|
Name |
|
Date |
Size |
#Lines |
LOC |
| .. | | - | - |
| AsmParser/ | | 23-Nov-2023 | - | 1,800 | 1,504 |
| Disassembler/ | | 23-Nov-2023 | - | 440 | 318 |
| GISel/ | | 23-Nov-2023 | - | 319 | 171 |
| MCTargetDesc/ | | 23-Nov-2023 | - | 3,661 | 2,700 |
| TargetInfo/ | | 23-Nov-2023 | - | 69 | 39 |
| CMakeLists.txt | D | 23-Nov-2023 | 2 KiB | 84 | 76 |
| P9InstrResources.td | D | 23-Nov-2023 | 37.4 KiB | 1,432 | 1,344 |
| PPC.h | D | 23-Nov-2023 | 6.1 KiB | 169 | 92 |
| PPC.td | D | 23-Nov-2023 | 32.4 KiB | 626 | 585 |
| PPCAsmPrinter.cpp | D | 23-Nov-2023 | 80.1 KiB | 2,098 | 1,482 |
| PPCBoolRetToInt.cpp | D | 23-Nov-2023 | 10 KiB | 291 | 193 |
| PPCBranchCoalescing.cpp | D | 23-Nov-2023 | 30.2 KiB | 794 | 399 |
| PPCBranchSelector.cpp | D | 23-Nov-2023 | 16 KiB | 420 | 232 |
| PPCCCState.cpp | D | 23-Nov-2023 | 1.1 KiB | 35 | 23 |
| PPCCCState.h | D | 23-Nov-2023 | 1.2 KiB | 42 | 23 |
| PPCCTRLoops.cpp | D | 23-Nov-2023 | 6.7 KiB | 221 | 164 |
| PPCCallingConv.cpp | D | 23-Nov-2023 | 6.2 KiB | 163 | 109 |
| PPCCallingConv.h | D | 23-Nov-2023 | 2 KiB | 48 | 28 |
| PPCCallingConv.td | D | 23-Nov-2023 | 15.8 KiB | 361 | 297 |
| PPCEarlyReturn.cpp | D | 23-Nov-2023 | 7.4 KiB | 215 | 151 |
| PPCExpandISEL.cpp | D | 23-Nov-2023 | 17.9 KiB | 492 | 308 |
| PPCFastISel.cpp | D | 23-Nov-2023 | 86.1 KiB | 2,485 | 1,702 |
| PPCFrameLowering.cpp | D | 23-Nov-2023 | 96.7 KiB | 2,543 | 1,781 |
| PPCFrameLowering.h | D | 23-Nov-2023 | 7.5 KiB | 176 | 72 |
| PPCHazardRecognizers.cpp | D | 23-Nov-2023 | 14 KiB | 434 | 279 |
| PPCHazardRecognizers.h | D | 23-Nov-2023 | 3.8 KiB | 102 | 52 |
| PPCISelDAGToDAG.cpp | D | 23-Nov-2023 | 257.3 KiB | 6,795 | 4,948 |
| PPCISelLowering.cpp | D | 23-Nov-2023 | 666.9 KiB | 17,053 | 12,103 |
| PPCISelLowering.h | D | 23-Nov-2023 | 57.5 KiB | 1,342 | 628 |
| PPCInstr64Bit.td | D | 23-Nov-2023 | 77 KiB | 1,633 | 1,449 |
| PPCInstrAltivec.td | D | 23-Nov-2023 | 78.8 KiB | 1,624 | 1,431 |
| PPCInstrBuilder.h | D | 23-Nov-2023 | 1.5 KiB | 43 | 14 |
| PPCInstrFormats.td | D | 23-Nov-2023 | 56.1 KiB | 2,145 | 1,769 |
| PPCInstrHTM.td | D | 23-Nov-2023 | 5.4 KiB | 176 | 128 |
| PPCInstrInfo.cpp | D | 23-Nov-2023 | 187.1 KiB | 5,095 | 3,763 |
| PPCInstrInfo.h | D | 23-Nov-2023 | 30.8 KiB | 681 | 415 |
| PPCInstrInfo.td | D | 23-Nov-2023 | 235.3 KiB | 5,316 | 4,725 |
| PPCInstrPrefix.td | D | 23-Nov-2023 | 116.6 KiB | 2,641 | 2,414 |
| PPCInstrSPE.td | D | 23-Nov-2023 | 49.4 KiB | 890 | 783 |
| PPCInstrVSX.td | D | 23-Nov-2023 | 224.6 KiB | 4,670 | 4,275 |
| PPCLoopInstrFormPrep.cpp | D | 23-Nov-2023 | 34.3 KiB | 915 | 616 |
| PPCLowerMASSVEntries.cpp | D | 23-Nov-2023 | 6.4 KiB | 197 | 119 |
| PPCMCInstLower.cpp | D | 23-Nov-2023 | 7.3 KiB | 205 | 168 |
| PPCMIPeephole.cpp | D | 23-Nov-2023 | 64.5 KiB | 1,666 | 1,197 |
| PPCMachineFunctionInfo.cpp | D | 23-Nov-2023 | 2.6 KiB | 66 | 49 |
| PPCMachineFunctionInfo.h | D | 23-Nov-2023 | 8.9 KiB | 229 | 93 |
| PPCMachineScheduler.cpp | D | 23-Nov-2023 | 4 KiB | 120 | 76 |
| PPCMachineScheduler.h | D | 23-Nov-2023 | 1.8 KiB | 53 | 30 |
| PPCMacroFusion.cpp | D | 23-Nov-2023 | 6.7 KiB | 204 | 126 |
| PPCMacroFusion.def | D | 23-Nov-2023 | 1.8 KiB | 46 | 37 |
| PPCMacroFusion.h | D | 23-Nov-2023 | 886 | 23 | 4 |
| PPCPerfectShuffle.h | D | 23-Nov-2023 | 397.6 KiB | 6,591 | 6,567 |
| PPCPfmCounters.td | D | 23-Nov-2023 | 705 | 19 | 16 |
| PPCPreEmitPeephole.cpp | D | 23-Nov-2023 | 22.6 KiB | 573 | 422 |
| PPCReduceCRLogicals.cpp | D | 23-Nov-2023 | 28.7 KiB | 739 | 572 |
| PPCRegisterInfo.cpp | D | 23-Nov-2023 | 55.6 KiB | 1,442 | 988 |
| PPCRegisterInfo.h | D | 23-Nov-2023 | 6.9 KiB | 181 | 127 |
| PPCRegisterInfo.td | D | 23-Nov-2023 | 17 KiB | 458 | 400 |
| PPCSchedule.td | D | 23-Nov-2023 | 5.2 KiB | 140 | 136 |
| PPCSchedule440.td | D | 23-Nov-2023 | 34.6 KiB | 601 | 586 |
| PPCScheduleA2.td | D | 23-Nov-2023 | 7.9 KiB | 170 | 159 |
| PPCScheduleE500.td | D | 23-Nov-2023 | 16.6 KiB | 280 | 272 |
| PPCScheduleE500mc.td | D | 23-Nov-2023 | 20.9 KiB | 335 | 327 |
| PPCScheduleE5500.td | D | 23-Nov-2023 | 23.6 KiB | 379 | 369 |
| PPCScheduleG3.td | D | 23-Nov-2023 | 4.5 KiB | 81 | 78 |
| PPCScheduleG4.td | D | 23-Nov-2023 | 5.4 KiB | 97 | 94 |
| PPCScheduleG4Plus.td | D | 23-Nov-2023 | 6.4 KiB | 111 | 108 |
| PPCScheduleG5.td | D | 23-Nov-2023 | 7.1 KiB | 129 | 121 |
| PPCScheduleP7.td | D | 23-Nov-2023 | 22.3 KiB | 405 | 388 |
| PPCScheduleP8.td | D | 23-Nov-2023 | 24 KiB | 414 | 397 |
| PPCScheduleP9.td | D | 23-Nov-2023 | 12.3 KiB | 431 | 357 |
| PPCSubtarget.cpp | D | 23-Nov-2023 | 8.1 KiB | 260 | 193 |
| PPCSubtarget.h | D | 23-Nov-2023 | 13.6 KiB | 418 | 301 |
| PPCTLSDynamicCall.cpp | D | 23-Nov-2023 | 7.6 KiB | 217 | 148 |
| PPCTOCRegDeps.cpp | D | 23-Nov-2023 | 5.3 KiB | 156 | 72 |
| PPCTargetMachine.cpp | D | 23-Nov-2023 | 19.5 KiB | 579 | 408 |
| PPCTargetMachine.h | D | 23-Nov-2023 | 2.3 KiB | 70 | 38 |
| PPCTargetObjectFile.cpp | D | 23-Nov-2023 | 2.4 KiB | 59 | 29 |
| PPCTargetObjectFile.h | D | 23-Nov-2023 | 1.2 KiB | 34 | 14 |
| PPCTargetStreamer.h | D | 23-Nov-2023 | 1 KiB | 35 | 19 |
| PPCTargetTransformInfo.cpp | D | 23-Nov-2023 | 46.7 KiB | 1,256 | 934 |
| PPCTargetTransformInfo.h | D | 23-Nov-2023 | 6 KiB | 138 | 98 |
| PPCVSXCopy.cpp | D | 23-Nov-2023 | 5.7 KiB | 173 | 118 |
| PPCVSXFMAMutate.cpp | D | 23-Nov-2023 | 15.1 KiB | 399 | 229 |
| PPCVSXSwapRemoval.cpp | D | 23-Nov-2023 | 37.8 KiB | 1,072 | 679 |
| README.txt | D | 23-Nov-2023 | 16.1 KiB | 608 | 473 |
| README_ALTIVEC.txt | D | 23-Nov-2023 | 11.5 KiB | 339 | 259 |
| README_P9.txt | D | 23-Nov-2023 | 22.2 KiB | 606 | 479 |
README.txt
1//===- README.txt - Notes for improving PowerPC-specific code gen ---------===//
2
3TODO:
4* lmw/stmw pass a la arm load store optimizer for prolog/epilog
5
6===-------------------------------------------------------------------------===
7
8This code:
9
10unsigned add32carry(unsigned sum, unsigned x) {
11 unsigned z = sum + x;
12 if (sum + x < x)
13 z++;
14 return z;
15}
16
17Should compile to something like:
18
19 addc r3,r3,r4
20 addze r3,r3
21
22instead we get:
23
24 add r3, r4, r3
25 cmplw cr7, r3, r4
26 mfcr r4 ; 1
27 rlwinm r4, r4, 29, 31, 31
28 add r3, r3, r4
29
30Ick.
