespace
4399
4400 SCEV::NoWrapFlags
proveNoWrapViaConstantRanges(const SCEVAddRecExpr * AR)4401 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4402 if (!AR->isAffine())
4403 return SCEV::FlagAnyWrap;
4404
4405 using OBO = OverflowingBinaryOperator;
4406
4407 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4408
4409 if (!AR->hasNoSignedWrap()) {
4410 ConstantRange AddRecRange = getSignedRange(AR);
4411 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4412
4413 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4414 Instruction::Add, IncRange, OBO::NoSignedWrap);
4415 if (NSWRegion.contains(AddRecRange))
4416 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4417 }
4418
4419 if (!AR->hasNoUnsignedWrap()) {
4420 ConstantRange AddRecRange = getUnsignedRange(AR);
4421 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4422
4423 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4424 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4425 if (NUWRegion.contains(AddRecRange))
4426 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4427 }
4428
4429 return Result;
4430 }
4431
4432 SCEV::NoWrapFlags
proveNoSignedWrapViaInduction(const SCEVAddRecExpr * AR)4433 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4434 SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4435
4436 if (AR->hasNoSignedWrap())
4437 return Result;
4438
4439 if (!AR->isAffine())
4440 return Result;
4441
4442 const SCEV *Step = AR->getStepRecurrence(*this);
4443 const Loop *L = AR->getLoop();
4444
4445 // Check whether the backedge-taken count is SCEVCouldNotCompute.
4446 // Note that this serves two purposes: It filters out loops that are
4447 // simply not analyzable, and it covers the case where this code is
4448 // being called from within backedge-taken count analysis, such that
4449 // attempting to ask for the backedge-taken count would likely result
4450 // in infinite recursion. In the later case, the analysis code will
4451 // cope with a conservative value, and it will take care to purge
4452 // that value once it has finished.
4453 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4454
4455 // Normally, in the cases we can prove no-overflow via a
4456 // backedge guarding condition, we can also compute a backedge
4457 // taken count for the loop. The exceptions are assumptions and
4458 // guards present in the loop -- SCEV is not great at exploiting
4459 // these to compute max backedge taken counts, but can still use
4460 // these to prove lack of overflow. Use this fact to avoid
4461 // doing extra work that may not pay off.
4462
4463 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4464 AC.assumptions().empty())
4465 return Result;
4466
4467 // If the backedge is guarded by a comparison with the pre-inc value the
4468 // addrec is safe. Also, if the entry is guarded by a comparison with the
4469 // start value and the backedge is guarded by a comparison with the post-inc
4470 // value, the addrec is safe.
4471 ICmpInst::Predicate Pred;
4472 const SCEV *OverflowLimit =
4473 getSignedOverflowLimitForStep(Step, &Pred, this);
4474 if (OverflowLimit &&
4475 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4476 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4477 Result = setFlags(Result, SCEV::FlagNSW);
4478 }
4479 return Result;
4480 }
4481 SCEV::NoWrapFlags
proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr * AR)4482 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4483 SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4484
4485 if (AR->hasNoUnsignedWrap())
4486 return Result;
4487
4488 if (!AR->isAffine())
4489 return Result;
4490
4491 const SCEV *Step = AR->getStepRecurrence(*this);
4492 unsigned BitWidth = getTypeSizeInBits(AR->getType());
4493 const Loop *L = AR->getLoop();
4494
4495 // Check whether the backedge-taken count is SCEVCouldNotCompute.
4496 // Note that this serves two purposes: It filters out loops that are
4497 // simply not analyzable, and it covers the case where this code is
4498 // being called from within backedge-taken count analysis, such that
4499 // attempting to ask for the backedge-taken count would likely result
4500 // in infinite recursion. In the later case, the analysis code will
4501 // cope with a conservative value, and it will take care to purge
4502 // that value once it has finished.
4503 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4504
4505 // Normally, in the cases we can prove no-overflow via a
4506 // backedge guarding condition, we can also compute a backedge
4507 // taken count for the loop. The exceptions are assumptions and
4508 // guards present in the loop -- SCEV is not great at exploiting
4509 // these to compute max backedge taken counts, but can still use
4510 // these to prove lack of overflow. Use this fact to avoid
4511 // doing extra work that may not pay off.
4512
4513 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4514 AC.assumptions().empty())
4515 return Result;
4516
4517 // If the backedge is guarded by a comparison with the pre-inc value the
4518 // addrec is safe. Also, if the entry is guarded by a comparison with the
4519 // start value and the backedge is guarded by a comparison with the post-inc
4520 // value, the addrec is safe.
4521 if (isKnownPositive(Step)) {
4522 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4523 getUnsignedRangeMax(Step));
4524 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4525 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4526 Result = setFlags(Result, SCEV::FlagNUW);
4527 }
4528 }
4529
4530 return Result;
4531 }
4532
4533 namespace {
4534
4535 /// Represents an abstract binary operation. This may exist as a
4536 /// normal instruction or constant expression, or may have been
4537 /// derived from an expression tree.
4538 struct BinaryOp {
4539 unsigned Opcode;
4540 Value *LHS;
4541 Value *RHS;
4542 bool IsNSW = false;
4543 bool IsNUW = false;
4544 bool IsExact = false;
4545
4546 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4547 /// constant expression.
4548 Operator *Op = nullptr;
4549
BinaryOp__anonb2da948e1111::BinaryOp4550 explicit BinaryOp(Operator *Op)
4551 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4552 Op(Op) {
4553 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4554 IsNSW = OBO->hasNoSignedWrap();
4555 IsNUW = OBO->hasNoUnsignedWrap();
4556 }
4557 if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op))
4558 IsExact = PEO->isExact();
4559 }
4560
BinaryOp__anonb2da948e1111::BinaryOp4561 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4562 bool IsNUW = false, bool IsExact = false)
4563 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
4564 IsExact(IsExact) {}
4565 };
4566
4567 } // end anonymous namespace
4568
4569 /// Try to map \p V into a BinaryOp, and return \c None on failure.
MatchBinaryOp(Value * V,DominatorTree & DT)4570 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4571 auto *Op = dyn_cast<Operator>(V);
4572 if (!Op)
4573 return None;
4574
4575 // Implementation detail: all the cleverness here should happen without
4576 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4577 // SCEV expressions when possible, and we should not break that.
4578
4579 switch (Op->getOpcode()) {
4580 case Instruction::Add:
4581 case Instruction::Sub:
4582 case Instruction::Mul:
4583 case Instruction::UDiv:
4584 case Instruction::URem:
4585 case Instruction::And:
4586 case Instruction::Or:
4587 case Instruction::AShr:
4588 case Instruction::Shl:
4589 return BinaryOp(Op);
4590
4591 case Instruction::Xor:
4592 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4593 // If the RHS of the xor is a signmask, then this is just an add.
4594 // Instcombine turns add of signmask into xor as a strength reduction step.
4595 if (RHSC->getValue().isSignMask())
4596 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4597 return BinaryOp(Op);
4598
4599 case Instruction::LShr:
4600 // Turn logical shift right of a constant into a unsigned divide.
4601 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4602 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4603
4604 // If the shift count is not less than the bitwidth, the result of
4605 // the shift is undefined. Don't try to analyze it, because the
4606 // resolution chosen here may differ from the resolution chosen in
4607 // other parts of the compiler.
4608 if (SA->getValue().ult(BitWidth)) {
4609 Constant *X =
4610 ConstantInt::get(SA->getContext(),
4611 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4612 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4613 }
4614 }
4615 return BinaryOp(Op);
4616
4617 case Instruction::ExtractValue: {
4618 auto *EVI = cast<ExtractValueInst>(Op);
4619 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4620 break;
4621
4622 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4623 if (!WO)
4624 break;
4625
4626 Instruction::BinaryOps BinOp = WO->getBinaryOp();
4627 bool Signed = WO->isSigned();
4628 // TODO: Should add nuw/nsw flags for mul as well.
4629 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4630 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4631
4632 // Now that we know that all uses of the arithmetic-result component of
4633 // CI are guarded by the overflow check, we can go ahead and pretend
4634 // that the arithmetic is non-overflowing.
4635 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4636 /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4637 }
4638
4639 default:
4640 break;
4641 }
4642
4643 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4644 // semantics as a Sub, return a binary sub expression.
4645 if (auto *II = dyn_cast<IntrinsicInst>(V))
4646 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4647 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4648
4649 return None;
4650 }
4651
4652 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4653 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4654 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4655 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4656 /// follows one of the following patterns:
4657 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4658 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4659 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4660 /// we return the type of the truncation operation, and indicate whether the
4661 /// truncated type should be treated as signed/unsigned by setting
4662 /// \p Signed to true/false, respectively.
isSimpleCastedPHI(const SCEV * Op,const SCEVUnknown * SymbolicPHI,bool & Signed,ScalarEvolution & SE)4663 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4664 bool &Signed, ScalarEvolution &SE) {
4665 // The case where Op == SymbolicPHI (that is, with no type conversions on
4666 // the way) is handled by the regular add recurrence creating logic and
4667 // would have already been triggered in createAddRecForPHI. Reaching it here
4668 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4669 // because one of the other operands of the SCEVAddExpr updating this PHI is
4670 // not invariant).
4671 //
4672 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4673 // this case predicates that allow us to prove that Op == SymbolicPHI will
4674 // be added.
4675 if (Op == SymbolicPHI)
4676 return nullptr;
4677
4678 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4679 unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4680 if (SourceBits != NewBits)
4681 return nullptr;
4682
4683 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4684 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4685 if (!SExt && !ZExt)
4686 return nullptr;
4687 const SCEVTruncateExpr *Trunc =
4688 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4689 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4690 if (!Trunc)
4691 return nullptr;
4692 const SCEV *X = Trunc->getOperand();
4693 if (X != SymbolicPHI)
4694 return nullptr;
4695 Signed = SExt != nullptr;
4696 return Trunc->getType();
4697 }
4698
isIntegerLoopHeaderPHI(const PHINode * PN,LoopInfo & LI)4699 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4700 if (!PN->getType()->isIntegerTy())
4701 return nullptr;
4702 const Loop *L = LI.getLoopFor(PN->getParent());
4703 if (!L || L->getHeader() != PN->getParent())
4704 return nullptr;
4705 return L;
4706 }
4707
4708 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4709 // computation that updates the phi follows the following pattern:
4710 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4711 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4712 // If so, try to see if it can be rewritten as an AddRecExpr under some
4713 // Predicates. If successful, return them as a pair. Also cache the results
4714 // of the analysis.
4715 //
4716 // Example usage scenario:
4717 // Say the Rewriter is called for the following SCEV:
4718 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4719 // where:
4720 // %X = phi i64 (%Start, %BEValue)
4721 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4722 // and call this function with %SymbolicPHI = %X.
4723 //
4724 // The analysis will find that the value coming around the backedge has
4725 // the following SCEV:
4726 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4727 // Upon concluding that this matches the desired pattern, the function
4728 // will return the pair {NewAddRec, SmallPredsVec} where:
4729 // NewAddRec = {%Start,+,%Step}
4730 // SmallPredsVec = {P1, P2, P3} as follows:
4731 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4732 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4733 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4734 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4735 // under the predicates {P1,P2,P3}.
4736 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
4737 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4738 //
4739 // TODO's:
4740 //
4741 // 1) Extend the Induction descriptor to also support inductions that involve
4742 // casts: When needed (namely, when we are called in the context of the
4743 // vectorizer induction analysis), a Set of cast instructions will be
4744 // populated by this method, and provided back to isInductionPHI. This is
4745 // needed to allow the vectorizer to properly record them to be ignored by
4746 // the cost model and to avoid vectorizing them (otherwise these casts,
4747 // which are redundant under the runtime overflow checks, will be
4748 // vectorized, which can be costly).
4749 //
4750 // 2) Support additional induction/PHISCEV patterns: We also want to support
4751 // inductions where the sext-trunc / zext-trunc operations (partly) occur
4752 // after the induction update operation (the induction increment):
4753 //
4754 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4755 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
4756 //
4757 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4758 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
4759 //
4760 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4761 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCastsImpl(const SCEVUnknown * SymbolicPHI)4762 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4763 SmallVector<const SCEVPredicate *, 3> Predicates;
4764
4765 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4766 // return an AddRec expression under some predicate.
4767
4768 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4769 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4770 assert(L && "Expecting an integer loop header phi");
4771
4772 // The loop may have multiple entrances or multiple exits; we can analyze
4773 // this phi as an addrec if it has a unique entry value and a unique
4774 // backedge value.
4775 Value *BEValueV = nullptr, *StartValueV = nullptr;
4776 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4777 Value *V = PN->getIncomingValue(i);
4778 if (L->contains(PN->getIncomingBlock(i))) {
4779 if (!BEValueV) {
4780 BEValueV = V;
4781 } else if (BEValueV != V) {
4782 BEValueV = nullptr;
4783 break;
4784 }
4785 } else if (!StartValueV) {
4786 StartValueV = V;
4787 } else if (StartValueV != V) {
4788 StartValueV = nullptr;
4789 break;
4790 }
4791 }
4792 if (!BEValueV || !StartValueV)
4793 return None;
4794
4795 const SCEV *BEValue = getSCEV(BEValueV);
4796
4797 // If the value coming around the backedge is an add with the symbolic
4798 // value we just inserted, possibly with casts that we can ignore under
4799 // an appropriate runtime guard, then we found a simple induction variable!
4800 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4801 if (!Add)
4802 return None;
4803
4804 // If there is a single occurrence of the symbolic value, possibly
4805 // casted, replace it with a recurrence.
4806 unsigned FoundIndex = Add->getNumOperands();
4807 Type *TruncTy = nullptr;
4808 bool Signed;
4809 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4810 if ((TruncTy =
4811 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4812 if (FoundIndex == e) {
4813 FoundIndex = i;
4814 break;
4815 }
4816
4817 if (FoundIndex == Add->getNumOperands())
4818 return None;
4819
4820 // Create an add with everything but the specified operand.
4821 SmallVector<const SCEV *, 8> Ops;
4822 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4823 if (i != FoundIndex)
4824 Ops.push_back(Add->getOperand(i));
4825 const SCEV *Accum = getAddExpr(Ops);
4826
4827 // The runtime checks will not be valid if the step amount is
4828 // varying inside the loop.
4829 if (!isLoopInvariant(Accum, L))
4830 return None;
4831
4832 // *** Part2: Create the predicates
4833
4834 // Analysis was successful: we have a phi-with-cast pattern for which we
4835 // can return an AddRec expression under the following predicates:
4836 //
4837 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4838 // fits within the truncated type (does not overflow) for i = 0 to n-1.
4839 // P2: An Equal predicate that guarantees that
4840 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4841 // P3: An Equal predicate that guarantees that
4842 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4843 //
4844 // As we next prove, the above predicates guarantee that:
4845 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4846 //
4847 //
4848 // More formally, we want to prove that:
4849 // Expr(i+1) = Start + (i+1) * Accum
4850 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4851 //
4852 // Given that:
4853 // 1) Expr(0) = Start
4854 // 2) Expr(1) = Start + Accum
4855 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4856 // 3) Induction hypothesis (step i):
4857 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4858 //
4859 // Proof:
4860 // Expr(i+1) =
4861 // = Start + (i+1)*Accum
4862 // = (Start + i*Accum) + Accum
4863 // = Expr(i) + Accum
4864 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4865 // :: from step i
4866 //
4867 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4868 //
4869 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4870 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
4871 // + Accum :: from P3
4872 //
4873 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4874 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4875 //
4876 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4877 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4878 //
4879 // By induction, the same applies to all iterations 1<=i<n:
4880 //
4881
4882 // Create a truncated addrec for which we will add a no overflow check (P1).
4883 const SCEV *StartVal = getSCEV(StartValueV);
4884 const SCEV *PHISCEV =
4885 getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4886 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4887
4888 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4889 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4890 // will be constant.
4891 //
4892 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4893 // add P1.
4894 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4895 SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4896 Signed ? SCEVWrapPredicate::IncrementNSSW
4897 : SCEVWrapPredicate::IncrementNUSW;
4898 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4899 Predicates.push_back(AddRecPred);
4900 }
4901
4902 // Create the Equal Predicates P2,P3:
4903
4904 // It is possible that the predicates P2 and/or P3 are computable at
4905 // compile time due to StartVal and/or Accum being constants.
4906 // If either one is, then we can check that now and escape if either P2
4907 // or P3 is false.
4908
4909 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4910 // for each of StartVal and Accum
4911 auto getExtendedExpr = [&](const SCEV *Expr,
4912 bool CreateSignExtend) -> const SCEV * {
4913 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4914 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4915 const SCEV *ExtendedExpr =
4916 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4917 : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4918 return ExtendedExpr;
4919 };
4920
4921 // Given:
4922 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4923 // = getExtendedExpr(Expr)
4924 // Determine whether the predicate P: Expr == ExtendedExpr
4925 // is known to be false at compile time
4926 auto PredIsKnownFalse = [&](const SCEV *Expr,
4927 const SCEV *ExtendedExpr) -> bool {
4928 return Expr != ExtendedExpr &&
4929 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4930 };
4931
4932 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4933 if (PredIsKnownFalse(StartVal, StartExtended)) {
4934 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4935 return None;
4936 }
4937
4938 // The Step is always Signed (because the overflow checks are either
4939 // NSSW or NUSW)
4940 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4941 if (PredIsKnownFalse(Accum, AccumExtended)) {
4942 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4943 return None;
4944 }
4945
4946 auto AppendPredicate = [&](const SCEV *Expr,
4947 const SCEV *ExtendedExpr) -> void {
4948 if (Expr != ExtendedExpr &&
4949 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4950 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4951 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4952 Predicates.push_back(Pred);
4953 }
4954 };
4955
4956 AppendPredicate(StartVal, StartExtended);
4957 AppendPredicate(Accum, AccumExtended);
4958
4959 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4960 // which the casts had been folded away. The caller can rewrite SymbolicPHI
4961 // into NewAR if it will also add the runtime overflow checks specified in
4962 // Predicates.
4963 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4964
4965 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4966 std::make_pair(NewAR, Predicates);
4967 // Remember the result of the analysis for this SCEV at this locayyytion.
4968 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4969 return PredRewrite;
4970 }
4971
4972 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCasts(const SCEVUnknown * SymbolicPHI)4973 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4974 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4975 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4976 if (!L)
4977 return None;
4978
4979 // Check to see if we already analyzed this PHI.
4980 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4981 if (I != PredicatedSCEVRewrites.end()) {
4982 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4983 I->second;
4984 // Analysis was done before and failed to create an AddRec:
4985 if (Rewrite.first == SymbolicPHI)
4986 return None;
4987 // Analysis was done before and succeeded to create an AddRec under
4988 // a predicate:
4989 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4990 assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4991 return Rewrite;
4992 }
4993
4994 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4995 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4996
4997 // Record in the cache that the analysis failed
4998 if (!Rewrite) {
4999 SmallVector<const SCEVPredicate *, 3> Predicates;
5000 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5001 return None;
5002 }
5003
5004 return Rewrite;
5005 }
5006
5007 // FIXME: This utility is currently required because the Rewriter currently
5008 // does not rewrite this expression:
5009 // {0, +, (sext ix (trunc iy to ix) to iy)}
5010 // into {0, +, %step},
5011 // even when the following Equal predicate exists:
5012 // "%step == (sext ix (trunc iy to ix) to iy)".
areAddRecsEqualWithPreds(const SCEVAddRecExpr * AR1,const SCEVAddRecExpr * AR2) const5013 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5014 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5015 if (AR1 == AR2)
5016 return true;
5017
5018 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5019 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5020 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5021 return false;
5022 return true;
5023 };
5024
5025 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5026 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5027 return false;
5028 return true;
5029 }
5030
5031 /// A helper function for createAddRecFromPHI to handle simple cases.
5032 ///
5033 /// This function tries to find an AddRec expression for the simplest (yet most
5034 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5035 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5036 /// technique for finding the AddRec expression.
createSimpleAffineAddRec(PHINode * PN,Value * BEValueV,Value * StartValueV)5037 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5038 Value *BEValueV,
5039 Value *StartValueV) {
5040 const Loop *L = LI.getLoopFor(PN->getParent());
5041 assert(L && L->getHeader() == PN->getParent());
5042 assert(BEValueV && StartValueV);
5043
5044 auto BO = MatchBinaryOp(BEValueV, DT);
5045 if (!BO)
5046 return nullptr;
5047
5048 if (BO->Opcode != Instruction::Add)
5049 return nullptr;
5050
5051 const SCEV *Accum = nullptr;
5052 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5053 Accum = getSCEV(BO->RHS);
5054 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5055 Accum = getSCEV(BO->LHS);
5056
5057 if (!Accum)
5058 return nullptr;
5059
5060 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5061 if (BO->IsNUW)
5062 Flags = setFlags(Flags, SCEV::FlagNUW);
5063 if (BO->IsNSW)
5064 Flags = setFlags(Flags, SCEV::FlagNSW);
5065
5066 const SCEV *StartVal = getSCEV(StartValueV);
5067 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5068
5069 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5070
5071 // We can add Flags to the post-inc expression only if we
5072 // know that it is *undefined behavior* for BEValueV to
5073 // overflow.
5074 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5075 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5076 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5077
5078 return PHISCEV;
5079 }
5080
createAddRecFromPHI(PHINode * PN)5081 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5082 const Loop *L = LI.getLoopFor(PN->getParent());
5083 if (!L || L->getHeader() != PN->getParent())
5084 return nullptr;
5085
5086 // The loop may have multiple entrances or multiple exits; we can analyze
5087 // this phi as an addrec if it has a unique entry value and a unique
5088 // backedge value.
5089 Value *BEValueV = nullptr, *StartValueV = nullptr;
5090 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5091 Value *V = PN->getIncomingValue(i);
5092 if (L->contains(PN->getIncomingBlock(i))) {
5093 if (!BEValueV) {
5094 BEValueV = V;
5095 } else if (BEValueV != V) {
5096 BEValueV = nullptr;
5097 break;
5098 }
5099 } else if (!StartValueV) {
5100 StartValueV = V;
5101 } else if (StartValueV != V) {
5102 StartValueV = nullptr;
5103 break;
5104 }
5105 }
5106 if (!BEValueV || !StartValueV)
5107 return nullptr;
5108
5109 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5110 "PHI node already processed?");
5111
5112 // First, try to find AddRec expression without creating a fictituos symbolic
5113 // value for PN.
5114 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5115 return S;
5116
5117 // Handle PHI node value symbolically.
5118 const SCEV *SymbolicName = getUnknown(PN);
5119 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5120
5121 // Using this symbolic name for the PHI, analyze the value coming around
5122 // the back-edge.
5123 const SCEV *BEValue = getSCEV(BEValueV);
5124
5125 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5126 // has a special value for the first iteration of the loop.
5127
5128 // If the value coming around the backedge is an add with the symbolic
5129 // value we just inserted, then we found a simple induction variable!
5130 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5131 // If there is a single occurrence of the symbolic value, replace it
5132 // with a recurrence.
5133 unsigned FoundIndex = Add->getNumOperands();
5134 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5135 if (Add->getOperand(i) == SymbolicName)
5136 if (FoundIndex == e) {
5137 FoundIndex = i;
5138 break;
5139 }
5140
5141 if (FoundIndex != Add->getNumOperands()) {
5142 // Create an add with everything but the specified operand.
5143 SmallVector<const SCEV *, 8> Ops;
5144 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5145 if (i != FoundIndex)
5146 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5147 L, *this));
5148 const SCEV *Accum = getAddExpr(Ops);
5149
5150 // This is not a valid addrec if the step amount is varying each
5151 // loop iteration, but is not itself an addrec in this loop.
5152 if (isLoopInvariant(Accum, L) ||
5153 (isa<SCEVAddRecExpr>(Accum) &&
5154 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5155 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5156
5157 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5158 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5159 if (BO->IsNUW)
5160 Flags = setFlags(Flags, SCEV::FlagNUW);
5161 if (BO->IsNSW)
5162 Flags = setFlags(Flags, SCEV::FlagNSW);
5163 }
5164 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5165 // If the increment is an inbounds GEP, then we know the address
5166 // space cannot be wrapped around. We cannot make any guarantee
5167 // about signed or unsigned overflow because pointers are
5168 // unsigned but we may have a negative index from the base
5169 // pointer. We can guarantee that no unsigned wrap occurs if the
5170 // indices form a positive value.
5171 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5172 Flags = setFlags(Flags, SCEV::FlagNW);
5173
5174 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5175 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5176 Flags = setFlags(Flags, SCEV::FlagNUW);
5177 }
5178
5179 // We cannot transfer nuw and nsw flags from subtraction
5180 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5181 // for instance.
5182 }
5183
5184 const SCEV *StartVal = getSCEV(StartValueV);
5185 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5186
5187 // Okay, for the entire analysis of this edge we assumed the PHI
5188 // to be symbolic. We now need to go back and purge all of the
5189 // entries for the scalars that use the symbolic expression.
5190 forgetSymbolicName(PN, SymbolicName);
5191 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5192
5193 // We can add Flags to the post-inc expression only if we
5194 // know that it is *undefined behavior* for BEValueV to
5195 // overflow.
5196 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5197 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5198 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5199
5200 return PHISCEV;
5201 }
5202 }
5203 } else {
5204 // Otherwise, this could be a loop like this:
5205 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5206 // In this case, j = {1,+,1} and BEValue is j.
5207 // Because the other in-value of i (0) fits the evolution of BEValue
5208 // i really is an addrec evolution.
5209 //
5210 // We can generalize this saying that i is the shifted value of BEValue
5211 // by one iteration:
5212 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5213 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5214 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5215 if (Shifted != getCouldNotCompute() &&
5216 Start != getCouldNotCompute()) {
5217 const SCEV *StartVal = getSCEV(StartValueV);
5218 if (Start == StartVal) {
5219 // Okay, for the entire analysis of this edge we assumed the PHI
5220 // to be symbolic. We now need to go back and purge all of the
5221 // entries for the scalars that use the symbolic expression.
5222 forgetSymbolicName(PN, SymbolicName);
5223 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5224 return Shifted;
5225 }
5226 }
5227 }
5228
5229 // Remove the temporary PHI node SCEV that has been inserted while intending
5230 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5231 // as it will prevent later (possibly simpler) SCEV expressions to be added
5232 // to the ValueExprMap.
5233 eraseValueFromMap(PN);
5234
5235 return nullptr;
5236 }
5237
5238 // Checks if the SCEV S is available at BB. S is considered available at BB
5239 // if S can be materialized at BB without introducing a fault.
IsAvailableOnEntry(const Loop * L,DominatorTree & DT,const SCEV * S,BasicBlock * BB)5240 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5241 BasicBlock *BB) {
5242 struct CheckAvailable {
5243 bool TraversalDone = false;
5244 bool Available = true;
5245
5246 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
5247 BasicBlock *BB = nullptr;
5248 DominatorTree &DT;
5249
5250 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5251 : L(L), BB(BB), DT(DT) {}
5252
5253 bool setUnavailable() {
5254 TraversalDone = true;
5255 Available = false;
5256 return false;
5257 }
5258
5259 bool follow(const SCEV *S) {
5260 switch (S->getSCEVType()) {
5261 case scConstant:
5262 case scPtrToInt:
5263 case scTruncate:
5264 case scZeroExtend:
5265 case scSignExtend:
5266 case scAddExpr:
5267 case scMulExpr:
5268 case scUMaxExpr:
5269 case scSMaxExpr:
5270 case scUMinExpr:
5271 case scSMinExpr:
5272 // These expressions are available if their operand(s) is/are.
5273 return true;
5274
5275 case scAddRecExpr: {
5276 // We allow add recurrences that are on the loop BB is in, or some
5277 // outer loop. This guarantees availability because the value of the
5278 // add recurrence at BB is simply the "current" value of the induction
5279 // variable. We can relax this in the future; for instance an add
5280 // recurrence on a sibling dominating loop is also available at BB.
5281 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5282 if (L && (ARLoop == L || ARLoop->contains(L)))
5283 return true;
5284
5285 return setUnavailable();
5286 }
5287
5288 case scUnknown: {
5289 // For SCEVUnknown, we check for simple dominance.
5290 const auto *SU = cast<SCEVUnknown>(S);
5291 Value *V = SU->getValue();
5292
5293 if (isa<Argument>(V))
5294 return false;
5295
5296 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5297 return false;
5298
5299 return setUnavailable();
5300 }
5301
5302 case scUDivExpr:
5303 case scCouldNotCompute:
5304 // We do not try to smart about these at all.
5305 return setUnavailable();
5306 }
5307 llvm_unreachable("Unknown SCEV kind!");
5308 }
5309
5310 bool isDone() { return TraversalDone; }
5311 };
5312
5313 CheckAvailable CA(L, BB, DT);
5314 SCEVTraversal<CheckAvailable> ST(CA);
5315
5316 ST.visitAll(S);
5317 return CA.Available;
5318 }
5319
5320 // Try to match a control flow sequence that branches out at BI and merges back
5321 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5322 // match.
BrPHIToSelect(DominatorTree & DT,BranchInst * BI,PHINode * Merge,Value * & C,Value * & LHS,Value * & RHS)5323 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5324 Value *&C, Value *&LHS, Value *&RHS) {
5325 C = BI->getCondition();
5326
5327 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5328 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5329
5330 if (!LeftEdge.isSingleEdge())
5331 return false;
5332
5333 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5334
5335 Use &LeftUse = Merge->getOperandUse(0);
5336 Use &RightUse = Merge->getOperandUse(1);
5337
5338 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5339 LHS = LeftUse;
5340 RHS = RightUse;
5341 return true;
5342 }
5343
5344 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5345 LHS = RightUse;
5346 RHS = LeftUse;
5347 return true;
5348 }
5349
5350 return false;
5351 }
5352
createNodeFromSelectLikePHI(PHINode * PN)5353 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5354 auto IsReachable =
5355 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5356 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5357 const Loop *L = LI.getLoopFor(PN->getParent());
5358
5359 // We don't want to break LCSSA, even in a SCEV expression tree.
5360 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5361 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5362 return nullptr;
5363
5364 // Try to match
5365 //
5366 // br %cond, label %left, label %right
5367 // left:
5368 // br label %merge
5369 // right:
5370 // br label %merge
5371 // merge:
5372 // V = phi [ %x, %left ], [ %y, %right ]
5373 //
5374 // as "select %cond, %x, %y"
5375
5376 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5377 assert(IDom && "At least the entry block should dominate PN");
5378
5379 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5380 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5381
5382 if (BI && BI->isConditional() &&
5383 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5384 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5385 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5386 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5387 }
5388
5389 return nullptr;
5390 }
5391
createNodeForPHI(PHINode * PN)5392 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5393 if (const SCEV *S = createAddRecFromPHI(PN))
5394 return S;
5395
5396 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5397 return S;
5398
5399 // If the PHI has a single incoming value, follow that value, unless the
5400 // PHI's incoming blocks are in a different loop, in which case doing so
5401 // risks breaking LCSSA form. Instcombine would normally zap these, but
5402 // it doesn't have DominatorTree information, so it may miss cases.
5403 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5404 if (LI.replacementPreservesLCSSAForm(PN, V))
5405 return getSCEV(V);
5406
5407 // If it's not a loop phi, we can't handle it yet.
5408 return getUnknown(PN);
5409 }
5410
createNodeForSelectOrPHI(Instruction * I,Value * Cond,Value * TrueVal,Value * FalseVal)5411 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5412 Value *Cond,
5413 Value *TrueVal,
5414 Value *FalseVal) {
5415 // Handle "constant" branch or select. This can occur for instance when a
5416 // loop pass transforms an inner loop and moves on to process the outer loop.
5417 if (auto *CI = dyn_cast<ConstantInt>(Cond))
5418 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5419
5420 // Try to match some simple smax or umax patterns.
5421 auto *ICI = dyn_cast<ICmpInst>(Cond);
5422 if (!ICI)
5423 return getUnknown(I);
5424
5425 Value *LHS = ICI->getOperand(0);
5426 Value *RHS = ICI->getOperand(1);
5427
5428 switch (ICI->getPredicate()) {
5429 case ICmpInst::ICMP_SLT:
5430 case ICmpInst::ICMP_SLE:
5431 std::swap(LHS, RHS);
5432 LLVM_FALLTHROUGH;
5433 case ICmpInst::ICMP_SGT:
5434 case ICmpInst::ICMP_SGE:
5435 // a >s b ? a+x : b+x -> smax(a, b)+x
5436 // a >s b ? b+x : a+x -> smin(a, b)+x
5437 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5438 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5439 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5440 const SCEV *LA = getSCEV(TrueVal);
5441 const SCEV *RA = getSCEV(FalseVal);
5442 const SCEV *LDiff = getMinusSCEV(LA, LS);
5443 const SCEV *RDiff = getMinusSCEV(RA, RS);
5444 if (LDiff == RDiff)
5445 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5446 LDiff = getMinusSCEV(LA, RS);
5447 RDiff = getMinusSCEV(RA, LS);
5448 if (LDiff == RDiff)
5449 return getAddExpr(getSMinExpr(LS, RS), LDiff);
5450 }
5451 break;
5452 case ICmpInst::ICMP_ULT:
5453 case ICmpInst::ICMP_ULE:
5454 std::swap(LHS, RHS);
5455 LLVM_FALLTHROUGH;
5456 case ICmpInst::ICMP_UGT:
5457 case ICmpInst::ICMP_UGE:
5458 // a >u b ? a+x : b+x -> umax(a, b)+x
5459 // a >u b ? b+x : a+x -> umin(a, b)+x
5460 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5461 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5462 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5463 const SCEV *LA = getSCEV(TrueVal);
5464 const SCEV *RA = getSCEV(FalseVal);
5465 const SCEV *LDiff = getMinusSCEV(LA, LS);
5466 const SCEV *RDiff = getMinusSCEV(RA, RS);
5467 if (LDiff == RDiff)
5468 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5469 LDiff = getMinusSCEV(LA, RS);
5470 RDiff = getMinusSCEV(RA, LS);
5471 if (LDiff == RDiff)
5472 return getAddExpr(getUMinExpr(LS, RS), LDiff);
5473 }
5474 break;
5475 case ICmpInst::ICMP_NE:
5476 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
5477 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5478 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5479 const SCEV *One = getOne(I->getType());
5480 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5481 const SCEV *LA = getSCEV(TrueVal);
5482 const SCEV *RA = getSCEV(FalseVal);
5483 const SCEV *LDiff = getMinusSCEV(LA, LS);
5484 const SCEV *RDiff = getMinusSCEV(RA, One);
5485 if (LDiff == RDiff)
5486 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5487 }
5488 break;
5489 case ICmpInst::ICMP_EQ:
5490 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
5491 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5492 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5493 const SCEV *One = getOne(I->getType());
5494 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5495 const SCEV *LA = getSCEV(TrueVal);
5496 const SCEV *RA = getSCEV(FalseVal);
5497 const SCEV *LDiff = getMinusSCEV(LA, One);
5498 const SCEV *RDiff = getMinusSCEV(RA, LS);
5499 if (LDiff == RDiff)
5500 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5501 }
5502 break;
5503 default:
5504 break;
5505 }
5506
5507 return getUnknown(I);
5508 }
5509
5510 /// Expand GEP instructions into add and multiply operations. This allows them
5511 /// to be analyzed by regular SCEV code.
createNodeForGEP(GEPOperator * GEP)5512 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5513 // Don't attempt to analyze GEPs over unsized objects.
5514 if (!GEP->getSourceElementType()->isSized())
5515 return getUnknown(GEP);
5516
5517 SmallVector<const SCEV *, 4> IndexExprs;
5518 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5519 IndexExprs.push_back(getSCEV(*Index));
5520 return getGEPExpr(GEP, IndexExprs);
5521 }
5522
GetMinTrailingZerosImpl(const SCEV * S)5523 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5524 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5525 return C->getAPInt().countTrailingZeros();
5526
5527 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5528 return GetMinTrailingZeros(I->getOperand());
5529
5530 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5531 return std::min(GetMinTrailingZeros(T->getOperand()),
5532 (uint32_t)getTypeSizeInBits(T->getType()));
5533
5534 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5535 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5536 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5537 ? getTypeSizeInBits(E->getType())
5538 : OpRes;
5539 }
5540
5541 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5542 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5543 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5544 ? getTypeSizeInBits(E->getType())
5545 : OpRes;
5546 }
5547
5548 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5549 // The result is the min of all operands results.