31
32===-------------------------------------------------------------------------===
33
34We compile the hottest inner loop of viterbi to:
35
36 li r6, 0
37 b LBB1_84 ;bb432.i
38LBB1_83: ;bb420.i
39 lbzx r8, r5, r7
40 addi r6, r7, 1
41 stbx r8, r4, r7
42LBB1_84: ;bb432.i
43 mr r7, r6
44 cmplwi cr0, r7, 143
45 bne cr0, LBB1_83 ;bb420.i
46
47The CBE manages to produce:
48
49 li r0, 143
50 mtctr r0
51loop:
52 lbzx r2, r2, r11
53 stbx r0, r2, r9
54 addi r2, r2, 1
55 bdz later
56 b loop
57
58This could be much better (bdnz instead of bdz) but it still beats us. If we
59produced this with bdnz, the loop would be a single dispatch group.
60
61===-------------------------------------------------------------------------===
62
63Lump the constant pool for each function into ONE pic object, and reference
64pieces of it as offsets from the start. For functions like this (contrived
65to have lots of constants obviously):
66
67double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; }
68
69We generate:
70
71_X:
72 lis r2, ha16(.CPI_X_0)
73 lfd f0, lo16(.CPI_X_0)(r2)
74 lis r2, ha16(.CPI_X_1)
75 lfd f2, lo16(.CPI_X_1)(r2)
76 fmadd f0, f1, f0, f2
77 lis r2, ha16(.CPI_X_2)
78 lfd f1, lo16(.CPI_X_2)(r2)
79 lis r2, ha16(.CPI_X_3)
80 lfd f2, lo16(.CPI_X_3)(r2)
81 fmadd f1, f0, f1, f2
82 blr
83
84It would be better to materialize .CPI_X into a register, then use immediates
85off of the register to avoid the lis's. This is even more important in PIC
86mode.
87
88Note that this (and the static variable version) is discussed here for GCC:
89http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
90
91Here's another example (the sgn function):
92double testf(double a) {
93 return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
94}
95
96it produces a BB like this:
97LBB1_1: ; cond_true
98 lis r2, ha16(LCPI1_0)
99 lfs f0, lo16(LCPI1_0)(r2)
100 lis r2, ha16(LCPI1_1)
101 lis r3, ha16(LCPI1_2)
102 lfs f2, lo16(LCPI1_2)(r3)
103 lfs f3, lo16(LCPI1_1)(r2)
104 fsub f0, f0, f1
105 fsel f1, f0, f2, f3
106 blr
107
108===-------------------------------------------------------------------------===
109
110PIC Code Gen IPO optimization:
111
112Squish small scalar globals together into a single global struct, allowing the
113address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size
114of the GOT on targets with one).
115
116Note that this is discussed here for GCC:
117http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
118
119===-------------------------------------------------------------------------===
120
121Fold add and sub with constant into non-extern, non-weak addresses so this:
122
123static int a;
124void bar(int b) { a = b; }
125void foo(unsigned char *c) {
126 *c = a;
127}
128
129So that
130
131_foo:
132 lis r2, ha16(_a)
133 la r2, lo16(_a)(r2)
134 lbz r2, 3(r2)
135 stb r2, 0(r3)
136 blr
137
138Becomes
139
140_foo:
141 lis r2, ha16(_a+3)
142 lbz r2, lo16(_a+3)(r2)
143 stb r2, 0(r3)
144 blr
145
146===-------------------------------------------------------------------------===
147
148We should compile these two functions to the same thing:
149
150#include <stdlib.h>
151void f(int a, int b, int *P) {
152 *P = (a-b)>=0?(a-b):(b-a);
153}
154void g(int a, int b, int *P) {
155 *P = abs(a-b);
156}
157
158Further, they should compile to something better than:
159
160_g:
161 subf r2, r4, r3
162 subfic r3, r2, 0
163 cmpwi cr0, r2, -1
164 bgt cr0, LBB2_2 ; entry
165LBB2_1: ; entry
166 mr r2, r3
167LBB2_2: ; entry
168 stw r2, 0(r5)
169 blr
170
171GCC produces:
172
173_g:
174 subf r4,r4,r3
175 srawi r2,r4,31
176 xor r0,r2,r4
177 subf r0,r2,r0
178 stw r0,0(r5)
179 blr
180
181... which is much nicer.
182
183This theoretically may help improve twolf slightly (used in dimbox.c:142?).
184
185===-------------------------------------------------------------------------===
186
187PR5945: This:
188define i32 @clamp0g(i32 %a) {
189entry:
190 %cmp = icmp slt i32 %a, 0
191 %sel = select i1 %cmp, i32 0, i32 %a
192 ret i32 %sel
193}
194
195Is compile to this with the PowerPC (32-bit) backend:
196
197_clamp0g:
198 cmpwi cr0, r3, 0
199 li r2, 0
200 blt cr0, LBB1_2
201; %bb.1: ; %entry
202 mr r2, r3
203LBB1_2: ; %entry
204 mr r3, r2
205 blr
206
207This could be reduced to the much simpler:
208
209_clamp0g:
210 srawi r2, r3, 31
211 andc r3, r3, r2
212 blr
213
214===-------------------------------------------------------------------------===
215
216int foo(int N, int ***W, int **TK, int X) {
217 int t, i;
218
219 for (t = 0; t < N; ++t)
220 for (i = 0; i < 4; ++i)
221 W[t / X][i][t % X] = TK[i][t];
222
223 return 5;
224}
225
226We generate relatively atrocious code for this loop compared to gcc.