5550 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5551 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5552 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5553 return MinOpRes;
5554 }
5555
5556 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5557 // The result is the sum of all operands results.
5558 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5559 uint32_t BitWidth = getTypeSizeInBits(M->getType());
5560 for (unsigned i = 1, e = M->getNumOperands();
5561 SumOpRes != BitWidth && i != e; ++i)
5562 SumOpRes =
5563 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5564 return SumOpRes;
5565 }
5566
5567 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5568 // The result is the min of all operands results.
5569 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5570 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5571 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5572 return MinOpRes;
5573 }
5574
5575 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5576 // The result is the min of all operands results.
5577 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5578 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5579 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5580 return MinOpRes;
5581 }
5582
5583 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5584 // The result is the min of all operands results.
5585 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5586 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5587 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5588 return MinOpRes;
5589 }
5590
5591 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5592 // For a SCEVUnknown, ask ValueTracking.
5593 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5594 return Known.countMinTrailingZeros();
5595 }
5596
5597 // SCEVUDivExpr
5598 return 0;
5599 }
5600
GetMinTrailingZeros(const SCEV * S)5601 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5602 auto I = MinTrailingZerosCache.find(S);
5603 if (I != MinTrailingZerosCache.end())
5604 return I->second;
5605
5606 uint32_t Result = GetMinTrailingZerosImpl(S);
5607 auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5608 assert(InsertPair.second && "Should insert a new key");
5609 return InsertPair.first->second;
5610 }
5611
5612 /// Helper method to assign a range to V from metadata present in the IR.
GetRangeFromMetadata(Value * V)5613 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5614 if (Instruction *I = dyn_cast<Instruction>(V))
5615 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5616 return getConstantRangeFromMetadata(*MD);
5617
5618 return None;
5619 }
5620
setNoWrapFlags(SCEVAddRecExpr * AddRec,SCEV::NoWrapFlags Flags)5621 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5622 SCEV::NoWrapFlags Flags) {
5623 if (AddRec->getNoWrapFlags(Flags) != Flags) {
5624 AddRec->setNoWrapFlags(Flags);
5625 UnsignedRanges.erase(AddRec);
5626 SignedRanges.erase(AddRec);
5627 }
5628 }
5629
5630 /// Determine the range for a particular SCEV. If SignHint is
5631 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5632 /// with a "cleaner" unsigned (resp. signed) representation.
5633 const ConstantRange &
getRangeRef(const SCEV * S,ScalarEvolution::RangeSignHint SignHint)5634 ScalarEvolution::getRangeRef(const SCEV *S,
5635 ScalarEvolution::RangeSignHint SignHint) {
5636 DenseMap<const SCEV *, ConstantRange> &Cache =
5637 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5638 : SignedRanges;
5639 ConstantRange::PreferredRangeType RangeType =
5640 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5641 ? ConstantRange::Unsigned : ConstantRange::Signed;
5642
5643 // See if we've computed this range already.
5644 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5645 if (I != Cache.end())
5646 return I->second;
5647
5648 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5649 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5650
5651 unsigned BitWidth = getTypeSizeInBits(S->getType());
5652 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5653 using OBO = OverflowingBinaryOperator;
5654
5655 // If the value has known zeros, the maximum value will have those known zeros
5656 // as well.
5657 uint32_t TZ = GetMinTrailingZeros(S);
5658 if (TZ != 0) {
5659 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5660 ConservativeResult =
5661 ConstantRange(APInt::getMinValue(BitWidth),
5662 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5663 else
5664 ConservativeResult = ConstantRange(
5665 APInt::getSignedMinValue(BitWidth),
5666 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5667 }
5668
5669 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5670 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5671 unsigned WrapType = OBO::AnyWrap;
5672 if (Add->hasNoSignedWrap())
5673 WrapType |= OBO::NoSignedWrap;
5674 if (Add->hasNoUnsignedWrap())
5675 WrapType |= OBO::NoUnsignedWrap;
5676 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5677 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5678 WrapType, RangeType);
5679 return setRange(Add, SignHint,
5680 ConservativeResult.intersectWith(X, RangeType));
5681 }
5682
5683 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5684 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5685 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5686 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5687 return setRange(Mul, SignHint,
5688 ConservativeResult.intersectWith(X, RangeType));
5689 }
5690
5691 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5692 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5693 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5694 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5695 return setRange(SMax, SignHint,
5696 ConservativeResult.intersectWith(X, RangeType));
5697 }
5698
5699 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5700 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5701 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5702 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5703 return setRange(UMax, SignHint,
5704 ConservativeResult.intersectWith(X, RangeType));
5705 }
5706
5707 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5708 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5709 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5710 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5711 return setRange(SMin, SignHint,
5712 ConservativeResult.intersectWith(X, RangeType));
5713 }
5714
5715 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5716 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5717 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5718 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5719 return setRange(UMin, SignHint,
5720 ConservativeResult.intersectWith(X, RangeType));
5721 }
5722
5723 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5724 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5725 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5726 return setRange(UDiv, SignHint,
5727 ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5728 }
5729
5730 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5731 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5732 return setRange(ZExt, SignHint,
5733 ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5734 RangeType));
5735 }
5736
5737 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5738 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5739 return setRange(SExt, SignHint,
5740 ConservativeResult.intersectWith(X.signExtend(BitWidth),
5741 RangeType));
5742 }
5743
5744 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
5745 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
5746 return setRange(PtrToInt, SignHint, X);
5747 }
5748
5749 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5750 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5751 return setRange(Trunc, SignHint,
5752 ConservativeResult.intersectWith(X.truncate(BitWidth),
5753 RangeType));
5754 }
5755
5756 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5757 // If there's no unsigned wrap, the value will never be less than its
5758 // initial value.
5759 if (AddRec->hasNoUnsignedWrap()) {
5760 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5761 if (!UnsignedMinValue.isNullValue())
5762 ConservativeResult = ConservativeResult.intersectWith(
5763 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5764 }
5765
5766 // If there's no signed wrap, and all the operands except initial value have
5767 // the same sign or zero, the value won't ever be:
5768 // 1: smaller than initial value if operands are non negative,
5769 // 2: bigger than initial value if operands are non positive.
5770 // For both cases, value can not cross signed min/max boundary.
5771 if (AddRec->hasNoSignedWrap()) {
5772 bool AllNonNeg = true;
5773 bool AllNonPos = true;
5774 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5775 if (!isKnownNonNegative(AddRec->getOperand(i)))
5776 AllNonNeg = false;
5777 if (!isKnownNonPositive(AddRec->getOperand(i)))
5778 AllNonPos = false;
5779 }
5780 if (AllNonNeg)
5781 ConservativeResult = ConservativeResult.intersectWith(
5782 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5783 APInt::getSignedMinValue(BitWidth)),
5784 RangeType);
5785 else if (AllNonPos)
5786 ConservativeResult = ConservativeResult.intersectWith(
5787 ConstantRange::getNonEmpty(
5788 APInt::getSignedMinValue(BitWidth),
5789 getSignedRangeMax(AddRec->getStart()) + 1),
5790 RangeType);
5791 }
5792
5793 // TODO: non-affine addrec
5794 if (AddRec->isAffine()) {
5795 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5796 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5797 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5798 auto RangeFromAffine = getRangeForAffineAR(
5799 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5800 BitWidth);
5801 ConservativeResult =
5802 ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5803
5804 auto RangeFromFactoring = getRangeViaFactoring(
5805 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5806 BitWidth);
5807 ConservativeResult =
5808 ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5809 }
5810
5811 // Now try symbolic BE count and more powerful methods.
5812 if (UseExpensiveRangeSharpening) {
5813 const SCEV *SymbolicMaxBECount =
5814 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
5815 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
5816 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5817 AddRec->hasNoSelfWrap()) {
5818 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
5819 AddRec, SymbolicMaxBECount, BitWidth, SignHint);
5820 ConservativeResult =
5821 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
5822 }
5823 }
5824 }
5825
5826 return setRange(AddRec, SignHint, std::move(ConservativeResult));
5827 }
5828
5829 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5830 // Check if the IR explicitly contains !range metadata.
5831 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5832 if (MDRange.hasValue())
5833 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5834 RangeType);
5835
5836 // Split here to avoid paying the compile-time cost of calling both
5837 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
5838 // if needed.
5839 const DataLayout &DL = getDataLayout();
5840 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5841 // For a SCEVUnknown, ask ValueTracking.
5842 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5843 if (Known.getBitWidth() != BitWidth)
5844 Known = Known.zextOrTrunc(BitWidth);
5845 // If Known does not result in full-set, intersect with it.
5846 if (Known.getMinValue() != Known.getMaxValue() + 1)
5847 ConservativeResult = ConservativeResult.intersectWith(
5848 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5849 RangeType);
5850 } else {
5851 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5852 "generalize as needed!");
5853 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5854 // If the pointer size is larger than the index size type, this can cause
5855 // NS to be larger than BitWidth. So compensate for this.
5856 if (U->getType()->isPointerTy()) {
5857 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5858 int ptrIdxDiff = ptrSize - BitWidth;
5859 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5860 NS -= ptrIdxDiff;
5861 }
5862
5863 if (NS > 1)
5864 ConservativeResult = ConservativeResult.intersectWith(
5865 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5866 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5867 RangeType);
5868 }
5869
5870 // A range of Phi is a subset of union of all ranges of its input.
5871 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5872 // Make sure that we do not run over cycled Phis.
5873 if (PendingPhiRanges.insert(Phi).second) {
5874 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5875 for (auto &Op : Phi->operands()) {
5876 auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5877 RangeFromOps = RangeFromOps.unionWith(OpRange);
5878 // No point to continue if we already have a full set.
5879 if (RangeFromOps.isFullSet())
5880 break;
5881 }
5882 ConservativeResult =
5883 ConservativeResult.intersectWith(RangeFromOps, RangeType);
5884 bool Erased = PendingPhiRanges.erase(Phi);
5885 assert(Erased && "Failed to erase Phi properly?");
5886 (void) Erased;
5887 }
5888 }
5889
5890 return setRange(U, SignHint, std::move(ConservativeResult));
5891 }
5892
5893 return setRange(S, SignHint, std::move(ConservativeResult));
5894 }
5895
5896 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5897 // values that the expression can take. Initially, the expression has a value
5898 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5899 // argument defines if we treat Step as signed or unsigned.
getRangeForAffineARHelper(APInt Step,const ConstantRange & StartRange,const APInt & MaxBECount,unsigned BitWidth,bool Signed)5900 static ConstantRange getRangeForAffineARHelper(APInt Step,
5901 const ConstantRange &StartRange,
5902 const APInt &MaxBECount,
5903 unsigned BitWidth, bool Signed) {
5904 // If either Step or MaxBECount is 0, then the expression won't change, and we
5905 // just need to return the initial range.
5906 if (Step == 0 || MaxBECount == 0)
5907 return StartRange;
5908
5909 // If we don't know anything about the initial value (i.e. StartRange is
5910 // FullRange), then we don't know anything about the final range either.
5911 // Return FullRange.
5912 if (StartRange.isFullSet())
5913 return ConstantRange::getFull(BitWidth);
5914
5915 // If Step is signed and negative, then we use its absolute value, but we also
5916 // note that we're moving in the opposite direction.
5917 bool Descending = Signed && Step.isNegative();
5918
5919 if (Signed)
5920 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5921 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5922 // This equations hold true due to the well-defined wrap-around behavior of
5923 // APInt.
5924 Step = Step.abs();
5925
5926 // Check if Offset is more than full span of BitWidth. If it is, the
5927 // expression is guaranteed to overflow.
5928 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5929 return ConstantRange::getFull(BitWidth);
5930
5931 // Offset is by how much the expression can change. Checks above guarantee no
5932 // overflow here.
5933 APInt Offset = Step * MaxBECount;
5934
5935 // Minimum value of the final range will match the minimal value of StartRange
5936 // if the expression is increasing and will be decreased by Offset otherwise.
5937 // Maximum value of the final range will match the maximal value of StartRange
5938 // if the expression is decreasing and will be increased by Offset otherwise.
5939 APInt StartLower = StartRange.getLower();
5940 APInt StartUpper = StartRange.getUpper() - 1;
5941 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5942 : (StartUpper + std::move(Offset));
5943
5944 // It's possible that the new minimum/maximum value will fall into the initial
5945 // range (due to wrap around). This means that the expression can take any
5946 // value in this bitwidth, and we have to return full range.
5947 if (StartRange.contains(MovedBoundary))
5948 return ConstantRange::getFull(BitWidth);
5949
5950 APInt NewLower =
5951 Descending ? std::move(MovedBoundary) : std::move(StartLower);
5952 APInt NewUpper =
5953 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5954 NewUpper += 1;
5955
5956 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5957 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5958 }
5959
getRangeForAffineAR(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)5960 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5961 const SCEV *Step,
5962 const SCEV *MaxBECount,
5963 unsigned BitWidth) {
5964 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5965 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5966 "Precondition!");
5967
5968 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5969 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5970
5971 // First, consider step signed.
5972 ConstantRange StartSRange = getSignedRange(Start);
5973 ConstantRange StepSRange = getSignedRange(Step);
5974
5975 // If Step can be both positive and negative, we need to find ranges for the
5976 // maximum absolute step values in both directions and union them.
5977 ConstantRange SR =
5978 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5979 MaxBECountValue, BitWidth, /* Signed = */ true);
5980 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5981 StartSRange, MaxBECountValue,
5982 BitWidth, /* Signed = */ true));
5983
5984 // Next, consider step unsigned.
5985 ConstantRange UR = getRangeForAffineARHelper(
5986 getUnsignedRangeMax(Step), getUnsignedRange(Start),
5987 MaxBECountValue, BitWidth, /* Signed = */ false);
5988
5989 // Finally, intersect signed and unsigned ranges.
5990 return SR.intersectWith(UR, ConstantRange::Smallest);
5991 }
5992
getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr * AddRec,const SCEV * MaxBECount,unsigned BitWidth,ScalarEvolution::RangeSignHint SignHint)5993 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
5994 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
5995 ScalarEvolution::RangeSignHint SignHint) {
5996 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
5997 assert(AddRec->hasNoSelfWrap() &&
5998 "This only works for non-self-wrapping AddRecs!");
5999 const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6000 const SCEV *Step = AddRec->getStepRecurrence(*this);
6001 // Only deal with constant step to save compile time.
6002 if (!isa<SCEVConstant>(Step))
6003 return ConstantRange::getFull(BitWidth);
6004 // Let's make sure that we can prove that we do not self-wrap during
6005 // MaxBECount iterations. We need this because MaxBECount is a maximum
6006 // iteration count estimate, and we might infer nw from some exit for which we
6007 // do not know max exit count (or any other side reasoning).
6008 // TODO: Turn into assert at some point.
6009 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6010 const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6011 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6012 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6013 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6014 MaxItersWithoutWrap))
6015 return ConstantRange::getFull(BitWidth);
6016
6017 ICmpInst::Predicate LEPred =
6018 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6019 ICmpInst::Predicate GEPred =
6020 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6021 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6022
6023 // We know that there is no self-wrap. Let's take Start and End values and
6024 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6025 // the iteration. They either lie inside the range [Min(Start, End),
6026 // Max(Start, End)] or outside it:
6027 //
6028 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax;
6029 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax;
6030 //
6031 // No self wrap flag guarantees that the intermediate values cannot be BOTH
6032 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6033 // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6034 // Start <= End and step is positive, or Start >= End and step is negative.
6035 const SCEV *Start = AddRec->getStart();
6036 ConstantRange StartRange = getRangeRef(Start, SignHint);
6037 ConstantRange EndRange = getRangeRef(End, SignHint);
6038 ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6039 // If they already cover full iteration space, we will know nothing useful
6040 // even if we prove what we want to prove.
6041 if (RangeBetween.isFullSet())
6042 return RangeBetween;
6043 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6044 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6045 : RangeBetween.isWrappedSet();
6046 if (IsWrappedSet)
6047 return ConstantRange::getFull(BitWidth);
6048
6049 if (isKnownPositive(Step) &&
6050 isKnownPredicateViaConstantRanges(LEPred, Start, End))
6051 return RangeBetween;
6052 else if (isKnownNegative(Step) &&
6053 isKnownPredicateViaConstantRanges(GEPred, Start, End))
6054 return RangeBetween;
6055 return ConstantRange::getFull(BitWidth);
6056 }
6057
getRangeViaFactoring(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)6058 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6059 const SCEV *Step,
6060 const SCEV *MaxBECount,
6061 unsigned BitWidth) {
6062 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6063 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6064
6065 struct SelectPattern {
6066 Value *Condition = nullptr;
6067 APInt TrueValue;
6068 APInt FalseValue;
6069
6070 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6071 const SCEV *S) {
6072 Optional<unsigned> CastOp;
6073 APInt Offset(BitWidth, 0);
6074
6075 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6076 "Should be!");
6077
6078 // Peel off a constant offset:
6079 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6080 // In the future we could consider being smarter here and handle
6081 // {Start+Step,+,Step} too.
6082 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6083 return;
6084
6085 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6086 S = SA->getOperand(1);
6087 }
6088
6089 // Peel off a cast operation
6090 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6091 CastOp = SCast->getSCEVType();
6092 S = SCast->getOperand();
6093 }
6094
6095 using namespace llvm::PatternMatch;
6096
6097 auto *SU = dyn_cast<SCEVUnknown>(S);
6098 const APInt *TrueVal, *FalseVal;
6099 if (!SU ||
6100 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6101 m_APInt(FalseVal)))) {
6102 Condition = nullptr;
6103 return;
6104 }
6105
6106 TrueValue = *TrueVal;
6107 FalseValue = *FalseVal;
6108
6109 // Re-apply the cast we peeled off earlier
6110 if (CastOp.hasValue())
6111 switch (*CastOp) {
6112 default:
6113 llvm_unreachable("Unknown SCEV cast type!");
6114
6115 case scTruncate:
6116 TrueValue = TrueValue.trunc(BitWidth);
6117 FalseValue = FalseValue.trunc(BitWidth);
6118 break;
6119 case scZeroExtend:
6120 TrueValue = TrueValue.zext(BitWidth);
6121 FalseValue = FalseValue.zext(BitWidth);
6122 break;
6123 case scSignExtend:
6124 TrueValue = TrueValue.sext(BitWidth);
6125 FalseValue = FalseValue.sext(BitWidth);
6126 break;
6127 }
6128
6129 // Re-apply the constant offset we peeled off earlier
6130 TrueValue += Offset;
6131 FalseValue += Offset;
6132 }
6133
6134 bool isRecognized() { return Condition != nullptr; }
6135 };
6136
6137 SelectPattern StartPattern(*this, BitWidth, Start);
6138 if (!StartPattern.isRecognized())
6139 return ConstantRange::getFull(BitWidth);
6140
6141 SelectPattern StepPattern(*this, BitWidth, Step);
6142 if (!StepPattern.isRecognized())
6143 return ConstantRange::getFull(BitWidth);
6144
6145 if (StartPattern.Condition != StepPattern.Condition) {
6146 // We don't handle this case today; but we could, by considering four
6147 // possibilities below instead of two. I'm not sure if there are cases where
6148 // that will help over what getRange already does, though.
6149 return ConstantRange::getFull(BitWidth);
6150 }
6151
6152 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6153 // construct arbitrary general SCEV expressions here. This function is called
6154 // from deep in the call stack, and calling getSCEV (on a sext instruction,
6155 // say) can end up caching a suboptimal value.
6156
6157 // FIXME: without the explicit `this` receiver below, MSVC errors out with
6158 // C2352 and C2512 (otherwise it isn't needed).
6159
6160 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6161 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6162 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6163 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6164
6165 ConstantRange TrueRange =
6166 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6167 ConstantRange FalseRange =
6168 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6169
6170 return TrueRange.unionWith(FalseRange);
6171 }
6172
getNoWrapFlagsFromUB(const Value * V)6173 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6174 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6175 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6176
6177 // Return early if there are no flags to propagate to the SCEV.
6178 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6179 if (BinOp->hasNoUnsignedWrap())
6180 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6181 if (BinOp->hasNoSignedWrap())
6182 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6183 if (Flags == SCEV::FlagAnyWrap)
6184 return SCEV::FlagAnyWrap;
6185
6186 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6187 }
6188
isSCEVExprNeverPoison(const Instruction * I)6189 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6190 // Here we check that I is in the header of the innermost loop containing I,
6191 // since we only deal with instructions in the loop header. The actual loop we
6192 // need to check later will come from an add recurrence, but getting that
6193 // requires computing the SCEV of the operands, which can be expensive. This
6194 // check we can do cheaply to rule out some cases early.
6195 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6196 if (InnermostContainingLoop == nullptr ||
6197 InnermostContainingLoop->getHeader() != I->getParent())
6198 return false;
6199
6200 // Only proceed if we can prove that I does not yield poison.
6201 if (!programUndefinedIfPoison(I))
6202 return false;
6203
6204 // At this point we know that if I is executed, then it does not wrap
6205 // according to at least one of NSW or NUW. If I is not executed, then we do
6206 // not know if the calculation that I represents would wrap. Multiple
6207 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6208 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6209 // derived from other instructions that map to the same SCEV. We cannot make
6210 // that guarantee for cases where I is not executed. So we need to find the
6211 // loop that I is considered in relation to and prove that I is executed for
6212 // every iteration of that loop. That implies that the value that I
6213 // calculates does not wrap anywhere in the loop, so then we can apply the
6214 // flags to the SCEV.
6215 //
6216 // We check isLoopInvariant to disambiguate in case we are adding recurrences
6217 // from different loops, so that we know which loop to prove that I is
6218 // executed in.
6219 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6220 // I could be an extractvalue from a call to an overflow intrinsic.
6221 // TODO: We can do better here in some cases.
6222 if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6223 return false;
6224 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6225 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6226 bool AllOtherOpsLoopInvariant = true;
6227 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6228 ++OtherOpIndex) {
6229 if (OtherOpIndex != OpIndex) {
6230 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6231 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6232 AllOtherOpsLoopInvariant = false;
6233 break;
6234 }
6235 }
6236 }
6237 if (AllOtherOpsLoopInvariant &&
6238 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6239 return true;
6240 }
6241 }
6242 return false;
6243 }
6244
isAddRecNeverPoison(const Instruction * I,const Loop * L)6245 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6246 // If we know that \c I can never be poison period, then that's enough.
6247 if (isSCEVExprNeverPoison(I))
6248 return true;
6249
6250 // For an add recurrence specifically, we assume that infinite loops without
6251 // side effects are undefined behavior, and then reason as follows:
6252 //
6253 // If the add recurrence is poison in any iteration, it is poison on all
6254 // future iterations (since incrementing poison yields poison). If the result
6255 // of the add recurrence is fed into the loop latch condition and the loop
6256 // does not contain any throws or exiting blocks other than the latch, we now
6257 // have the ability to "choose" whether the backedge is taken or not (by
6258 // choosing a sufficiently evil value for the poison feeding into the branch)
6259 // for every iteration including and after the one in which \p I first became
6260 // poison. There are two possibilities (let's call the iteration in which \p
6261 // I first became poison as K):
6262 //
6263 // 1. In the set of iterations including and after K, the loop body executes
6264 // no side effects. In this case executing the backege an infinte number
6265 // of times will yield undefined behavior.
6266 //
6267 // 2. In the set of iterations including and after K, the loop body executes
6268 // at least one side effect. In this case, that specific instance of side
6269 // effect is control dependent on poison, which also yields undefined
6270 // behavior.
6271
6272 auto *ExitingBB = L->getExitingBlock();
6273 auto *LatchBB = L->getLoopLatch();
6274 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6275 return false;
6276
6277 SmallPtrSet<const Instruction *, 16> Pushed;
6278 SmallVector<const Instruction *, 8> PoisonStack;
6279
6280 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
6281 // things that are known to be poison under that assumption go on the
6282 // PoisonStack.
6283 Pushed.insert(I);
6284 PoisonStack.push_back(I);
6285
6286 bool LatchControlDependentOnPoison = false;
6287 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6288 const Instruction *Poison = PoisonStack.pop_back_val();
6289
6290 for (auto *PoisonUser : Poison->users()) {
6291 if (propagatesPoison(cast<Operator>(PoisonUser))) {
6292 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6293 PoisonStack.push_back(cast<Instruction>(PoisonUser));
6294 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6295 assert(BI->isConditional() && "Only possibility!");
6296 if (BI->getParent() == LatchBB) {
6297 LatchControlDependentOnPoison = true;
6298 break;
6299 }
6300 }
6301 }
6302 }
6303
6304 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6305 }
6306
6307 ScalarEvolution::LoopProperties
getLoopProperties(const Loop * L)6308 ScalarEvolution::getLoopProperties(const Loop *L) {
6309 using LoopProperties = ScalarEvolution::LoopProperties;
6310
6311 auto Itr = LoopPropertiesCache.find(L);
6312 if (Itr == LoopPropertiesCache.end()) {
6313 auto HasSideEffects = [](Instruction *I) {
6314 if (auto *SI = dyn_cast<StoreInst>(I))
6315 return !SI->isSimple();
6316
6317 return I->mayHaveSideEffects();
6318 };
6319
6320 LoopProperties LP = {/* HasNoAbnormalExits */ true,
6321 /*HasNoSideEffects*/ true};
6322
6323 for (auto *BB : L->getBlocks())
6324 for (auto &I : *BB) {
6325 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6326 LP.HasNoAbnormalExits = false;
6327 if (HasSideEffects(&I))
6328 LP.HasNoSideEffects = false;
6329 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6330 break; // We're already as pessimistic as we can get.
6331 }
6332
6333 auto InsertPair = LoopPropertiesCache.insert({L, LP});
6334 assert(InsertPair.second && "We just checked!");
6335 Itr = InsertPair.first;
6336 }
6337
6338 return Itr->second;
6339 }
6340
createSCEV(Value * V)6341 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6342 if (!isSCEVable(V->getType()))
6343 return getUnknown(V);
6344
6345 if (Instruction *I = dyn_cast<Instruction>(V)) {
6346 // Don't attempt to analyze instructions in blocks that aren't
6347 // reachable. Such instructions don't matter, and they aren't required
6348 // to obey basic rules for definitions dominating uses which this
6349 // analysis depends on.
6350 if (!DT.isReachableFromEntry(I->getParent()))
6351 return getUnknown(UndefValue::get(V->getType()));
6352 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6353 return getConstant(CI);
6354 else if (isa<ConstantPointerNull>(V))
6355 // FIXME: we shouldn't special-case null pointer constant.
6356 return getZero(V->getType());
6357 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6358 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6359 else if (!isa<ConstantExpr>(V))
6360 return getUnknown(V);
6361
6362 Operator *U = cast<Operator>(V);
6363 if (auto BO = MatchBinaryOp(U, DT)) {
6364 switch (BO->Opcode) {
6365 case Instruction::Add: {
6366 // The simple thing to do would be to just call getSCEV on both operands
6367 // and call getAddExpr with the result. However if we're looking at a
6368 // bunch of things all added together, this can be quite inefficient,
6369 // because it leads to N-1 getAddExpr calls for N ultimate operands.
6370 // Instead, gather up all the operands and make a single getAddExpr call.
6371 // LLVM IR canonical form means we need only traverse the left operands.
6372 SmallVector<const SCEV *, 4> AddOps;
6373 do {
6374 if (BO->Op) {
6375 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6376 AddOps.push_back(OpSCEV);
6377 break;
6378 }
6379
6380 // If a NUW or NSW flag can be applied to the SCEV for this
6381 // addition, then compute the SCEV for this addition by itself
6382 // with a separate call to getAddExpr. We need to do that
6383 // instead of pushing the operands of the addition onto AddOps,
6384 // since the flags are only known to apply to this particular
6385 // addition - they may not apply to other additions that can be
6386 // formed with operands from AddOps.
6387 const SCEV *RHS = getSCEV(BO->RHS);
6388 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6389 if (Flags != SCEV::FlagAnyWrap) {
6390 const SCEV *LHS = getSCEV(BO->LHS);
6391 if (BO->Opcode == Instruction::Sub)
6392 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6393 else
6394 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6395 break;
6396 }
6397 }
6398
6399 if (BO->Opcode == Instruction::Sub)
6400 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6401 else
6402 AddOps.push_back(getSCEV(BO->RHS));
6403
6404 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6405 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6406 NewBO->Opcode != Instruction::Sub)) {
6407 AddOps.push_back(getSCEV(BO->LHS));
6408 break;
6409 }
6410 BO = NewBO;
6411 } while (true);
6412
6413 return getAddExpr(AddOps);
6414 }
6415
6416 case Instruction::Mul: {
6417 SmallVector<const SCEV *, 4> MulOps;
6418 do {
6419 if (BO->Op) {
6420 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6421 MulOps.push_back(OpSCEV);
6422 break;
6423 }
6424
6425 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6426 if (Flags != SCEV::FlagAnyWrap) {
6427 MulOps.push_back(
6428 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6429 break;
6430 }
6431 }
6432
6433 MulOps.push_back(getSCEV(BO->RHS));
6434 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6435 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6436 MulOps.push_back(getSCEV(BO->LHS));
6437 break;
6438 }
6439 BO = NewBO;
6440 } while (true);
6441
6442 return getMulExpr(MulOps);
6443 }
6444 case Instruction::UDiv:
6445 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6446 case Instruction::URem:
6447 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6448 case Instruction::Sub: {
6449 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6450 if (BO->Op)
6451 Flags = getNoWrapFlagsFromUB(BO->Op);
6452 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6453 }
6454 case Instruction::And:
6455 // For an expression like x&255 that merely masks off the high bits,
6456 // use zext(trunc(x)) as the SCEV expression.
6457 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6458 if (CI->isZero())
6459 return getSCEV(BO->RHS);
6460 if (CI->isMinusOne())
6461 return getSCEV(BO->LHS);
6462 const APInt &A = CI->getValue();
6463
6464 // Instcombine's ShrinkDemandedConstant may strip bits out of
6465 // constants, obscuring what would otherwise be a low-bits mask.
6466 // Use computeKnownBits to compute what ShrinkDemandedConstant
6467 // knew about to reconstruct a low-bits mask value.
6468 unsigned LZ = A.countLeadingZeros();
6469 unsigned TZ = A.countTrailingZeros();
6470 unsigned BitWidth = A.getBitWidth();
6471 KnownBits Known(BitWidth);
6472 computeKnownBits(BO->LHS, Known, getDataLayout(),
6473 0, &AC, nullptr, &DT);
6474
6475 APInt EffectiveMask =
6476 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6477 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6478 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6479 const SCEV *LHS = getSCEV(BO->LHS);
6480 const SCEV *ShiftedLHS = nullptr;
6481 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6482 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6483 // For an expression like (x * 8) & 8, simplify the multiply.
6484 unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6485 unsigned GCD = std::min(MulZeros, TZ);
6486 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6487 SmallVector<const SCEV*, 4> MulOps;
6488 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6489 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6490 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6491 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6492 }
6493 }
6494 if (!ShiftedLHS)
6495 ShiftedLHS = getUDivExpr(LHS, MulCount);
6496 return getMulExpr(
6497 getZeroExtendExpr(
6498 getTruncateExpr(ShiftedLHS,
6499 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6500 BO->LHS->getType()),
6501 MulCount);
6502 }
6503 }
6504 break;
6505
6506 case Instruction::Or:
6507 // If the RHS of the Or is a constant, we may have something like:
6508 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
6509 // optimizations will transparently handle this case.
6510 //
6511 // In order for this transformation to be safe, the LHS must be of the
6512 // form X*(2^n) and the Or constant must be less than 2^n.
6513 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6514 const SCEV *LHS = getSCEV(BO->LHS);
6515 const APInt &CIVal = CI->getValue();
6516 if (GetMinTrailingZeros(LHS) >=
6517 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6518 // Build a plain add SCEV.
6519 return getAddExpr(LHS, getSCEV(CI),
6520 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6521 }
6522 }
6523 break;
6524
6525 case Instruction::Xor:
6526 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6527 // If the RHS of xor is -1, then this is a not operation.
6528 if (CI->isMinusOne())
6529 return getNotSCEV(getSCEV(BO->LHS));
6530
6531 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6532 // This is a variant of the check for xor with -1, and it handles
6533 // the case where instcombine has trimmed non-demanded bits out
6534 // of an xor with -1.
6535 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6536 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6537 if (LBO->getOpcode() == Instruction::And &&
6538 LCI->getValue() == CI->getValue())
6539 if (const SCEVZeroExtendExpr *Z =
6540 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6541 Type *UTy = BO->LHS->getType();
6542 const SCEV *Z0 = Z->getOperand();
6543 Type *Z0Ty = Z0->getType();
6544 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6545
6546 // If C is a low-bits mask, the zero extend is serving to
6547 // mask off the high bits. Complement the operand and
6548 // re-apply the zext.
6549 if (CI->getValue().isMask(Z0TySize))
6550 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6551
6552 // If C is a single bit, it may be in the sign-bit position
6553 // before the zero-extend. In this case, represent the xor
6554 // using an add, which is equivalent, and re-apply the zext.
6555 APInt Trunc = CI->getValue().trunc(Z0TySize);
6556 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6557 Trunc.isSignMask())
6558 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6559 UTy);
6560 }
6561 }
6562 break;
6563
6564 case Instruction::Shl:
6565 // Turn shift left of a constant amount into a multiply.
6566 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6567 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6568
6569 // If the shift count is not less than the bitwidth, the result of
6570 // the shift is undefined. Don't try to analyze it, because the
6571 // resolution chosen here may differ from the resolution chosen in
6572 // other parts of the compiler.
6573 if (SA->getValue().uge(BitWidth))
6574 break;
6575
6576 // We can safely preserve the nuw flag in all cases. It's also safe to
6577 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6578 // requires special handling. It can be preserved as long as we're not
6579 // left shifting by bitwidth - 1.
6580 auto Flags = SCEV::FlagAnyWrap;
6581 if (BO->Op) {
6582 auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6583 if ((MulFlags & SCEV::FlagNSW) &&
6584 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6585 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6586 if (MulFlags & SCEV::FlagNUW)
6587 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6588 }
6589
6590 Constant *X = ConstantInt::get(
6591 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6592 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6593 }
6594 break;
6595
6596 case Instruction::AShr: {
6597 // AShr X, C, where C is a constant.
6598 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6599 if (!CI)
6600 break;
6601
6602 Type *OuterTy = BO->LHS->getType();
6603 uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6604 // If the shift count is not less than the bitwidth, the result of
6605 // the shift is undefined. Don't try to analyze it, because the
6606 // resolution chosen here may differ from the resolution chosen in
6607 // other parts of the compiler.
6608 if (CI->getValue().uge(BitWidth))
6609 break;
6610
6611 if (CI->isZero())
6612 return getSCEV(BO->LHS); // shift by zero --> noop
6613
6614 uint64_t AShrAmt = CI->getZExtValue();
6615 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6616
6617 Operator *L = dyn_cast<Operator>(BO->LHS);
6618 if (L && L->getOpcode() == Instruction::Shl) {
6619 // X = Shl A, n
6620 // Y = AShr X, m
6621 // Both n and m are constant.
6622
6623 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6624 if (L->getOperand(1) == BO->RHS)
6625 // For a two-shift sext-inreg, i.e. n = m,
6626 // use sext(trunc(x)) as the SCEV expression.
6627 return getSignExtendExpr(
6628 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6629
6630 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6631 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6632 uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6633 if (ShlAmt > AShrAmt) {
6634 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6635 // expression. We already checked that ShlAmt < BitWidth, so
6636 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6637 // ShlAmt - AShrAmt < Amt.
6638 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6639 ShlAmt - AShrAmt);
6640 return getSignExtendExpr(
6641 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6642 getConstant(Mul)), OuterTy);
6643 }
6644 }
6645 }
6646 if (BO->IsExact) {
6647 // Given exact arithmetic in-bounds right-shift by a constant,
6648 // we can lower it into: (abs(x) EXACT/u (1<<C)) * signum(x)
6649 const SCEV *X = getSCEV(BO->LHS);
6650 const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false);
6651 APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt);
6652 const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult));
6653 return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW);
6654 }
6655 break;
6656 }
6657 }
6658 }
6659
6660 switch (U->getOpcode()) {
6661 case Instruction::Trunc:
6662 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6663
6664 case Instruction::ZExt:
6665 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6666
6667 case Instruction::SExt:
6668 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6669 // The NSW flag of a subtract does not always survive the conversion to
6670 // A + (-1)*B. By pushing sign extension onto its operands we are much
6671 // more likely to preserve NSW and allow later AddRec optimisations.
6672 //
6673 // NOTE: This is effectively duplicating this logic from getSignExtend:
6674 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6675 // but by that point the NSW information has potentially been lost.
6676 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6677 Type *Ty = U->getType();
6678 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6679 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6680 return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6681 }
6682 }
6683 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6684
6685 case Instruction::BitCast:
6686 // BitCasts are no-op casts so we just eliminate the cast.
6687 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6688 return getSCEV(U->getOperand(0));
6689 break;
6690
6691 case Instruction::PtrToInt: {
6692 // Pointer to integer cast is straight-forward, so do model it.
6693 Value *Ptr = U->getOperand(0);
6694 const SCEV *Op = getSCEV(Ptr);
6695 Type *DstIntTy = U->getType();
6696 // SCEV doesn't have constant pointer expression type, but it supports
6697 // nullptr constant (and only that one), which is modelled in SCEV as a
6698 // zero integer constant. So just skip the ptrtoint cast for constants.
6699 if (isa<SCEVConstant>(Op))
6700 return getTruncateOrZeroExtend(Op, DstIntTy);
6701 Type *PtrTy = Ptr->getType();
6702 Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy);
6703 // But only if effective SCEV (integer) type is wide enough to represent
6704 // all possible pointer values.
6705 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) !=
6706 getDataLayout().getTypeSizeInBits(IntPtrTy))
6707 return getUnknown(V);
6708 return getPtrToIntExpr(Op, DstIntTy);
6709 }
6710 case Instruction::IntToPtr:
6711 // Just don't deal with inttoptr casts.
6712 return getUnknown(V);
6713
6714 case Instruction::SDiv:
6715 // If both operands are non-negative, this is just an udiv.
6716 if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6717 isKnownNonNegative(getSCEV(U->getOperand(1))))
6718 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6719 break;
6720
6721 case Instruction::SRem:
6722 // If both operands are non-negative, this is just an urem.
6723 if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6724 isKnownNonNegative(getSCEV(U->getOperand(1))))
6725 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6726 break;
6727
6728 case Instruction::GetElementPtr:
6729 return createNodeForGEP(cast<GEPOperator>(U));
6730
6731 case Instruction::PHI:
6732 return createNodeForPHI(cast<PHINode>(U));
6733
6734 case Instruction::Select:
6735 // U can also be a select constant expr, which let fall through. Since
6736 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6737 // constant expressions cannot have instructions as operands, we'd have
6738 // returned getUnknown for a select constant expressions anyway.
6739 if (isa<Instruction>(U))
6740 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6741 U->getOperand(1), U->getOperand(2));
6742 break;
6743
6744 case Instruction::Call:
6745 case Instruction::Invoke:
6746 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6747 return getSCEV(RV);
6748
6749 if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6750 switch (II->getIntrinsicID()) {
6751 case Intrinsic::abs:
6752 return getAbsExpr(
6753 getSCEV(II->getArgOperand(0)),
6754 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
6755 case Intrinsic::umax:
6756 return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6757 getSCEV(II->getArgOperand(1)));
6758 case Intrinsic::umin:
6759 return getUMinExpr(getSCEV(II->getArgOperand(0)),
6760 getSCEV(II->getArgOperand(1)));
6761 case Intrinsic::smax:
6762 return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6763 getSCEV(II->getArgOperand(1)));
6764 case Intrinsic::smin:
6765 return getSMinExpr(getSCEV(II->getArgOperand(0)),
6766 getSCEV(II->getArgOperand(1)));
6767 case Intrinsic::usub_sat: {
6768 const SCEV *X = getSCEV(II->getArgOperand(0));
6769 const SCEV *Y = getSCEV(II->getArgOperand(1));
6770 const SCEV *ClampedY = getUMinExpr(X, Y);
6771 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6772 }
6773 case Intrinsic::uadd_sat: {
6774 const SCEV *X = getSCEV(II->getArgOperand(0));
6775 const SCEV *Y = getSCEV(II->getArgOperand(1));
6776 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
6777 return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
6778 }
6779 case Intrinsic::start_loop_iterations:
6780 // A start_loop_iterations is just equivalent to the first operand for
6781 // SCEV purposes.
6782 return getSCEV(II->getArgOperand(0));
6783 default:
6784 break;
6785 }
6786 }
6787 break;
6788 }
6789
6790 return getUnknown(V);
6791 }
6792
6793 //===----------------------------------------------------------------------===//
6794 // Iteration Count Computation Code
6795 //
6796
getConstantTripCount(const SCEVConstant * ExitCount)6797 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6798 if (!ExitCount)
6799 return 0;
6800
6801 ConstantInt *ExitConst = ExitCount->getValue();
6802
6803 // Guard against huge trip counts.
6804 if (ExitConst->getValue().getActiveBits() > 32)
6805 return 0;
6806
6807 // In case of integer overflow, this returns 0, which is correct.
6808 return ((unsigned)ExitConst->getZExtValue()) + 1;
6809 }
6810
getSmallConstantTripCount(const Loop * L)6811 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6812 if (BasicBlock *ExitingBB = L->getExitingBlock())
6813 return getSmallConstantTripCount(L, ExitingBB);
6814
6815 // No trip count information for multiple exits.
6816 return 0;
6817 }
6818
6819 unsigned
getSmallConstantTripCount(const Loop * L,const BasicBlock * ExitingBlock)6820 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6821 const BasicBlock *ExitingBlock) {
6822 assert(ExitingBlock && "Must pass a non-null exiting block!");
6823 assert(L->isLoopExiting(ExitingBlock) &&
6824 "Exiting block must actually branch out of the loop!");
6825 const SCEVConstant *ExitCount =
6826 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6827 return getConstantTripCount(ExitCount);
6828 }
6829
getSmallConstantMaxTripCount(const Loop * L)6830 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6831 const auto *MaxExitCount =
6832 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6833 return getConstantTripCount(MaxExitCount);
6834 }
6835
getSmallConstantTripMultiple(const Loop * L)6836 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6837 if (BasicBlock *ExitingBB = L->getExitingBlock())
6838 return getSmallConstantTripMultiple(L, ExitingBB);
6839
6840 // No trip multiple information for multiple exits.
6841 return 0;
6842 }
6843
6844 /// Returns the largest constant divisor of the trip count of this loop as a
6845 /// normal unsigned value, if possible. This means that the actual trip count is
6846 /// always a multiple of the returned value (don't forget the trip count could
6847 /// very well be zero as well!).
6848 ///
6849 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6850 /// multiple of a constant (which is also the case if the trip count is simply
6851 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6852 /// if the trip count is very large (>= 2^32).
6853 ///
6854 /// As explained in the comments for getSmallConstantTripCount, this assumes
6855 /// that control exits the loop via ExitingBlock.
6856 unsigned
getSmallConstantTripMultiple(const Loop * L,const BasicBlock * ExitingBlock)6857 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6858 const BasicBlock *ExitingBlock) {
6859 assert(ExitingBlock && "Must pass a non-null exiting block!");
6860 assert(L->isLoopExiting(ExitingBlock) &&
6861 "Exiting block must actually branch out of the loop!");
6862 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6863 if (ExitCount == getCouldNotCompute())
6864 return 1;
6865
6866 // Get the trip count from the BE count by adding 1.
6867 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6868
6869 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6870 if (!TC)
6871 // Attempt to factor more general cases. Returns the greatest power of
6872 // two divisor. If overflow happens, the trip count expression is still
6873 // divisible by the greatest power of 2 divisor returned.
6874 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6875
6876 ConstantInt *Result = TC->getValue();
6877
6878 // Guard against huge trip counts (this requires checking
6879 // for zero to handle the case where the trip count == -1 and the
6880 // addition wraps).
6881 if (!Result || Result->getValue().getActiveBits() > 32 ||
6882 Result->getValue().getActiveBits() == 0)
6883 return 1;
6884
6885 return (unsigned)Result->getZExtValue();
6886 }
6887
getExitCount(const Loop * L,const BasicBlock * ExitingBlock,ExitCountKind Kind)6888 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6889 const BasicBlock *ExitingBlock,
6890 ExitCountKind Kind) {
6891 switch (Kind) {
6892 case Exact:
6893 case SymbolicMaximum:
6894 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6895 case ConstantMaximum:
6896 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
6897 };
6898 llvm_unreachable("Invalid ExitCountKind!");
6899 }
6900
6901 const SCEV *
getPredicatedBackedgeTakenCount(const Loop * L,SCEVUnionPredicate & Preds)6902 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6903 SCEVUnionPredicate &Preds) {
6904 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6905 }
6906
getBackedgeTakenCount(const Loop * L,ExitCountKind Kind)6907 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6908 ExitCountKind Kind) {
6909 switch (Kind) {
6910 case Exact:
6911 return getBackedgeTakenInfo(L).getExact(L, this);
6912 case ConstantMaximum:
6913 return getBackedgeTakenInfo(L).getConstantMax(this);
6914 case SymbolicMaximum:
6915 return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
6916 };
6917 llvm_unreachable("Invalid ExitCountKind!");
6918 }
6919
isBackedgeTakenCountMaxOrZero(const Loop * L)6920 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6921 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
6922 }
6923
6924 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6925 static void
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist)6926 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6927 BasicBlock *Header = L->getHeader();
6928
6929 // Push all Loop-header PHIs onto the Worklist stack.
6930 for (PHINode &PN : Header->phis())
6931 Worklist.push_back(&PN);
6932 }
6933
6934 const ScalarEvolution::BackedgeTakenInfo &
getPredicatedBackedgeTakenInfo(const Loop * L)6935 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6936 auto &BTI = getBackedgeTakenInfo(L);
6937 if (BTI.hasFullInfo())
6938 return BTI;
6939
6940 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6941
6942 if (!Pair.second)
6943 return Pair.first->second;
6944
6945 BackedgeTakenInfo Result =
6946 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6947
6948 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6949 }
6950
6951 ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)6952 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6953 // Initially insert an invalid entry for this loop. If the insertion
6954 // succeeds, proceed to actually compute a backedge-taken count and
6955 // update the value. The temporary CouldNotCompute value tells SCEV
6956 // code elsewhere that it shouldn't attempt to request a new
6957 // backedge-taken count, which could result in infinite recursion.
6958 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6959 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6960 if (!Pair.second)
6961 return Pair.first->second;
6962
6963 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6964 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6965 // must be cleared in this scope.
6966 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6967
6968 // In product build, there are no usage of statistic.
6969 (void)NumTripCountsComputed;
6970 (void)NumTripCountsNotComputed;
6971 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6972 const SCEV *BEExact = Result.getExact(L, this);
6973 if (BEExact != getCouldNotCompute()) {
6974 assert(isLoopInvariant(BEExact, L) &&
6975 isLoopInvariant(Result.getConstantMax(this), L) &&
6976 "Computed backedge-taken count isn't loop invariant for loop!");
6977 ++NumTripCountsComputed;
6978 } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
6979 isa<PHINode>(L->getHeader()->begin())) {
6980 // Only count loops that have phi nodes as not being computable.
6981 ++NumTripCountsNotComputed;
6982 }
6983 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6984
6985 // Now that we know more about the trip count for this loop, forget any
6986 // existing SCEV values for PHI nodes in this loop since they are only
6987 // conservative estimates made without the benefit of trip count
6988 // information. This is similar to the code in forgetLoop, except that
6989 // it handles SCEVUnknown PHI nodes specially.
6990 if (Result.hasAnyInfo()) {
6991 SmallVector<Instruction *, 16> Worklist;
6992 PushLoopPHIs(L, Worklist);
6993
6994 SmallPtrSet<Instruction *, 8> Discovered;
6995 while (!Worklist.empty()) {
6996 Instruction *I = Worklist.pop_back_val();
6997
6998 ValueExprMapType::iterator It =
6999 ValueExprMap.find_as(static_cast<Value *>(I));
7000 if (It != ValueExprMap.end()) {
7001 const SCEV *Old = It->second;
7002
7003 // SCEVUnknown for a PHI either means that it has an unrecognized
7004 // structure, or it's a PHI that's in the progress of being computed
7005 // by createNodeForPHI. In the former case, additional loop trip
7006 // count information isn't going to change anything. In the later
7007 // case, createNodeForPHI will perform the necessary updates on its
7008 // own when it gets to that point.
7009 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7010 eraseValueFromMap(It->first);
7011 forgetMemoizedResults(Old);
7012 }
7013 if (PHINode *PN = dyn_cast<PHINode>(I))
7014 ConstantEvolutionLoopExitValue.erase(PN);
7015 }
7016
7017 // Since we don't need to invalidate anything for correctness and we're
7018 // only invalidating to make SCEV's results more precise, we get to stop
7019 // early to avoid invalidating too much. This is especially important in
7020 // cases like:
7021 //
7022 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7023 // loop0:
7024 // %pn0 = phi
7025 // ...
7026 // loop1:
7027 // %pn1 = phi
7028 // ...
7029 //
7030 // where both loop0 and loop1's backedge taken count uses the SCEV
7031 // expression for %v. If we don't have the early stop below then in cases
7032 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7033 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7034 // count for loop1, effectively nullifying SCEV's trip count cache.
7035 for (auto *U : I->users())
7036 if (auto *I = dyn_cast<Instruction>(U)) {
7037 auto *LoopForUser = LI.getLoopFor(I->getParent());
7038 if (LoopForUser && L->contains(LoopForUser) &&
7039 Discovered.insert(I).second)
7040 Worklist.push_back(I);
7041 }
7042 }
7043 }
7044
7045 // Re-lookup the insert position, since the call to
7046 // computeBackedgeTakenCount above could result in a
7047 // recusive call to getBackedgeTakenInfo (on a different
7048 // loop), which would invalidate the iterator computed
7049 // earlier.
7050 return BackedgeTakenCounts.find(L)->second = std::move(Result);
7051 }
7052
forgetAllLoops()7053 void ScalarEvolution::forgetAllLoops() {
7054 // This method is intended to forget all info about loops. It should
7055 // invalidate caches as if the following happened:
7056 // - The trip counts of all loops have changed arbitrarily
7057 // - Every llvm::Value has been updated in place to produce a different
7058 // result.
7059 BackedgeTakenCounts.clear();
7060 PredicatedBackedgeTakenCounts.clear();
7061 LoopPropertiesCache.clear();
7062 ConstantEvolutionLoopExitValue.clear();
7063 ValueExprMap.clear();
7064 ValuesAtScopes.clear();
7065 LoopDispositions.clear();
7066 BlockDispositions.clear();
7067 UnsignedRanges.clear();
7068 SignedRanges.clear();
7069 ExprValueMap.clear();
7070 HasRecMap.clear();
7071 MinTrailingZerosCache.clear();
7072 PredicatedSCEVRewrites.clear();
7073 }
7074
forgetLoop(const Loop * L)7075 void ScalarEvolution::forgetLoop(const Loop *L) {
7076 // Drop any stored trip count value.
7077 auto RemoveLoopFromBackedgeMap =
7078 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
7079 auto BTCPos = Map.find(L);
7080 if (BTCPos != Map.end()) {
7081 BTCPos->second.clear();
7082 Map.erase(BTCPos);
7083 }
7084 };
7085
7086 SmallVector<const Loop *, 16> LoopWorklist(1, L);
7087 SmallVector<Instruction *, 32> Worklist;
7088 SmallPtrSet<Instruction *, 16> Visited;
7089
7090 // Iterate over all the loops and sub-loops to drop SCEV information.
7091 while (!LoopWorklist.empty()) {
7092 auto *CurrL = LoopWorklist.pop_back_val();
7093
7094 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
7095 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
7096
7097 // Drop information about predicated SCEV rewrites for this loop.
7098 for (auto I = PredicatedSCEVRewrites.begin();
7099 I != PredicatedSCEVRewrites.end();) {
7100 std::pair<const SCEV *, const Loop *> Entry = I->first;
7101 if (Entry.second == CurrL)
7102 PredicatedSCEVRewrites.erase(I++);
7103 else
7104 ++I;
7105 }
7106
7107 auto LoopUsersItr = LoopUsers.find(CurrL);
7108 if (LoopUsersItr != LoopUsers.end()) {
7109 for (auto *S : LoopUsersItr->second)
7110 forgetMemoizedResults(S);
7111 LoopUsers.erase(LoopUsersItr);
7112 }
7113
7114 // Drop information about expressions based on loop-header PHIs.
7115 PushLoopPHIs(CurrL, Worklist);
7116
7117 while (!Worklist.empty()) {
7118 Instruction *I = Worklist.pop_back_val();
7119 if (!Visited.insert(I).second)
7120 continue;
7121
7122 ValueExprMapType::iterator It =
7123 ValueExprMap.find_as(static_cast<Value *>(I));
7124 if (It != ValueExprMap.end()) {
7125 eraseValueFromMap(It->first);
7126 forgetMemoizedResults(It->second);
7127 if (PHINode *PN = dyn_cast<PHINode>(I))
7128 ConstantEvolutionLoopExitValue.erase(PN);
7129 }
7130
7131 PushDefUseChildren(I, Worklist);
7132 }
7133
7134 LoopPropertiesCache.erase(CurrL);
7135 // Forget all contained loops too, to avoid dangling entries in the
7136 // ValuesAtScopes map.
7137 LoopWorklist.append(CurrL->begin(), CurrL->end());
7138 }
7139 }
7140
forgetTopmostLoop(const Loop * L)7141 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7142 while (Loop *Parent = L->getParentLoop())
7143 L = Parent;
7144 forgetLoop(L);
7145 }
7146
forgetValue(Value * V)7147 void ScalarEvolution::forgetValue(Value *V) {
7148 Instruction *I = dyn_cast<Instruction>(V);
7149 if (!I) return;
7150
7151 // Drop information about expressions based on loop-header PHIs.
7152 SmallVector<Instruction *, 16> Worklist;
7153 Worklist.push_back(I);
7154
7155 SmallPtrSet<Instruction *, 8> Visited;
7156 while (!Worklist.empty()) {
7157 I = Worklist.pop_back_val();
7158 if (!Visited.insert(I).second)
7159 continue;
7160
7161 ValueExprMapType::iterator It =
7162 ValueExprMap.find_as(static_cast<Value *>(I));
7163 if (It != ValueExprMap.end()) {
7164 eraseValueFromMap(It->first);
7165 forgetMemoizedResults(It->second);
7166 if (PHINode *PN = dyn_cast<PHINode>(I))
7167 ConstantEvolutionLoopExitValue.erase(PN);
7168 }
7169
7170 PushDefUseChildren(I, Worklist);
7171 }
7172 }
7173
forgetLoopDispositions(const Loop * L)7174 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7175 LoopDispositions.clear();
7176 }
7177
7178 /// Get the exact loop backedge taken count considering all loop exits. A
7179 /// computable result can only be returned for loops with all exiting blocks
7180 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7181 /// is never skipped. This is a valid assumption as long as the loop exits via
7182 /// that test. For precise results, it is the caller's responsibility to specify
7183 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7184 const SCEV *
getExact(const Loop * L,ScalarEvolution * SE,SCEVUnionPredicate * Preds) const7185 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7186 SCEVUnionPredicate *Preds) const {
7187 // If any exits were not computable, the loop is not computable.
7188 if (!isComplete() || ExitNotTaken.empty())
7189 return SE->getCouldNotCompute();
7190
7191 const BasicBlock *Latch = L->getLoopLatch();
7192 // All exiting blocks we have collected must dominate the only backedge.
7193 if (!Latch)
7194 return SE->getCouldNotCompute();
7195
7196 // All exiting blocks we have gathered dominate loop's latch, so exact trip
7197 // count is simply a minimum out of all these calculated exit counts.
7198 SmallVector<const SCEV *, 2> Ops;
7199 for (auto &ENT : ExitNotTaken) {
7200 const SCEV *BECount = ENT.ExactNotTaken;
7201 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7202 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7203 "We should only have known counts for exiting blocks that dominate "
7204 "latch!");
7205
7206 Ops.push_back(BECount);
7207
7208 if (Preds && !ENT.hasAlwaysTruePredicate())
7209 Preds->add(ENT.Predicate.get());
7210
7211 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7212 "Predicate should be always true!");
7213 }
7214
7215 return SE->getUMinFromMismatchedTypes(Ops);
7216 }
7217
7218 /// Get the exact not taken count for this loop exit.
7219 const SCEV *
getExact(const BasicBlock * ExitingBlock,ScalarEvolution * SE) const7220 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7221 ScalarEvolution *SE) const {
7222 for (auto &ENT : ExitNotTaken)
7223 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7224 return ENT.ExactNotTaken;
7225
7226 return SE->getCouldNotCompute();
7227 }
7228
getConstantMax(const BasicBlock * ExitingBlock,ScalarEvolution * SE) const7229 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7230 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7231 for (auto &ENT : ExitNotTaken)
7232 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7233 return ENT.MaxNotTaken;
7234
7235 return SE->getCouldNotCompute();
7236 }
7237
7238 /// getConstantMax - Get the constant max backedge taken count for the loop.
7239 const SCEV *
getConstantMax(ScalarEvolution * SE) const7240 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7241 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7242 return !ENT.hasAlwaysTruePredicate();
7243 };
7244
7245 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7246 return SE->getCouldNotCompute();
7247
7248 assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7249 isa<SCEVConstant>(getConstantMax())) &&
7250 "No point in having a non-constant max backedge taken count!");
7251 return getConstantMax();
7252 }
7253
7254 const SCEV *
getSymbolicMax(const Loop * L,ScalarEvolution * SE)7255 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7256 ScalarEvolution *SE) {
7257 if (!SymbolicMax)
7258 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7259 return SymbolicMax;
7260 }
7261
isConstantMaxOrZero(ScalarEvolution * SE) const7262 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7263 ScalarEvolution *SE) const {
7264 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7265 return !ENT.hasAlwaysTruePredicate();
7266 };
7267 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7268 }
7269
hasOperand(const SCEV * S,ScalarEvolution * SE) const7270 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
7271 ScalarEvolution *SE) const {
7272 if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() &&
7273 SE->hasOperand(getConstantMax(), S))
7274 return true;
7275
7276 for (auto &ENT : ExitNotTaken)
7277 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
7278 SE->hasOperand(ENT.ExactNotTaken, S))
7279 return true;
7280
7281 return false;
7282 }
7283
ExitLimit(const SCEV * E)7284 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7285 : ExactNotTaken(E), MaxNotTaken(E) {
7286 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7287 isa<SCEVConstant>(MaxNotTaken)) &&
7288 "No point in having a non-constant max backedge taken count!");
7289 }
7290
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,ArrayRef<const SmallPtrSetImpl<const SCEVPredicate * > * > PredSetList)7291 ScalarEvolution::ExitLimit::ExitLimit(
7292 const SCEV *E, const SCEV *M, bool MaxOrZero,
7293 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7294 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7295 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7296 !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7297 "Exact is not allowed to be less precise than Max");
7298 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7299 isa<SCEVConstant>(MaxNotTaken)) &&
7300 "No point in having a non-constant max backedge taken count!");
7301 for (auto *PredSet : PredSetList)
7302 for (auto *P : *PredSet)
7303 addPredicate(P);
7304 }
7305
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,const SmallPtrSetImpl<const SCEVPredicate * > & PredSet)7306 ScalarEvolution::ExitLimit::ExitLimit(
7307 const SCEV *E, const SCEV *M, bool MaxOrZero,
7308 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7309 : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7310 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7311 isa<SCEVConstant>(MaxNotTaken)) &&
7312 "No point in having a non-constant max backedge taken count!");
7313 }
7314
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero)7315 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7316 bool MaxOrZero)
7317 : ExitLimit(E, M, MaxOrZero, None) {
7318 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7319 isa<SCEVConstant>(MaxNotTaken)) &&
7320 "No point in having a non-constant max backedge taken count!");
7321 }
7322
7323 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7324 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,bool IsComplete,const SCEV * ConstantMax,bool MaxOrZero)7325 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7326 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7327 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7328 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7329 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7330
7331 ExitNotTaken.reserve(ExitCounts.size());
7332 std::transform(
7333 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7334 [&](const EdgeExitInfo &EEI) {
7335 BasicBlock *ExitBB = EEI.first;
7336 const ExitLimit &EL = EEI.second;
7337 if (EL.Predicates.empty())
7338 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7339 nullptr);
7340
7341 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7342 for (auto *Pred : EL.Predicates)
7343 Predicate->add(Pred);
7344
7345 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7346 std::move(Predicate));
7347 });
7348 assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7349 isa<SCEVConstant>(ConstantMax)) &&
7350 "No point in having a non-constant max backedge taken count!");
7351 }
7352
7353 /// Invalidate this result and free the ExitNotTakenInfo array.
clear()7354 void ScalarEvolution::BackedgeTakenInfo::clear() {
7355 ExitNotTaken.clear();
7356 }
7357
7358 /// Compute the number of times the backedge of the specified loop will execute.
7359 ScalarEvolution::BackedgeTakenInfo
computeBackedgeTakenCount(const Loop * L,bool AllowPredicates)7360 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7361 bool AllowPredicates) {
7362 SmallVector<BasicBlock *, 8> ExitingBlocks;
7363 L->getExitingBlocks(ExitingBlocks);
7364
7365 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7366
7367 SmallVector<EdgeExitInfo, 4> ExitCounts;
7368 bool CouldComputeBECount = true;
7369 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7370 const SCEV *MustExitMaxBECount = nullptr;
7371 const SCEV *MayExitMaxBECount = nullptr;
7372 bool MustExitMaxOrZero = false;
7373
7374 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7375 // and compute maxBECount.
7376 // Do a union of all the predicates here.
7377 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7378 BasicBlock *ExitBB = ExitingBlocks[i];
7379
7380 // We canonicalize untaken exits to br (constant), ignore them so that
7381 // proving an exit untaken doesn't negatively impact our ability to reason
7382 // about the loop as whole.
7383 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7384 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7385 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7386 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7387 continue;
7388 }
7389
7390 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7391
7392 assert((AllowPredicates || EL.Predicates.empty()) &&
7393 "Predicated exit limit when predicates are not allowed!");
7394
7395 // 1. For each exit that can be computed, add an entry to ExitCounts.
7396 // CouldComputeBECount is true only if all exits can be computed.
7397 if (EL.ExactNotTaken == getCouldNotCompute())
7398 // We couldn't compute an exact value for this exit, so
7399 // we won't be able to compute an exact value for the loop.
7400 CouldComputeBECount = false;
7401 else
7402 ExitCounts.emplace_back(ExitBB, EL);
7403
7404 // 2. Derive the loop's MaxBECount from each exit's max number of
7405 // non-exiting iterations. Partition the loop exits into two kinds:
7406 // LoopMustExits and LoopMayExits.
7407 //
7408 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7409 // is a LoopMayExit. If any computable LoopMustExit is found, then
7410 // MaxBECount is the minimum EL.MaxNotTaken of computable
7411 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7412 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7413 // computable EL.MaxNotTaken.
7414 if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7415 DT.dominates(ExitBB, Latch)) {
7416 if (!MustExitMaxBECount) {
7417 MustExitMaxBECount = EL.MaxNotTaken;
7418 MustExitMaxOrZero = EL.MaxOrZero;
7419 } else {
7420 MustExitMaxBECount =
7421 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7422 }
7423 } else if (MayExitMaxBECount != getCouldNotCompute()) {
7424 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7425 MayExitMaxBECount = EL.MaxNotTaken;
7426 else {
7427 MayExitMaxBECount =
7428 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7429 }
7430 }
7431 }
7432 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7433 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7434 // The loop backedge will be taken the maximum or zero times if there's
7435 // a single exit that must be taken the maximum or zero times.
7436 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7437 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7438 MaxBECount, MaxOrZero);
7439 }
7440
7441 ScalarEvolution::ExitLimit
computeExitLimit(const Loop * L,BasicBlock * ExitingBlock,bool AllowPredicates)7442 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7443 bool AllowPredicates) {
7444 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7445 // If our exiting block does not dominate the latch, then its connection with
7446 // loop's exit limit may be far from trivial.
7447 const BasicBlock *Latch = L->getLoopLatch();
7448 if (!Latch || !DT.dominates(ExitingBlock, Latch))
7449 return getCouldNotCompute();
7450
7451 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7452 Instruction *Term = ExitingBlock->getTerminator();
7453 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7454 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7455 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7456 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7457 "It should have one successor in loop and one exit block!");
7458 // Proceed to the next level to examine the exit condition expression.
7459 return computeExitLimitFromCond(
7460 L, BI->getCondition(), ExitIfTrue,
7461 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7462 }
7463
7464 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7465 // For switch, make sure that there is a single exit from the loop.
7466 BasicBlock *Exit = nullptr;
7467 for (auto *SBB : successors(ExitingBlock))
7468 if (!L->contains(SBB)) {
7469 if (Exit) // Multiple exit successors.
7470 return getCouldNotCompute();
7471 Exit = SBB;
7472 }
7473 assert(Exit && "Exiting block must have at least one exit");
7474 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7475 /*ControlsExit=*/IsOnlyExit);
7476 }
7477
7478 return getCouldNotCompute();
7479 }
7480
computeExitLimitFromCond(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7481 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7482 const Loop *L, Value *ExitCond, bool ExitIfTrue,
7483 bool ControlsExit, bool AllowPredicates) {
7484 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7485 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7486 ControlsExit, AllowPredicates);
7487 }
7488
7489 Optional<ScalarEvolution::ExitLimit>
find(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7490 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7491 bool ExitIfTrue, bool ControlsExit,
7492 bool AllowPredicates) {
7493 (void)this->L;
7494 (void)this->ExitIfTrue;
7495 (void)this->AllowPredicates;
7496
7497 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7498 this->AllowPredicates == AllowPredicates &&
7499 "Variance in assumed invariant key components!");
7500 auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7501 if (Itr == TripCountMap.end())
7502 return None;
7503 return Itr->second;
7504 }
7505
insert(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates,const ExitLimit & EL)7506 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7507 bool ExitIfTrue,
7508 bool ControlsExit,
7509 bool AllowPredicates,
7510 const ExitLimit &EL) {
7511 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7512 this->AllowPredicates == AllowPredicates &&
7513 "Variance in assumed invariant key components!");
7514
7515 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7516 assert(InsertResult.second && "Expected successful insertion!");
7517 (void)InsertResult;
7518 (void)ExitIfTrue;
7519 }
7520
computeExitLimitFromCondCached(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7521 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7522 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7523 bool ControlsExit, bool AllowPredicates) {
7524
7525 if (auto MaybeEL =
7526 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7527 return *MaybeEL;
7528
7529 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7530 ControlsExit, AllowPredicates);
7531 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7532 return EL;
7533 }
7534
computeExitLimitFromCondImpl(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7535 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7536 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7537 bool ControlsExit, bool AllowPredicates) {
7538 // Handle BinOp conditions (And, Or).
7539 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7540 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7541 return *LimitFromBinOp;
7542
7543 // With an icmp, it may be feasible to compute an exact backedge-taken count.
7544 // Proceed to the next level to examine the icmp.
7545 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7546 ExitLimit EL =
7547 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7548 if (EL.hasFullInfo() || !AllowPredicates)
7549 return EL;
7550
7551 // Try again, but use SCEV predicates this time.
7552 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7553 /*AllowPredicates=*/true);
7554 }
7555
7556 // Check for a constant condition. These are normally stripped out by
7557 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7558 // preserve the CFG and is temporarily leaving constant conditions
7559 // in place.
7560 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7561 if (ExitIfTrue == !CI->getZExtValue())
7562 // The backedge is always taken.
7563 return getCouldNotCompute();
7564 else
7565 // The backedge is never taken.
7566 return getZero(CI->getType());
7567 }
7568
7569 // If it's not an integer or pointer comparison then compute it the hard way.
7570 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7571 }
7572
7573 Optional<ScalarEvolution::ExitLimit>
computeExitLimitFromCondFromBinOp(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7574 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7575 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7576 bool ControlsExit, bool AllowPredicates) {
7577 // Check if the controlling expression for this loop is an And or Or.
7578 if (auto *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7579 if (BO->getOpcode() == Instruction::And)
7580 return computeExitLimitFromCondFromBinOpHelper(
7581 Cache, L, BO, !ExitIfTrue, ExitIfTrue, ControlsExit, AllowPredicates,
7582 ConstantInt::get(BO->getType(), 1));
7583 if (BO->getOpcode() == Instruction::Or)
7584 return computeExitLimitFromCondFromBinOpHelper(
7585 Cache, L, BO, ExitIfTrue, ExitIfTrue, ControlsExit, AllowPredicates,
7586 ConstantInt::get(BO->getType(), 0));
7587 }
7588 return None;
7589 }
7590
7591 ScalarEvolution::ExitLimit
computeExitLimitFromCondFromBinOpHelper(ExitLimitCacheTy & Cache,const Loop * L,BinaryOperator * BO,bool EitherMayExit,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates,const Constant * NeutralElement)7592 ScalarEvolution::computeExitLimitFromCondFromBinOpHelper(
7593 ExitLimitCacheTy &Cache, const Loop *L, BinaryOperator *BO,
7594 bool EitherMayExit, bool ExitIfTrue, bool ControlsExit,
7595 bool AllowPredicates, const Constant *NeutralElement) {
7596 ExitLimit EL0 = computeExitLimitFromCondCached(
7597 Cache, L, BO->getOperand(0), ExitIfTrue, ControlsExit && !EitherMayExit,
7598 AllowPredicates);
7599 ExitLimit EL1 = computeExitLimitFromCondCached(
7600 Cache, L, BO->getOperand(1), ExitIfTrue, ControlsExit && !EitherMayExit,
7601 AllowPredicates);
7602 // Be robust against unsimplified IR for the form "op i1 X,
7603 // NeutralElement"
7604 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7605 return CI == NeutralElement ? EL0 : EL1;
7606 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7607 return CI == NeutralElement ? EL1 : EL0;
7608 const SCEV *BECount = getCouldNotCompute();
7609 const SCEV *MaxBECount = getCouldNotCompute();
7610 if (EitherMayExit) {
7611 // Both conditions must be same for the loop to continue executing.
7612 // Choose the less conservative count.
7613 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7614 EL1.ExactNotTaken == getCouldNotCompute())
7615 BECount = getCouldNotCompute();
7616 else
7617 BECount =
7618 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7619 if (EL0.MaxNotTaken == getCouldNotCompute())
7620 MaxBECount = EL1.MaxNotTaken;
7621 else if (EL1.MaxNotTaken == getCouldNotCompute())
7622 MaxBECount = EL0.MaxNotTaken;
7623 else
7624 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7625 } else {
7626 // Both conditions must be same at the same time for the loop to exit.
7627 // For now, be conservative.
7628 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7629 BECount = EL0.ExactNotTaken;
7630 }
7631
7632 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7633 // to be more aggressive when computing BECount than when computing
7634 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7635 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7636 // to not.
7637 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7638 !isa<SCEVCouldNotCompute>(BECount))
7639 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7640
7641 return ExitLimit(BECount, MaxBECount, false,
7642 { &EL0.Predicates, &EL1.Predicates });
7643 }
7644
7645 ScalarEvolution::ExitLimit
computeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7646 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7647 ICmpInst *ExitCond,
7648 bool ExitIfTrue,
7649 bool ControlsExit,
7650 bool AllowPredicates) {
7651 // If the condition was exit on true, convert the condition to exit on false
7652 ICmpInst::Predicate Pred;
7653 if (!ExitIfTrue)
7654 Pred = ExitCond->getPredicate();
7655 else
7656 Pred = ExitCond->getInversePredicate();
7657 const ICmpInst::Predicate OriginalPred = Pred;
7658
7659 // Handle common loops like: for (X = "string"; *X; ++X)
7660 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7661 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7662 ExitLimit ItCnt =
7663 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7664 if (ItCnt.hasAnyInfo())
7665 return ItCnt;
7666 }
7667
7668 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7669 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7670
7671 // Try to evaluate any dependencies out of the loop.
7672 LHS = getSCEVAtScope(LHS, L);
7673 RHS = getSCEVAtScope(RHS, L);
7674
7675 // At this point, we would like to compute how many iterations of the
7676 // loop the predicate will return true for these inputs.
7677 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7678 // If there is a loop-invariant, force it into the RHS.
7679 std::swap(LHS, RHS);
7680 Pred = ICmpInst::getSwappedPredicate(Pred);
7681 }
7682
7683 // Simplify the operands before analyzing them.