227
228We could also strength reduce the rem and the div:
229http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf
230
231===-------------------------------------------------------------------------===
232
233We generate ugly code for this:
234
235void func(unsigned int *ret, float dx, float dy, float dz, float dw) {
236 unsigned code = 0;
237 if(dx < -dw) code |= 1;
238 if(dx > dw) code |= 2;
239 if(dy < -dw) code |= 4;
240 if(dy > dw) code |= 8;
241 if(dz < -dw) code |= 16;
242 if(dz > dw) code |= 32;
243 *ret = code;
244}
245
246===-------------------------------------------------------------------------===
247
248%struct.B = type { i8, [3 x i8] }
249
250define void @bar(%struct.B* %b) {
251entry:
252 %tmp = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1]
253 %tmp = load i32* %tmp ; <uint> [#uses=1]
254 %tmp3 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1]
255 %tmp4 = load i32* %tmp3 ; <uint> [#uses=1]
256 %tmp8 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=2]
257 %tmp9 = load i32* %tmp8 ; <uint> [#uses=1]
258 %tmp4.mask17 = shl i32 %tmp4, i8 1 ; <uint> [#uses=1]
259 %tmp1415 = and i32 %tmp4.mask17, 2147483648 ; <uint> [#uses=1]
260 %tmp.masked = and i32 %tmp, 2147483648 ; <uint> [#uses=1]
261 %tmp11 = or i32 %tmp1415, %tmp.masked ; <uint> [#uses=1]
262 %tmp12 = and i32 %tmp9, 2147483647 ; <uint> [#uses=1]
263 %tmp13 = or i32 %tmp12, %tmp11 ; <uint> [#uses=1]
264 store i32 %tmp13, i32* %tmp8
265 ret void
266}
267
268We emit:
269
270_foo:
271 lwz r2, 0(r3)
272 slwi r4, r2, 1
273 or r4, r4, r2
274 rlwimi r2, r4, 0, 0, 0
275 stw r2, 0(r3)
276 blr
277
278We could collapse a bunch of those ORs and ANDs and generate the following
279equivalent code:
280
281_foo:
282 lwz r2, 0(r3)
283 rlwinm r4, r2, 1, 0, 0
284 or r2, r2, r4
285 stw r2, 0(r3)
286 blr
287
288===-------------------------------------------------------------------------===
289
290Consider a function like this:
291
292float foo(float X) { return X + 1234.4123f; }
293
294The FP constant ends up in the constant pool, so we need to get the LR register.
295 This ends up producing code like this:
296
297_foo:
298.LBB_foo_0: ; entry
299 mflr r11
300*** stw r11, 8(r1)
301 bl "L00000$pb"
302"L00000$pb":
303 mflr r2
304 addis r2, r2, ha16(.CPI_foo_0-"L00000$pb")
305 lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2)
306 fadds f1, f1, f0
307*** lwz r11, 8(r1)
308 mtlr r11
309 blr
310
311This is functional, but there is no reason to spill the LR register all the way
312to the stack (the two marked instrs): spilling it to a GPR is quite enough.
313
314Implementing this will require some codegen improvements. Nate writes:
315
316"So basically what we need to support the "no stack frame save and restore" is a
317generalization of the LR optimization to "callee-save regs".
318
319Currently, we have LR marked as a callee-save reg. The register allocator sees
320that it's callee save, and spills it directly to the stack.
321
322Ideally, something like this would happen:
323
324LR would be in a separate register class from the GPRs. The class of LR would be
325marked "unspillable". When the register allocator came across an unspillable
326reg, it would ask "what is the best class to copy this into that I *can* spill"
327If it gets a class back, which it will in this case (the gprs), it grabs a free
328register of that class. If it is then later necessary to spill that reg, so be
329it.
330
331===-------------------------------------------------------------------------===
332
333We compile this:
334int test(_Bool X) {
335 return X ? 524288 : 0;
336}
337
338to:
339_test:
340 cmplwi cr0, r3, 0
341 lis r2, 8
342 li r3, 0
343 beq cr0, LBB1_2 ;entry
344LBB1_1: ;entry
345 mr r3, r2
346LBB1_2: ;entry
347 blr
348
349instead of:
350_test:
351 addic r2,r3,-1
352 subfe r0,r2,r3
353 slwi r3,r0,19
354 blr
355
356This sort of thing occurs a lot due to globalopt.
357
358===-------------------------------------------------------------------------===
359
360We compile:
361
362define i32 @bar(i32 %x) nounwind readnone ssp {
363entry:
364 %0 = icmp eq i32 %x, 0 ; <i1> [#uses=1]
365 %neg = sext i1 %0 to i32 ; <i32> [#uses=1]
366 ret i32 %neg
367}
368
369to:
370
371_bar:
372 cntlzw r2, r3
373 slwi r2, r2, 26
374 srawi r3, r2, 31
375 blr
376
377it would be better to produce:
378
379_bar:
380 addic r3,r3,-1
381 subfe r3,r3,r3
382 blr
383
384===-------------------------------------------------------------------------===
385
386We generate horrible ppc code for this:
387
388#define N 2000000
389double a[N],c[N];
390void simpleloop() {
391 int j;
392 for (j=0; j<N; j++)
393 c[j] = a[j];
394}
395
396LBB1_1: ;bb
397 lfdx f0, r3, r4
398 addi r5, r5, 1 ;; Extra IV for the exit value compare.
399 stfdx f0, r2, r4
400 addi r4, r4, 8
401
402 xoris r6, r5, 30 ;; This is due to a large immediate.
403 cmplwi cr0, r6, 33920
404 bne cr0, LBB1_1
405
406//===---------------------------------------------------------------------===//
407
408This:
409 #include <algorithm>
410 inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
411 { return std::make_pair(a + b, a + b < a); }
412 bool no_overflow(unsigned a, unsigned b)
413 { return !full_add(a, b).second; }
414
415Should compile to:
416
417__Z11no_overflowjj:
418 add r4,r3,r4
419 subfc r3,r3,r4
420 li r3,0
421 adde r3,r3,r3
422 blr
423
424(or better) not:
425
426__Z11no_overflowjj:
427 add r2, r4, r3
428 cmplw cr7, r2, r3
429 mfcr r2
430 rlwinm r2, r2, 29, 31, 31
431 xori r3, r2, 1
432 blr
433
434//===---------------------------------------------------------------------===//
435
436We compile some FP comparisons into an mfcr with two rlwinms and an or. For
437example:
438#include <math.h>
439int test(double x, double y) { return islessequal(x, y);}
440int test2(double x, double y) { return islessgreater(x, y);}
441int test3(double x, double y) { return !islessequal(x, y);}
442
443Compiles into (all three are similar, but the bits differ):
444
445_test:
446 fcmpu cr7, f1, f2
447 mfcr r2
448 rlwinm r3, r2, 29, 31, 31
449 rlwinm r2, r2, 31, 31, 31
450 or r3, r2, r3
451 blr
452
453GCC compiles this into:
454
455 _test:
456 fcmpu cr7,f1,f2
457 cror 30,28,30
458 mfcr r3
459 rlwinm r3,r3,31,1
460 blr
461
462which is more efficient and can use mfocr. See PR642 for some more context.
463
464//===---------------------------------------------------------------------===//
465
466void foo(float *data, float d) {
467 long i;
468 for (i = 0; i < 8000; i++)
469 data[i] = d;
470}
471void foo2(float *data, float d) {
472 long i;
473 data--;
474 for (i = 0; i < 8000; i++) {
475 data[1] = d;
476 data++;
477 }
478}
479
480These compile to:
481
482_foo:
483 li r2, 0
484LBB1_1: ; bb
485 addi r4, r2, 4
486 stfsx f1, r3, r2
487 cmplwi cr0, r4, 32000
488 mr r2, r4
489 bne cr0, LBB1_1 ; bb
490 blr
491_foo2:
492 li r2, 0
493LBB2_1: ; bb
494 addi r4, r2, 4
495 stfsx f1, r3, r2
496 cmplwi cr0, r4, 32000
497 mr r2, r4
498 bne cr0, LBB2_1 ; bb
499 blr
500
501The 'mr' could be eliminated to folding the add into the cmp better.
502
503//===---------------------------------------------------------------------===//
504Codegen for the following (low-probability) case deteriorated considerably
505when the correctness fixes for unordered comparisons went in (PR 642, 58871).
506It should be possible to recover the code quality described in the comments.
507
508; RUN: llvm-as < %s | llc -march=ppc32 | grep or | count 3
509; This should produce one 'or' or 'cror' instruction per function.