7684 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7685
7686 // If we have a comparison of a chrec against a constant, try to use value
7687 // ranges to answer this query.
7688 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7689 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7690 if (AddRec->getLoop() == L) {
7691 // Form the constant range.
7692 ConstantRange CompRange =
7693 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7694
7695 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7696 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7697 }
7698
7699 switch (Pred) {
7700 case ICmpInst::ICMP_NE: { // while (X != Y)
7701 // Convert to: while (X-Y != 0)
7702 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7703 AllowPredicates);
7704 if (EL.hasAnyInfo()) return EL;
7705 break;
7706 }
7707 case ICmpInst::ICMP_EQ: { // while (X == Y)
7708 // Convert to: while (X-Y == 0)
7709 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7710 if (EL.hasAnyInfo()) return EL;
7711 break;
7712 }
7713 case ICmpInst::ICMP_SLT:
7714 case ICmpInst::ICMP_ULT: { // while (X < Y)
7715 bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7716 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7717 AllowPredicates);
7718 if (EL.hasAnyInfo()) return EL;
7719 break;
7720 }
7721 case ICmpInst::ICMP_SGT:
7722 case ICmpInst::ICMP_UGT: { // while (X > Y)
7723 bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7724 ExitLimit EL =
7725 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7726 AllowPredicates);
7727 if (EL.hasAnyInfo()) return EL;
7728 break;
7729 }
7730 default:
7731 break;
7732 }
7733
7734 auto *ExhaustiveCount =
7735 computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7736
7737 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7738 return ExhaustiveCount;
7739
7740 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7741 ExitCond->getOperand(1), L, OriginalPred);
7742 }
7743
7744 ScalarEvolution::ExitLimit
computeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool ControlsExit)7745 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7746 SwitchInst *Switch,
7747 BasicBlock *ExitingBlock,
7748 bool ControlsExit) {
7749 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7750
7751 // Give up if the exit is the default dest of a switch.
7752 if (Switch->getDefaultDest() == ExitingBlock)
7753 return getCouldNotCompute();
7754
7755 assert(L->contains(Switch->getDefaultDest()) &&
7756 "Default case must not exit the loop!");
7757 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7758 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7759
7760 // while (X != Y) --> while (X-Y != 0)
7761 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7762 if (EL.hasAnyInfo())
7763 return EL;
7764
7765 return getCouldNotCompute();
7766 }
7767
7768 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)7769 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7770 ScalarEvolution &SE) {
7771 const SCEV *InVal = SE.getConstant(C);
7772 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7773 assert(isa<SCEVConstant>(Val) &&
7774 "Evaluation of SCEV at constant didn't fold correctly?");
7775 return cast<SCEVConstant>(Val)->getValue();
7776 }
7777
7778 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7779 /// compute the backedge execution count.
7780 ScalarEvolution::ExitLimit
computeLoadConstantCompareExitLimit(LoadInst * LI,Constant * RHS,const Loop * L,ICmpInst::Predicate predicate)7781 ScalarEvolution::computeLoadConstantCompareExitLimit(
7782 LoadInst *LI,
7783 Constant *RHS,
7784 const Loop *L,
7785 ICmpInst::Predicate predicate) {
7786 if (LI->isVolatile()) return getCouldNotCompute();
7787
7788 // Check to see if the loaded pointer is a getelementptr of a global.
7789 // TODO: Use SCEV instead of manually grubbing with GEPs.
7790 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7791 if (!GEP) return getCouldNotCompute();
7792
7793 // Make sure that it is really a constant global we are gepping, with an
7794 // initializer, and make sure the first IDX is really 0.
7795 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7796 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7797 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7798 !cast<Constant>(GEP->getOperand(1))->isNullValue())
7799 return getCouldNotCompute();
7800
7801 // Okay, we allow one non-constant index into the GEP instruction.
7802 Value *VarIdx = nullptr;
7803 std::vector<Constant*> Indexes;
7804 unsigned VarIdxNum = 0;
7805 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7806 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7807 Indexes.push_back(CI);
7808 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7809 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
7810 VarIdx = GEP->getOperand(i);
7811 VarIdxNum = i-2;
7812 Indexes.push_back(nullptr);
7813 }
7814
7815 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7816 if (!VarIdx)
7817 return getCouldNotCompute();
7818
7819 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7820 // Check to see if X is a loop variant variable value now.
7821 const SCEV *Idx = getSCEV(VarIdx);
7822 Idx = getSCEVAtScope(Idx, L);
7823
7824 // We can only recognize very limited forms of loop index expressions, in
7825 // particular, only affine AddRec's like {C1,+,C2}.
7826 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7827 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7828 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7829 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7830 return getCouldNotCompute();
7831
7832 unsigned MaxSteps = MaxBruteForceIterations;
7833 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7834 ConstantInt *ItCst = ConstantInt::get(
7835 cast<IntegerType>(IdxExpr->getType()), IterationNum);
7836 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7837
7838 // Form the GEP offset.
7839 Indexes[VarIdxNum] = Val;
7840
7841 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7842 Indexes);
7843 if (!Result) break; // Cannot compute!
7844
7845 // Evaluate the condition for this iteration.
7846 Result = ConstantExpr::getICmp(predicate, Result, RHS);
7847 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
7848 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7849 ++NumArrayLenItCounts;
7850 return getConstant(ItCst); // Found terminating iteration!
7851 }
7852 }
7853 return getCouldNotCompute();
7854 }
7855
computeShiftCompareExitLimit(Value * LHS,Value * RHSV,const Loop * L,ICmpInst::Predicate Pred)7856 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7857 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7858 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7859 if (!RHS)
7860 return getCouldNotCompute();
7861
7862 const BasicBlock *Latch = L->getLoopLatch();
7863 if (!Latch)
7864 return getCouldNotCompute();
7865
7866 const BasicBlock *Predecessor = L->getLoopPredecessor();
7867 if (!Predecessor)
7868 return getCouldNotCompute();
7869
7870 // Return true if V is of the form "LHS `shift_op` <positive constant>".
7871 // Return LHS in OutLHS and shift_opt in OutOpCode.
7872 auto MatchPositiveShift =
7873 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7874
7875 using namespace PatternMatch;
7876
7877 ConstantInt *ShiftAmt;
7878 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7879 OutOpCode = Instruction::LShr;
7880 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7881 OutOpCode = Instruction::AShr;
7882 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7883 OutOpCode = Instruction::Shl;
7884 else
7885 return false;
7886
7887 return ShiftAmt->getValue().isStrictlyPositive();
7888 };
7889
7890 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7891 //
7892 // loop:
7893 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7894 // %iv.shifted = lshr i32 %iv, <positive constant>
7895 //
7896 // Return true on a successful match. Return the corresponding PHI node (%iv
7897 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7898 auto MatchShiftRecurrence =
7899 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7900 Optional<Instruction::BinaryOps> PostShiftOpCode;
7901
7902 {
7903 Instruction::BinaryOps OpC;
7904 Value *V;
7905
7906 // If we encounter a shift instruction, "peel off" the shift operation,
7907 // and remember that we did so. Later when we inspect %iv's backedge
7908 // value, we will make sure that the backedge value uses the same
7909 // operation.
7910 //
7911 // Note: the peeled shift operation does not have to be the same
7912 // instruction as the one feeding into the PHI's backedge value. We only
7913 // really care about it being the same *kind* of shift instruction --
7914 // that's all that is required for our later inferences to hold.
7915 if (MatchPositiveShift(LHS, V, OpC)) {
7916 PostShiftOpCode = OpC;
7917 LHS = V;
7918 }
7919 }
7920
7921 PNOut = dyn_cast<PHINode>(LHS);
7922 if (!PNOut || PNOut->getParent() != L->getHeader())
7923 return false;
7924
7925 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7926 Value *OpLHS;
7927
7928 return
7929 // The backedge value for the PHI node must be a shift by a positive
7930 // amount
7931 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7932
7933 // of the PHI node itself
7934 OpLHS == PNOut &&
7935
7936 // and the kind of shift should be match the kind of shift we peeled
7937 // off, if any.
7938 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7939 };
7940
7941 PHINode *PN;
7942 Instruction::BinaryOps OpCode;
7943 if (!MatchShiftRecurrence(LHS, PN, OpCode))
7944 return getCouldNotCompute();
7945
7946 const DataLayout &DL = getDataLayout();
7947
7948 // The key rationale for this optimization is that for some kinds of shift
7949 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7950 // within a finite number of iterations. If the condition guarding the
7951 // backedge (in the sense that the backedge is taken if the condition is true)
7952 // is false for the value the shift recurrence stabilizes to, then we know
7953 // that the backedge is taken only a finite number of times.
7954
7955 ConstantInt *StableValue = nullptr;
7956 switch (OpCode) {
7957 default:
7958 llvm_unreachable("Impossible case!");
7959
7960 case Instruction::AShr: {
7961 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7962 // bitwidth(K) iterations.
7963 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7964 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7965 Predecessor->getTerminator(), &DT);
7966 auto *Ty = cast<IntegerType>(RHS->getType());
7967 if (Known.isNonNegative())
7968 StableValue = ConstantInt::get(Ty, 0);
7969 else if (Known.isNegative())
7970 StableValue = ConstantInt::get(Ty, -1, true);
7971 else
7972 return getCouldNotCompute();
7973
7974 break;
7975 }
7976 case Instruction::LShr:
7977 case Instruction::Shl:
7978 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7979 // stabilize to 0 in at most bitwidth(K) iterations.
7980 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7981 break;
7982 }
7983
7984 auto *Result =
7985 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7986 assert(Result->getType()->isIntegerTy(1) &&
7987 "Otherwise cannot be an operand to a branch instruction");
7988
7989 if (Result->isZeroValue()) {
7990 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7991 const SCEV *UpperBound =
7992 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7993 return ExitLimit(getCouldNotCompute(), UpperBound, false);
7994 }
7995
7996 return getCouldNotCompute();
7997 }
7998
7999 /// Return true if we can constant fold an instruction of the specified type,
8000 /// assuming that all operands were constants.
CanConstantFold(const Instruction * I)8001 static bool CanConstantFold(const Instruction *I) {
8002 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8003 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8004 isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8005 return true;
8006
8007 if (const CallInst *CI = dyn_cast<CallInst>(I))
8008 if (const Function *F = CI->getCalledFunction())
8009 return canConstantFoldCallTo(CI, F);
8010 return false;
8011 }
8012
8013 /// Determine whether this instruction can constant evolve within this loop
8014 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)8015 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8016 // An instruction outside of the loop can't be derived from a loop PHI.
8017 if (!L->contains(I)) return false;
8018
8019 if (isa<PHINode>(I)) {
8020 // We don't currently keep track of the control flow needed to evaluate
8021 // PHIs, so we cannot handle PHIs inside of loops.
8022 return L->getHeader() == I->getParent();
8023 }
8024
8025 // If we won't be able to constant fold this expression even if the operands
8026 // are constants, bail early.
8027 return CanConstantFold(I);
8028 }
8029
8030 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8031 /// recursing through each instruction operand until reaching a loop header phi.
8032 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap,unsigned Depth)8033 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8034 DenseMap<Instruction *, PHINode *> &PHIMap,
8035 unsigned Depth) {
8036 if (Depth > MaxConstantEvolvingDepth)
8037 return nullptr;
8038
8039 // Otherwise, we can evaluate this instruction if all of its operands are
8040 // constant or derived from a PHI node themselves.
8041 PHINode *PHI = nullptr;
8042 for (Value *Op : UseInst->operands()) {
8043 if (isa<Constant>(Op)) continue;
8044
8045 Instruction *OpInst = dyn_cast<Instruction>(Op);
8046 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8047
8048 PHINode *P = dyn_cast<PHINode>(OpInst);
8049 if (!P)
8050 // If this operand is already visited, reuse the prior result.
8051 // We may have P != PHI if this is the deepest point at which the
8052 // inconsistent paths meet.
8053 P = PHIMap.lookup(OpInst);
8054 if (!P) {
8055 // Recurse and memoize the results, whether a phi is found or not.
8056 // This recursive call invalidates pointers into PHIMap.
8057 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8058 PHIMap[OpInst] = P;
8059 }
8060 if (!P)
8061 return nullptr; // Not evolving from PHI
8062 if (PHI && PHI != P)
8063 return nullptr; // Evolving from multiple different PHIs.
8064 PHI = P;
8065 }
8066 // This is a expression evolving from a constant PHI!
8067 return PHI;
8068 }
8069
8070 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8071 /// in the loop that V is derived from. We allow arbitrary operations along the
8072 /// way, but the operands of an operation must either be constants or a value
8073 /// derived from a constant PHI. If this expression does not fit with these
8074 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)8075 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8076 Instruction *I = dyn_cast<Instruction>(V);
8077 if (!I || !canConstantEvolve(I, L)) return nullptr;
8078
8079 if (PHINode *PN = dyn_cast<PHINode>(I))
8080 return PN;
8081
8082 // Record non-constant instructions contained by the loop.
8083 DenseMap<Instruction *, PHINode *> PHIMap;
8084 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8085 }
8086
8087 /// EvaluateExpression - Given an expression that passes the
8088 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8089 /// in the loop has the value PHIVal. If we can't fold this expression for some
8090 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout & DL,const TargetLibraryInfo * TLI)8091 static Constant *EvaluateExpression(Value *V, const Loop *L,
8092 DenseMap<Instruction *, Constant *> &Vals,
8093 const DataLayout &DL,
8094 const TargetLibraryInfo *TLI) {
8095 // Convenient constant check, but redundant for recursive calls.
8096 if (Constant *C = dyn_cast<Constant>(V)) return C;
8097 Instruction *I = dyn_cast<Instruction>(V);
8098 if (!I) return nullptr;
8099
8100 if (Constant *C = Vals.lookup(I)) return C;
8101
8102 // An instruction inside the loop depends on a value outside the loop that we
8103 // weren't given a mapping for, or a value such as a call inside the loop.
8104 if (!canConstantEvolve(I, L)) return nullptr;
8105
8106 // An unmapped PHI can be due to a branch or another loop inside this loop,
8107 // or due to this not being the initial iteration through a loop where we
8108 // couldn't compute the evolution of this particular PHI last time.
8109 if (isa<PHINode>(I)) return nullptr;
8110
8111 std::vector<Constant*> Operands(I->getNumOperands());
8112
8113 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8114 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8115 if (!Operand) {
8116 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8117 if (!Operands[i]) return nullptr;
8118 continue;
8119 }
8120 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8121 Vals[Operand] = C;
8122 if (!C) return nullptr;
8123 Operands[i] = C;
8124 }
8125
8126 if (CmpInst *CI = dyn_cast<CmpInst>(I))
8127 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8128 Operands[1], DL, TLI);
8129 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8130 if (!LI->isVolatile())
8131 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8132 }
8133 return ConstantFoldInstOperands(I, Operands, DL, TLI);
8134 }
8135
8136
8137 // If every incoming value to PN except the one for BB is a specific Constant,
8138 // return that, else return nullptr.
getOtherIncomingValue(PHINode * PN,BasicBlock * BB)8139 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8140 Constant *IncomingVal = nullptr;
8141
8142 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8143 if (PN->getIncomingBlock(i) == BB)
8144 continue;
8145
8146 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8147 if (!CurrentVal)
8148 return nullptr;
8149
8150 if (IncomingVal != CurrentVal) {
8151 if (IncomingVal)
8152 return nullptr;
8153 IncomingVal = CurrentVal;
8154 }
8155 }
8156
8157 return IncomingVal;
8158 }
8159
8160 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8161 /// in the header of its containing loop, we know the loop executes a
8162 /// constant number of times, and the PHI node is just a recurrence
8163 /// involving constants, fold it.
8164 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)8165 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8166 const APInt &BEs,
8167 const Loop *L) {
8168 auto I = ConstantEvolutionLoopExitValue.find(PN);
8169 if (I != ConstantEvolutionLoopExitValue.end())
8170 return I->second;
8171
8172 if (BEs.ugt(MaxBruteForceIterations))
8173 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
8174
8175 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8176
8177 DenseMap<Instruction *, Constant *> CurrentIterVals;
8178 BasicBlock *Header = L->getHeader();
8179 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8180
8181 BasicBlock *Latch = L->getLoopLatch();
8182 if (!Latch)
8183 return nullptr;
8184
8185 for (PHINode &PHI : Header->phis()) {
8186 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8187 CurrentIterVals[&PHI] = StartCST;
8188 }
8189 if (!CurrentIterVals.count(PN))
8190 return RetVal = nullptr;
8191
8192 Value *BEValue = PN->getIncomingValueForBlock(Latch);
8193
8194 // Execute the loop symbolically to determine the exit value.
8195 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8196 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8197
8198 unsigned NumIterations = BEs.getZExtValue(); // must be in range
8199 unsigned IterationNum = 0;
8200 const DataLayout &DL = getDataLayout();
8201 for (; ; ++IterationNum) {
8202 if (IterationNum == NumIterations)
8203 return RetVal = CurrentIterVals[PN]; // Got exit value!
8204
8205 // Compute the value of the PHIs for the next iteration.
8206 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8207 DenseMap<Instruction *, Constant *> NextIterVals;
8208 Constant *NextPHI =
8209 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8210 if (!NextPHI)
8211 return nullptr; // Couldn't evaluate!
8212 NextIterVals[PN] = NextPHI;
8213
8214 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8215
8216 // Also evaluate the other PHI nodes. However, we don't get to stop if we
8217 // cease to be able to evaluate one of them or if they stop evolving,
8218 // because that doesn't necessarily prevent us from computing PN.
8219 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8220 for (const auto &I : CurrentIterVals) {
8221 PHINode *PHI = dyn_cast<PHINode>(I.first);
8222 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8223 PHIsToCompute.emplace_back(PHI, I.second);
8224 }
8225 // We use two distinct loops because EvaluateExpression may invalidate any
8226 // iterators into CurrentIterVals.
8227 for (const auto &I : PHIsToCompute) {
8228 PHINode *PHI = I.first;
8229 Constant *&NextPHI = NextIterVals[PHI];
8230 if (!NextPHI) { // Not already computed.
8231 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8232 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8233 }
8234 if (NextPHI != I.second)
8235 StoppedEvolving = false;
8236 }
8237
8238 // If all entries in CurrentIterVals == NextIterVals then we can stop
8239 // iterating, the loop can't continue to change.
8240 if (StoppedEvolving)
8241 return RetVal = CurrentIterVals[PN];
8242
8243 CurrentIterVals.swap(NextIterVals);
8244 }
8245 }
8246
computeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)8247 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8248 Value *Cond,
8249 bool ExitWhen) {
8250 PHINode *PN = getConstantEvolvingPHI(Cond, L);
8251 if (!PN) return getCouldNotCompute();
8252
8253 // If the loop is canonicalized, the PHI will have exactly two entries.
8254 // That's the only form we support here.
8255 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8256
8257 DenseMap<Instruction *, Constant *> CurrentIterVals;
8258 BasicBlock *Header = L->getHeader();
8259 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8260
8261 BasicBlock *Latch = L->getLoopLatch();
8262 assert(Latch && "Should follow from NumIncomingValues == 2!");
8263
8264 for (PHINode &PHI : Header->phis()) {
8265 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8266 CurrentIterVals[&PHI] = StartCST;
8267 }
8268 if (!CurrentIterVals.count(PN))
8269 return getCouldNotCompute();
8270
8271 // Okay, we find a PHI node that defines the trip count of this loop. Execute
8272 // the loop symbolically to determine when the condition gets a value of
8273 // "ExitWhen".
8274 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
8275 const DataLayout &DL = getDataLayout();
8276 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8277 auto *CondVal = dyn_cast_or_null<ConstantInt>(
8278 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8279
8280 // Couldn't symbolically evaluate.
8281 if (!CondVal) return getCouldNotCompute();
8282
8283 if (CondVal->getValue() == uint64_t(ExitWhen)) {
8284 ++NumBruteForceTripCountsComputed;
8285 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8286 }
8287
8288 // Update all the PHI nodes for the next iteration.
8289 DenseMap<Instruction *, Constant *> NextIterVals;
8290
8291 // Create a list of which PHIs we need to compute. We want to do this before
8292 // calling EvaluateExpression on them because that may invalidate iterators
8293 // into CurrentIterVals.
8294 SmallVector<PHINode *, 8> PHIsToCompute;
8295 for (const auto &I : CurrentIterVals) {
8296 PHINode *PHI = dyn_cast<PHINode>(I.first);
8297 if (!PHI || PHI->getParent() != Header) continue;
8298 PHIsToCompute.push_back(PHI);
8299 }
8300 for (PHINode *PHI : PHIsToCompute) {
8301 Constant *&NextPHI = NextIterVals[PHI];
8302 if (NextPHI) continue; // Already computed!
8303
8304 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8305 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8306 }
8307 CurrentIterVals.swap(NextIterVals);
8308 }
8309
8310 // Too many iterations were needed to evaluate.
8311 return getCouldNotCompute();
8312 }
8313
getSCEVAtScope(const SCEV * V,const Loop * L)8314 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8315 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8316 ValuesAtScopes[V];
8317 // Check to see if we've folded this expression at this loop before.
8318 for (auto &LS : Values)
8319 if (LS.first == L)
8320 return LS.second ? LS.second : V;
8321
8322 Values.emplace_back(L, nullptr);
8323
8324 // Otherwise compute it.
8325 const SCEV *C = computeSCEVAtScope(V, L);
8326 for (auto &LS : reverse(ValuesAtScopes[V]))
8327 if (LS.first == L) {
8328 LS.second = C;
8329 break;
8330 }
8331 return C;
8332 }
8333
8334 /// This builds up a Constant using the ConstantExpr interface. That way, we
8335 /// will return Constants for objects which aren't represented by a
8336 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8337 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)8338 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8339 switch (V->getSCEVType()) {
8340 case scCouldNotCompute:
8341 case scAddRecExpr:
8342 return nullptr;
8343 case scConstant:
8344 return cast<SCEVConstant>(V)->getValue();
8345 case scUnknown:
8346 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8347 case scSignExtend: {
8348 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8349 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8350 return ConstantExpr::getSExt(CastOp, SS->getType());
8351 return nullptr;
8352 }
8353 case scZeroExtend: {
8354 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8355 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8356 return ConstantExpr::getZExt(CastOp, SZ->getType());
8357 return nullptr;
8358 }
8359 case scPtrToInt: {
8360 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8361 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8362 return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8363
8364 return nullptr;
8365 }
8366 case scTruncate: {
8367 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8368 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8369 return ConstantExpr::getTrunc(CastOp, ST->getType());
8370 return nullptr;
8371 }
8372 case scAddExpr: {
8373 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8374 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8375 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8376 unsigned AS = PTy->getAddressSpace();
8377 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8378 C = ConstantExpr::getBitCast(C, DestPtrTy);
8379 }
8380 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8381 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8382 if (!C2)
8383 return nullptr;
8384
8385 // First pointer!
8386 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8387 unsigned AS = C2->getType()->getPointerAddressSpace();
8388 std::swap(C, C2);
8389 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8390 // The offsets have been converted to bytes. We can add bytes to an
8391 // i8* by GEP with the byte count in the first index.
8392 C = ConstantExpr::getBitCast(C, DestPtrTy);
8393 }
8394
8395 // Don't bother trying to sum two pointers. We probably can't
8396 // statically compute a load that results from it anyway.
8397 if (C2->getType()->isPointerTy())
8398 return nullptr;
8399
8400 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8401 if (PTy->getElementType()->isStructTy())
8402 C2 = ConstantExpr::getIntegerCast(
8403 C2, Type::getInt32Ty(C->getContext()), true);
8404 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8405 } else
8406 C = ConstantExpr::getAdd(C, C2);
8407 }
8408 return C;
8409 }
8410 return nullptr;
8411 }
8412 case scMulExpr: {
8413 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8414 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8415 // Don't bother with pointers at all.
8416 if (C->getType()->isPointerTy())
8417 return nullptr;
8418 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8419 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8420 if (!C2 || C2->getType()->isPointerTy())
8421 return nullptr;
8422 C = ConstantExpr::getMul(C, C2);
8423 }
8424 return C;
8425 }
8426 return nullptr;
8427 }
8428 case scUDivExpr: {
8429 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8430 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8431 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8432 if (LHS->getType() == RHS->getType())
8433 return ConstantExpr::getUDiv(LHS, RHS);
8434 return nullptr;
8435 }
8436 case scSMaxExpr:
8437 case scUMaxExpr:
8438 case scSMinExpr:
8439 case scUMinExpr:
8440 return nullptr; // TODO: smax, umax, smin, umax.
8441 }
8442 llvm_unreachable("Unknown SCEV kind!");
8443 }
8444
computeSCEVAtScope(const SCEV * V,const Loop * L)8445 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8446 if (isa<SCEVConstant>(V)) return V;
8447
8448 // If this instruction is evolved from a constant-evolving PHI, compute the
8449 // exit value from the loop without using SCEVs.
8450 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8451 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8452 if (PHINode *PN = dyn_cast<PHINode>(I)) {
8453 const Loop *CurrLoop = this->LI[I->getParent()];
8454 // Looking for loop exit value.
8455 if (CurrLoop && CurrLoop->getParentLoop() == L &&
8456 PN->getParent() == CurrLoop->getHeader()) {
8457 // Okay, there is no closed form solution for the PHI node. Check
8458 // to see if the loop that contains it has a known backedge-taken
8459 // count. If so, we may be able to force computation of the exit
8460 // value.
8461 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8462 // This trivial case can show up in some degenerate cases where
8463 // the incoming IR has not yet been fully simplified.
8464 if (BackedgeTakenCount->isZero()) {
8465 Value *InitValue = nullptr;
8466 bool MultipleInitValues = false;
8467 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8468 if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8469 if (!InitValue)
8470 InitValue = PN->getIncomingValue(i);
8471 else if (InitValue != PN->getIncomingValue(i)) {
8472 MultipleInitValues = true;
8473 break;
8474 }
8475 }
8476 }
8477 if (!MultipleInitValues && InitValue)
8478 return getSCEV(InitValue);
8479 }
8480 // Do we have a loop invariant value flowing around the backedge
8481 // for a loop which must execute the backedge?
8482 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8483 isKnownPositive(BackedgeTakenCount) &&
8484 PN->getNumIncomingValues() == 2) {
8485
8486 unsigned InLoopPred =
8487 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8488 Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8489 if (CurrLoop->isLoopInvariant(BackedgeVal))
8490 return getSCEV(BackedgeVal);
8491 }
8492 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8493 // Okay, we know how many times the containing loop executes. If
8494 // this is a constant evolving PHI node, get the final value at
8495 // the specified iteration number.
8496 Constant *RV = getConstantEvolutionLoopExitValue(
8497 PN, BTCC->getAPInt(), CurrLoop);
8498 if (RV) return getSCEV(RV);
8499 }
8500 }
8501
8502 // If there is a single-input Phi, evaluate it at our scope. If we can
8503 // prove that this replacement does not break LCSSA form, use new value.
8504 if (PN->getNumOperands() == 1) {
8505 const SCEV *Input = getSCEV(PN->getOperand(0));
8506 const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8507 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8508 // for the simplest case just support constants.
8509 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8510 }
8511 }
8512
8513 // Okay, this is an expression that we cannot symbolically evaluate
8514 // into a SCEV. Check to see if it's possible to symbolically evaluate
8515 // the arguments into constants, and if so, try to constant propagate the
8516 // result. This is particularly useful for computing loop exit values.
8517 if (CanConstantFold(I)) {
8518 SmallVector<Constant *, 4> Operands;
8519 bool MadeImprovement = false;
8520 for (Value *Op : I->operands()) {
8521 if (Constant *C = dyn_cast<Constant>(Op)) {
8522 Operands.push_back(C);
8523 continue;
8524 }
8525
8526 // If any of the operands is non-constant and if they are
8527 // non-integer and non-pointer, don't even try to analyze them
8528 // with scev techniques.
8529 if (!isSCEVable(Op->getType()))
8530 return V;
8531
8532 const SCEV *OrigV = getSCEV(Op);
8533 const SCEV *OpV = getSCEVAtScope(OrigV, L);
8534 MadeImprovement |= OrigV != OpV;
8535
8536 Constant *C = BuildConstantFromSCEV(OpV);
8537 if (!C) return V;
8538 if (C->getType() != Op->getType())
8539 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8540 Op->getType(),
8541 false),
8542 C, Op->getType());
8543 Operands.push_back(C);
8544 }
8545
8546 // Check to see if getSCEVAtScope actually made an improvement.
8547 if (MadeImprovement) {
8548 Constant *C = nullptr;
8549 const DataLayout &DL = getDataLayout();
8550 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8551 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8552 Operands[1], DL, &TLI);
8553 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8554 if (!Load->isVolatile())
8555 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8556 DL);
8557 } else
8558 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8559 if (!C) return V;
8560 return getSCEV(C);
8561 }
8562 }
8563 }
8564
8565 // This is some other type of SCEVUnknown, just return it.
8566 return V;
8567 }
8568
8569 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8570 // Avoid performing the look-up in the common case where the specified
8571 // expression has no loop-variant portions.
8572 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8573 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8574 if (OpAtScope != Comm->getOperand(i)) {
8575 // Okay, at least one of these operands is loop variant but might be
8576 // foldable. Build a new instance of the folded commutative expression.
8577 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8578 Comm->op_begin()+i);
8579 NewOps.push_back(OpAtScope);
8580
8581 for (++i; i != e; ++i) {
8582 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8583 NewOps.push_back(OpAtScope);
8584 }
8585 if (isa<SCEVAddExpr>(Comm))
8586 return getAddExpr(NewOps, Comm->getNoWrapFlags());
8587 if (isa<SCEVMulExpr>(Comm))
8588 return getMulExpr(NewOps, Comm->getNoWrapFlags());
8589 if (isa<SCEVMinMaxExpr>(Comm))
8590 return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8591 llvm_unreachable("Unknown commutative SCEV type!");
8592 }
8593 }
8594 // If we got here, all operands are loop invariant.
8595 return Comm;
8596 }
8597
8598 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8599 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8600 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8601 if (LHS == Div->getLHS() && RHS == Div->getRHS())
8602 return Div; // must be loop invariant
8603 return getUDivExpr(LHS, RHS);
8604 }
8605
8606 // If this is a loop recurrence for a loop that does not contain L, then we
8607 // are dealing with the final value computed by the loop.
8608 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8609 // First, attempt to evaluate each operand.
8610 // Avoid performing the look-up in the common case where the specified
8611 // expression has no loop-variant portions.
8612 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8613 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8614 if (OpAtScope == AddRec->getOperand(i))
8615 continue;
8616
8617 // Okay, at least one of these operands is loop variant but might be
8618 // foldable. Build a new instance of the folded commutative expression.
8619 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8620 AddRec->op_begin()+i);
8621 NewOps.push_back(OpAtScope);
8622 for (++i; i != e; ++i)
8623 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8624
8625 const SCEV *FoldedRec =
8626 getAddRecExpr(NewOps, AddRec->getLoop(),
8627 AddRec->getNoWrapFlags(SCEV::FlagNW));
8628 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8629 // The addrec may be folded to a nonrecurrence, for example, if the
8630 // induction variable is multiplied by zero after constant folding. Go
8631 // ahead and return the folded value.
8632 if (!AddRec)
8633 return FoldedRec;
8634 break;
8635 }
8636
8637 // If the scope is outside the addrec's loop, evaluate it by using the
8638 // loop exit value of the addrec.
8639 if (!AddRec->getLoop()->contains(L)) {
8640 // To evaluate this recurrence, we need to know how many times the AddRec
8641 // loop iterates. Compute this now.
8642 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8643 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8644
8645 // Then, evaluate the AddRec.
8646 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8647 }
8648
8649 return AddRec;
8650 }
8651
8652 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8653 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8654 if (Op == Cast->getOperand())
8655 return Cast; // must be loop invariant
8656 return getZeroExtendExpr(Op, Cast->getType());
8657 }
8658
8659 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8660 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8661 if (Op == Cast->getOperand())
8662 return Cast; // must be loop invariant
8663 return getSignExtendExpr(Op, Cast->getType());
8664 }
8665
8666 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8667 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8668 if (Op == Cast->getOperand())
8669 return Cast; // must be loop invariant
8670 return getTruncateExpr(Op, Cast->getType());
8671 }
8672
8673 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
8674 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8675 if (Op == Cast->getOperand())
8676 return Cast; // must be loop invariant
8677 return getPtrToIntExpr(Op, Cast->getType());
8678 }
8679
8680 llvm_unreachable("Unknown SCEV type!");
8681 }
8682
getSCEVAtScope(Value * V,const Loop * L)8683 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8684 return getSCEVAtScope(getSCEV(V), L);
8685 }
8686
stripInjectiveFunctions(const SCEV * S) const8687 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8688 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8689 return stripInjectiveFunctions(ZExt->getOperand());
8690 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8691 return stripInjectiveFunctions(SExt->getOperand());
8692 return S;
8693 }
8694
8695 /// Finds the minimum unsigned root of the following equation:
8696 ///
8697 /// A * X = B (mod N)
8698 ///
8699 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8700 /// A and B isn't important.
8701 ///
8702 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const SCEV * B,ScalarEvolution & SE)8703 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8704 ScalarEvolution &SE) {
8705 uint32_t BW = A.getBitWidth();
8706 assert(BW == SE.getTypeSizeInBits(B->getType()));
8707 assert(A != 0 && "A must be non-zero.");
8708
8709 // 1. D = gcd(A, N)
8710 //
8711 // The gcd of A and N may have only one prime factor: 2. The number of
8712 // trailing zeros in A is its multiplicity
8713 uint32_t Mult2 = A.countTrailingZeros();
8714 // D = 2^Mult2
8715
8716 // 2. Check if B is divisible by D.
8717 //
8718 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8719 // is not less than multiplicity of this prime factor for D.
8720 if (SE.GetMinTrailingZeros(B) < Mult2)
8721 return SE.getCouldNotCompute();
8722
8723 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8724 // modulo (N / D).
8725 //
8726 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8727 // (N / D) in general. The inverse itself always fits into BW bits, though,
8728 // so we immediately truncate it.
8729 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
8730 APInt Mod(BW + 1, 0);
8731 Mod.setBit(BW - Mult2); // Mod = N / D
8732 APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8733
8734 // 4. Compute the minimum unsigned root of the equation:
8735 // I * (B / D) mod (N / D)
8736 // To simplify the computation, we factor out the divide by D:
8737 // (I * B mod N) / D
8738 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8739 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8740 }
8741
8742 /// For a given quadratic addrec, generate coefficients of the corresponding
8743 /// quadratic equation, multiplied by a common value to ensure that they are
8744 /// integers.
8745 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8746 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8747 /// were multiplied by, and BitWidth is the bit width of the original addrec
8748 /// coefficients.
8749 /// This function returns None if the addrec coefficients are not compile-
8750 /// time constants.
8751 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
GetQuadraticEquation(const SCEVAddRecExpr * AddRec)8752 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8753 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8754 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8755 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8756 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8757 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8758 << *AddRec << '\n');
8759
8760 // We currently can only solve this if the coefficients are constants.
8761 if (!LC || !MC || !NC) {
8762 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8763 return None;
8764 }
8765
8766 APInt L = LC->getAPInt();
8767 APInt M = MC->getAPInt();
8768 APInt N = NC->getAPInt();
8769 assert(!N.isNullValue() && "This is not a quadratic addrec");
8770
8771 unsigned BitWidth = LC->getAPInt().getBitWidth();
8772 unsigned NewWidth = BitWidth + 1;
8773 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8774 << BitWidth << '\n');
8775 // The sign-extension (as opposed to a zero-extension) here matches the
8776 // extension used in SolveQuadraticEquationWrap (with the same motivation).
8777 N = N.sext(NewWidth);
8778 M = M.sext(NewWidth);
8779 L = L.sext(NewWidth);
8780
8781 // The increments are M, M+N, M+2N, ..., so the accumulated values are
8782 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8783 // L+M, L+2M+N, L+3M+3N, ...
8784 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8785 //
8786 // The equation Acc = 0 is then
8787 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
8788 // In a quadratic form it becomes:
8789 // N n^2 + (2M-N) n + 2L = 0.
8790
8791 APInt A = N;
8792 APInt B = 2 * M - A;
8793 APInt C = 2 * L;
8794 APInt T = APInt(NewWidth, 2);
8795 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8796 << "x + " << C << ", coeff bw: " << NewWidth
8797 << ", multiplied by " << T << '\n');
8798 return std::make_tuple(A, B, C, T, BitWidth);
8799 }
8800
8801 /// Helper function to compare optional APInts:
8802 /// (a) if X and Y both exist, return min(X, Y),
8803 /// (b) if neither X nor Y exist, return None,
8804 /// (c) if exactly one of X and Y exists, return that value.
MinOptional(Optional<APInt> X,Optional<APInt> Y)8805 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8806 if (X.hasValue() && Y.hasValue()) {
8807 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8808 APInt XW = X->sextOrSelf(W);
8809 APInt YW = Y->sextOrSelf(W);
8810 return XW.slt(YW) ? *X : *Y;
8811 }
8812 if (!X.hasValue() && !Y.hasValue())
8813 return None;
8814 return X.hasValue() ? *X : *Y;
8815 }
8816
8817 /// Helper function to truncate an optional APInt to a given BitWidth.
8818 /// When solving addrec-related equations, it is preferable to return a value
8819 /// that has the same bit width as the original addrec's coefficients. If the
8820 /// solution fits in the original bit width, truncate it (except for i1).
8821 /// Returning a value of a different bit width may inhibit some optimizations.
8822 ///
8823 /// In general, a solution to a quadratic equation generated from an addrec
8824 /// may require BW+1 bits, where BW is the bit width of the addrec's
8825 /// coefficients. The reason is that the coefficients of the quadratic
8826 /// equation are BW+1 bits wide (to avoid truncation when converting from
8827 /// the addrec to the equation).
TruncIfPossible(Optional<APInt> X,unsigned BitWidth)8828 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8829 if (!X.hasValue())
8830 return None;
8831 unsigned W = X->getBitWidth();
8832 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8833 return X->trunc(BitWidth);
8834 return X;
8835 }
8836
8837 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8838 /// iterations. The values L, M, N are assumed to be signed, and they
8839 /// should all have the same bit widths.
8840 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8841 /// where BW is the bit width of the addrec's coefficients.
8842 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8843 /// returned as such, otherwise the bit width of the returned value may
8844 /// be greater than BW.
8845 ///
8846 /// This function returns None if
8847 /// (a) the addrec coefficients are not constant, or
8848 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8849 /// like x^2 = 5, no integer solutions exist, in other cases an integer
8850 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8851 static Optional<APInt>
SolveQuadraticAddRecExact(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)8852 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8853 APInt A, B, C, M;
8854 unsigned BitWidth;
8855 auto T = GetQuadraticEquation(AddRec);
8856 if (!T.hasValue())
8857 return None;
8858
8859 std::tie(A, B, C, M, BitWidth) = *T;
8860 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8861 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8862 if (!X.hasValue())
8863 return None;
8864
8865 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8866 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8867 if (!V->isZero())
8868 return None;
8869
8870 return TruncIfPossible(X, BitWidth);
8871 }
8872
8873 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8874 /// iterations. The values M, N are assumed to be signed, and they
8875 /// should all have the same bit widths.
8876 /// Find the least n such that c(n) does not belong to the given range,
8877 /// while c(n-1) does.
8878 ///
8879 /// This function returns None if
8880 /// (a) the addrec coefficients are not constant, or
8881 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8882 /// bounds of the range.
8883 static Optional<APInt>
SolveQuadraticAddRecRange(const SCEVAddRecExpr * AddRec,const ConstantRange & Range,ScalarEvolution & SE)8884 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8885 const ConstantRange &Range, ScalarEvolution &SE) {
8886 assert(AddRec->getOperand(0)->isZero() &&
8887 "Starting value of addrec should be 0");
8888 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8889 << Range << ", addrec " << *AddRec << '\n');
8890 // This case is handled in getNumIterationsInRange. Here we can assume that
8891 // we start in the range.
8892 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8893 "Addrec's initial value should be in range");
8894
8895 APInt A, B, C, M;
8896 unsigned BitWidth;
8897 auto T = GetQuadraticEquation(AddRec);
8898 if (!T.hasValue())
8899 return None;
8900
8901 // Be careful about the return value: there can be two reasons for not
8902 // returning an actual number. First, if no solutions to the equations
8903 // were found, and second, if the solutions don't leave the given range.
8904 // The first case means that the actual solution is "unknown", the second
8905 // means that it's known, but not valid. If the solution is unknown, we
8906 // cannot make any conclusions.
8907 // Return a pair: the optional solution and a flag indicating if the
8908 // solution was found.
8909 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8910 // Solve for signed overflow and unsigned overflow, pick the lower
8911 // solution.
8912 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8913 << Bound << " (before multiplying by " << M << ")\n");
8914 Bound *= M; // The quadratic equation multiplier.
8915
8916 Optional<APInt> SO = None;
8917 if (BitWidth > 1) {
8918 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8919 "signed overflow\n");
8920 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8921 }
8922 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8923 "unsigned overflow\n");
8924 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8925 BitWidth+1);
8926
8927 auto LeavesRange = [&] (const APInt &X) {
8928 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8929 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8930 if (Range.contains(V0->getValue()))
8931 return false;
8932 // X should be at least 1, so X-1 is non-negative.
8933 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8934 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8935 if (Range.contains(V1->getValue()))
8936 return true;
8937 return false;
8938 };
8939
8940 // If SolveQuadraticEquationWrap returns None, it means that there can
8941 // be a solution, but the function failed to find it. We cannot treat it
8942 // as "no solution".
8943 if (!SO.hasValue() || !UO.hasValue())
8944 return { None, false };
8945
8946 // Check the smaller value first to see if it leaves the range.
8947 // At this point, both SO and UO must have values.
8948 Optional<APInt> Min = MinOptional(SO, UO);
8949 if (LeavesRange(*Min))
8950 return { Min, true };
8951 Optional<APInt> Max = Min == SO ? UO : SO;
8952 if (LeavesRange(*Max))
8953 return { Max, true };
8954
8955 // Solutions were found, but were eliminated, hence the "true".
8956 return { None, true };
8957 };
8958
8959 std::tie(A, B, C, M, BitWidth) = *T;
8960 // Lower bound is inclusive, subtract 1 to represent the exiting value.
8961 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8962 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8963 auto SL = SolveForBoundary(Lower);
8964 auto SU = SolveForBoundary(Upper);
8965 // If any of the solutions was unknown, no meaninigful conclusions can
8966 // be made.
8967 if (!SL.second || !SU.second)
8968 return None;
8969
8970 // Claim: The correct solution is not some value between Min and Max.
8971 //
8972 // Justification: Assuming that Min and Max are different values, one of
8973 // them is when the first signed overflow happens, the other is when the
8974 // first unsigned overflow happens. Crossing the range boundary is only
8975 // possible via an overflow (treating 0 as a special case of it, modeling
8976 // an overflow as crossing k*2^W for some k).
8977 //
8978 // The interesting case here is when Min was eliminated as an invalid
8979 // solution, but Max was not. The argument is that if there was another
8980 // overflow between Min and Max, it would also have been eliminated if
8981 // it was considered.
8982 //
8983 // For a given boundary, it is possible to have two overflows of the same
8984 // type (signed/unsigned) without having the other type in between: this
8985 // can happen when the vertex of the parabola is between the iterations
8986 // corresponding to the overflows. This is only possible when the two
8987 // overflows cross k*2^W for the same k. In such case, if the second one
8988 // left the range (and was the first one to do so), the first overflow
8989 // would have to enter the range, which would mean that either we had left
8990 // the range before or that we started outside of it. Both of these cases
8991 // are contradictions.
8992 //
8993 // Claim: In the case where SolveForBoundary returns None, the correct
8994 // solution is not some value between the Max for this boundary and the
8995 // Min of the other boundary.
8996 //
8997 // Justification: Assume that we had such Max_A and Min_B corresponding
8998 // to range boundaries A and B and such that Max_A < Min_B. If there was
8999 // a solution between Max_A and Min_B, it would have to be caused by an
9000 // overflow corresponding to either A or B. It cannot correspond to B,
9001 // since Min_B is the first occurrence of such an overflow. If it
9002 // corresponded to A, it would have to be either a signed or an unsigned
9003 // overflow that is larger than both eliminated overflows for A. But
9004 // between the eliminated overflows and this overflow, the values would
9005 // cover the entire value space, thus crossing the other boundary, which
9006 // is a contradiction.
9007
9008 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9009 }
9010
9011 ScalarEvolution::ExitLimit
howFarToZero(const SCEV * V,const Loop * L,bool ControlsExit,bool AllowPredicates)9012 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9013 bool AllowPredicates) {
9014
9015 // This is only used for loops with a "x != y" exit test. The exit condition
9016 // is now expressed as a single expression, V = x-y. So the exit test is
9017 // effectively V != 0. We know and take advantage of the fact that this
9018 // expression only being used in a comparison by zero context.
9019
9020 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9021 // If the value is a constant
9022 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9023 // If the value is already zero, the branch will execute zero times.
9024 if (C->getValue()->isZero()) return C;
9025 return getCouldNotCompute(); // Otherwise it will loop infinitely.
9026 }
9027
9028 const SCEVAddRecExpr *AddRec =
9029 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9030
9031 if (!AddRec && AllowPredicates)
9032 // Try to make this an AddRec using runtime tests, in the first X
9033 // iterations of this loop, where X is the SCEV expression found by the
9034 // algorithm below.
9035 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9036
9037 if (!AddRec || AddRec->getLoop() != L)
9038 return getCouldNotCompute();
9039
9040 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9041 // the quadratic equation to solve it.
9042 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9043 // We can only use this value if the chrec ends up with an exact zero
9044 // value at this index. When solving for "X*X != 5", for example, we
9045 // should not accept a root of 2.
9046 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9047 const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9048 return ExitLimit(R, R, false, Predicates);
9049 }
9050 return getCouldNotCompute();
9051 }
9052
9053 // Otherwise we can only handle this if it is affine.
9054 if (!AddRec->isAffine())
9055 return getCouldNotCompute();
9056
9057 // If this is an affine expression, the execution count of this branch is
9058 // the minimum unsigned root of the following equation:
9059 //
9060 // Start + Step*N = 0 (mod 2^BW)
9061 //
9062 // equivalent to:
9063 //
9064 // Step*N = -Start (mod 2^BW)
9065 //
9066 // where BW is the common bit width of Start and Step.
9067
9068 // Get the initial value for the loop.
9069 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9070 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9071
9072 // For now we handle only constant steps.
9073 //
9074 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9075 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9076 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9077 // We have not yet seen any such cases.
9078 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9079 if (!StepC || StepC->getValue()->isZero())
9080 return getCouldNotCompute();
9081
9082 // For positive steps (counting up until unsigned overflow):
9083 // N = -Start/Step (as unsigned)
9084 // For negative steps (counting down to zero):
9085 // N = Start/-Step
9086 // First compute the unsigned distance from zero in the direction of Step.
9087 bool CountDown = StepC->getAPInt().isNegative();
9088 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9089
9090 // Handle unitary steps, which cannot wraparound.
9091 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9092 // N = Distance (as unsigned)
9093 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9094 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9095 APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9096 if (MaxBECountBase.ult(MaxBECount))
9097 MaxBECount = MaxBECountBase;
9098
9099 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9100 // we end up with a loop whose backedge-taken count is n - 1. Detect this
9101 // case, and see if we can improve the bound.
9102 //
9103 // Explicitly handling this here is necessary because getUnsignedRange
9104 // isn't context-sensitive; it doesn't know that we only care about the
9105 // range inside the loop.
9106 const SCEV *Zero = getZero(Distance->getType());
9107 const SCEV *One = getOne(Distance->getType());
9108 const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9109 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9110 // If Distance + 1 doesn't overflow, we can compute the maximum distance
9111 // as "unsigned_max(Distance + 1) - 1".
9112 ConstantRange CR = getUnsignedRange(DistancePlusOne);
9113 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9114 }
9115 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9116 }
9117
9118 // If the condition controls loop exit (the loop exits only if the expression
9119 // is true) and the addition is no-wrap we can use unsigned divide to
9120 // compute the backedge count. In this case, the step may not divide the
9121 // distance, but we don't care because if the condition is "missed" the loop
9122 // will have undefined behavior due to wrapping.
9123 if (ControlsExit && AddRec->hasNoSelfWrap() &&
9124 loopHasNoAbnormalExits(AddRec->getLoop())) {
9125 const SCEV *Exact =
9126 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9127 const SCEV *Max =
9128 Exact == getCouldNotCompute()
9129 ? Exact
9130 : getConstant(getUnsignedRangeMax(Exact));
9131 return ExitLimit(Exact, Max, false, Predicates);
9132 }
9133
9134 // Solve the general equation.
9135 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9136 getNegativeSCEV(Start), *this);
9137 const SCEV *M = E == getCouldNotCompute()
9138 ? E
9139 : getConstant(getUnsignedRangeMax(E));
9140 return ExitLimit(E, M, false, Predicates);
9141 }
9142
9143 ScalarEvolution::ExitLimit
howFarToNonZero(const SCEV * V,const Loop * L)9144 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9145 // Loops that look like: while (X == 0) are very strange indeed. We don't
9146 // handle them yet except for the trivial case. This could be expanded in the
9147 // future as needed.
9148
9149 // If the value is a constant, check to see if it is known to be non-zero
9150 // already. If so, the backedge will execute zero times.
9151 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9152 if (!C->getValue()->isZero())
9153 return getZero(C->getType());
9154 return getCouldNotCompute(); // Otherwise it will loop infinitely.
9155 }
9156
9157 // We could implement others, but I really doubt anyone writes loops like
9158 // this, and if they did, they would already be constant folded.
9159 return getCouldNotCompute();
9160 }
9161
9162 std::pair<const BasicBlock *, const BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(const BasicBlock * BB) const9163 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9164 const {
9165 // If the block has a unique predecessor, then there is no path from the
9166 // predecessor to the block that does not go through the direct edge
9167 // from the predecessor to the block.
9168 if (const BasicBlock *Pred = BB->getSinglePredecessor())
9169 return {Pred, BB};
9170
9171 // A loop's header is defined to be a block that dominates the loop.
9172 // If the header has a unique predecessor outside the loop, it must be
9173 // a block that has exactly one successor that can reach the loop.
9174 if (const Loop *L = LI.getLoopFor(BB))
9175 return {L->getLoopPredecessor(), L->getHeader()};
9176
9177 return {nullptr, nullptr};
9178 }
9179
9180 /// SCEV structural equivalence is usually sufficient for testing whether two
9181 /// expressions are equal, however for the purposes of looking for a condition
9182 /// guarding a loop, it can be useful to be a little more general, since a
9183 /// front-end may have replicated the controlling expression.
HasSameValue(const SCEV * A,const SCEV * B)9184 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9185 // Quick check to see if they are the same SCEV.
9186 if (A == B) return true;
9187
9188 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9189 // Not all instructions that are "identical" compute the same value. For
9190 // instance, two distinct alloca instructions allocating the same type are
9191 // identical and do not read memory; but compute distinct values.
9192 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9193 };
9194
9195 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9196 // two different instructions with the same value. Check for this case.
9197 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9198 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9199 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9200 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9201 if (ComputesEqualValues(AI, BI))
9202 return true;
9203
9204 // Otherwise assume they may have a different value.
9205 return false;
9206 }
9207
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)9208 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9209 const SCEV *&LHS, const SCEV *&RHS,
9210 unsigned Depth) {
9211 bool Changed = false;
9212 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9213 // '0 != 0'.
9214 auto TrivialCase = [&](bool TriviallyTrue) {
9215 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9216 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9217 return true;
9218 };
9219 // If we hit the max recursion limit bail out.
9220 if (Depth >= 3)
9221 return false;
9222
9223 // Canonicalize a constant to the right side.
9224 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9225 // Check for both operands constant.
9226 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9227 if (ConstantExpr::getICmp(Pred,
9228 LHSC->getValue(),
9229 RHSC->getValue())->isNullValue())
9230 return TrivialCase(false);
9231 else
9232 return TrivialCase(true);
9233 }
9234 // Otherwise swap the operands to put the constant on the right.
9235 std::swap(LHS, RHS);
9236 Pred = ICmpInst::getSwappedPredicate(Pred);
9237 Changed = true;
9238 }
9239
9240 // If we're comparing an addrec with a value which is loop-invariant in the
9241 // addrec's loop, put the addrec on the left. Also make a dominance check,
9242 // as both operands could be addrecs loop-invariant in each other's loop.
9243 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9244 const Loop *L = AR->getLoop();
9245 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9246 std::swap(LHS, RHS);
9247 Pred = ICmpInst::getSwappedPredicate(Pred);
9248 Changed = true;
9249 }
9250 }
9251
9252 // If there's a constant operand, canonicalize comparisons with boundary
9253 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9254 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9255 const APInt &RA = RC->getAPInt();
9256
9257 bool SimplifiedByConstantRange = false;
9258
9259 if (!ICmpInst::isEquality(Pred)) {
9260 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9261 if (ExactCR.isFullSet())
9262 return TrivialCase(true);
9263 else if (ExactCR.isEmptySet())
9264 return TrivialCase(false);
9265
9266 APInt NewRHS;
9267 CmpInst::Predicate NewPred;
9268 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9269 ICmpInst::isEquality(NewPred)) {
9270 // We were able to convert an inequality to an equality.
9271 Pred = NewPred;
9272 RHS = getConstant(NewRHS);
9273 Changed = SimplifiedByConstantRange = true;
9274 }
9275 }
9276
9277 if (!SimplifiedByConstantRange) {
9278 switch (Pred) {
9279 default:
9280 break;
9281 case ICmpInst::ICMP_EQ:
9282 case ICmpInst::ICMP_NE:
9283 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9284 if (!RA)
9285 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9286 if (const SCEVMulExpr *ME =
9287 dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9288 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9289 ME->getOperand(0)->isAllOnesValue()) {
9290 RHS = AE->getOperand(1);
9291 LHS = ME->getOperand(1);
9292 Changed = true;
9293 }
9294 break;
9295
9296
9297 // The "Should have been caught earlier!" messages refer to the fact
9298 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9299 // should have fired on the corresponding cases, and canonicalized the
9300 // check to trivial case.
9301
9302 case ICmpInst::ICMP_UGE:
9303 assert(!RA.isMinValue() && "Should have been caught earlier!");
9304 Pred = ICmpInst::ICMP_UGT;
9305 RHS = getConstant(RA - 1);
9306 Changed = true;
9307 break;
9308 case ICmpInst::ICMP_ULE:
9309 assert(!RA.isMaxValue() && "Should have been caught earlier!");
9310 Pred = ICmpInst::ICMP_ULT;
9311 RHS = getConstant(RA + 1);
9312 Changed = true;
9313 break;
9314 case ICmpInst::ICMP_SGE:
9315 assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9316 Pred = ICmpInst::ICMP_SGT;
9317 RHS = getConstant(RA - 1);
9318 Changed = true;
9319 break;
9320 case ICmpInst::ICMP_SLE:
9321 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9322 Pred = ICmpInst::ICMP_SLT;
9323 RHS = getConstant(RA + 1);
9324 Changed = true;
9325 break;
9326 }
9327 }
9328 }
9329
9330 // Check for obvious equality.
9331 if (HasSameValue(LHS, RHS)) {
9332 if (ICmpInst::isTrueWhenEqual(Pred))
9333 return TrivialCase(true);
9334 if (ICmpInst::isFalseWhenEqual(Pred))
9335 return TrivialCase(false);
9336 }
9337
9338 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9339 // adding or subtracting 1 from one of the operands.
9340 switch (Pred) {
9341 case ICmpInst::ICMP_SLE:
9342 if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9343 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9344 SCEV::FlagNSW);
9345 Pred = ICmpInst::ICMP_SLT;
9346 Changed = true;
9347 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9348 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9349 SCEV::FlagNSW);
9350 Pred = ICmpInst::ICMP_SLT;
9351 Changed = true;
9352 }
9353 break;
9354 case ICmpInst::ICMP_SGE:
9355 if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9356 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9357 SCEV::FlagNSW);
9358 Pred = ICmpInst::ICMP_SGT;
9359 Changed = true;
9360 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9361 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9362 SCEV::FlagNSW);
9363 Pred = ICmpInst::ICMP_SGT;
9364 Changed = true;
9365 }
9366 break;
9367 case ICmpInst::ICMP_ULE:
9368 if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9369 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9370 SCEV::FlagNUW);
9371 Pred = ICmpInst::ICMP_ULT;
9372 Changed = true;
9373 } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9374 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9375 Pred = ICmpInst::ICMP_ULT;
9376 Changed = true;
9377 }
9378 break;
9379 case ICmpInst::ICMP_UGE:
9380 if (!getUnsignedRangeMin(RHS).isMinValue()) {
9381 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9382 Pred = ICmpInst::ICMP_UGT;
9383 Changed = true;
9384 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9385 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9386 SCEV::FlagNUW);
9387 Pred = ICmpInst::ICMP_UGT;
9388 Changed = true;
9389 }
9390 break;
9391 default:
9392 break;
9393 }
9394
9395 // TODO: More simplifications are possible here.
9396
9397 // Recursively simplify until we either hit a recursion limit or nothing
9398 // changes.
9399 if (Changed)
9400 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9401
9402 return Changed;
9403 }
9404
isKnownNegative(const SCEV * S)9405 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9406 return getSignedRangeMax(S).isNegative();
9407 }
9408
isKnownPositive(const SCEV * S)9409 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9410 return getSignedRangeMin(S).isStrictlyPositive();
9411 }
9412
isKnownNonNegative(const SCEV * S)9413 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9414 return !getSignedRangeMin(S).isNegative();
9415 }
9416
isKnownNonPositive(const SCEV * S)9417 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9418 return !getSignedRangeMax(S).isStrictlyPositive();
9419 }
9420
isKnownNonZero(const SCEV * S)9421 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9422 return isKnownNegative(S) || isKnownPositive(S);
9423 }
9424
9425 std::pair<const SCEV *, const SCEV *>
SplitIntoInitAndPostInc(const Loop * L,const SCEV * S)9426 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9427 // Compute SCEV on entry of loop L.
9428 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9429 if (Start == getCouldNotCompute())
9430 return { Start, Start };
9431 // Compute post increment SCEV for loop L.
9432 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9433 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9434 return { Start, PostInc };
9435 }
9436
isKnownViaInduction(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9437 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9438 const SCEV *LHS, const SCEV *RHS) {
9439 // First collect all loops.
9440 SmallPtrSet<const Loop *, 8> LoopsUsed;
9441 getUsedLoops(LHS, LoopsUsed);
9442 getUsedLoops(RHS, LoopsUsed);
9443
9444 if (LoopsUsed.empty())
9445 return false;
9446
9447 // Domination relationship must be a linear order on collected loops.
9448 #ifndef NDEBUG
9449 for (auto *L1 : LoopsUsed)
9450 for (auto *L2 : LoopsUsed)
9451 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9452 DT.dominates(L2->getHeader(), L1->getHeader())) &&
9453 "Domination relationship is not a linear order");
9454 #endif
9455
9456 const Loop *MDL =
9457 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9458 [&](const Loop *L1, const Loop *L2) {
9459 return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9460 });
9461
9462 // Get init and post increment value for LHS.
9463 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9464 // if LHS contains unknown non-invariant SCEV then bail out.
9465 if (SplitLHS.first == getCouldNotCompute())
9466 return false;
9467 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9468 // Get init and post increment value for RHS.
9469 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9470 // if RHS contains unknown non-invariant SCEV then bail out.
9471 if (SplitRHS.first == getCouldNotCompute())
9472 return false;
9473 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9474 // It is possible that init SCEV contains an invariant load but it does
9475 // not dominate MDL and is not available at MDL loop entry, so we should
9476 // check it here.
9477 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9478 !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9479 return false;
9480
9481 // It seems backedge guard check is faster than entry one so in some cases
9482 // it can speed up whole estimation by short circuit
9483 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9484 SplitRHS.second) &&
9485 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9486 }
9487
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9488 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9489 const SCEV *LHS, const SCEV *RHS) {
9490 // Canonicalize the inputs first.
9491 (void)SimplifyICmpOperands(Pred, LHS, RHS);
9492
9493 if (isKnownViaInduction(Pred, LHS, RHS))
9494 return true;
9495
9496 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9497 return true;
9498
9499 // Otherwise see what can be done with some simple reasoning.
9500 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9501 }
9502
isKnownPredicateAt(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Instruction * Context)9503 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9504 const SCEV *LHS, const SCEV *RHS,
9505 const Instruction *Context) {
9506 // TODO: Analyze guards and assumes from Context's block.
9507 return isKnownPredicate(Pred, LHS, RHS) ||
9508 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9509 }
9510
isKnownOnEveryIteration(ICmpInst::Predicate Pred,const SCEVAddRecExpr * LHS,const SCEV * RHS)9511 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9512 const SCEVAddRecExpr *LHS,
9513 const SCEV *RHS) {
9514 const Loop *L = LHS->getLoop();
9515 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9516 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9517 }
9518
9519 Optional<ScalarEvolution::MonotonicPredicateType>
getMonotonicPredicateType(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred)9520 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9521 ICmpInst::Predicate Pred) {
9522 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9523
9524 #ifndef NDEBUG
9525 // Verify an invariant: inverting the predicate should turn a monotonically
9526 // increasing change to a monotonically decreasing one, and vice versa.
9527 if (Result) {
9528 auto ResultSwapped =
9529 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9530
9531 assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9532 assert(ResultSwapped.getValue() != Result.getValue() &&
9533 "monotonicity should flip as we flip the predicate");
9534 }
9535 #endif
9536
9537 return Result;
9538 }
9539
9540 Optional<ScalarEvolution::MonotonicPredicateType>
getMonotonicPredicateTypeImpl(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred)9541 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9542 ICmpInst::Predicate Pred) {
9543 // A zero step value for LHS means the induction variable is essentially a
9544 // loop invariant value. We don't really depend on the predicate actually
9545 // flipping from false to true (for increasing predicates, and the other way
9546 // around for decreasing predicates), all we care about is that *if* the
9547 // predicate changes then it only changes from false to true.
9548 //
9549 // A zero step value in itself is not very useful, but there may be places
9550 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9551 // as general as possible.
9552
9553 // Only handle LE/LT/GE/GT predicates.
9554 if (!ICmpInst::isRelational(Pred))
9555 return None;
9556
9557 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9558 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9559 "Should be greater or less!");
9560
9561 // Check that AR does not wrap.
9562 if (ICmpInst::isUnsigned(Pred)) {
9563 if (!LHS->hasNoUnsignedWrap())
9564 return None;
9565 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9566 } else {
9567 assert(ICmpInst::isSigned(Pred) &&
9568 "Relational predicate is either signed or unsigned!");
9569 if (!LHS->hasNoSignedWrap())
9570 return None;
9571
9572 const SCEV *Step = LHS->getStepRecurrence(*this);
9573
9574 if (isKnownNonNegative(Step))
9575 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9576
9577 if (isKnownNonPositive(Step))
9578 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9579
9580 return None;
9581 }
9582 }
9583
9584 Optional<ScalarEvolution::LoopInvariantPredicate>
getLoopInvariantPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L)9585 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
9586 const SCEV *LHS, const SCEV *RHS,
9587 const Loop *L) {
9588
9589 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9590 if (!isLoopInvariant(RHS, L)) {
9591 if (!isLoopInvariant(LHS, L))
9592 return None;
9593
9594 std::swap(LHS, RHS);
9595 Pred = ICmpInst::getSwappedPredicate(Pred);
9596 }
9597
9598 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9599 if (!ArLHS || ArLHS->getLoop() != L)
9600 return None;
9601
9602 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
9603 if (!MonotonicType)
9604 return None;
9605 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9606 // true as the loop iterates, and the backedge is control dependent on
9607 // "ArLHS `Pred` RHS" == true then we can reason as follows:
9608 //
9609 // * if the predicate was false in the first iteration then the predicate
9610 // is never evaluated again, since the loop exits without taking the
9611 // backedge.
9612 // * if the predicate was true in the first iteration then it will
9613 // continue to be true for all future iterations since it is
9614 // monotonically increasing.
9615 //
9616 // For both the above possibilities, we can replace the loop varying
9617 // predicate with its value on the first iteration of the loop (which is
9618 // loop invariant).
9619 //
9620 // A similar reasoning applies for a monotonically decreasing predicate, by
9621 // replacing true with false and false with true in the above two bullets.
9622 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
9623 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9624
9625 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9626 return None;
9627
9628 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
9629 }
9630
9631 Optional<ScalarEvolution::LoopInvariantPredicate>
getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,const Instruction * Context,const SCEV * MaxIter)9632 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
9633 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9634 const Instruction *Context, const SCEV *MaxIter) {
9635 // Try to prove the following set of facts:
9636 // - The predicate is monotonic in the iteration space.
9637 // - If the check does not fail on the 1st iteration:
9638 // - No overflow will happen during first MaxIter iterations;
9639 // - It will not fail on the MaxIter'th iteration.
9640 // If the check does fail on the 1st iteration, we leave the loop and no
9641 // other checks matter.
9642
9643 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9644 if (!isLoopInvariant(RHS, L)) {
9645 if (!isLoopInvariant(LHS, L))
9646 return None;
9647
9648 std::swap(LHS, RHS);
9649 Pred = ICmpInst::getSwappedPredicate(Pred);
9650 }
9651
9652 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
9653 if (!AR || AR->getLoop() != L)
9654 return None;
9655
9656 // The predicate must be relational (i.e. <, <=, >=, >).
9657 if (!ICmpInst::isRelational(Pred))
9658 return None;
9659
9660 // TODO: Support steps other than +/- 1.
9661 const SCEV *Step = AR->getStepRecurrence(*this);
9662 auto *One = getOne(Step->getType());
9663 auto *MinusOne = getNegativeSCEV(One);
9664 if (Step != One && Step != MinusOne)
9665 return None;
9666
9667 // Type mismatch here means that MaxIter is potentially larger than max
9668 // unsigned value in start type, which mean we cannot prove no wrap for the
9669 // indvar.
9670 if (AR->getType() != MaxIter->getType())
9671 return None;
9672
9673 // Value of IV on suggested last iteration.
9674 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
9675 // Does it still meet the requirement?
9676 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
9677 return None;
9678 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
9679 // not exceed max unsigned value of this type), this effectively proves
9680 // that there is no wrap during the iteration. To prove that there is no
9681 // signed/unsigned wrap, we need to check that
9682 // Start <= Last for step = 1 or Start >= Last for step = -1.
9683 ICmpInst::Predicate NoOverflowPred =
9684 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9685 if (Step == MinusOne)
9686 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
9687 const SCEV *Start = AR->getStart();
9688 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
9689 return None;
9690
9691 // Everything is fine.
9692 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
9693 }
9694
isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9695 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9696 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9697 if (HasSameValue(LHS, RHS))
9698 return ICmpInst::isTrueWhenEqual(Pred);
9699
9700 // This code is split out from isKnownPredicate because it is called from
9701 // within isLoopEntryGuardedByCond.
9702
9703 auto CheckRanges =
9704 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9705 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9706 .contains(RangeLHS);
9707 };
9708
9709 // The check at the top of the function catches the case where the values are
9710 // known to be equal.
9711 if (Pred == CmpInst::ICMP_EQ)
9712 return false;
9713
9714 if (Pred == CmpInst::ICMP_NE)
9715 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9716 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9717 isKnownNonZero(getMinusSCEV(LHS, RHS));
9718
9719 if (CmpInst::isSigned(Pred))
9720 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9721
9722 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9723 }
9724
isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9725 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9726 const SCEV *LHS,
9727 const SCEV *RHS) {
9728 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9729 // Return Y via OutY.
9730 auto MatchBinaryAddToConst =
9731 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9732 SCEV::NoWrapFlags ExpectedFlags) {
9733 const SCEV *NonConstOp, *ConstOp;
9734 SCEV::NoWrapFlags FlagsPresent;
9735
9736 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9737 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9738 return false;
9739
9740 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9741 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9742 };
9743
9744 APInt C;
9745
9746 switch (Pred) {
9747 default:
9748 break;
9749
9750 case ICmpInst::ICMP_SGE:
9751 std::swap(LHS, RHS);
9752 LLVM_FALLTHROUGH;
9753 case ICmpInst::ICMP_SLE:
9754 // X s<= (X + C)<nsw> if C >= 0
9755 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9756 return true;
9757
9758 // (X + C)<nsw> s<= X if C <= 0
9759 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9760 !C.isStrictlyPositive())
9761 return true;
9762 break;
9763
9764 case ICmpInst::ICMP_SGT:
9765 std::swap(LHS, RHS);
9766 LLVM_FALLTHROUGH;
9767 case ICmpInst::ICMP_SLT:
9768 // X s< (X + C)<nsw> if C > 0
9769 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9770 C.isStrictlyPositive())
9771 return true;
9772
9773 // (X + C)<nsw> s< X if C < 0
9774 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9775 return true;
9776 break;
9777
9778 case ICmpInst::ICMP_UGE:
9779 std::swap(LHS, RHS);
9780 LLVM_FALLTHROUGH;
9781 case ICmpInst::ICMP_ULE:
9782 // X u<= (X + C)<nuw> for any C
9783 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
9784 return true;
9785 break;
9786
9787 case ICmpInst::ICMP_UGT:
9788 std::swap(LHS, RHS);
9789 LLVM_FALLTHROUGH;
9790 case ICmpInst::ICMP_ULT:
9791 // X u< (X + C)<nuw> if C != 0
9792 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
9793 return true;
9794 break;
9795 }
9796
9797 return false;
9798 }
9799
isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9800 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9801 const SCEV *LHS,
9802 const SCEV *RHS) {
9803 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9804 return false;
9805
9806 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9807 // the stack can result in exponential time complexity.
9808 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9809
9810 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9811 //
9812 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9813 // isKnownPredicate. isKnownPredicate is more powerful, but also more
9814 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9815 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
9816 // use isKnownPredicate later if needed.
9817 return isKnownNonNegative(RHS) &&
9818 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9819 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9820 }
9821
isImpliedViaGuard(const BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9822 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
9823 ICmpInst::Predicate Pred,
9824 const SCEV *LHS, const SCEV *RHS) {
9825 // No need to even try if we know the module has no guards.
9826 if (!HasGuards)
9827 return false;
9828
9829 return any_of(*BB, [&](const Instruction &I) {
9830 using namespace llvm::PatternMatch;
9831
9832 Value *Condition;
9833 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9834 m_Value(Condition))) &&
9835 isImpliedCond(Pred, LHS, RHS, Condition, false);
9836 });
9837 }
9838
9839 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9840 /// protected by a conditional between LHS and RHS. This is used to
9841 /// to eliminate casts.
9842 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9843 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9844 ICmpInst::Predicate Pred,
9845 const SCEV *LHS, const SCEV *RHS) {
9846 // Interpret a null as meaning no loop, where there is obviously no guard
9847 // (interprocedural conditions notwithstanding).
9848 if (!L) return true;
9849
9850 if (VerifyIR)
9851 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9852 "This cannot be done on broken IR!");
9853
9854
9855 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9856 return true;
9857
9858 BasicBlock *Latch = L->getLoopLatch();
9859 if (!Latch)
9860 return false;
9861
9862 BranchInst *LoopContinuePredicate =
9863 dyn_cast<BranchInst>(Latch->getTerminator());
9864 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9865 isImpliedCond(Pred, LHS, RHS,
9866 LoopContinuePredicate->getCondition(),
9867 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9868 return true;
9869
9870 // We don't want more than one activation of the following loops on the stack
9871 // -- that can lead to O(n!) time complexity.
9872 if (WalkingBEDominatingConds)
9873 return false;
9874
9875 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9876
9877 // See if we can exploit a trip count to prove the predicate.
9878 const auto &BETakenInfo = getBackedgeTakenInfo(L);
9879 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9880 if (LatchBECount != getCouldNotCompute()) {
9881 // We know that Latch branches back to the loop header exactly
9882 // LatchBECount times. This means the backdege condition at Latch is
9883 // equivalent to "{0,+,1} u< LatchBECount".
9884 Type *Ty = LatchBECount->getType();
9885 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9886 const SCEV *LoopCounter =
9887 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9888 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9889 LatchBECount))
9890 return true;
9891 }
9892
9893 // Check conditions due to any @llvm.assume intrinsics.