510
511; RUN: llvm-as < %s | llc -march=ppc32 | grep mfcr | count 3
512; PR2964
513
514define i32 @test(double %x, double %y) nounwind {
515entry:
516 %tmp3 = fcmp ole double %x, %y ; <i1> [#uses=1]
517 %tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
518 ret i32 %tmp345
519}
520
521define i32 @test2(double %x, double %y) nounwind {
522entry:
523 %tmp3 = fcmp one double %x, %y ; <i1> [#uses=1]
524 %tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
525 ret i32 %tmp345
526}
527
528define i32 @test3(double %x, double %y) nounwind {
529entry:
530 %tmp3 = fcmp ugt double %x, %y ; <i1> [#uses=1]
531 %tmp34 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
532 ret i32 %tmp34
533}
534
535//===---------------------------------------------------------------------===//
536for the following code:
537
538void foo (float *__restrict__ a, int *__restrict__ b, int n) {
539 a[n] = b[n] * 2.321;
540}
541
542we load b[n] to GPR, then move it VSX register and convert it float. We should
543use vsx scalar integer load instructions to avoid direct moves
544
545//===----------------------------------------------------------------------===//
546; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg
547
548; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and
549; should not be generated except with -enable-finite-only-fp-math or the like).
550; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to
551; recognize a more elaborate tree than a simple SETxx.
552
553define double @test_FNEG_sel(double %A, double %B, double %C) {
554 %D = fsub double -0.000000e+00, %A ; <double> [#uses=1]
555 %Cond = fcmp ugt double %D, -0.000000e+00 ; <i1> [#uses=1]
556 %E = select i1 %Cond, double %B, double %C ; <double> [#uses=1]
557 ret double %E
558}
559
560//===----------------------------------------------------------------------===//
561The save/restore sequence for CR in prolog/epilog is terrible:
562- Each CR subreg is saved individually, rather than doing one save as a unit.
563- On Darwin, the save is done after the decrement of SP, which means the offset
564from SP of the save slot can be too big for a store instruction, which means we
565need an additional register (currently hacked in 96015+96020; the solution there
566is correct, but poor).
567- On SVR4 the same thing can happen, and I don't think saving before the SP
568decrement is safe on that target, as there is no red zone. This is currently
569broken AFAIK, although it's not a target I can exercise.
570The following demonstrates the problem:
571extern void bar(char *p);
572void foo() {
573 char x[100000];
574 bar(x);
575 __asm__("" ::: "cr2");
576}
577
578//===-------------------------------------------------------------------------===
579Naming convention for instruction formats is very haphazard.
580We have agreed on a naming scheme as follows:
581
582<INST_form>{_<OP_type><OP_len>}+
583
584Where:
585INST_form is the instruction format (X-form, etc.)
586OP_type is the operand type - one of OPC (opcode), RD (register destination),
587 RS (register source),
588 RDp (destination register pair),
589 RSp (source register pair), IM (immediate),
590 XO (extended opcode)
591OP_len is the length of the operand in bits
592
593VSX register operands would be of length 6 (split across two fields),
594condition register fields of length 3.
595We would not need denote reserved fields in names of instruction formats.
596
597//===----------------------------------------------------------------------===//
598
599Instruction fusion was introduced in ISA 2.06 and more opportunities added in
600ISA 2.07. LLVM needs to add infrastructure to recognize fusion opportunities
601and force instruction pairs to be scheduled together.
602
603-----------------------------------------------------------------------------
604
605More general handling of any_extend and zero_extend:
606
607See https://reviews.llvm.org/D24924#555306
608
README_ALTIVEC.txt
1//===- README_ALTIVEC.txt - Notes for improving Altivec code gen ----------===//
2
3Implement PPCInstrInfo::isLoadFromStackSlot/isStoreToStackSlot for vector
4registers, to generate better spill code.
5
6//===----------------------------------------------------------------------===//
7
8The first should be a single lvx from the constant pool, the second should be
9a xor/stvx:
10
11void foo(void) {
12 int x[8] __attribute__((aligned(128))) = { 1, 1, 1, 17, 1, 1, 1, 1 };
13 bar (x);
14}
15
16#include <string.h>
17void foo(void) {
18 int x[8] __attribute__((aligned(128)));
19 memset (x, 0, sizeof (x));
20 bar (x);
21}
22
23//===----------------------------------------------------------------------===//
24
25Altivec: Codegen'ing MUL with vector FMADD should add -0.0, not 0.0:
26http://gcc.gnu.org/bugzilla/show_bug.cgi?id=8763
27
28When -ffast-math is on, we can use 0.0.
29
30//===----------------------------------------------------------------------===//
31
32 Consider this:
33 v4f32 Vector;
34 v4f32 Vector2 = { Vector.X, Vector.X, Vector.X, Vector.X };
35
36Since we know that "Vector" is 16-byte aligned and we know the element offset
37of ".X", we should change the load into a lve*x instruction, instead of doing
38a load/store/lve*x sequence.
39
40//===----------------------------------------------------------------------===//
41
42Implement passing vectors by value into calls and receiving them as arguments.
43
44//===----------------------------------------------------------------------===//
45
46GCC apparently tries to codegen { C1, C2, Variable, C3 } as a constant pool load
47of C1/C2/C3, then a load and vperm of Variable.
48
49//===----------------------------------------------------------------------===//
50
51We need a way to teach tblgen that some operands of an intrinsic are required to
52be constants. The verifier should enforce this constraint.
53
54//===----------------------------------------------------------------------===//
55
56We currently codegen SCALAR_TO_VECTOR as a store of the scalar to a 16-byte
57aligned stack slot, followed by a load/vperm. We should probably just store it
58to a scalar stack slot, then use lvsl/vperm to load it. If the value is already
59in memory this is a big win.
60
61//===----------------------------------------------------------------------===//
62
63extract_vector_elt of an arbitrary constant vector can be done with the
64following instructions:
65
66vTemp = vec_splat(v0,2); // 2 is the element the src is in.
67vec_ste(&destloc,0,vTemp);
68
69We can do an arbitrary non-constant value by using lvsr/perm/ste.
70
71//===----------------------------------------------------------------------===//
72
73If we want to tie instruction selection into the scheduler, we can do some
74constant formation with different instructions. For example, we can generate
75"vsplti -1" with "vcmpequw R,R" and 1,1,1,1 with "vsubcuw R,R", and 0,0,0,0 with
76"vsplti 0" or "vxor", each of which use different execution units, thus could
77help scheduling.
78
79This is probably only reasonable for a post-pass scheduler.
80
81//===----------------------------------------------------------------------===//
82
83For this function:
84
85void test(vector float *A, vector float *B) {
86 vector float C = (vector float)vec_cmpeq(*A, *B);
87 if (!vec_any_eq(*A, *B))
88 *B = (vector float){0,0,0,0};
89 *A = C;
90}
91
92we get the following basic block:
93
94 ...
95 lvx v2, 0, r4
96 lvx v3, 0, r3
97 vcmpeqfp v4, v3, v2
98 vcmpeqfp. v2, v3, v2
99 bne cr6, LBB1_2 ; cond_next
100
101The vcmpeqfp/vcmpeqfp. instructions currently cannot be merged when the
102vcmpeqfp. result is used by a branch. This can be improved.