9894 for (auto &AssumeVH : AC.assumptions()) {
9895 if (!AssumeVH)
9896 continue;
9897 auto *CI = cast<CallInst>(AssumeVH);
9898 if (!DT.dominates(CI, Latch->getTerminator()))
9899 continue;
9900
9901 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9902 return true;
9903 }
9904
9905 // If the loop is not reachable from the entry block, we risk running into an
9906 // infinite loop as we walk up into the dom tree. These loops do not matter
9907 // anyway, so we just return a conservative answer when we see them.
9908 if (!DT.isReachableFromEntry(L->getHeader()))
9909 return false;
9910
9911 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9912 return true;
9913
9914 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9915 DTN != HeaderDTN; DTN = DTN->getIDom()) {
9916 assert(DTN && "should reach the loop header before reaching the root!");
9917
9918 BasicBlock *BB = DTN->getBlock();
9919 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9920 return true;
9921
9922 BasicBlock *PBB = BB->getSinglePredecessor();
9923 if (!PBB)
9924 continue;
9925
9926 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9927 if (!ContinuePredicate || !ContinuePredicate->isConditional())
9928 continue;
9929
9930 Value *Condition = ContinuePredicate->getCondition();
9931
9932 // If we have an edge `E` within the loop body that dominates the only
9933 // latch, the condition guarding `E` also guards the backedge. This
9934 // reasoning works only for loops with a single latch.
9935
9936 BasicBlockEdge DominatingEdge(PBB, BB);
9937 if (DominatingEdge.isSingleEdge()) {
9938 // We're constructively (and conservatively) enumerating edges within the
9939 // loop body that dominate the latch. The dominator tree better agree
9940 // with us on this:
9941 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9942
9943 if (isImpliedCond(Pred, LHS, RHS, Condition,
9944 BB != ContinuePredicate->getSuccessor(0)))
9945 return true;
9946 }
9947 }
9948
9949 return false;
9950 }
9951
isBasicBlockEntryGuardedByCond(const BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9952 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
9953 ICmpInst::Predicate Pred,
9954 const SCEV *LHS,
9955 const SCEV *RHS) {
9956 if (VerifyIR)
9957 assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
9958 "This cannot be done on broken IR!");
9959
9960 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9961 return true;
9962
9963 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9964 // the facts (a >= b && a != b) separately. A typical situation is when the
9965 // non-strict comparison is known from ranges and non-equality is known from
9966 // dominating predicates. If we are proving strict comparison, we always try
9967 // to prove non-equality and non-strict comparison separately.
9968 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9969 const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9970 bool ProvedNonStrictComparison = false;
9971 bool ProvedNonEquality = false;
9972
9973 if (ProvingStrictComparison) {
9974 ProvedNonStrictComparison =
9975 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9976 ProvedNonEquality =
9977 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9978 if (ProvedNonStrictComparison && ProvedNonEquality)
9979 return true;
9980 }
9981
9982 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9983 auto ProveViaGuard = [&](const BasicBlock *Block) {
9984 if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9985 return true;
9986 if (ProvingStrictComparison) {
9987 if (!ProvedNonStrictComparison)
9988 ProvedNonStrictComparison =
9989 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9990 if (!ProvedNonEquality)
9991 ProvedNonEquality =
9992 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9993 if (ProvedNonStrictComparison && ProvedNonEquality)
9994 return true;
9995 }
9996 return false;
9997 };
9998
9999 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10000 auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10001 const Instruction *Context = &BB->front();
10002 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
10003 return true;
10004 if (ProvingStrictComparison) {
10005 if (!ProvedNonStrictComparison)
10006 ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS,
10007 Condition, Inverse, Context);
10008 if (!ProvedNonEquality)
10009 ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS,
10010 Condition, Inverse, Context);
10011 if (ProvedNonStrictComparison && ProvedNonEquality)
10012 return true;
10013 }
10014 return false;
10015 };
10016
10017 // Starting at the block's predecessor, climb up the predecessor chain, as long
10018 // as there are predecessors that can be found that have unique successors
10019 // leading to the original block.
10020 const Loop *ContainingLoop = LI.getLoopFor(BB);
10021 const BasicBlock *PredBB;
10022 if (ContainingLoop && ContainingLoop->getHeader() == BB)
10023 PredBB = ContainingLoop->getLoopPredecessor();
10024 else
10025 PredBB = BB->getSinglePredecessor();
10026 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10027 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10028 if (ProveViaGuard(Pair.first))
10029 return true;
10030
10031 const BranchInst *LoopEntryPredicate =
10032 dyn_cast<BranchInst>(Pair.first->getTerminator());
10033 if (!LoopEntryPredicate ||
10034 LoopEntryPredicate->isUnconditional())
10035 continue;
10036
10037 if (ProveViaCond(LoopEntryPredicate->getCondition(),
10038 LoopEntryPredicate->getSuccessor(0) != Pair.second))
10039 return true;
10040 }
10041
10042 // Check conditions due to any @llvm.assume intrinsics.
10043 for (auto &AssumeVH : AC.assumptions()) {
10044 if (!AssumeVH)
10045 continue;
10046 auto *CI = cast<CallInst>(AssumeVH);
10047 if (!DT.dominates(CI, BB))
10048 continue;
10049
10050 if (ProveViaCond(CI->getArgOperand(0), false))
10051 return true;
10052 }
10053
10054 return false;
10055 }
10056
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10057 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10058 ICmpInst::Predicate Pred,
10059 const SCEV *LHS,
10060 const SCEV *RHS) {
10061 // Interpret a null as meaning no loop, where there is obviously no guard
10062 // (interprocedural conditions notwithstanding).
10063 if (!L)
10064 return false;
10065
10066 // Both LHS and RHS must be available at loop entry.
10067 assert(isAvailableAtLoopEntry(LHS, L) &&
10068 "LHS is not available at Loop Entry");
10069 assert(isAvailableAtLoopEntry(RHS, L) &&
10070 "RHS is not available at Loop Entry");
10071 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10072 }
10073
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Value * FoundCondValue,bool Inverse,const Instruction * Context)10074 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10075 const SCEV *RHS,
10076 const Value *FoundCondValue, bool Inverse,
10077 const Instruction *Context) {
10078 if (!PendingLoopPredicates.insert(FoundCondValue).second)
10079 return false;
10080
10081 auto ClearOnExit =
10082 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10083
10084 // Recursively handle And and Or conditions.
10085 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
10086 if (BO->getOpcode() == Instruction::And) {
10087 if (!Inverse)
10088 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10089 Context) ||
10090 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10091 Context);
10092 } else if (BO->getOpcode() == Instruction::Or) {
10093 if (Inverse)
10094 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10095 Context) ||
10096 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10097 Context);
10098 }
10099 }
10100
10101 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10102 if (!ICI) return false;
10103
10104 // Now that we found a conditional branch that dominates the loop or controls
10105 // the loop latch. Check to see if it is the comparison we are looking for.
10106 ICmpInst::Predicate FoundPred;
10107 if (Inverse)
10108 FoundPred = ICI->getInversePredicate();
10109 else
10110 FoundPred = ICI->getPredicate();
10111
10112 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10113 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10114
10115 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10116 }
10117
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10118 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10119 const SCEV *RHS,
10120 ICmpInst::Predicate FoundPred,
10121 const SCEV *FoundLHS, const SCEV *FoundRHS,
10122 const Instruction *Context) {
10123 // Balance the types.
10124 if (getTypeSizeInBits(LHS->getType()) <
10125 getTypeSizeInBits(FoundLHS->getType())) {
10126 // For unsigned and equality predicates, try to prove that both found
10127 // operands fit into narrow unsigned range. If so, try to prove facts in
10128 // narrow types.
10129 if (!CmpInst::isSigned(FoundPred)) {
10130 auto *NarrowType = LHS->getType();
10131 auto *WideType = FoundLHS->getType();
10132 auto BitWidth = getTypeSizeInBits(NarrowType);
10133 const SCEV *MaxValue = getZeroExtendExpr(
10134 getConstant(APInt::getMaxValue(BitWidth)), WideType);
10135 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10136 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10137 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10138 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10139 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10140 TruncFoundRHS, Context))
10141 return true;
10142 }
10143 }
10144
10145 if (CmpInst::isSigned(Pred)) {
10146 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10147 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10148 } else {
10149 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10150 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10151 }
10152 } else if (getTypeSizeInBits(LHS->getType()) >
10153 getTypeSizeInBits(FoundLHS->getType())) {
10154 if (CmpInst::isSigned(FoundPred)) {
10155 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10156 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10157 } else {
10158 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10159 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10160 }
10161 }
10162 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10163 FoundRHS, Context);
10164 }
10165
isImpliedCondBalancedTypes(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10166 bool ScalarEvolution::isImpliedCondBalancedTypes(
10167 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10168 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10169 const Instruction *Context) {
10170 assert(getTypeSizeInBits(LHS->getType()) ==
10171 getTypeSizeInBits(FoundLHS->getType()) &&
10172 "Types should be balanced!");
10173 // Canonicalize the query to match the way instcombine will have
10174 // canonicalized the comparison.
10175 if (SimplifyICmpOperands(Pred, LHS, RHS))
10176 if (LHS == RHS)
10177 return CmpInst::isTrueWhenEqual(Pred);
10178 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10179 if (FoundLHS == FoundRHS)
10180 return CmpInst::isFalseWhenEqual(FoundPred);
10181
10182 // Check to see if we can make the LHS or RHS match.
10183 if (LHS == FoundRHS || RHS == FoundLHS) {
10184 if (isa<SCEVConstant>(RHS)) {
10185 std::swap(FoundLHS, FoundRHS);
10186 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10187 } else {
10188 std::swap(LHS, RHS);
10189 Pred = ICmpInst::getSwappedPredicate(Pred);
10190 }
10191 }
10192
10193 // Check whether the found predicate is the same as the desired predicate.
10194 if (FoundPred == Pred)
10195 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10196
10197 // Check whether swapping the found predicate makes it the same as the
10198 // desired predicate.
10199 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10200 if (isa<SCEVConstant>(RHS))
10201 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10202 else
10203 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS,
10204 LHS, FoundLHS, FoundRHS, Context);
10205 }
10206
10207 // Unsigned comparison is the same as signed comparison when both the operands
10208 // are non-negative.
10209 if (CmpInst::isUnsigned(FoundPred) &&
10210 CmpInst::getSignedPredicate(FoundPred) == Pred &&
10211 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10212 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10213
10214 // Check if we can make progress by sharpening ranges.
10215 if (FoundPred == ICmpInst::ICMP_NE &&
10216 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10217
10218 const SCEVConstant *C = nullptr;
10219 const SCEV *V = nullptr;
10220
10221 if (isa<SCEVConstant>(FoundLHS)) {
10222 C = cast<SCEVConstant>(FoundLHS);
10223 V = FoundRHS;
10224 } else {
10225 C = cast<SCEVConstant>(FoundRHS);
10226 V = FoundLHS;
10227 }
10228
10229 // The guarding predicate tells us that C != V. If the known range
10230 // of V is [C, t), we can sharpen the range to [C + 1, t). The
10231 // range we consider has to correspond to same signedness as the
10232 // predicate we're interested in folding.
10233
10234 APInt Min = ICmpInst::isSigned(Pred) ?
10235 getSignedRangeMin(V) : getUnsignedRangeMin(V);
10236
10237 if (Min == C->getAPInt()) {
10238 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10239 // This is true even if (Min + 1) wraps around -- in case of
10240 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10241
10242 APInt SharperMin = Min + 1;
10243
10244 switch (Pred) {
10245 case ICmpInst::ICMP_SGE:
10246 case ICmpInst::ICMP_UGE:
10247 // We know V `Pred` SharperMin. If this implies LHS `Pred`
10248 // RHS, we're done.
10249 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10250 Context))
10251 return true;
10252 LLVM_FALLTHROUGH;
10253
10254 case ICmpInst::ICMP_SGT:
10255 case ICmpInst::ICMP_UGT:
10256 // We know from the range information that (V `Pred` Min ||
10257 // V == Min). We know from the guarding condition that !(V
10258 // == Min). This gives us
10259 //
10260 // V `Pred` Min || V == Min && !(V == Min)
10261 // => V `Pred` Min
10262 //
10263 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10264
10265 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10266 Context))
10267 return true;
10268 break;
10269
10270 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10271 case ICmpInst::ICMP_SLE:
10272 case ICmpInst::ICMP_ULE:
10273 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10274 LHS, V, getConstant(SharperMin), Context))
10275 return true;
10276 LLVM_FALLTHROUGH;
10277
10278 case ICmpInst::ICMP_SLT:
10279 case ICmpInst::ICMP_ULT:
10280 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10281 LHS, V, getConstant(Min), Context))
10282 return true;
10283 break;
10284
10285 default:
10286 // No change
10287 break;
10288 }
10289 }
10290 }
10291
10292 // Check whether the actual condition is beyond sufficient.
10293 if (FoundPred == ICmpInst::ICMP_EQ)
10294 if (ICmpInst::isTrueWhenEqual(Pred))
10295 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10296 return true;
10297 if (Pred == ICmpInst::ICMP_NE)
10298 if (!ICmpInst::isTrueWhenEqual(FoundPred))
10299 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10300 Context))
10301 return true;
10302
10303 // Otherwise assume the worst.
10304 return false;
10305 }
10306
splitBinaryAdd(const SCEV * Expr,const SCEV * & L,const SCEV * & R,SCEV::NoWrapFlags & Flags)10307 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10308 const SCEV *&L, const SCEV *&R,
10309 SCEV::NoWrapFlags &Flags) {
10310 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10311 if (!AE || AE->getNumOperands() != 2)
10312 return false;
10313
10314 L = AE->getOperand(0);
10315 R = AE->getOperand(1);
10316 Flags = AE->getNoWrapFlags();
10317 return true;
10318 }
10319
computeConstantDifference(const SCEV * More,const SCEV * Less)10320 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10321 const SCEV *Less) {
10322 // We avoid subtracting expressions here because this function is usually
10323 // fairly deep in the call stack (i.e. is called many times).
10324
10325 // X - X = 0.
10326 if (More == Less)
10327 return APInt(getTypeSizeInBits(More->getType()), 0);
10328
10329 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10330 const auto *LAR = cast<SCEVAddRecExpr>(Less);
10331 const auto *MAR = cast<SCEVAddRecExpr>(More);
10332
10333 if (LAR->getLoop() != MAR->getLoop())
10334 return None;
10335
10336 // We look at affine expressions only; not for correctness but to keep
10337 // getStepRecurrence cheap.
10338 if (!LAR->isAffine() || !MAR->isAffine())
10339 return None;
10340
10341 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10342 return None;
10343
10344 Less = LAR->getStart();
10345 More = MAR->getStart();
10346
10347 // fall through
10348 }
10349
10350 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10351 const auto &M = cast<SCEVConstant>(More)->getAPInt();
10352 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10353 return M - L;
10354 }
10355
10356 SCEV::NoWrapFlags Flags;
10357 const SCEV *LLess = nullptr, *RLess = nullptr;
10358 const SCEV *LMore = nullptr, *RMore = nullptr;
10359 const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10360 // Compare (X + C1) vs X.
10361 if (splitBinaryAdd(Less, LLess, RLess, Flags))
10362 if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10363 if (RLess == More)
10364 return -(C1->getAPInt());
10365
10366 // Compare X vs (X + C2).
10367 if (splitBinaryAdd(More, LMore, RMore, Flags))
10368 if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10369 if (RMore == Less)
10370 return C2->getAPInt();
10371
10372 // Compare (X + C1) vs (X + C2).
10373 if (C1 && C2 && RLess == RMore)
10374 return C2->getAPInt() - C1->getAPInt();
10375
10376 return None;
10377 }
10378
isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10379 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10380 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10381 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10382 // Try to recognize the following pattern:
10383 //
10384 // FoundRHS = ...
10385 // ...
10386 // loop:
10387 // FoundLHS = {Start,+,W}
10388 // context_bb: // Basic block from the same loop
10389 // known(Pred, FoundLHS, FoundRHS)
10390 //
10391 // If some predicate is known in the context of a loop, it is also known on
10392 // each iteration of this loop, including the first iteration. Therefore, in
10393 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10394 // prove the original pred using this fact.
10395 if (!Context)
10396 return false;
10397 const BasicBlock *ContextBB = Context->getParent();
10398 // Make sure AR varies in the context block.
10399 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10400 const Loop *L = AR->getLoop();
10401 // Make sure that context belongs to the loop and executes on 1st iteration
10402 // (if it ever executes at all).
10403 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10404 return false;
10405 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10406 return false;
10407 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10408 }
10409
10410 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10411 const Loop *L = AR->getLoop();
10412 // Make sure that context belongs to the loop and executes on 1st iteration
10413 // (if it ever executes at all).
10414 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10415 return false;
10416 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10417 return false;
10418 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10419 }
10420
10421 return false;
10422 }
10423
isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10424 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10425 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10426 const SCEV *FoundLHS, const SCEV *FoundRHS) {
10427 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10428 return false;
10429
10430 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10431 if (!AddRecLHS)
10432 return false;
10433
10434 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10435 if (!AddRecFoundLHS)
10436 return false;
10437
10438 // We'd like to let SCEV reason about control dependencies, so we constrain
10439 // both the inequalities to be about add recurrences on the same loop. This
10440 // way we can use isLoopEntryGuardedByCond later.
10441
10442 const Loop *L = AddRecFoundLHS->getLoop();
10443 if (L != AddRecLHS->getLoop())
10444 return false;
10445
10446 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
10447 //
10448 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10449 // ... (2)
10450 //
10451 // Informal proof for (2), assuming (1) [*]:
10452 //
10453 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10454 //
10455 // Then
10456 //
10457 // FoundLHS s< FoundRHS s< INT_MIN - C
10458 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
10459 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10460 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
10461 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10462 // <=> FoundLHS + C s< FoundRHS + C
10463 //
10464 // [*]: (1) can be proved by ruling out overflow.
10465 //
10466 // [**]: This can be proved by analyzing all the four possibilities:
10467 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10468 // (A s>= 0, B s>= 0).
10469 //
10470 // Note:
10471 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10472 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
10473 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
10474 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
10475 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10476 // C)".
10477
10478 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10479 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10480 if (!LDiff || !RDiff || *LDiff != *RDiff)
10481 return false;
10482
10483 if (LDiff->isMinValue())
10484 return true;
10485
10486 APInt FoundRHSLimit;
10487
10488 if (Pred == CmpInst::ICMP_ULT) {
10489 FoundRHSLimit = -(*RDiff);
10490 } else {
10491 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10492 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10493 }
10494
10495 // Try to prove (1) or (2), as needed.
10496 return isAvailableAtLoopEntry(FoundRHS, L) &&
10497 isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10498 getConstant(FoundRHSLimit));
10499 }
10500
isImpliedViaMerge(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)10501 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10502 const SCEV *LHS, const SCEV *RHS,
10503 const SCEV *FoundLHS,
10504 const SCEV *FoundRHS, unsigned Depth) {
10505 const PHINode *LPhi = nullptr, *RPhi = nullptr;
10506
10507 auto ClearOnExit = make_scope_exit([&]() {
10508 if (LPhi) {
10509 bool Erased = PendingMerges.erase(LPhi);
10510 assert(Erased && "Failed to erase LPhi!");
10511 (void)Erased;
10512 }
10513 if (RPhi) {
10514 bool Erased = PendingMerges.erase(RPhi);
10515 assert(Erased && "Failed to erase RPhi!");
10516 (void)Erased;
10517 }
10518 });
10519
10520 // Find respective Phis and check that they are not being pending.
10521 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10522 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10523 if (!PendingMerges.insert(Phi).second)
10524 return false;
10525 LPhi = Phi;
10526 }
10527 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10528 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10529 // If we detect a loop of Phi nodes being processed by this method, for
10530 // example:
10531 //
10532 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10533 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10534 //
10535 // we don't want to deal with a case that complex, so return conservative
10536 // answer false.
10537 if (!PendingMerges.insert(Phi).second)
10538 return false;
10539 RPhi = Phi;
10540 }
10541
10542 // If none of LHS, RHS is a Phi, nothing to do here.
10543 if (!LPhi && !RPhi)
10544 return false;
10545
10546 // If there is a SCEVUnknown Phi we are interested in, make it left.
10547 if (!LPhi) {
10548 std::swap(LHS, RHS);
10549 std::swap(FoundLHS, FoundRHS);
10550 std::swap(LPhi, RPhi);
10551 Pred = ICmpInst::getSwappedPredicate(Pred);
10552 }
10553
10554 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10555 const BasicBlock *LBB = LPhi->getParent();
10556 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10557
10558 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10559 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10560 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10561 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10562 };
10563
10564 if (RPhi && RPhi->getParent() == LBB) {
10565 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10566 // If we compare two Phis from the same block, and for each entry block
10567 // the predicate is true for incoming values from this block, then the
10568 // predicate is also true for the Phis.
10569 for (const BasicBlock *IncBB : predecessors(LBB)) {
10570 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10571 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10572 if (!ProvedEasily(L, R))
10573 return false;
10574 }
10575 } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10576 // Case two: RHS is also a Phi from the same basic block, and it is an
10577 // AddRec. It means that there is a loop which has both AddRec and Unknown
10578 // PHIs, for it we can compare incoming values of AddRec from above the loop
10579 // and latch with their respective incoming values of LPhi.
10580 // TODO: Generalize to handle loops with many inputs in a header.
10581 if (LPhi->getNumIncomingValues() != 2) return false;
10582
10583 auto *RLoop = RAR->getLoop();
10584 auto *Predecessor = RLoop->getLoopPredecessor();
10585 assert(Predecessor && "Loop with AddRec with no predecessor?");
10586 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10587 if (!ProvedEasily(L1, RAR->getStart()))
10588 return false;
10589 auto *Latch = RLoop->getLoopLatch();
10590 assert(Latch && "Loop with AddRec with no latch?");
10591 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10592 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10593 return false;
10594 } else {
10595 // In all other cases go over inputs of LHS and compare each of them to RHS,
10596 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10597 // At this point RHS is either a non-Phi, or it is a Phi from some block
10598 // different from LBB.
10599 for (const BasicBlock *IncBB : predecessors(LBB)) {
10600 // Check that RHS is available in this block.
10601 if (!dominates(RHS, IncBB))
10602 return false;
10603 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10604 if (!ProvedEasily(L, RHS))
10605 return false;
10606 }
10607 }
10608 return true;
10609 }
10610
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10611 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10612 const SCEV *LHS, const SCEV *RHS,
10613 const SCEV *FoundLHS,
10614 const SCEV *FoundRHS,
10615 const Instruction *Context) {
10616 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10617 return true;
10618
10619 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10620 return true;
10621
10622 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
10623 Context))
10624 return true;
10625
10626 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10627 FoundLHS, FoundRHS) ||
10628 // ~x < ~y --> x > y
10629 isImpliedCondOperandsHelper(Pred, LHS, RHS,
10630 getNotSCEV(FoundRHS),
10631 getNotSCEV(FoundLHS));
10632 }
10633
10634 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10635 template <typename MinMaxExprType>
IsMinMaxConsistingOf(const SCEV * MaybeMinMaxExpr,const SCEV * Candidate)10636 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10637 const SCEV *Candidate) {
10638 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10639 if (!MinMaxExpr)
10640 return false;
10641
10642 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10643 }
10644
IsKnownPredicateViaAddRecStart(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10645 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10646 ICmpInst::Predicate Pred,
10647 const SCEV *LHS, const SCEV *RHS) {
10648 // If both sides are affine addrecs for the same loop, with equal
10649 // steps, and we know the recurrences don't wrap, then we only
10650 // need to check the predicate on the starting values.
10651
10652 if (!ICmpInst::isRelational(Pred))
10653 return false;
10654
10655 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10656 if (!LAR)
10657 return false;
10658 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10659 if (!RAR)
10660 return false;
10661 if (LAR->getLoop() != RAR->getLoop())
10662 return false;
10663 if (!LAR->isAffine() || !RAR->isAffine())
10664 return false;
10665
10666 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10667 return false;
10668
10669 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10670 SCEV::FlagNSW : SCEV::FlagNUW;
10671 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10672 return false;
10673
10674 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10675 }
10676
10677 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10678 /// expression?
IsKnownPredicateViaMinOrMax(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10679 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10680 ICmpInst::Predicate Pred,
10681 const SCEV *LHS, const SCEV *RHS) {
10682 switch (Pred) {
10683 default:
10684 return false;
10685
10686 case ICmpInst::ICMP_SGE:
10687 std::swap(LHS, RHS);
10688 LLVM_FALLTHROUGH;
10689 case ICmpInst::ICMP_SLE:
10690 return
10691 // min(A, ...) <= A
10692 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10693 // A <= max(A, ...)
10694 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10695
10696 case ICmpInst::ICMP_UGE:
10697 std::swap(LHS, RHS);
10698 LLVM_FALLTHROUGH;
10699 case ICmpInst::ICMP_ULE:
10700 return
10701 // min(A, ...) <= A
10702 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10703 // A <= max(A, ...)
10704 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10705 }
10706
10707 llvm_unreachable("covered switch fell through?!");
10708 }
10709
isImpliedViaOperations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)10710 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10711 const SCEV *LHS, const SCEV *RHS,
10712 const SCEV *FoundLHS,
10713 const SCEV *FoundRHS,
10714 unsigned Depth) {
10715 assert(getTypeSizeInBits(LHS->getType()) ==
10716 getTypeSizeInBits(RHS->getType()) &&
10717 "LHS and RHS have different sizes?");
10718 assert(getTypeSizeInBits(FoundLHS->getType()) ==
10719 getTypeSizeInBits(FoundRHS->getType()) &&
10720 "FoundLHS and FoundRHS have different sizes?");
10721 // We want to avoid hurting the compile time with analysis of too big trees.
10722 if (Depth > MaxSCEVOperationsImplicationDepth)
10723 return false;
10724
10725 // We only want to work with GT comparison so far.
10726 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
10727 Pred = CmpInst::getSwappedPredicate(Pred);
10728 std::swap(LHS, RHS);
10729 std::swap(FoundLHS, FoundRHS);
10730 }
10731
10732 // For unsigned, try to reduce it to corresponding signed comparison.
10733 if (Pred == ICmpInst::ICMP_UGT)
10734 // We can replace unsigned predicate with its signed counterpart if all
10735 // involved values are non-negative.
10736 // TODO: We could have better support for unsigned.
10737 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
10738 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
10739 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
10740 // use this fact to prove that LHS and RHS are non-negative.
10741 const SCEV *MinusOne = getMinusOne(LHS->getType());
10742 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
10743 FoundRHS) &&
10744 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
10745 FoundRHS))
10746 Pred = ICmpInst::ICMP_SGT;
10747 }
10748
10749 if (Pred != ICmpInst::ICMP_SGT)
10750 return false;
10751
10752 auto GetOpFromSExt = [&](const SCEV *S) {
10753 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10754 return Ext->getOperand();
10755 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10756 // the constant in some cases.
10757 return S;
10758 };
10759
10760 // Acquire values from extensions.
10761 auto *OrigLHS = LHS;
10762 auto *OrigFoundLHS = FoundLHS;
10763 LHS = GetOpFromSExt(LHS);
10764 FoundLHS = GetOpFromSExt(FoundLHS);
10765
10766 // Is the SGT predicate can be proved trivially or using the found context.
10767 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10768 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10769 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10770 FoundRHS, Depth + 1);
10771 };
10772
10773 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10774 // We want to avoid creation of any new non-constant SCEV. Since we are
10775 // going to compare the operands to RHS, we should be certain that we don't
10776 // need any size extensions for this. So let's decline all cases when the
10777 // sizes of types of LHS and RHS do not match.
10778 // TODO: Maybe try to get RHS from sext to catch more cases?
10779 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10780 return false;
10781
10782 // Should not overflow.
10783 if (!LHSAddExpr->hasNoSignedWrap())
10784 return false;
10785
10786 auto *LL = LHSAddExpr->getOperand(0);
10787 auto *LR = LHSAddExpr->getOperand(1);
10788 auto *MinusOne = getMinusOne(RHS->getType());
10789
10790 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10791 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10792 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10793 };
10794 // Try to prove the following rule:
10795 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10796 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10797 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10798 return true;
10799 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10800 Value *LL, *LR;
10801 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10802
10803 using namespace llvm::PatternMatch;
10804
10805 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10806 // Rules for division.
10807 // We are going to perform some comparisons with Denominator and its
10808 // derivative expressions. In general case, creating a SCEV for it may
10809 // lead to a complex analysis of the entire graph, and in particular it
10810 // can request trip count recalculation for the same loop. This would
10811 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10812 // this, we only want to create SCEVs that are constants in this section.
10813 // So we bail if Denominator is not a constant.
10814 if (!isa<ConstantInt>(LR))
10815 return false;
10816
10817 auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10818
10819 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10820 // then a SCEV for the numerator already exists and matches with FoundLHS.
10821 auto *Numerator = getExistingSCEV(LL);
10822 if (!Numerator || Numerator->getType() != FoundLHS->getType())
10823 return false;
10824
10825 // Make sure that the numerator matches with FoundLHS and the denominator
10826 // is positive.
10827 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10828 return false;
10829
10830 auto *DTy = Denominator->getType();
10831 auto *FRHSTy = FoundRHS->getType();
10832 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10833 // One of types is a pointer and another one is not. We cannot extend
10834 // them properly to a wider type, so let us just reject this case.
10835 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10836 // to avoid this check.
10837 return false;
10838
10839 // Given that:
10840 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10841 auto *WTy = getWiderType(DTy, FRHSTy);
10842 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10843 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10844
10845 // Try to prove the following rule:
10846 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10847 // For example, given that FoundLHS > 2. It means that FoundLHS is at
10848 // least 3. If we divide it by Denominator < 4, we will have at least 1.
10849 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10850 if (isKnownNonPositive(RHS) &&
10851 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10852 return true;
10853
10854 // Try to prove the following rule:
10855 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10856 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10857 // If we divide it by Denominator > 2, then:
10858 // 1. If FoundLHS is negative, then the result is 0.
10859 // 2. If FoundLHS is non-negative, then the result is non-negative.
10860 // Anyways, the result is non-negative.
10861 auto *MinusOne = getMinusOne(WTy);
10862 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10863 if (isKnownNegative(RHS) &&
10864 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10865 return true;
10866 }
10867 }
10868
10869 // If our expression contained SCEVUnknown Phis, and we split it down and now
10870 // need to prove something for them, try to prove the predicate for every
10871 // possible incoming values of those Phis.
10872 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10873 return true;
10874
10875 return false;
10876 }
10877
isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10878 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10879 const SCEV *LHS, const SCEV *RHS) {
10880 // zext x u<= sext x, sext x s<= zext x
10881 switch (Pred) {
10882 case ICmpInst::ICMP_SGE:
10883 std::swap(LHS, RHS);
10884 LLVM_FALLTHROUGH;
10885 case ICmpInst::ICMP_SLE: {
10886 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
10887 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10888 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10889 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10890 return true;
10891 break;
10892 }
10893 case ICmpInst::ICMP_UGE:
10894 std::swap(LHS, RHS);
10895 LLVM_FALLTHROUGH;
10896 case ICmpInst::ICMP_ULE: {
10897 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt.
10898 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10899 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10900 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10901 return true;
10902 break;
10903 }
10904 default:
10905 break;
10906 };
10907 return false;
10908 }
10909
10910 bool
isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10911 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10912 const SCEV *LHS, const SCEV *RHS) {
10913 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10914 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10915 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10916 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10917 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10918 }
10919
10920 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10921 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10922 const SCEV *LHS, const SCEV *RHS,
10923 const SCEV *FoundLHS,
10924 const SCEV *FoundRHS) {
10925 switch (Pred) {
10926 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10927 case ICmpInst::ICMP_EQ:
10928 case ICmpInst::ICMP_NE:
10929 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10930 return true;
10931 break;
10932 case ICmpInst::ICMP_SLT:
10933 case ICmpInst::ICMP_SLE:
10934 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10935 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10936 return true;
10937 break;
10938 case ICmpInst::ICMP_SGT:
10939 case ICmpInst::ICMP_SGE:
10940 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10941 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10942 return true;
10943 break;
10944 case ICmpInst::ICMP_ULT:
10945 case ICmpInst::ICMP_ULE:
10946 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10947 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10948 return true;
10949 break;
10950 case ICmpInst::ICMP_UGT:
10951 case ICmpInst::ICMP_UGE:
10952 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10953 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10954 return true;
10955 break;
10956 }
10957
10958 // Maybe it can be proved via operations?
10959 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10960 return true;
10961
10962 return false;
10963 }
10964
isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10965 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10966 const SCEV *LHS,
10967 const SCEV *RHS,
10968 const SCEV *FoundLHS,
10969 const SCEV *FoundRHS) {
10970 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10971 // The restriction on `FoundRHS` be lifted easily -- it exists only to
10972 // reduce the compile time impact of this optimization.
10973 return false;
10974
10975 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10976 if (!Addend)
10977 return false;
10978
10979 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10980
10981 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10982 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10983 ConstantRange FoundLHSRange =
10984 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10985
10986 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10987 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10988
10989 // We can also compute the range of values for `LHS` that satisfy the
10990 // consequent, "`LHS` `Pred` `RHS`":
10991 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10992 ConstantRange SatisfyingLHSRange =
10993 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10994
10995 // The antecedent implies the consequent if every value of `LHS` that
10996 // satisfies the antecedent also satisfies the consequent.
10997 return SatisfyingLHSRange.contains(LHSRange);
10998 }
10999
doesIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)11000 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11001 bool IsSigned, bool NoWrap) {
11002 assert(isKnownPositive(Stride) && "Positive stride expected!");
11003
11004 if (NoWrap) return false;
11005
11006 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11007 const SCEV *One = getOne(Stride->getType());
11008
11009 if (IsSigned) {
11010 APInt MaxRHS = getSignedRangeMax(RHS);
11011 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11012 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11013
11014 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11015 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11016 }
11017
11018 APInt MaxRHS = getUnsignedRangeMax(RHS);
11019 APInt MaxValue = APInt::getMaxValue(BitWidth);
11020 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11021
11022 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11023 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11024 }
11025
doesIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)11026 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11027 bool IsSigned, bool NoWrap) {
11028 if (NoWrap) return false;
11029
11030 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11031 const SCEV *One = getOne(Stride->getType());
11032
11033 if (IsSigned) {
11034 APInt MinRHS = getSignedRangeMin(RHS);
11035 APInt MinValue = APInt::getSignedMinValue(BitWidth);
11036 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11037
11038 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11039 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11040 }
11041
11042 APInt MinRHS = getUnsignedRangeMin(RHS);
11043 APInt MinValue = APInt::getMinValue(BitWidth);
11044 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11045
11046 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11047 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11048 }
11049
computeBECount(const SCEV * Delta,const SCEV * Step,bool Equality)11050 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
11051 bool Equality) {
11052 const SCEV *One = getOne(Step->getType());
11053 Delta = Equality ? getAddExpr(Delta, Step)
11054 : getAddExpr(Delta, getMinusSCEV(Step, One));
11055 return getUDivExpr(Delta, Step);
11056 }
11057
computeMaxBECountForLT(const SCEV * Start,const SCEV * Stride,const SCEV * End,unsigned BitWidth,bool IsSigned)11058 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11059 const SCEV *Stride,
11060 const SCEV *End,
11061 unsigned BitWidth,
11062 bool IsSigned) {
11063
11064 assert(!isKnownNonPositive(Stride) &&
11065 "Stride is expected strictly positive!");
11066 // Calculate the maximum backedge count based on the range of values
11067 // permitted by Start, End, and Stride.
11068 const SCEV *MaxBECount;
11069 APInt MinStart =
11070 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11071
11072 APInt StrideForMaxBECount =
11073 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11074
11075 // We already know that the stride is positive, so we paper over conservatism
11076 // in our range computation by forcing StrideForMaxBECount to be at least one.
11077 // In theory this is unnecessary, but we expect MaxBECount to be a
11078 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
11079 // is nothing to constant fold it to).
11080 APInt One(BitWidth, 1, IsSigned);
11081 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
11082
11083 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11084 : APInt::getMaxValue(BitWidth);
11085 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11086
11087 // Although End can be a MAX expression we estimate MaxEnd considering only
11088 // the case End = RHS of the loop termination condition. This is safe because
11089 // in the other case (End - Start) is zero, leading to a zero maximum backedge
11090 // taken count.
11091 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11092 : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11093
11094 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
11095 getConstant(StrideForMaxBECount) /* Step */,
11096 false /* Equality */);
11097
11098 return MaxBECount;
11099 }
11100
11101 ScalarEvolution::ExitLimit
howManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)11102 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11103 const Loop *L, bool IsSigned,
11104 bool ControlsExit, bool AllowPredicates) {
11105 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11106
11107 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11108 bool PredicatedIV = false;
11109
11110 if (!IV && AllowPredicates) {
11111 // Try to make this an AddRec using runtime tests, in the first X
11112 // iterations of this loop, where X is the SCEV expression found by the
11113 // algorithm below.
11114 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11115 PredicatedIV = true;
11116 }
11117
11118 // Avoid weird loops
11119 if (!IV || IV->getLoop() != L || !IV->isAffine())
11120 return getCouldNotCompute();
11121
11122 bool NoWrap = ControlsExit &&
11123 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11124
11125 const SCEV *Stride = IV->getStepRecurrence(*this);
11126
11127 bool PositiveStride = isKnownPositive(Stride);
11128
11129 // Avoid negative or zero stride values.
11130 if (!PositiveStride) {
11131 // We can compute the correct backedge taken count for loops with unknown
11132 // strides if we can prove that the loop is not an infinite loop with side
11133 // effects. Here's the loop structure we are trying to handle -
11134 //
11135 // i = start
11136 // do {
11137 // A[i] = i;
11138 // i += s;
11139 // } while (i < end);
11140 //
11141 // The backedge taken count for such loops is evaluated as -
11142 // (max(end, start + stride) - start - 1) /u stride
11143 //
11144 // The additional preconditions that we need to check to prove correctness
11145 // of the above formula is as follows -
11146 //
11147 // a) IV is either nuw or nsw depending upon signedness (indicated by the
11148 // NoWrap flag).
11149 // b) loop is single exit with no side effects.
11150 //
11151 //
11152 // Precondition a) implies that if the stride is negative, this is a single
11153 // trip loop. The backedge taken count formula reduces to zero in this case.
11154 //
11155 // Precondition b) implies that the unknown stride cannot be zero otherwise
11156 // we have UB.
11157 //
11158 // The positive stride case is the same as isKnownPositive(Stride) returning
11159 // true (original behavior of the function).
11160 //
11161 // We want to make sure that the stride is truly unknown as there are edge
11162 // cases where ScalarEvolution propagates no wrap flags to the
11163 // post-increment/decrement IV even though the increment/decrement operation
11164 // itself is wrapping. The computed backedge taken count may be wrong in
11165 // such cases. This is prevented by checking that the stride is not known to
11166 // be either positive or non-positive. For example, no wrap flags are
11167 // propagated to the post-increment IV of this loop with a trip count of 2 -
11168 //
11169 // unsigned char i;
11170 // for(i=127; i<128; i+=129)
11171 // A[i] = i;
11172 //
11173 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11174 !loopHasNoSideEffects(L))
11175 return getCouldNotCompute();
11176 } else if (!Stride->isOne() &&
11177 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
11178 // Avoid proven overflow cases: this will ensure that the backedge taken
11179 // count will not generate any unsigned overflow. Relaxed no-overflow
11180 // conditions exploit NoWrapFlags, allowing to optimize in presence of
11181 // undefined behaviors like the case of C language.
11182 return getCouldNotCompute();
11183
11184 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
11185 : ICmpInst::ICMP_ULT;
11186 const SCEV *Start = IV->getStart();
11187 const SCEV *End = RHS;
11188 // When the RHS is not invariant, we do not know the end bound of the loop and
11189 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11190 // calculate the MaxBECount, given the start, stride and max value for the end
11191 // bound of the loop (RHS), and the fact that IV does not overflow (which is
11192 // checked above).
11193 if (!isLoopInvariant(RHS, L)) {
11194 const SCEV *MaxBECount = computeMaxBECountForLT(
11195 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11196 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11197 false /*MaxOrZero*/, Predicates);
11198 }
11199 // If the backedge is taken at least once, then it will be taken
11200 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
11201 // is the LHS value of the less-than comparison the first time it is evaluated
11202 // and End is the RHS.
11203 const SCEV *BECountIfBackedgeTaken =
11204 computeBECount(getMinusSCEV(End, Start), Stride, false);
11205 // If the loop entry is guarded by the result of the backedge test of the
11206 // first loop iteration, then we know the backedge will be taken at least
11207 // once and so the backedge taken count is as above. If not then we use the
11208 // expression (max(End,Start)-Start)/Stride to describe the backedge count,
11209 // as if the backedge is taken at least once max(End,Start) is End and so the
11210 // result is as above, and if not max(End,Start) is Start so we get a backedge
11211 // count of zero.
11212 const SCEV *BECount;
11213 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
11214 BECount = BECountIfBackedgeTaken;
11215 else {
11216 // If we know that RHS >= Start in the context of loop, then we know that
11217 // max(RHS, Start) = RHS at this point.
11218 if (isLoopEntryGuardedByCond(
11219 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
11220 End = RHS;
11221 else
11222 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11223 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
11224 }
11225
11226 const SCEV *MaxBECount;
11227 bool MaxOrZero = false;
11228 if (isa<SCEVConstant>(BECount))
11229 MaxBECount = BECount;
11230 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11231 // If we know exactly how many times the backedge will be taken if it's
11232 // taken at least once, then the backedge count will either be that or
11233 // zero.
11234 MaxBECount = BECountIfBackedgeTaken;
11235 MaxOrZero = true;
11236 } else {
11237 MaxBECount = computeMaxBECountForLT(
11238 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11239 }
11240
11241 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11242 !isa<SCEVCouldNotCompute>(BECount))
11243 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11244
11245 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11246 }
11247
11248 ScalarEvolution::ExitLimit
howManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)11249 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11250 const Loop *L, bool IsSigned,
11251 bool ControlsExit, bool AllowPredicates) {
11252 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11253 // We handle only IV > Invariant
11254 if (!isLoopInvariant(RHS, L))
11255 return getCouldNotCompute();
11256
11257 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11258 if (!IV && AllowPredicates)
11259 // Try to make this an AddRec using runtime tests, in the first X
11260 // iterations of this loop, where X is the SCEV expression found by the
11261 // algorithm below.
11262 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11263
11264 // Avoid weird loops
11265 if (!IV || IV->getLoop() != L || !IV->isAffine())
11266 return getCouldNotCompute();
11267
11268 bool NoWrap = ControlsExit &&
11269 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11270
11271 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11272
11273 // Avoid negative or zero stride values
11274 if (!isKnownPositive(Stride))
11275 return getCouldNotCompute();
11276
11277 // Avoid proven overflow cases: this will ensure that the backedge taken count
11278 // will not generate any unsigned overflow. Relaxed no-overflow conditions
11279 // exploit NoWrapFlags, allowing to optimize in presence of undefined
11280 // behaviors like the case of C language.
11281 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
11282 return getCouldNotCompute();
11283
11284 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
11285 : ICmpInst::ICMP_UGT;
11286
11287 const SCEV *Start = IV->getStart();
11288 const SCEV *End = RHS;
11289 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
11290 // If we know that Start >= RHS in the context of loop, then we know that
11291 // min(RHS, Start) = RHS at this point.
11292 if (isLoopEntryGuardedByCond(
11293 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
11294 End = RHS;
11295 else
11296 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
11297 }
11298
11299 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
11300
11301 APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
11302 : getUnsignedRangeMax(Start);
11303
11304 APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
11305 : getUnsignedRangeMin(Stride);
11306
11307 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
11308 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
11309 : APInt::getMinValue(BitWidth) + (MinStride - 1);
11310
11311 // Although End can be a MIN expression we estimate MinEnd considering only
11312 // the case End = RHS. This is safe because in the other case (Start - End)
11313 // is zero, leading to a zero maximum backedge taken count.
11314 APInt MinEnd =
11315 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
11316 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
11317
11318 const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
11319 ? BECount
11320 : computeBECount(getConstant(MaxStart - MinEnd),
11321 getConstant(MinStride), false);
11322
11323 if (isa<SCEVCouldNotCompute>(MaxBECount))
11324 MaxBECount = BECount;
11325
11326 return ExitLimit(BECount, MaxBECount, false, Predicates);
11327 }
11328
getNumIterationsInRange(const ConstantRange & Range,ScalarEvolution & SE) const11329 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
11330 ScalarEvolution &SE) const {
11331 if (Range.isFullSet()) // Infinite loop.
11332 return SE.getCouldNotCompute();
11333
11334 // If the start is a non-zero constant, shift the range to simplify things.
11335 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
11336 if (!SC->getValue()->isZero()) {
11337 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
11338 Operands[0] = SE.getZero(SC->getType());
11339 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
11340 getNoWrapFlags(FlagNW));
11341 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
11342 return ShiftedAddRec->getNumIterationsInRange(
11343 Range.subtract(SC->getAPInt()), SE);
11344 // This is strange and shouldn't happen.
11345 return SE.getCouldNotCompute();
11346 }
11347
11348 // The only time we can solve this is when we have all constant indices.
11349 // Otherwise, we cannot determine the overflow conditions.
11350 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
11351 return SE.getCouldNotCompute();
11352
11353 // Okay at this point we know that all elements of the chrec are constants and
11354 // that the start element is zero.
11355
11356 // First check to see if the range contains zero. If not, the first
11357 // iteration exits.
11358 unsigned BitWidth = SE.getTypeSizeInBits(getType());
11359 if (!Range.contains(APInt(BitWidth, 0)))
11360 return SE.getZero(getType());
11361
11362 if (isAffine()) {
11363 // If this is an affine expression then we have this situation:
11364 // Solve {0,+,A} in Range === Ax in Range
11365
11366 // We know that zero is in the range. If A is positive then we know that
11367 // the upper value of the range must be the first possible exit value.
11368 // If A is negative then the lower of the range is the last possible loop
11369 // value. Also note that we already checked for a full range.
11370 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
11371 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
11372
11373 // The exit value should be (End+A)/A.
11374 APInt ExitVal = (End + A).udiv(A);
11375 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
11376
11377 // Evaluate at the exit value. If we really did fall out of the valid
11378 // range, then we computed our trip count, otherwise wrap around or other
11379 // things must have happened.
11380 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
11381 if (Range.contains(Val->getValue()))
11382 return SE.getCouldNotCompute(); // Something strange happened
11383
11384 // Ensure that the previous value is in the range. This is a sanity check.
11385 assert(Range.contains(
11386 EvaluateConstantChrecAtConstant(this,
11387 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
11388 "Linear scev computation is off in a bad way!");
11389 return SE.getConstant(ExitValue);
11390 }
11391
11392 if (isQuadratic()) {
11393 if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
11394 return SE.getConstant(S.getValue());
11395 }
11396
11397 return SE.getCouldNotCompute();
11398 }
11399
11400 const SCEVAddRecExpr *
getPostIncExpr(ScalarEvolution & SE) const11401 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
11402 assert(getNumOperands() > 1 && "AddRec with zero step?");
11403 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
11404 // but in this case we cannot guarantee that the value returned will be an
11405 // AddRec because SCEV does not have a fixed point where it stops
11406 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
11407 // may happen if we reach arithmetic depth limit while simplifying. So we
11408 // construct the returned value explicitly.
11409 SmallVector<const SCEV *, 3> Ops;
11410 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
11411 // (this + Step) is {A+B,+,B+C,+...,+,N}.
11412 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
11413 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
11414 // We know that the last operand is not a constant zero (otherwise it would
11415 // have been popped out earlier). This guarantees us that if the result has
11416 // the same last operand, then it will also not be popped out, meaning that
11417 // the returned value will be an AddRec.
11418 const SCEV *Last = getOperand(getNumOperands() - 1);
11419 assert(!Last->isZero() && "Recurrency with zero step?");
11420 Ops.push_back(Last);
11421 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
11422 SCEV::FlagAnyWrap));
11423 }
11424
11425 // Return true when S contains at least an undef value.
containsUndefs(const SCEV * S)11426 static inline bool containsUndefs(const SCEV *S) {
11427 return SCEVExprContains(S, [](const SCEV *S) {
11428 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
11429 return isa<UndefValue>(SU->getValue());
11430 return false;
11431 });
11432 }
11433
11434 namespace {
11435
11436 // Collect all steps of SCEV expressions.
11437 struct SCEVCollectStrides {
11438 ScalarEvolution &SE;
11439 SmallVectorImpl<const SCEV *> &Strides;
11440
SCEVCollectStrides__anonb2da948e3011::SCEVCollectStrides11441 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11442 : SE(SE), Strides(S) {}
11443
follow__anonb2da948e3011::SCEVCollectStrides11444 bool follow(const SCEV *S) {
11445 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11446 Strides.push_back(AR->getStepRecurrence(SE));
11447 return true;
11448 }
11449
isDone__anonb2da948e3011::SCEVCollectStrides11450 bool isDone() const { return false; }
11451 };
11452
11453 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11454 struct SCEVCollectTerms {
11455 SmallVectorImpl<const SCEV *> &Terms;
11456
SCEVCollectTerms__anonb2da948e3011::SCEVCollectTerms11457 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11458
follow__anonb2da948e3011::SCEVCollectTerms11459 bool follow(const SCEV *S) {
11460 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11461 isa<SCEVSignExtendExpr>(S)) {
11462 if (!containsUndefs(S))
11463 Terms.push_back(S);
11464
11465 // Stop recursion: once we collected a term, do not walk its operands.
11466 return false;
11467 }
11468
11469 // Keep looking.
11470 return true;
11471 }
11472
isDone__anonb2da948e3011::SCEVCollectTerms11473 bool isDone() const { return false; }
11474 };
11475
11476 // Check if a SCEV contains an AddRecExpr.
11477 struct SCEVHasAddRec {
11478 bool &ContainsAddRec;
11479
SCEVHasAddRec__anonb2da948e3011::SCEVHasAddRec11480 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11481 ContainsAddRec = false;
11482 }
11483
follow__anonb2da948e3011::SCEVHasAddRec11484 bool follow(const SCEV *S) {
11485 if (isa<SCEVAddRecExpr>(S)) {
11486 ContainsAddRec = true;
11487
11488 // Stop recursion: once we collected a term, do not walk its operands.
11489 return false;
11490 }
11491
11492 // Keep looking.
11493 return true;
11494 }
11495
isDone__anonb2da948e3011::SCEVHasAddRec11496 bool isDone() const { return false; }
11497 };
11498
11499 // Find factors that are multiplied with an expression that (possibly as a
11500 // subexpression) contains an AddRecExpr. In the expression:
11501 //
11502 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
11503 //
11504 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11505 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11506 // parameters as they form a product with an induction variable.
11507 //
11508 // This collector expects all array size parameters to be in the same MulExpr.
11509 // It might be necessary to later add support for collecting parameters that are
11510 // spread over different nested MulExpr.
11511 struct SCEVCollectAddRecMultiplies {
11512 SmallVectorImpl<const SCEV *> &Terms;
11513 ScalarEvolution &SE;
11514
SCEVCollectAddRecMultiplies__anonb2da948e3011::SCEVCollectAddRecMultiplies11515 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11516 : Terms(T), SE(SE) {}
11517
follow__anonb2da948e3011::SCEVCollectAddRecMultiplies11518 bool follow(const SCEV *S) {
11519 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11520 bool HasAddRec = false;
11521 SmallVector<const SCEV *, 0> Operands;
11522 for (auto Op : Mul->operands()) {
11523 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11524 if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11525 Operands.push_back(Op);
11526 } else if (Unknown) {
11527 HasAddRec = true;
11528 } else {
11529 bool ContainsAddRec = false;
11530 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11531 visitAll(Op, ContiansAddRec);
11532 HasAddRec |= ContainsAddRec;
11533 }
11534 }
11535 if (Operands.size() == 0)
11536 return true;
11537
11538 if (!HasAddRec)
11539 return false;
11540
11541 Terms.push_back(SE.getMulExpr(Operands));
11542 // Stop recursion: once we collected a term, do not walk its operands.
11543 return false;
11544 }
11545
11546 // Keep looking.
11547 return true;
11548 }
11549
isDone__anonb2da948e3011::SCEVCollectAddRecMultiplies11550 bool isDone() const { return false; }
11551 };
11552
11553 } // end anonymous namespace
11554
11555 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11556 /// two places:
11557 /// 1) The strides of AddRec expressions.
11558 /// 2) Unknowns that are multiplied with AddRec expressions.
collectParametricTerms(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Terms)11559 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11560 SmallVectorImpl<const SCEV *> &Terms) {
11561 SmallVector<const SCEV *, 4> Strides;
11562 SCEVCollectStrides StrideCollector(*this, Strides);
11563 visitAll(Expr, StrideCollector);
11564
11565 LLVM_DEBUG({
11566 dbgs() << "Strides:\n";
11567 for (const SCEV *S : Strides)
11568 dbgs() << *S << "\n";
11569 });
11570
11571 for (const SCEV *S : Strides) {
11572 SCEVCollectTerms TermCollector(Terms);
11573 visitAll(S, TermCollector);
11574 }
11575
11576 LLVM_DEBUG({
11577 dbgs() << "Terms:\n";
11578 for (const SCEV *T : Terms)
11579 dbgs() << *T << "\n";
11580 });
11581
11582 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11583 visitAll(Expr, MulCollector);
11584 }
11585
findArrayDimensionsRec(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes)11586 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11587 SmallVectorImpl<const SCEV *> &Terms,
11588 SmallVectorImpl<const SCEV *> &Sizes) {
11589 int Last = Terms.size() - 1;
11590 const SCEV *Step = Terms[Last];
11591
11592 // End of recursion.
11593 if (Last == 0) {
11594 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11595 SmallVector<const SCEV *, 2> Qs;
11596 for (const SCEV *Op : M->operands())
11597 if (!isa<SCEVConstant>(Op))
11598 Qs.push_back(Op);
11599
11600 Step = SE.getMulExpr(Qs);
11601 }
11602
11603 Sizes.push_back(Step);
11604 return true;
11605 }
11606
11607 for (const SCEV *&Term : Terms) {
11608 // Normalize the terms before the next call to findArrayDimensionsRec.
11609 const SCEV *Q, *R;
11610 SCEVDivision::divide(SE, Term, Step, &Q, &R);
11611
11612 // Bail out when GCD does not evenly divide one of the terms.
11613 if (!R->isZero())
11614 return false;
11615
11616 Term = Q;
11617 }
11618
11619 // Remove all SCEVConstants.
11620 Terms.erase(
11621 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11622 Terms.end());
11623
11624 if (Terms.size() > 0)
11625 if (!findArrayDimensionsRec(SE, Terms, Sizes))
11626 return false;
11627
11628 Sizes.push_back(Step);
11629 return true;
11630 }
11631
11632 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
containsParameters(SmallVectorImpl<const SCEV * > & Terms)11633 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11634 for (const SCEV *T : Terms)
11635 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11636 return true;
11637
11638 return false;
11639 }
11640
11641 // Return the number of product terms in S.
numberOfTerms(const SCEV * S)11642 static inline int numberOfTerms(const SCEV *S) {
11643 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11644 return Expr->getNumOperands();
11645 return 1;
11646 }
11647
removeConstantFactors(ScalarEvolution & SE,const SCEV * T)11648 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11649 if (isa<SCEVConstant>(T))
11650 return nullptr;
11651
11652 if (isa<SCEVUnknown>(T))
11653 return T;
11654
11655 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11656 SmallVector<const SCEV *, 2> Factors;
11657 for (const SCEV *Op : M->operands())
11658 if (!isa<SCEVConstant>(Op))
11659 Factors.push_back(Op);
11660
11661 return SE.getMulExpr(Factors);
11662 }
11663
11664 return T;
11665 }
11666
11667 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)11668 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11669 Type *Ty;
11670 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11671 Ty = Store->getValueOperand()->getType();
11672 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11673 Ty = Load->getType();
11674 else
11675 return nullptr;
11676
11677 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11678 return getSizeOfExpr(ETy, Ty);
11679 }
11680
findArrayDimensions(SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)11681 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11682 SmallVectorImpl<const SCEV *> &Sizes,
11683 const SCEV *ElementSize) {
11684 if (Terms.size() < 1 || !ElementSize)
11685 return;
11686
11687 // Early return when Terms do not contain parameters: we do not delinearize
11688 // non parametric SCEVs.
11689 if (!containsParameters(Terms))
11690 return;
11691
11692 LLVM_DEBUG({
11693 dbgs() << "Terms:\n";
11694 for (const SCEV *T : Terms)
11695 dbgs() << *T << "\n";
11696 });
11697
11698 // Remove duplicates.
11699 array_pod_sort(Terms.begin(), Terms.end());
11700 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11701
11702 // Put larger terms first.
11703 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11704 return numberOfTerms(LHS) > numberOfTerms(RHS);
11705 });
11706
11707 // Try to divide all terms by the element size. If term is not divisible by
11708 // element size, proceed with the original term.
11709 for (const SCEV *&Term : Terms) {
11710 const SCEV *Q, *R;
11711 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11712 if (!Q->isZero())
11713 Term = Q;
11714 }
11715
11716 SmallVector<const SCEV *, 4> NewTerms;
11717
11718 // Remove constant factors.
11719 for (const SCEV *T : Terms)
11720 if (const SCEV *NewT = removeConstantFactors(*this, T))
11721 NewTerms.push_back(NewT);
11722
11723 LLVM_DEBUG({
11724 dbgs() << "Terms after sorting:\n";
11725 for (const SCEV *T : NewTerms)
11726 dbgs() << *T << "\n";
11727 });
11728
11729 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11730 Sizes.clear();
11731 return;
11732 }
11733
11734 // The last element to be pushed into Sizes is the size of an element.
11735 Sizes.push_back(ElementSize);
11736
11737 LLVM_DEBUG({
11738 dbgs() << "Sizes:\n";
11739 for (const SCEV *S : Sizes)
11740 dbgs() << *S << "\n";
11741 });
11742 }
11743
computeAccessFunctions(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes)11744 void ScalarEvolution::computeAccessFunctions(
11745 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11746 SmallVectorImpl<const SCEV *> &Sizes) {
11747 // Early exit in case this SCEV is not an affine multivariate function.
11748 if (Sizes.empty())
11749 return;
11750
11751 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11752 if (!AR->isAffine())
11753 return;
11754
11755 const SCEV *Res = Expr;
11756 int Last = Sizes.size() - 1;
11757 for (int i = Last; i >= 0; i--) {
11758 const SCEV *Q, *R;
11759 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11760
11761 LLVM_DEBUG({
11762 dbgs() << "Res: " << *Res << "\n";
11763 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11764 dbgs() << "Res divided by Sizes[i]:\n";
11765 dbgs() << "Quotient: " << *Q << "\n";
11766 dbgs() << "Remainder: " << *R << "\n";
11767 });
11768
11769 Res = Q;
11770
11771 // Do not record the last subscript corresponding to the size of elements in
11772 // the array.
11773 if (i == Last) {
11774
11775 // Bail out if the remainder is too complex.
11776 if (isa<SCEVAddRecExpr>(R)) {
11777 Subscripts.clear();
11778 Sizes.clear();
11779 return;
11780 }
11781
11782 continue;
11783 }
11784
11785 // Record the access function for the current subscript.
11786 Subscripts.push_back(R);
11787 }
11788
11789 // Also push in last position the remainder of the last division: it will be
11790 // the access function of the innermost dimension.
11791 Subscripts.push_back(Res);
11792
11793 std::reverse(Subscripts.begin(), Subscripts.end());
11794
11795 LLVM_DEBUG({
11796 dbgs() << "Subscripts:\n";
11797 for (const SCEV *S : Subscripts)
11798 dbgs() << *S << "\n";
11799 });
11800 }
11801
11802 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11803 /// sizes of an array access. Returns the remainder of the delinearization that
11804 /// is the offset start of the array. The SCEV->delinearize algorithm computes
11805 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11806 /// expressions in the stride and base of a SCEV corresponding to the
11807 /// computation of a GCD (greatest common divisor) of base and stride. When
11808 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11809 ///
11810 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11811 ///
11812 /// void foo(long n, long m, long o, double A[n][m][o]) {
11813 ///
11814 /// for (long i = 0; i < n; i++)
11815 /// for (long j = 0; j < m; j++)
11816 /// for (long k = 0; k < o; k++)
11817 /// A[i][j][k] = 1.0;
11818 /// }
11819 ///
11820 /// the delinearization input is the following AddRec SCEV:
11821 ///
11822 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11823 ///
11824 /// From this SCEV, we are able to say that the base offset of the access is %A
11825 /// because it appears as an offset that does not divide any of the strides in
11826 /// the loops:
11827 ///
11828 /// CHECK: Base offset: %A
11829 ///
11830 /// and then SCEV->delinearize determines the size of some of the dimensions of
11831 /// the array as these are the multiples by which the strides are happening:
11832 ///
11833 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11834 ///
11835 /// Note that the outermost dimension remains of UnknownSize because there are
11836 /// no strides that would help identifying the size of the last dimension: when
11837 /// the array has been statically allocated, one could compute the size of that
11838 /// dimension by dividing the overall size of the array by the size of the known
11839 /// dimensions: %m * %o * 8.
11840 ///
11841 /// Finally delinearize provides the access functions for the array reference
11842 /// that does correspond to A[i][j][k] of the above C testcase:
11843 ///
11844 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11845 ///
11846 /// The testcases are checking the output of a function pass:
11847 /// DelinearizationPass that walks through all loads and stores of a function
11848 /// asking for the SCEV of the memory access with respect to all enclosing
11849 /// loops, calling SCEV->delinearize on that and printing the results.
delinearize(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)11850 void ScalarEvolution::delinearize(const SCEV *Expr,
11851 SmallVectorImpl<const SCEV *> &Subscripts,
11852 SmallVectorImpl<const SCEV *> &Sizes,
11853 const SCEV *ElementSize) {
11854 // First step: collect parametric terms.
11855 SmallVector<const SCEV *, 4> Terms;
11856 collectParametricTerms(Expr, Terms);
11857
11858 if (Terms.empty())
11859 return;
11860
11861 // Second step: find subscript sizes.
11862 findArrayDimensions(Terms, Sizes, ElementSize);
11863
11864 if (Sizes.empty())
11865 return;
11866
11867 // Third step: compute the access functions for each subscript.
11868 computeAccessFunctions(Expr, Subscripts, Sizes);
11869
11870 if (Subscripts.empty())
11871 return;
11872
11873 LLVM_DEBUG({
11874 dbgs() << "succeeded to delinearize " << *Expr << "\n";
11875 dbgs() << "ArrayDecl[UnknownSize]";
11876 for (const SCEV *S : Sizes)
11877 dbgs() << "[" << *S << "]";
11878
11879 dbgs() << "\nArrayRef";
11880 for (const SCEV *S : Subscripts)
11881 dbgs() << "[" << *S << "]";
11882 dbgs() << "\n";
11883 });
11884 }
11885
getIndexExpressionsFromGEP(const GetElementPtrInst * GEP,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<int> & Sizes)11886 bool ScalarEvolution::getIndexExpressionsFromGEP(
11887 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11888 SmallVectorImpl<int> &Sizes) {
11889 assert(Subscripts.empty() && Sizes.empty() &&
11890 "Expected output lists to be empty on entry to this function.");
11891 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11892 Type *Ty = GEP->getPointerOperandType();
11893 bool DroppedFirstDim = false;
11894 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11895 const SCEV *Expr = getSCEV(GEP->getOperand(i));
11896 if (i == 1) {
11897 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11898 Ty = PtrTy->getElementType();
11899 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11900 Ty = ArrayTy->getElementType();
11901 } else {
11902 Subscripts.clear();
11903 Sizes.clear();
11904 return false;
11905 }
11906 if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11907 if (Const->getValue()->isZero()) {
11908 DroppedFirstDim = true;
11909 continue;
11910 }
11911 Subscripts.push_back(Expr);
11912 continue;
11913 }
11914
11915 auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11916 if (!ArrayTy) {
11917 Subscripts.clear();
11918 Sizes.clear();
11919 return false;
11920 }
11921
11922 Subscripts.push_back(Expr);
11923 if (!(DroppedFirstDim && i == 2))
11924 Sizes.push_back(ArrayTy->getNumElements());
11925
11926 Ty = ArrayTy->getElementType();
11927 }
11928 return !Subscripts.empty();
11929 }
11930
11931 //===----------------------------------------------------------------------===//
11932 // SCEVCallbackVH Class Implementation
11933 //===----------------------------------------------------------------------===//
11934
deleted()11935 void ScalarEvolution::SCEVCallbackVH::deleted() {
11936 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11937 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11938 SE->ConstantEvolutionLoopExitValue.erase(PN);
11939 SE->eraseValueFromMap(getValPtr());
11940 // this now dangles!
11941 }
11942
allUsesReplacedWith(Value * V)11943 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11944 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11945
11946 // Forget all the expressions associated with users of the old value,
11947 // so that future queries will recompute the expressions using the new
11948 // value.
11949 Value *Old = getValPtr();
11950 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11951 SmallPtrSet<User *, 8> Visited;
11952 while (!Worklist.empty()) {
11953 User *U = Worklist.pop_back_val();
11954 // Deleting the Old value will cause this to dangle. Postpone
11955 // that until everything else is done.
11956 if (U == Old)
11957 continue;
11958 if (!Visited.insert(U).second)
11959 continue;
11960 if (PHINode *PN = dyn_cast<PHINode>(U))
11961 SE->ConstantEvolutionLoopExitValue.erase(PN);
11962 SE->eraseValueFromMap(U);
11963 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11964 }
11965 // Delete the Old value.
11966 if (PHINode *PN = dyn_cast<PHINode>(Old))
11967 SE->ConstantEvolutionLoopExitValue.erase(PN);
11968 SE->eraseValueFromMap(Old);
11969 // this now dangles!
11970 }
11971
SCEVCallbackVH(Value * V,ScalarEvolution * se)11972 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11973 : CallbackVH(V), SE(se) {}
11974
11975 //===----------------------------------------------------------------------===//
11976 // ScalarEvolution Class Implementation
11977 //===----------------------------------------------------------------------===//
11978
ScalarEvolution(Function & F,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI)11979 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11980 AssumptionCache &AC, DominatorTree &DT,
11981 LoopInfo &LI)
11982 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11983 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11984 LoopDispositions(64), BlockDispositions(64) {
11985 // To use guards for proving predicates, we need to scan every instruction in
11986 // relevant basic blocks, and not just terminators. Doing this is a waste of
11987 // time if the IR does not actually contain any calls to
11988 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11989 //
11990 // This pessimizes the case where a pass that preserves ScalarEvolution wants
11991 // to _add_ guards to the module when there weren't any before, and wants
11992 // ScalarEvolution to optimize based on those guards. For now we prefer to be
11993 // efficient in lieu of being smart in that rather obscure case.
11994
11995 auto *GuardDecl = F.getParent()->getFunction(
11996 Intrinsic::getName(Intrinsic::experimental_guard));
11997 HasGuards = GuardDecl && !GuardDecl->use_empty();
11998 }
11999
ScalarEvolution(ScalarEvolution && Arg)12000 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12001 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12002 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12003 ValueExprMap(std::move(Arg.ValueExprMap)),
12004 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12005 PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12006 PendingMerges(std::move(Arg.PendingMerges)),
12007 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12008 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12009 PredicatedBackedgeTakenCounts(
12010 std::move(Arg.PredicatedBackedgeTakenCounts)),
12011 ConstantEvolutionLoopExitValue(
12012 std::move(Arg.ConstantEvolutionLoopExitValue)),
12013 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12014 LoopDispositions(std::move(Arg.LoopDispositions)),
12015 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12016 BlockDispositions(std::move(Arg.BlockDispositions)),
12017 UnsignedRanges(std::move(Arg.UnsignedRanges)),
12018 SignedRanges(std::move(Arg.SignedRanges)),
12019 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12020 UniquePreds(std::move(Arg.UniquePreds)),
12021 SCEVAllocator(std::move(Arg.SCEVAllocator)),
12022 LoopUsers(std::move(Arg.LoopUsers)),
12023 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12024 FirstUnknown(Arg.FirstUnknown) {
12025 Arg.FirstUnknown = nullptr;
12026 }
12027
~ScalarEvolution()12028 ScalarEvolution::~ScalarEvolution() {
12029 // Iterate through all the SCEVUnknown instances and call their
12030 // destructors, so that they release their references to their values.
12031 for (SCEVUnknown *U = FirstUnknown; U;) {
12032 SCEVUnknown *Tmp = U;
12033 U = U->Next;
12034 Tmp->~SCEVUnknown();
12035 }
12036 FirstUnknown = nullptr;
12037
12038 ExprValueMap.clear();
12039 ValueExprMap.clear();
12040 HasRecMap.clear();
12041
12042 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
12043 // that a loop had multiple computable exits.
12044 for (auto &BTCI : BackedgeTakenCounts)
12045 BTCI.second.clear();
12046 for (auto &BTCI : PredicatedBackedgeTakenCounts)
12047 BTCI.second.clear();
12048
12049 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12050 assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12051 assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12052 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12053 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12054 }
12055
hasLoopInvariantBackedgeTakenCount(const Loop * L)12056 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12057 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12058 }
12059
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)12060 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12061 const Loop *L) {
12062 // Print all inner loops first
12063 for (Loop *I : *L)
12064 PrintLoopInfo(OS, SE, I);
12065
12066 OS << "Loop ";
12067 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12068 OS << ": ";
12069
12070 SmallVector<BasicBlock *, 8> ExitingBlocks;
12071 L->getExitingBlocks(ExitingBlocks);
12072 if (ExitingBlocks.size() != 1)
12073 OS << "<multiple exits> ";
12074
12075 if (SE->hasLoopInvariantBackedgeTakenCount(L))
12076 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12077 else
12078 OS << "Unpredictable backedge-taken count.\n";
12079
12080 if (ExitingBlocks.size() > 1)
12081 for (BasicBlock *ExitingBlock : ExitingBlocks) {
12082 OS << " exit count for " << ExitingBlock->getName() << ": "
12083 << *SE->getExitCount(L, ExitingBlock) << "\n";
12084 }
12085
12086 OS << "Loop ";
12087 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12088 OS << ": ";
12089
12090 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12091 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12092 if (SE->isBackedgeTakenCountMaxOrZero(L))
12093 OS << ", actual taken count either this or zero.";
12094 } else {
12095 OS << "Unpredictable max backedge-taken count. ";
12096 }
12097
12098 OS << "\n"
12099 "Loop ";
12100 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12101 OS << ": ";
12102
12103 SCEVUnionPredicate Pred;
12104 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12105 if (!isa<SCEVCouldNotCompute>(PBT)) {
12106 OS << "Predicated backedge-taken count is " << *PBT << "\n";
12107 OS << " Predicates:\n";
12108 Pred.print(OS, 4);
12109 } else {
12110 OS << "Unpredictable predicated backedge-taken count. ";
12111 }
12112 OS << "\n";
12113
12114 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12115 OS << "Loop ";
12116 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12117 OS << ": ";
12118 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12119 }
12120 }
12121
loopDispositionToStr(ScalarEvolution::LoopDisposition LD)12122 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12123 switch (LD) {
12124 case ScalarEvolution::LoopVariant:
12125 return "Variant";
12126 case ScalarEvolution::LoopInvariant:
12127 return "Invariant";
12128 case ScalarEvolution::LoopComputable:
12129 return "Computable";
12130 }
12131 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12132 }
12133
print(raw_ostream & OS) const12134 void ScalarEvolution::print(raw_ostream &OS) const {
12135 // ScalarEvolution's implementation of the print method is to print
12136 // out SCEV values of all instructions that are interesting. Doing
12137 // this potentially causes it to create new SCEV objects though,
12138 // which technically conflicts with the const qualifier. This isn't
12139 // observable from outside the class though, so casting away the
12140 // const isn't dangerous.