103
104//===----------------------------------------------------------------------===//
105
106The code generated for this is truly aweful:
107
108vector float test(float a, float b) {
109 return (vector float){ 0.0, a, 0.0, 0.0};
110}
111
112LCPI1_0: ; float
113 .space 4
114 .text
115 .globl _test
116 .align 4
117_test:
118 mfspr r2, 256
119 oris r3, r2, 4096
120 mtspr 256, r3
121 lis r3, ha16(LCPI1_0)
122 addi r4, r1, -32
123 stfs f1, -16(r1)
124 addi r5, r1, -16
125 lfs f0, lo16(LCPI1_0)(r3)
126 stfs f0, -32(r1)
127 lvx v2, 0, r4
128 lvx v3, 0, r5
129 vmrghw v3, v3, v2
130 vspltw v2, v2, 0
131 vmrghw v2, v2, v3
132 mtspr 256, r2
133 blr
134
135//===----------------------------------------------------------------------===//
136
137int foo(vector float *x, vector float *y) {
138 if (vec_all_eq(*x,*y)) return 3245;
139 else return 12;
140}
141
142A predicate compare being used in a select_cc should have the same peephole
143applied to it as a predicate compare used by a br_cc. There should be no
144mfcr here:
145
146_foo:
147 mfspr r2, 256
148 oris r5, r2, 12288
149 mtspr 256, r5
150 li r5, 12
151 li r6, 3245
152 lvx v2, 0, r4
153 lvx v3, 0, r3
154 vcmpeqfp. v2, v3, v2
155 mfcr r3, 2
156 rlwinm r3, r3, 25, 31, 31
157 cmpwi cr0, r3, 0
158 bne cr0, LBB1_2 ; entry
159LBB1_1: ; entry
160 mr r6, r5
161LBB1_2: ; entry
162 mr r3, r6
163 mtspr 256, r2
164 blr
165
166//===----------------------------------------------------------------------===//
167
168CodeGen/PowerPC/vec_constants.ll has an and operation that should be
169codegen'd to andc. The issue is that the 'all ones' build vector is
170SelectNodeTo'd a VSPLTISB instruction node before the and/xor is selected
171which prevents the vnot pattern from matching.
172
173
174//===----------------------------------------------------------------------===//
175
176An alternative to the store/store/load approach for illegal insert element
177lowering would be:
178
1791. store element to any ol' slot
1802. lvx the slot
1813. lvsl 0; splat index; vcmpeq to generate a select mask
1824. lvsl slot + x; vperm to rotate result into correct slot
1835. vsel result together.
184
185//===----------------------------------------------------------------------===//
186
187Should codegen branches on vec_any/vec_all to avoid mfcr. Two examples:
188
189#include <altivec.h>
190 int f(vector float a, vector float b)
191 {
192 int aa = 0;
193 if (vec_all_ge(a, b))
194 aa |= 0x1;
195 if (vec_any_ge(a,b))
196 aa |= 0x2;
197 return aa;
198}
199
200vector float f(vector float a, vector float b) {
201 if (vec_any_eq(a, b))
202 return a;
203 else
204 return b;
205}
206
207//===----------------------------------------------------------------------===//
208
209We should do a little better with eliminating dead stores.
210The stores to the stack are dead since %a and %b are not needed
211
212; Function Attrs: nounwind
213define <16 x i8> @test_vpmsumb() #0 {
214 entry:
215 %a = alloca <16 x i8>, align 16
216 %b = alloca <16 x i8>, align 16
217 store <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8, i8 9, i8 10, i8 11, i8 12, i8 13, i8 14, i8 15, i8 16>, <16 x i8>* %a, align 16
218 store <16 x i8> <i8 113, i8 114, i8 115, i8 116, i8 117, i8 118, i8 119, i8 120, i8 121, i8 122, i8 123, i8 124, i8 125, i8 126, i8 127, i8 112>, <16 x i8>* %b, align 16
219 %0 = load <16 x i8>* %a, align 16
220 %1 = load <16 x i8>* %b, align 16
221 %2 = call <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8> %0, <16 x i8> %1)
222 ret <16 x i8> %2
223}
224
225
226; Function Attrs: nounwind readnone
227declare <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8>, <16 x i8>) #1
228
229
230Produces the following code with -mtriple=powerpc64-unknown-linux-gnu:
231# %bb.0: # %entry
232 addis 3, 2, .LCPI0_0@toc@ha
233 addis 4, 2, .LCPI0_1@toc@ha
234 addi 3, 3, .LCPI0_0@toc@l
235 addi 4, 4, .LCPI0_1@toc@l
236 lxvw4x 0, 0, 3
237 addi 3, 1, -16
238 lxvw4x 35, 0, 4
239 stxvw4x 0, 0, 3
240 ori 2, 2, 0
241 lxvw4x 34, 0, 3
242 addi 3, 1, -32
243 stxvw4x 35, 0, 3
244 vpmsumb 2, 2, 3
245 blr
246 .long 0
247 .quad 0
248
249The two stxvw4x instructions are not needed.
250With -mtriple=powerpc64le-unknown-linux-gnu, the associated permutes
251are present too.
252
253//===----------------------------------------------------------------------===//
254
255The following example is found in test/CodeGen/PowerPC/vec_add_sub_doubleword.ll:
256
257define <2 x i64> @increment_by_val(<2 x i64> %x, i64 %val) nounwind {
258 %tmpvec = insertelement <2 x i64> <i64 0, i64 0>, i64 %val, i32 0
259 %tmpvec2 = insertelement <2 x i64> %tmpvec, i64 %val, i32 1
260 %result = add <2 x i64> %x, %tmpvec2
261 ret <2 x i64> %result
262
263This will generate the following instruction sequence:
264 std 5, -8(1)
265 std 5, -16(1)
266 addi 3, 1, -16
267 ori 2, 2, 0
268 lxvd2x 35, 0, 3
269 vaddudm 2, 2, 3
270 blr
271
272This will almost certainly cause a load-hit-store hazard.
273Since val is a value parameter, it should not need to be saved onto
274the stack, unless it's being done set up the vector register. Instead,
275it would be better to splat the value into a vector register, and then
276remove the (dead) stores to the stack.
277
278//===----------------------------------------------------------------------===//
279
280At the moment we always generate a lxsdx in preference to lfd, or stxsdx in
281preference to stfd. When we have a reg-immediate addressing mode, this is a
282poor choice, since we have to load the address into an index register. This
283should be fixed for P7/P8.
284
285//===----------------------------------------------------------------------===//
286
287Right now, ShuffleKind 0 is supported only on BE, and ShuffleKind 2 only on LE.
288However, we could actually support both kinds on either endianness, if we check
289for the appropriate shufflevector pattern for each case ... this would cause
290some additional shufflevectors to be recognized and implemented via the
291"swapped" form.
292
293//===----------------------------------------------------------------------===//
294
295There is a utility program called PerfectShuffle that generates a table of the
296shortest instruction sequence for implementing a shufflevector operation on
297PowerPC. However, this was designed for big-endian code generation. We could
298modify this program to create a little endian version of the table. The table
299is used in PPCISelLowering.cpp, PPCTargetLowering::LOWERVECTOR_SHUFFLE().
300
301//===----------------------------------------------------------------------===//
302
303Opportunies to use instructions from PPCInstrVSX.td during code gen
304 - Conversion instructions (Sections 7.6.1.5 and 7.6.1.6 of ISA 2.07)
305 - Scalar comparisons (xscmpodp and xscmpudp)
306 - Min and max (xsmaxdp, xsmindp, xvmaxdp, xvmindp, xvmaxsp, xvminsp)
307
308Related to this: we currently do not generate the lxvw4x instruction for either
309v4f32 or v4i32, probably because adding a dag pattern to the recognizer requires
310a single target type. This should probably be addressed in the PPCISelDAGToDAG logic.
311
312//===----------------------------------------------------------------------===//
313
314Currently EXTRACT_VECTOR_ELT and INSERT_VECTOR_ELT are type-legal only
315for v2f64 with VSX available. We should create custom lowering
316support for the other vector types. Without this support, we generate
317sequences with load-hit-store hazards.
318
319v4f32 can be supported with VSX by shifting the correct element into
320big-endian lane 0, using xscvspdpn to produce a double-precision
321representation of the single-precision value in big-endian
322double-precision lane 0, and reinterpreting lane 0 as an FPR or
323vector-scalar register.
324
325v2i64 can be supported with VSX and P8Vector in the same manner as
326v2f64, followed by a direct move to a GPR.
327
328v4i32 can be supported with VSX and P8Vector by shifting the correct
329element into big-endian lane 1, using a direct move to a GPR, and
330sign-extending the 32-bit result to 64 bits.
331
332v8i16 can be supported with VSX and P8Vector by shifting the correct
333element into big-endian lane 3, using a direct move to a GPR, and
334sign-extending the 16-bit result to 64 bits.
335
336v16i8 can be supported with VSX and P8Vector by shifting the correct
337element into big-endian lane 7, using a direct move to a GPR, and
338sign-extending the 8-bit result to 64 bits.