12141 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12142
12143 if (ClassifyExpressions) {
12144 OS << "Classifying expressions for: ";
12145 F.printAsOperand(OS, /*PrintType=*/false);
12146 OS << "\n";
12147 for (Instruction &I : instructions(F))
12148 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12149 OS << I << '\n';
12150 OS << " --> ";
12151 const SCEV *SV = SE.getSCEV(&I);
12152 SV->print(OS);
12153 if (!isa<SCEVCouldNotCompute>(SV)) {
12154 OS << " U: ";
12155 SE.getUnsignedRange(SV).print(OS);
12156 OS << " S: ";
12157 SE.getSignedRange(SV).print(OS);
12158 }
12159
12160 const Loop *L = LI.getLoopFor(I.getParent());
12161
12162 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12163 if (AtUse != SV) {
12164 OS << " --> ";
12165 AtUse->print(OS);
12166 if (!isa<SCEVCouldNotCompute>(AtUse)) {
12167 OS << " U: ";
12168 SE.getUnsignedRange(AtUse).print(OS);
12169 OS << " S: ";
12170 SE.getSignedRange(AtUse).print(OS);
12171 }
12172 }
12173
12174 if (L) {
12175 OS << "\t\t" "Exits: ";
12176 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12177 if (!SE.isLoopInvariant(ExitValue, L)) {
12178 OS << "<<Unknown>>";
12179 } else {
12180 OS << *ExitValue;
12181 }
12182
12183 bool First = true;
12184 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12185 if (First) {
12186 OS << "\t\t" "LoopDispositions: { ";
12187 First = false;
12188 } else {
12189 OS << ", ";
12190 }
12191
12192 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12193 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12194 }
12195
12196 for (auto *InnerL : depth_first(L)) {
12197 if (InnerL == L)
12198 continue;
12199 if (First) {
12200 OS << "\t\t" "LoopDispositions: { ";
12201 First = false;
12202 } else {
12203 OS << ", ";
12204 }
12205
12206 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12207 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12208 }
12209
12210 OS << " }";
12211 }
12212
12213 OS << "\n";
12214 }
12215 }
12216
12217 OS << "Determining loop execution counts for: ";
12218 F.printAsOperand(OS, /*PrintType=*/false);
12219 OS << "\n";
12220 for (Loop *I : LI)
12221 PrintLoopInfo(OS, &SE, I);
12222 }
12223
12224 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)12225 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12226 auto &Values = LoopDispositions[S];
12227 for (auto &V : Values) {
12228 if (V.getPointer() == L)
12229 return V.getInt();
12230 }
12231 Values.emplace_back(L, LoopVariant);
12232 LoopDisposition D = computeLoopDisposition(S, L);
12233 auto &Values2 = LoopDispositions[S];
12234 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12235 if (V.getPointer() == L) {
12236 V.setInt(D);
12237 break;
12238 }
12239 }
12240 return D;
12241 }
12242
12243 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)12244 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12245 switch (S->getSCEVType()) {
12246 case scConstant:
12247 return LoopInvariant;
12248 case scPtrToInt:
12249 case scTruncate:
12250 case scZeroExtend:
12251 case scSignExtend:
12252 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12253 case scAddRecExpr: {
12254 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12255
12256 // If L is the addrec's loop, it's computable.
12257 if (AR->getLoop() == L)
12258 return LoopComputable;
12259
12260 // Add recurrences are never invariant in the function-body (null loop).
12261 if (!L)
12262 return LoopVariant;
12263
12264 // Everything that is not defined at loop entry is variant.
12265 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12266 return LoopVariant;
12267 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12268 " dominate the contained loop's header?");
12269
12270 // This recurrence is invariant w.r.t. L if AR's loop contains L.
12271 if (AR->getLoop()->contains(L))
12272 return LoopInvariant;
12273
12274 // This recurrence is variant w.r.t. L if any of its operands
12275 // are variant.
12276 for (auto *Op : AR->operands())
12277 if (!isLoopInvariant(Op, L))
12278 return LoopVariant;
12279
12280 // Otherwise it's loop-invariant.
12281 return LoopInvariant;
12282 }
12283 case scAddExpr:
12284 case scMulExpr:
12285 case scUMaxExpr:
12286 case scSMaxExpr:
12287 case scUMinExpr:
12288 case scSMinExpr: {
12289 bool HasVarying = false;
12290 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12291 LoopDisposition D = getLoopDisposition(Op, L);
12292 if (D == LoopVariant)
12293 return LoopVariant;
12294 if (D == LoopComputable)
12295 HasVarying = true;
12296 }
12297 return HasVarying ? LoopComputable : LoopInvariant;
12298 }
12299 case scUDivExpr: {
12300 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12301 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12302 if (LD == LoopVariant)
12303 return LoopVariant;
12304 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12305 if (RD == LoopVariant)
12306 return LoopVariant;
12307 return (LD == LoopInvariant && RD == LoopInvariant) ?
12308 LoopInvariant : LoopComputable;
12309 }
12310 case scUnknown:
12311 // All non-instruction values are loop invariant. All instructions are loop
12312 // invariant if they are not contained in the specified loop.
12313 // Instructions are never considered invariant in the function body
12314 // (null loop) because they are defined within the "loop".
12315 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12316 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12317 return LoopInvariant;
12318 case scCouldNotCompute:
12319 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12320 }
12321 llvm_unreachable("Unknown SCEV kind!");
12322 }
12323
isLoopInvariant(const SCEV * S,const Loop * L)12324 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12325 return getLoopDisposition(S, L) == LoopInvariant;
12326 }
12327
hasComputableLoopEvolution(const SCEV * S,const Loop * L)12328 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12329 return getLoopDisposition(S, L) == LoopComputable;
12330 }
12331
12332 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)12333 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12334 auto &Values = BlockDispositions[S];
12335 for (auto &V : Values) {
12336 if (V.getPointer() == BB)
12337 return V.getInt();
12338 }
12339 Values.emplace_back(BB, DoesNotDominateBlock);
12340 BlockDisposition D = computeBlockDisposition(S, BB);
12341 auto &Values2 = BlockDispositions[S];
12342 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12343 if (V.getPointer() == BB) {
12344 V.setInt(D);
12345 break;
12346 }
12347 }
12348 return D;
12349 }
12350
12351 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)12352 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12353 switch (S->getSCEVType()) {
12354 case scConstant:
12355 return ProperlyDominatesBlock;
12356 case scPtrToInt:
12357 case scTruncate:
12358 case scZeroExtend:
12359 case scSignExtend:
12360 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12361 case scAddRecExpr: {
12362 // This uses a "dominates" query instead of "properly dominates" query
12363 // to test for proper dominance too, because the instruction which
12364 // produces the addrec's value is a PHI, and a PHI effectively properly
12365 // dominates its entire containing block.
12366 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12367 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12368 return DoesNotDominateBlock;
12369
12370 // Fall through into SCEVNAryExpr handling.
12371 LLVM_FALLTHROUGH;
12372 }
12373 case scAddExpr:
12374 case scMulExpr:
12375 case scUMaxExpr:
12376 case scSMaxExpr:
12377 case scUMinExpr:
12378 case scSMinExpr: {
12379 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12380 bool Proper = true;
12381 for (const SCEV *NAryOp : NAry->operands()) {
12382 BlockDisposition D = getBlockDisposition(NAryOp, BB);
12383 if (D == DoesNotDominateBlock)
12384 return DoesNotDominateBlock;
12385 if (D == DominatesBlock)
12386 Proper = false;
12387 }
12388 return Proper ? ProperlyDominatesBlock : DominatesBlock;
12389 }
12390 case scUDivExpr: {
12391 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12392 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12393 BlockDisposition LD = getBlockDisposition(LHS, BB);
12394 if (LD == DoesNotDominateBlock)
12395 return DoesNotDominateBlock;
12396 BlockDisposition RD = getBlockDisposition(RHS, BB);
12397 if (RD == DoesNotDominateBlock)
12398 return DoesNotDominateBlock;
12399 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12400 ProperlyDominatesBlock : DominatesBlock;
12401 }
12402 case scUnknown:
12403 if (Instruction *I =
12404 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12405 if (I->getParent() == BB)
12406 return DominatesBlock;
12407 if (DT.properlyDominates(I->getParent(), BB))
12408 return ProperlyDominatesBlock;
12409 return DoesNotDominateBlock;
12410 }
12411 return ProperlyDominatesBlock;
12412 case scCouldNotCompute:
12413 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12414 }
12415 llvm_unreachable("Unknown SCEV kind!");
12416 }
12417
dominates(const SCEV * S,const BasicBlock * BB)12418 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12419 return getBlockDisposition(S, BB) >= DominatesBlock;
12420 }
12421
properlyDominates(const SCEV * S,const BasicBlock * BB)12422 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12423 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12424 }
12425
hasOperand(const SCEV * S,const SCEV * Op) const12426 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12427 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12428 }
12429
hasOperand(const SCEV * S) const12430 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
12431 auto IsS = [&](const SCEV *X) { return S == X; };
12432 auto ContainsS = [&](const SCEV *X) {
12433 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
12434 };
12435 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
12436 }
12437
12438 void
forgetMemoizedResults(const SCEV * S)12439 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12440 ValuesAtScopes.erase(S);
12441 LoopDispositions.erase(S);
12442 BlockDispositions.erase(S);
12443 UnsignedRanges.erase(S);
12444 SignedRanges.erase(S);
12445 ExprValueMap.erase(S);
12446 HasRecMap.erase(S);
12447 MinTrailingZerosCache.erase(S);
12448
12449 for (auto I = PredicatedSCEVRewrites.begin();
12450 I != PredicatedSCEVRewrites.end();) {
12451 std::pair<const SCEV *, const Loop *> Entry = I->first;
12452 if (Entry.first == S)
12453 PredicatedSCEVRewrites.erase(I++);
12454 else
12455 ++I;
12456 }
12457
12458 auto RemoveSCEVFromBackedgeMap =
12459 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12460 for (auto I = Map.begin(), E = Map.end(); I != E;) {
12461 BackedgeTakenInfo &BEInfo = I->second;
12462 if (BEInfo.hasOperand(S, this)) {
12463 BEInfo.clear();
12464 Map.erase(I++);
12465 } else
12466 ++I;
12467 }
12468 };
12469
12470 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12471 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12472 }
12473
12474 void
getUsedLoops(const SCEV * S,SmallPtrSetImpl<const Loop * > & LoopsUsed)12475 ScalarEvolution::getUsedLoops(const SCEV *S,
12476 SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12477 struct FindUsedLoops {
12478 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12479 : LoopsUsed(LoopsUsed) {}
12480 SmallPtrSetImpl<const Loop *> &LoopsUsed;
12481 bool follow(const SCEV *S) {
12482 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12483 LoopsUsed.insert(AR->getLoop());
12484 return true;
12485 }
12486
12487 bool isDone() const { return false; }
12488 };
12489
12490 FindUsedLoops F(LoopsUsed);
12491 SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12492 }
12493
addToLoopUseLists(const SCEV * S)12494 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12495 SmallPtrSet<const Loop *, 8> LoopsUsed;
12496 getUsedLoops(S, LoopsUsed);
12497 for (auto *L : LoopsUsed)
12498 LoopUsers[L].push_back(S);
12499 }
12500
verify() const12501 void ScalarEvolution::verify() const {
12502 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12503 ScalarEvolution SE2(F, TLI, AC, DT, LI);
12504
12505 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12506
12507 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12508 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12509 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12510
12511 const SCEV *visitConstant(const SCEVConstant *Constant) {
12512 return SE.getConstant(Constant->getAPInt());
12513 }
12514
12515 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12516 return SE.getUnknown(Expr->getValue());
12517 }
12518
12519 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12520 return SE.getCouldNotCompute();
12521 }
12522 };
12523
12524 SCEVMapper SCM(SE2);
12525
12526 while (!LoopStack.empty()) {
12527 auto *L = LoopStack.pop_back_val();
12528 LoopStack.insert(LoopStack.end(), L->begin(), L->end());
12529
12530 auto *CurBECount = SCM.visit(
12531 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12532 auto *NewBECount = SE2.getBackedgeTakenCount(L);
12533
12534 if (CurBECount == SE2.getCouldNotCompute() ||
12535 NewBECount == SE2.getCouldNotCompute()) {
12536 // NB! This situation is legal, but is very suspicious -- whatever pass
12537 // change the loop to make a trip count go from could not compute to
12538 // computable or vice-versa *should have* invalidated SCEV. However, we
12539 // choose not to assert here (for now) since we don't want false
12540 // positives.
12541 continue;
12542 }
12543
12544 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12545 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12546 // not propagate undef aggressively). This means we can (and do) fail
12547 // verification in cases where a transform makes the trip count of a loop
12548 // go from "undef" to "undef+1" (say). The transform is fine, since in
12549 // both cases the loop iterates "undef" times, but SCEV thinks we
12550 // increased the trip count of the loop by 1 incorrectly.
12551 continue;
12552 }
12553
12554 if (SE.getTypeSizeInBits(CurBECount->getType()) >
12555 SE.getTypeSizeInBits(NewBECount->getType()))
12556 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12557 else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12558 SE.getTypeSizeInBits(NewBECount->getType()))
12559 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12560
12561 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12562
12563 // Unless VerifySCEVStrict is set, we only compare constant deltas.
12564 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12565 dbgs() << "Trip Count for " << *L << " Changed!\n";
12566 dbgs() << "Old: " << *CurBECount << "\n";
12567 dbgs() << "New: " << *NewBECount << "\n";
12568 dbgs() << "Delta: " << *Delta << "\n";
12569 std::abort();
12570 }
12571 }
12572
12573 // Collect all valid loops currently in LoopInfo.
12574 SmallPtrSet<Loop *, 32> ValidLoops;
12575 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12576 while (!Worklist.empty()) {
12577 Loop *L = Worklist.pop_back_val();
12578 if (ValidLoops.contains(L))
12579 continue;
12580 ValidLoops.insert(L);
12581 Worklist.append(L->begin(), L->end());
12582 }
12583 // Check for SCEV expressions referencing invalid/deleted loops.
12584 for (auto &KV : ValueExprMap) {
12585 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12586 if (!AR)
12587 continue;
12588 assert(ValidLoops.contains(AR->getLoop()) &&
12589 "AddRec references invalid loop");
12590 }
12591 }
12592
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)12593 bool ScalarEvolution::invalidate(
12594 Function &F, const PreservedAnalyses &PA,
12595 FunctionAnalysisManager::Invalidator &Inv) {
12596 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12597 // of its dependencies is invalidated.
12598 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12599 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12600 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12601 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12602 Inv.invalidate<LoopAnalysis>(F, PA);
12603 }
12604
12605 AnalysisKey ScalarEvolutionAnalysis::Key;
12606
run(Function & F,FunctionAnalysisManager & AM)12607 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12608 FunctionAnalysisManager &AM) {
12609 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12610 AM.getResult<AssumptionAnalysis>(F),
12611 AM.getResult<DominatorTreeAnalysis>(F),
12612 AM.getResult<LoopAnalysis>(F));
12613 }
12614
12615 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)12616 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12617 AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12618 return PreservedAnalyses::all();
12619 }
12620
12621 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)12622 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12623 // For compatibility with opt's -analyze feature under legacy pass manager
12624 // which was not ported to NPM. This keeps tests using
12625 // update_analyze_test_checks.py working.
12626 OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12627 << F.getName() << "':\n";
12628 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12629 return PreservedAnalyses::all();
12630 }
12631
12632 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12633 "Scalar Evolution Analysis", false, true)
12634 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12635 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12636 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12637 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12638 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12639 "Scalar Evolution Analysis", false, true)
12640
12641 char ScalarEvolutionWrapperPass::ID = 0;
12642
ScalarEvolutionWrapperPass()12643 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12644 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12645 }
12646
runOnFunction(Function & F)12647 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12648 SE.reset(new ScalarEvolution(
12649 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12650 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12651 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12652 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12653 return false;
12654 }
12655
releaseMemory()12656 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12657
print(raw_ostream & OS,const Module *) const12658 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12659 SE->print(OS);
12660 }
12661
verifyAnalysis() const12662 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12663 if (!VerifySCEV)
12664 return;
12665
12666 SE->verify();
12667 }
12668
getAnalysisUsage(AnalysisUsage & AU) const12669 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12670 AU.setPreservesAll();
12671 AU.addRequiredTransitive<AssumptionCacheTracker>();
12672 AU.addRequiredTransitive<LoopInfoWrapperPass>();
12673 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12674 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12675 }
12676
getEqualPredicate(const SCEV * LHS,const SCEV * RHS)12677 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12678 const SCEV *RHS) {
12679 FoldingSetNodeID ID;
12680 assert(LHS->getType() == RHS->getType() &&
12681 "Type mismatch between LHS and RHS");
12682 // Unique this node based on the arguments
12683 ID.AddInteger(SCEVPredicate::P_Equal);
12684 ID.AddPointer(LHS);
12685 ID.AddPointer(RHS);
12686 void *IP = nullptr;
12687 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12688 return S;
12689 SCEVEqualPredicate *Eq = new (SCEVAllocator)
12690 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12691 UniquePreds.InsertNode(Eq, IP);
12692 return Eq;
12693 }
12694
getWrapPredicate(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)12695 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12696 const SCEVAddRecExpr *AR,
12697 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12698 FoldingSetNodeID ID;
12699 // Unique this node based on the arguments
12700 ID.AddInteger(SCEVPredicate::P_Wrap);
12701 ID.AddPointer(AR);
12702 ID.AddInteger(AddedFlags);
12703 void *IP = nullptr;
12704 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12705 return S;
12706 auto *OF = new (SCEVAllocator)
12707 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12708 UniquePreds.InsertNode(OF, IP);
12709 return OF;
12710 }
12711
12712 namespace {
12713
12714 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12715 public:
12716
12717 /// Rewrites \p S in the context of a loop L and the SCEV predication
12718 /// infrastructure.
12719 ///
12720 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12721 /// equivalences present in \p Pred.
12722 ///
12723 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12724 /// \p NewPreds such that the result will be an AddRecExpr.
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)12725 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12726 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12727 SCEVUnionPredicate *Pred) {
12728 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12729 return Rewriter.visit(S);
12730 }
12731
visitUnknown(const SCEVUnknown * Expr)12732 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12733 if (Pred) {
12734 auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12735 for (auto *Pred : ExprPreds)
12736 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12737 if (IPred->getLHS() == Expr)
12738 return IPred->getRHS();
12739 }
12740 return convertToAddRecWithPreds(Expr);
12741 }
12742
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)12743 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12744 const SCEV *Operand = visit(Expr->getOperand());
12745 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12746 if (AR && AR->getLoop() == L && AR->isAffine()) {
12747 // This couldn't be folded because the operand didn't have the nuw
12748 // flag. Add the nusw flag as an assumption that we could make.
12749 const SCEV *Step = AR->getStepRecurrence(SE);
12750 Type *Ty = Expr->getType();
12751 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12752 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12753 SE.getSignExtendExpr(Step, Ty), L,
12754 AR->getNoWrapFlags());
12755 }
12756 return SE.getZeroExtendExpr(Operand, Expr->getType());
12757 }
12758
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)12759 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12760 const SCEV *Operand = visit(Expr->getOperand());
12761 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12762 if (AR && AR->getLoop() == L && AR->isAffine()) {
12763 // This couldn't be folded because the operand didn't have the nsw
12764 // flag. Add the nssw flag as an assumption that we could make.
12765 const SCEV *Step = AR->getStepRecurrence(SE);
12766 Type *Ty = Expr->getType();
12767 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12768 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12769 SE.getSignExtendExpr(Step, Ty), L,
12770 AR->getNoWrapFlags());
12771 }
12772 return SE.getSignExtendExpr(Operand, Expr->getType());
12773 }
12774
12775 private:
SCEVPredicateRewriter(const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)12776 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12777 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12778 SCEVUnionPredicate *Pred)
12779 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12780
addOverflowAssumption(const SCEVPredicate * P)12781 bool addOverflowAssumption(const SCEVPredicate *P) {
12782 if (!NewPreds) {
12783 // Check if we've already made this assumption.
12784 return Pred && Pred->implies(P);
12785 }
12786 NewPreds->insert(P);
12787 return true;
12788 }
12789
addOverflowAssumption(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)12790 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12791 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12792 auto *A = SE.getWrapPredicate(AR, AddedFlags);
12793 return addOverflowAssumption(A);
12794 }
12795
12796 // If \p Expr represents a PHINode, we try to see if it can be represented
12797 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12798 // to add this predicate as a runtime overflow check, we return the AddRec.
12799 // If \p Expr does not meet these conditions (is not a PHI node, or we
12800 // couldn't create an AddRec for it, or couldn't add the predicate), we just
12801 // return \p Expr.
convertToAddRecWithPreds(const SCEVUnknown * Expr)12802 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12803 if (!isa<PHINode>(Expr->getValue()))
12804 return Expr;
12805 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12806 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12807 if (!PredicatedRewrite)
12808 return Expr;
12809 for (auto *P : PredicatedRewrite->second){
12810 // Wrap predicates from outer loops are not supported.
12811 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12812 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12813 if (L != AR->getLoop())
12814 return Expr;
12815 }
12816 if (!addOverflowAssumption(P))
12817 return Expr;
12818 }
12819 return PredicatedRewrite->first;
12820 }
12821
12822 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12823 SCEVUnionPredicate *Pred;
12824 const Loop *L;
12825 };
12826
12827 } // end anonymous namespace
12828
rewriteUsingPredicate(const SCEV * S,const Loop * L,SCEVUnionPredicate & Preds)12829 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12830 SCEVUnionPredicate &Preds) {
12831 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12832 }
12833
convertSCEVToAddRecWithPredicates(const SCEV * S,const Loop * L,SmallPtrSetImpl<const SCEVPredicate * > & Preds)12834 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12835 const SCEV *S, const Loop *L,
12836 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12837 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12838 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12839 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12840
12841 if (!AddRec)
12842 return nullptr;
12843
12844 // Since the transformation was successful, we can now transfer the SCEV
12845 // predicates.
12846 for (auto *P : TransformPreds)
12847 Preds.insert(P);
12848
12849 return AddRec;
12850 }
12851
12852 /// SCEV predicates
SCEVPredicate(const FoldingSetNodeIDRef ID,SCEVPredicateKind Kind)12853 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12854 SCEVPredicateKind Kind)
12855 : FastID(ID), Kind(Kind) {}
12856
SCEVEqualPredicate(const FoldingSetNodeIDRef ID,const SCEV * LHS,const SCEV * RHS)12857 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12858 const SCEV *LHS, const SCEV *RHS)
12859 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12860 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12861 assert(LHS != RHS && "LHS and RHS are the same SCEV");
12862 }
12863
implies(const SCEVPredicate * N) const12864 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12865 const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12866
12867 if (!Op)
12868 return false;
12869
12870 return Op->LHS == LHS && Op->RHS == RHS;
12871 }
12872
isAlwaysTrue() const12873 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12874
getExpr() const12875 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12876
print(raw_ostream & OS,unsigned Depth) const12877 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12878 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12879 }
12880
SCEVWrapPredicate(const FoldingSetNodeIDRef ID,const SCEVAddRecExpr * AR,IncrementWrapFlags Flags)12881 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12882 const SCEVAddRecExpr *AR,
12883 IncrementWrapFlags Flags)
12884 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12885
getExpr() const12886 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12887
implies(const SCEVPredicate * N) const12888 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12889 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12890
12891 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12892 }
12893
isAlwaysTrue() const12894 bool SCEVWrapPredicate::isAlwaysTrue() const {
12895 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12896 IncrementWrapFlags IFlags = Flags;
12897
12898 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12899 IFlags = clearFlags(IFlags, IncrementNSSW);
12900
12901 return IFlags == IncrementAnyWrap;
12902 }
12903
print(raw_ostream & OS,unsigned Depth) const12904 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12905 OS.indent(Depth) << *getExpr() << " Added Flags: ";
12906 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12907 OS << "<nusw>";
12908 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12909 OS << "<nssw>";
12910 OS << "\n";
12911 }
12912
12913 SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr * AR,ScalarEvolution & SE)12914 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12915 ScalarEvolution &SE) {
12916 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12917 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12918
12919 // We can safely transfer the NSW flag as NSSW.
12920 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12921 ImpliedFlags = IncrementNSSW;
12922
12923 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12924 // If the increment is positive, the SCEV NUW flag will also imply the
12925 // WrapPredicate NUSW flag.
12926 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12927 if (Step->getValue()->getValue().isNonNegative())
12928 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12929 }
12930
12931 return ImpliedFlags;
12932 }
12933
12934 /// Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate()12935 SCEVUnionPredicate::SCEVUnionPredicate()
12936 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12937
isAlwaysTrue() const12938 bool SCEVUnionPredicate::isAlwaysTrue() const {
12939 return all_of(Preds,
12940 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12941 }
12942
12943 ArrayRef<const SCEVPredicate *>
getPredicatesForExpr(const SCEV * Expr)12944 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12945 auto I = SCEVToPreds.find(Expr);
12946 if (I == SCEVToPreds.end())
12947 return ArrayRef<const SCEVPredicate *>();
12948 return I->second;
12949 }
12950
implies(const SCEVPredicate * N) const12951 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12952 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12953 return all_of(Set->Preds,
12954 [this](const SCEVPredicate *I) { return this->implies(I); });
12955
12956 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12957 if (ScevPredsIt == SCEVToPreds.end())
12958 return false;
12959 auto &SCEVPreds = ScevPredsIt->second;
12960
12961 return any_of(SCEVPreds,
12962 [N](const SCEVPredicate *I) { return I->implies(N); });
12963 }
12964
getExpr() const12965 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12966
print(raw_ostream & OS,unsigned Depth) const12967 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12968 for (auto Pred : Preds)
12969 Pred->print(OS, Depth);
12970 }
12971
add(const SCEVPredicate * N)12972 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12973 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12974 for (auto Pred : Set->Preds)
12975 add(Pred);
12976 return;
12977 }
12978
12979 if (implies(N))
12980 return;
12981
12982 const SCEV *Key = N->getExpr();
12983 assert(Key && "Only SCEVUnionPredicate doesn't have an "
12984 " associated expression!");
12985
12986 SCEVToPreds[Key].push_back(N);
12987 Preds.push_back(N);
12988 }
12989
PredicatedScalarEvolution(ScalarEvolution & SE,Loop & L)12990 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12991 Loop &L)
12992 : SE(SE), L(L) {}
12993
getSCEV(Value * V)12994 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12995 const SCEV *Expr = SE.getSCEV(V);
12996 RewriteEntry &Entry = RewriteMap[Expr];
12997
12998 // If we already have an entry and the version matches, return it.
12999 if (Entry.second && Generation == Entry.first)
13000 return Entry.second;
13001
13002 // We found an entry but it's stale. Rewrite the stale entry
13003 // according to the current predicate.
13004 if (Entry.second)
13005 Expr = Entry.second;
13006
13007 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13008 Entry = {Generation, NewSCEV};
13009
13010 return NewSCEV;
13011 }
13012
getBackedgeTakenCount()13013 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13014 if (!BackedgeCount) {
13015 SCEVUnionPredicate BackedgePred;
13016 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13017 addPredicate(BackedgePred);
13018 }
13019 return BackedgeCount;
13020 }
13021
addPredicate(const SCEVPredicate & Pred)13022 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13023 if (Preds.implies(&Pred))
13024 return;
13025 Preds.add(&Pred);
13026 updateGeneration();
13027 }
13028
getUnionPredicate() const13029 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13030 return Preds;
13031 }
13032
updateGeneration()13033 void PredicatedScalarEvolution::updateGeneration() {
13034 // If the generation number wrapped recompute everything.
13035 if (++Generation == 0) {
13036 for (auto &II : RewriteMap) {
13037 const SCEV *Rewritten = II.second.second;
13038 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13039 }
13040 }
13041 }
13042
setNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)13043 void PredicatedScalarEvolution::setNoOverflow(
13044 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13045 const SCEV *Expr = getSCEV(V);
13046 const auto *AR = cast<SCEVAddRecExpr>(Expr);
13047
13048 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13049
13050 // Clear the statically implied flags.
13051 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13052 addPredicate(*SE.getWrapPredicate(AR, Flags));
13053
13054 auto II = FlagsMap.insert({V, Flags});
13055 if (!II.second)
13056 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13057 }
13058
hasNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)13059 bool PredicatedScalarEvolution::hasNoOverflow(
13060 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13061 const SCEV *Expr = getSCEV(V);
13062 const auto *AR = cast<SCEVAddRecExpr>(Expr);
13063
13064 Flags = SCEVWrapPredicate::clearFlags(
13065 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13066
13067 auto II = FlagsMap.find(V);
13068
13069 if (II != FlagsMap.end())
13070 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13071
13072 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13073 }
13074
getAsAddRec(Value * V)13075 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13076 const SCEV *Expr = this->getSCEV(V);
13077 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13078 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13079
13080 if (!New)
13081 return nullptr;
13082
13083 for (auto *P : NewPreds)
13084 Preds.add(P);
13085
13086 updateGeneration();
13087 RewriteMap[SE.getSCEV(V)] = {Generation, New};
13088 return New;
13089 }
13090
PredicatedScalarEvolution(const PredicatedScalarEvolution & Init)13091 PredicatedScalarEvolution::PredicatedScalarEvolution(
13092 const PredicatedScalarEvolution &Init)
13093 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13094 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13095 for (auto I : Init.FlagsMap)
13096 FlagsMap.insert(I);
13097 }
13098
print(raw_ostream & OS,unsigned Depth) const13099 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13100 // For each block.
13101 for (auto *BB : L.getBlocks())
13102 for (auto &I : *BB) {
13103 if (!SE.isSCEVable(I.getType()))
13104 continue;
13105
13106 auto *Expr = SE.getSCEV(&I);
13107 auto II = RewriteMap.find(Expr);
13108
13109 if (II == RewriteMap.end())
13110 continue;
13111
13112 // Don't print things that are not interesting.
13113 if (II->second.second == Expr)
13114 continue;
13115
13116 OS.indent(Depth) << "[PSE]" << I << ":\n";
13117 OS.indent(Depth + 2) << *Expr << "\n";
13118 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13119 }
13120 }
13121
13122 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13123 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13124 // for URem with constant power-of-2 second operands.
13125 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13126 // 4, A / B becomes X / 8).
matchURem(const SCEV * Expr,const SCEV * & LHS,const SCEV * & RHS)13127 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13128 const SCEV *&RHS) {
13129 // Try to match 'zext (trunc A to iB) to iY', which is used
13130 // for URem with constant power-of-2 second operands. Make sure the size of
13131 // the operand A matches the size of the whole expressions.
13132 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13133 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13134 LHS = Trunc->getOperand();
13135 if (LHS->getType() != Expr->getType())
13136 LHS = getZeroExtendExpr(LHS, Expr->getType());
13137 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13138 << getTypeSizeInBits(Trunc->getType()));
13139 return true;
13140 }
13141 const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13142 if (Add == nullptr || Add->getNumOperands() != 2)
13143 return false;
13144
13145 const SCEV *A = Add->getOperand(1);
13146 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13147
13148 if (Mul == nullptr)
13149 return false;
13150
13151 const auto MatchURemWithDivisor = [&](const SCEV *B) {
13152 // (SomeExpr + (-(SomeExpr / B) * B)).
13153 if (Expr == getURemExpr(A, B)) {
13154 LHS = A;
13155 RHS = B;
13156 return true;
13157 }
13158 return false;
13159 };
13160
13161 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13162 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13163 return MatchURemWithDivisor(Mul->getOperand(1)) ||
13164 MatchURemWithDivisor(Mul->getOperand(2));
13165
13166 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13167 if (Mul->getNumOperands() == 2)
13168 return MatchURemWithDivisor(Mul->getOperand(1)) ||
13169 MatchURemWithDivisor(Mul->getOperand(0)) ||
13170 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13171 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13172 return false;
13173 }
13174
13175 const SCEV *
computeSymbolicMaxBackedgeTakenCount(const Loop * L)13176 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13177 SmallVector<BasicBlock*, 16> ExitingBlocks;
13178 L->getExitingBlocks(ExitingBlocks);
13179
13180 // Form an expression for the maximum exit count possible for this loop. We
13181 // merge the max and exact information to approximate a version of
13182 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13183 SmallVector<const SCEV*, 4> ExitCounts;
13184 for (BasicBlock *ExitingBB : ExitingBlocks) {
13185 const SCEV *ExitCount = getExitCount(L, ExitingBB);
13186 if (isa<SCEVCouldNotCompute>(ExitCount))
13187 ExitCount = getExitCount(L, ExitingBB,
13188 ScalarEvolution::ConstantMaximum);
13189 if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13190 assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13191 "We should only have known counts for exiting blocks that "
13192 "dominate latch!");
13193 ExitCounts.push_back(ExitCount);
13194 }
13195 }
13196 if (ExitCounts.empty())
13197 return getCouldNotCompute();
13198 return getUMinFromMismatchedTypes(ExitCounts);
13199 }
13200
13201 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13202 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13203 /// we cannot guarantee that the replacement is loop invariant in the loop of
13204 /// the AddRec.
13205 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13206 ValueToSCEVMapTy ⤅
13207
13208 public:
SCEVLoopGuardRewriter(ScalarEvolution & SE,ValueToSCEVMapTy & M)13209 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13210 : SCEVRewriteVisitor(SE), Map(M) {}
13211
visitAddRecExpr(const SCEVAddRecExpr * Expr)13212 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13213
visitUnknown(const SCEVUnknown * Expr)13214 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13215 auto I = Map.find(Expr->getValue());
13216 if (I == Map.end())
13217 return Expr;
13218 return I->second;
13219 }
13220 };
13221
applyLoopGuards(const SCEV * Expr,const Loop * L)13222 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13223 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13224 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13225 if (!isa<SCEVUnknown>(LHS)) {
13226 std::swap(LHS, RHS);
13227 Predicate = CmpInst::getSwappedPredicate(Predicate);
13228 }
13229
13230 // For now, limit to conditions that provide information about unknown
13231 // expressions.
13232 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13233 if (!LHSUnknown)
13234 return;
13235
13236 // TODO: use information from more predicates.
13237 switch (Predicate) {
13238 case CmpInst::ICMP_ULT: {
13239 if (!containsAddRecurrence(RHS)) {
13240 const SCEV *Base = LHS;
13241 auto I = RewriteMap.find(LHSUnknown->getValue());
13242 if (I != RewriteMap.end())
13243 Base = I->second;
13244
13245 RewriteMap[LHSUnknown->getValue()] =
13246 getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType())));
13247 }
13248 break;
13249 }
13250 case CmpInst::ICMP_ULE: {
13251 if (!containsAddRecurrence(RHS)) {
13252 const SCEV *Base = LHS;
13253 auto I = RewriteMap.find(LHSUnknown->getValue());
13254 if (I != RewriteMap.end())
13255 Base = I->second;
13256 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS);
13257 }
13258 break;
13259 }
13260 case CmpInst::ICMP_EQ:
13261 if (isa<SCEVConstant>(RHS))
13262 RewriteMap[LHSUnknown->getValue()] = RHS;
13263 break;
13264 case CmpInst::ICMP_NE:
13265 if (isa<SCEVConstant>(RHS) &&
13266 cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13267 RewriteMap[LHSUnknown->getValue()] =
13268 getUMaxExpr(LHS, getOne(RHS->getType()));
13269 break;
13270 default:
13271 break;
13272 }
13273 };
13274 // Starting at the loop predecessor, climb up the predecessor chain, as long
13275 // as there are predecessors that can be found that have unique successors
13276 // leading to the original header.
13277 // TODO: share this logic with isLoopEntryGuardedByCond.
13278 ValueToSCEVMapTy RewriteMap;
13279 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13280 L->getLoopPredecessor(), L->getHeader());
13281 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13282
13283 const BranchInst *LoopEntryPredicate =
13284 dyn_cast<BranchInst>(Pair.first->getTerminator());
13285 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13286 continue;
13287
13288 // TODO: use information from more complex conditions, e.g. AND expressions.
13289 auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
13290 if (!Cmp)
13291 continue;
13292
13293 auto Predicate = Cmp->getPredicate();
13294 if (LoopEntryPredicate->getSuccessor(1) == Pair.second)
13295 Predicate = CmpInst::getInversePredicate(Predicate);
13296 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13297 getSCEV(Cmp->getOperand(1)), RewriteMap);
13298 }
13299
13300 // Also collect information from assumptions dominating the loop.
13301 for (auto &AssumeVH : AC.assumptions()) {
13302 if (!AssumeVH)
13303 continue;
13304 auto *AssumeI = cast<CallInst>(AssumeVH);
13305 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13306 if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13307 continue;
13308 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13309 getSCEV(Cmp->getOperand(1)), RewriteMap);
13310 }
13311
13312 if (RewriteMap.empty())
13313 return Expr;
13314 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13315 return Rewriter.visit(Expr);
13316 }
13317