339
README_P9.txt
1//===- README_P9.txt - Notes for improving Power9 code gen ----------------===//
2
3TODO: Instructions Need Implement Instrinstics or Map to LLVM IR
4
5Altivec:
6- Vector Compare Not Equal (Zero):
7 vcmpneb(.) vcmpneh(.) vcmpnew(.)
8 vcmpnezb(.) vcmpnezh(.) vcmpnezw(.)
9 . Same as other VCMP*, use VCMP/VCMPo form (support intrinsic)
10
11- Vector Extract Unsigned: vextractub vextractuh vextractuw vextractd
12 . Don't use llvm extractelement because they have different semantics
13 . Use instrinstics:
14 (set v2i64:$vD, (int_ppc_altivec_vextractub v16i8:$vA, imm:$UIMM))
15 (set v2i64:$vD, (int_ppc_altivec_vextractuh v8i16:$vA, imm:$UIMM))
16 (set v2i64:$vD, (int_ppc_altivec_vextractuw v4i32:$vA, imm:$UIMM))
17 (set v2i64:$vD, (int_ppc_altivec_vextractd v2i64:$vA, imm:$UIMM))
18
19- Vector Extract Unsigned Byte Left/Right-Indexed:
20 vextublx vextubrx vextuhlx vextuhrx vextuwlx vextuwrx
21 . Use instrinstics:
22 // Left-Indexed
23 (set i64:$rD, (int_ppc_altivec_vextublx i64:$rA, v16i8:$vB))
24 (set i64:$rD, (int_ppc_altivec_vextuhlx i64:$rA, v8i16:$vB))
25 (set i64:$rD, (int_ppc_altivec_vextuwlx i64:$rA, v4i32:$vB))
26
27 // Right-Indexed
28 (set i64:$rD, (int_ppc_altivec_vextubrx i64:$rA, v16i8:$vB))
29 (set i64:$rD, (int_ppc_altivec_vextuhrx i64:$rA, v8i16:$vB))
30 (set i64:$rD, (int_ppc_altivec_vextuwrx i64:$rA, v4i32:$vB))
31
32- Vector Insert Element Instructions: vinsertb vinsertd vinserth vinsertw
33 (set v16i8:$vD, (int_ppc_altivec_vinsertb v16i8:$vA, imm:$UIMM))
34 (set v8i16:$vD, (int_ppc_altivec_vinsertd v8i16:$vA, imm:$UIMM))
35 (set v4i32:$vD, (int_ppc_altivec_vinserth v4i32:$vA, imm:$UIMM))
36 (set v2i64:$vD, (int_ppc_altivec_vinsertw v2i64:$vA, imm:$UIMM))
37
38- Vector Count Leading/Trailing Zero LSB. Result is placed into GPR[rD]:
39 vclzlsbb vctzlsbb
40 . Use intrinsic:
41 (set i64:$rD, (int_ppc_altivec_vclzlsbb v16i8:$vB))
42 (set i64:$rD, (int_ppc_altivec_vctzlsbb v16i8:$vB))
43
44- Vector Count Trailing Zeros: vctzb vctzh vctzw vctzd
45 . Map to llvm cttz
46 (set v16i8:$vD, (cttz v16i8:$vB)) // vctzb
47 (set v8i16:$vD, (cttz v8i16:$vB)) // vctzh
48 (set v4i32:$vD, (cttz v4i32:$vB)) // vctzw
49 (set v2i64:$vD, (cttz v2i64:$vB)) // vctzd
50
51- Vector Extend Sign: vextsb2w vextsh2w vextsb2d vextsh2d vextsw2d
52 . vextsb2w:
53 (set v4i32:$vD, (sext v4i8:$vB))
54
55 // PowerISA_V3.0:
56 do i = 0 to 3
57 VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].byte[3])
58 end
59
60 . vextsh2w:
61 (set v4i32:$vD, (sext v4i16:$vB))
62
63 // PowerISA_V3.0:
64 do i = 0 to 3
65 VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].hword[1])
66 end
67
68 . vextsb2d
69 (set v2i64:$vD, (sext v2i8:$vB))
70
71 // PowerISA_V3.0:
72 do i = 0 to 1
73 VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].byte[7])
74 end
75
76 . vextsh2d
77 (set v2i64:$vD, (sext v2i16:$vB))
78
79 // PowerISA_V3.0:
80 do i = 0 to 1
81 VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].hword[3])
82 end
83
84 . vextsw2d
85 (set v2i64:$vD, (sext v2i32:$vB))
86
87 // PowerISA_V3.0:
88 do i = 0 to 1
89 VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].word[1])
90 end
91
92- Vector Integer Negate: vnegw vnegd
93 . Map to llvm ineg
94 (set v4i32:$rT, (ineg v4i32:$rA)) // vnegw
95 (set v2i64:$rT, (ineg v2i64:$rA)) // vnegd
96
97- Vector Parity Byte: vprtybw vprtybd vprtybq
98 . Use intrinsic:
99 (set v4i32:$rD, (int_ppc_altivec_vprtybw v4i32:$vB))
100 (set v2i64:$rD, (int_ppc_altivec_vprtybd v2i64:$vB))
101 (set v1i128:$rD, (int_ppc_altivec_vprtybq v1i128:$vB))
102
103- Vector (Bit) Permute (Right-indexed):
104 . vbpermd: Same as "vbpermq", use VX1_Int_Ty2:
105 VX1_Int_Ty2<1484, "vbpermd", int_ppc_altivec_vbpermd, v2i64, v2i64>;
106
107 . vpermr: use VA1a_Int_Ty3
108 VA1a_Int_Ty3<59, "vpermr", int_ppc_altivec_vpermr, v16i8, v16i8, v16i8>;
109
110- Vector Rotate Left Mask/Mask-Insert: vrlwnm vrlwmi vrldnm vrldmi
111 . Use intrinsic:
112 VX1_Int_Ty<389, "vrlwnm", int_ppc_altivec_vrlwnm, v4i32>;
113 VX1_Int_Ty<133, "vrlwmi", int_ppc_altivec_vrlwmi, v4i32>;
114 VX1_Int_Ty<453, "vrldnm", int_ppc_altivec_vrldnm, v2i64>;
115 VX1_Int_Ty<197, "vrldmi", int_ppc_altivec_vrldmi, v2i64>;
116
117- Vector Shift Left/Right: vslv vsrv
118 . Use intrinsic, don't map to llvm shl and lshr, because they have different
119 semantics, e.g. vslv:
120
121 do i = 0 to 15
122 sh ← VR[VRB].byte[i].bit[5:7]
123 VR[VRT].byte[i] ← src.byte[i:i+1].bit[sh:sh+7]
124 end
125
126 VR[VRT].byte[i] is composed of 2 bytes from src.byte[i:i+1]
127
128 . VX1_Int_Ty<1860, "vslv", int_ppc_altivec_vslv, v16i8>;
129 VX1_Int_Ty<1796, "vsrv", int_ppc_altivec_vsrv, v16i8>;
130
131- Vector Multiply-by-10 (& Write Carry) Unsigned Quadword:
132 vmul10uq vmul10cuq
133 . Use intrinsic:
134 VX1_Int_Ty<513, "vmul10uq", int_ppc_altivec_vmul10uq, v1i128>;
135 VX1_Int_Ty< 1, "vmul10cuq", int_ppc_altivec_vmul10cuq, v1i128>;
136
137- Vector Multiply-by-10 Extended (& Write Carry) Unsigned Quadword:
138 vmul10euq vmul10ecuq
139 . Use intrinsic:
140 VX1_Int_Ty<577, "vmul10euq", int_ppc_altivec_vmul10euq, v1i128>;
141 VX1_Int_Ty< 65, "vmul10ecuq", int_ppc_altivec_vmul10ecuq, v1i128>;
142
143- Decimal Convert From/to National/Zoned/Signed-QWord:
144 bcdcfn. bcdcfz. bcdctn. bcdctz. bcdcfsq. bcdctsq.
145 . Use instrinstics:
146 (set v1i128:$vD, (int_ppc_altivec_bcdcfno v1i128:$vB, i1:$PS))
147 (set v1i128:$vD, (int_ppc_altivec_bcdcfzo v1i128:$vB, i1:$PS))
148 (set v1i128:$vD, (int_ppc_altivec_bcdctno v1i128:$vB))
149 (set v1i128:$vD, (int_ppc_altivec_bcdctzo v1i128:$vB, i1:$PS))
150 (set v1i128:$vD, (int_ppc_altivec_bcdcfsqo v1i128:$vB, i1:$PS))
151 (set v1i128:$vD, (int_ppc_altivec_bcdctsqo v1i128:$vB))
152
153- Decimal Copy-Sign/Set-Sign: bcdcpsgn. bcdsetsgn.
154 . Use instrinstics:
155 (set v1i128:$vD, (int_ppc_altivec_bcdcpsgno v1i128:$vA, v1i128:$vB))
156 (set v1i128:$vD, (int_ppc_altivec_bcdsetsgno v1i128:$vB, i1:$PS))
157
158- Decimal Shift/Unsigned-Shift/Shift-and-Round: bcds. bcdus. bcdsr.
159 . Use instrinstics:
160 (set v1i128:$vD, (int_ppc_altivec_bcdso v1i128:$vA, v1i128:$vB, i1:$PS))
161 (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
162 (set v1i128:$vD, (int_ppc_altivec_bcdsro v1i128:$vA, v1i128:$vB, i1:$PS))
163
164 . Note! Their VA is accessed only 1 byte, i.e. VA.byte[7]
165
166- Decimal (Unsigned) Truncate: bcdtrunc. bcdutrunc.
167 . Use instrinstics:
168 (set v1i128:$vD, (int_ppc_altivec_bcdso v1i128:$vA, v1i128:$vB, i1:$PS))
169 (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
170
171 . Note! Their VA is accessed only 2 byte, i.e. VA.hword[3] (VA.bit[48:63])
172
173VSX:
174- QP Copy Sign: xscpsgnqp
175 . Similar to xscpsgndp
176 . (set f128:$vT, (fcopysign f128:$vB, f128:$vA)
177
178- QP Absolute/Negative-Absolute/Negate: xsabsqp xsnabsqp xsnegqp
179 . Similar to xsabsdp/xsnabsdp/xsnegdp
180 . (set f128:$vT, (fabs f128:$vB)) // xsabsqp
181 (set f128:$vT, (fneg (fabs f128:$vB))) // xsnabsqp
182 (set f128:$vT, (fneg f128:$vB)) // xsnegqp
183
184- QP Add/Divide/Multiply/Subtract/Square-Root:
185 xsaddqp xsdivqp xsmulqp xssubqp xssqrtqp
186 . Similar to xsadddp
187 . isCommutable = 1
188 (set f128:$vT, (fadd f128:$vA, f128:$vB)) // xsaddqp
189 (set f128:$vT, (fmul f128:$vA, f128:$vB)) // xsmulqp
190
191 . isCommutable = 0
192 (set f128:$vT, (fdiv f128:$vA, f128:$vB)) // xsdivqp
193 (set f128:$vT, (fsub f128:$vA, f128:$vB)) // xssubqp
194 (set f128:$vT, (fsqrt f128:$vB))) // xssqrtqp
195
196- Round to Odd of QP Add/Divide/Multiply/Subtract/Square-Root:
197 xsaddqpo xsdivqpo xsmulqpo xssubqpo xssqrtqpo
198 . Similar to xsrsqrtedp??
199 def XSRSQRTEDP : XX2Form<60, 74,
200 (outs vsfrc:$XT), (ins vsfrc:$XB),
201 "xsrsqrtedp $XT, $XB", IIC_VecFP,
202 [(set f64:$XT, (PPCfrsqrte f64:$XB))]>;
203
204 . Define DAG Node in PPCInstrInfo.td:
205 def PPCfaddrto: SDNode<"PPCISD::FADDRTO", SDTFPBinOp, []>;
206 def PPCfdivrto: SDNode<"PPCISD::FDIVRTO", SDTFPBinOp, []>;
207 def PPCfmulrto: SDNode<"PPCISD::FMULRTO", SDTFPBinOp, []>;
208 def PPCfsubrto: SDNode<"PPCISD::FSUBRTO", SDTFPBinOp, []>;
209 def PPCfsqrtrto: SDNode<"PPCISD::FSQRTRTO", SDTFPUnaryOp, []>;
210
211 DAG patterns of each instruction (PPCInstrVSX.td):
212 . isCommutable = 1
213 (set f128:$vT, (PPCfaddrto f128:$vA, f128:$vB)) // xsaddqpo
214 (set f128:$vT, (PPCfmulrto f128:$vA, f128:$vB)) // xsmulqpo
215
216 . isCommutable = 0
217 (set f128:$vT, (PPCfdivrto f128:$vA, f128:$vB)) // xsdivqpo
218 (set f128:$vT, (PPCfsubrto f128:$vA, f128:$vB)) // xssubqpo
219 (set f128:$vT, (PPCfsqrtrto f128:$vB)) // xssqrtqpo
220
221- QP (Negative) Multiply-{Add/Subtract}: xsmaddqp xsmsubqp xsnmaddqp xsnmsubqp
222 . Ref: xsmaddadp/xsmsubadp/xsnmaddadp/xsnmsubadp
223
224 . isCommutable = 1
225 // xsmaddqp
226 [(set f128:$vT, (fma f128:$vA, f128:$vB, f128:$vTi))]>,
227 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
228 AltVSXFMARel;
229
230 // xsmsubqp
231 [(set f128:$vT, (fma f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
232 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
233 AltVSXFMARel;
234
235 // xsnmaddqp
236 [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, f128:$vTi)))]>,
237 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
238 AltVSXFMARel;
239
240 // xsnmsubqp
241 [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
242 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
243 AltVSXFMARel;
244
245- Round to Odd of QP (Negative) Multiply-{Add/Subtract}:
246 xsmaddqpo xsmsubqpo xsnmaddqpo xsnmsubqpo
247 . Similar to xsrsqrtedp??
248
249 . Define DAG Node in PPCInstrInfo.td:
250 def PPCfmarto: SDNode<"PPCISD::FMARTO", SDTFPTernaryOp, []>;
251
252 It looks like we only need to define "PPCfmarto" for these instructions,
253 because according to PowerISA_V3.0, these instructions perform RTO on
254 fma's result:
255 xsmaddqp(o)
256 v ← bfp_MULTIPLY_ADD(src1, src3, src2)
257 rnd ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
258 result ← bfp_CONVERT_TO_BFP128(rnd)
259
260 xsmsubqp(o)
261 v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
262 rnd ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
263 result ← bfp_CONVERT_TO_BFP128(rnd)
264
265 xsnmaddqp(o)
266 v ← bfp_MULTIPLY_ADD(src1,src3,src2)
267 rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
268 result ← bfp_CONVERT_TO_BFP128(rnd)
269
270 xsnmsubqp(o)
271 v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
272 rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
273 result ← bfp_CONVERT_TO_BFP128(rnd)
274
275 DAG patterns of each instruction (PPCInstrVSX.td):
276 . isCommutable = 1
277 // xsmaddqpo
278 [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, f128:$vTi))]>,
279 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
280 AltVSXFMARel;
281
282 // xsmsubqpo
283 [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
284 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
285 AltVSXFMARel;
286
287 // xsnmaddqpo
288 [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, f128:$vTi)))]>,
289 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
290 AltVSXFMARel;
291
292 // xsnmsubqpo
293 [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
294 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
295 AltVSXFMARel;
296
297- QP Compare Ordered/Unordered: xscmpoqp xscmpuqp
298 . ref: XSCMPUDP
299 def XSCMPUDP : XX3Form_1<60, 35,
300 (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
301 "xscmpudp $crD, $XA, $XB", IIC_FPCompare, []>;
302
303 . No SDAG, intrinsic, builtin are required??
304 Or llvm fcmp order/unorder compare??
305
306- DP/QP Compare Exponents: xscmpexpdp xscmpexpqp
307 . No SDAG, intrinsic, builtin are required?
308
309- DP Compare ==, >=, >, !=: xscmpeqdp xscmpgedp xscmpgtdp xscmpnedp
310 . I checked existing instruction "XSCMPUDP". They are different in target
311 register. "XSCMPUDP" write to CR field, xscmp*dp write to VSX register
312
313 . Use instrinsic:
314 (set i128:$XT, (int_ppc_vsx_xscmpeqdp f64:$XA, f64:$XB))
315 (set i128:$XT, (int_ppc_vsx_xscmpgedp f64:$XA, f64:$XB))
316 (set i128:$XT, (int_ppc_vsx_xscmpgtdp f64:$XA, f64:$XB))
317 (set i128:$XT, (int_ppc_vsx_xscmpnedp f64:$XA, f64:$XB))
318
319- Vector Compare Not Equal: xvcmpnedp xvcmpnedp. xvcmpnesp xvcmpnesp.
320 . Similar to xvcmpeqdp:
321 defm XVCMPEQDP : XX3Form_Rcr<60, 99,
322 "xvcmpeqdp", "$XT, $XA, $XB", IIC_VecFPCompare,
323 int_ppc_vsx_xvcmpeqdp, v2i64, v2f64>;
324
325 . So we should use "XX3Form_Rcr" to implement instrinsic
326
327- Convert DP -> QP: xscvdpqp
328 . Similar to XSCVDPSP:
329 def XSCVDPSP : XX2Form<60, 265,
330 (outs vsfrc:$XT), (ins vsfrc:$XB),
331 "xscvdpsp $XT, $XB", IIC_VecFP, []>;
332 . So, No SDAG, intrinsic, builtin are required??
333
334- Round & Convert QP -> DP (dword[1] is set to zero): xscvqpdp xscvqpdpo
335 . Similar to XSCVDPSP
336 . No SDAG, intrinsic, builtin are required??
337
338- Truncate & Convert QP -> (Un)Signed (D)Word (dword[1] is set to zero):
339 xscvqpsdz xscvqpswz xscvqpudz xscvqpuwz
340 . According to PowerISA_V3.0, these are similar to "XSCVDPSXDS", "XSCVDPSXWS",
341 "XSCVDPUXDS", "XSCVDPUXWS"
342
343 . DAG patterns:
344 (set f128:$XT, (PPCfctidz f128:$XB)) // xscvqpsdz
345 (set f128:$XT, (PPCfctiwz f128:$XB)) // xscvqpswz
346 (set f128:$XT, (PPCfctiduz f128:$XB)) // xscvqpudz
347 (set f128:$XT, (PPCfctiwuz f128:$XB)) // xscvqpuwz
348
349- Convert (Un)Signed DWord -> QP: xscvsdqp xscvudqp
350 . Similar to XSCVSXDSP
351 . (set f128:$XT, (PPCfcfids f64:$XB)) // xscvsdqp
352 (set f128:$XT, (PPCfcfidus f64:$XB)) // xscvudqp
353
354- (Round &) Convert DP <-> HP: xscvdphp xscvhpdp
355 . Similar to XSCVDPSP
356 . No SDAG, intrinsic, builtin are required??
357
358- Vector HP -> SP: xvcvhpsp xvcvsphp
359 . Similar to XVCVDPSP:
360 def XVCVDPSP : XX2Form<60, 393,
361 (outs vsrc:$XT), (ins vsrc:$XB),
362 "xvcvdpsp $XT, $XB", IIC_VecFP, []>;
363 . No SDAG, intrinsic, builtin are required??
364
365- Round to Quad-Precision Integer: xsrqpi xsrqpix
366 . These are combination of "XSRDPI", "XSRDPIC", "XSRDPIM", .., because you
367 need to assign rounding mode in instruction
368 . Provide builtin?
369 (set f128:$vT, (int_ppc_vsx_xsrqpi f128:$vB))
370 (set f128:$vT, (int_ppc_vsx_xsrqpix f128:$vB))
371
372- Round Quad-Precision to Double-Extended Precision (fp80): xsrqpxp
373 . Provide builtin?
374 (set f128:$vT, (int_ppc_vsx_xsrqpxp f128:$vB))
375
376Fixed Point Facility:
377
378- Exploit cmprb and cmpeqb (perhaps for something like
379 isalpha/isdigit/isupper/islower and isspace respectivelly). This can
380 perhaps be done through a builtin.
381
382- Provide testing for cnttz[dw]
383- Insert Exponent DP/QP: xsiexpdp xsiexpqp
384 . Use intrinsic?
385 . xsiexpdp:
386 // Note: rA and rB are the unsigned integer value.
387 (set f128:$XT, (int_ppc_vsx_xsiexpdp i64:$rA, i64:$rB))
388
389 . xsiexpqp:
390 (set f128:$vT, (int_ppc_vsx_xsiexpqp f128:$vA, f64:$vB))
391
392- Extract Exponent/Significand DP/QP: xsxexpdp xsxsigdp xsxexpqp xsxsigqp
393 . Use intrinsic?
394 . (set i64:$rT, (int_ppc_vsx_xsxexpdp f64$XB)) // xsxexpdp
395 (set i64:$rT, (int_ppc_vsx_xsxsigdp f64$XB)) // xsxsigdp
396 (set f128:$vT, (int_ppc_vsx_xsxexpqp f128$vB)) // xsxexpqp
397 (set f128:$vT, (int_ppc_vsx_xsxsigqp f128$vB)) // xsxsigqp
398
399- Vector Insert Word: xxinsertw
400 - Useful for inserting f32/i32 elements into vectors (the element to be
401 inserted needs to be prepared)
402 . Note: llvm has insertelem in "Vector Operations"
403 ; yields <n x <ty>>
404 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>
405
406 But how to map to it??
407 [(set v1f128:$XT, (insertelement v1f128:$XTi, f128:$XB, i4:$UIMM))]>,
408 RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
409
410 . Or use intrinsic?
411 (set v1f128:$XT, (int_ppc_vsx_xxinsertw v1f128:$XTi, f128:$XB, i4:$UIMM))
412
413- Vector Extract Unsigned Word: xxextractuw
414 - Not useful for extraction of f32 from v4f32 (the current pattern is better -
415 shift->convert)
416 - It is useful for (uint_to_fp (vector_extract v4i32, N))
417 - Unfortunately, it can't be used for (sint_to_fp (vector_extract v4i32, N))
418 . Note: llvm has extractelement in "Vector Operations"
419 ; yields <ty>
420 <result> = extractelement <n x <ty>> <val>, <ty2> <idx>
421
422 How to map to it??
423 [(set f128:$XT, (extractelement v1f128:$XB, i4:$UIMM))]
424
425 . Or use intrinsic?
426 (set f128:$XT, (int_ppc_vsx_xxextractuw v1f128:$XB, i4:$UIMM))
427
428- Vector Insert Exponent DP/SP: xviexpdp xviexpsp
429 . Use intrinsic
430 (set v2f64:$XT, (int_ppc_vsx_xviexpdp v2f64:$XA, v2f64:$XB))
431 (set v4f32:$XT, (int_ppc_vsx_xviexpsp v4f32:$XA, v4f32:$XB))
432
433- Vector Extract Exponent/Significand DP/SP: xvxexpdp xvxexpsp xvxsigdp xvxsigsp
434 . Use intrinsic
435 (set v2f64:$XT, (int_ppc_vsx_xvxexpdp v2f64:$XB))
436 (set v4f32:$XT, (int_ppc_vsx_xvxexpsp v4f32:$XB))
437 (set v2f64:$XT, (int_ppc_vsx_xvxsigdp v2f64:$XB))
438 (set v4f32:$XT, (int_ppc_vsx_xvxsigsp v4f32:$XB))
439
440- Test Data Class SP/DP/QP: xststdcsp xststdcdp xststdcqp
441 . No SDAG, intrinsic, builtin are required?
442 Because it seems that we have no way to map BF field?
443
444 Instruction Form: [PO T XO B XO BX TX]
445 Asm: xststd* BF,XB,DCMX
446
447 BF is an index to CR register field.
448
449- Vector Test Data Class SP/DP: xvtstdcsp xvtstdcdp
450 . Use intrinsic
451 (set v4f32:$XT, (int_ppc_vsx_xvtstdcsp v4f32:$XB, i7:$DCMX))
452 (set v2f64:$XT, (int_ppc_vsx_xvtstdcdp v2f64:$XB, i7:$DCMX))
453
454- Maximum/Minimum Type-C/Type-J DP: xsmaxcdp xsmaxjdp xsmincdp xsminjdp
455 . PowerISA_V3.0:
456 "xsmaxcdp can be used to implement the C/C++/Java conditional operation
457 (x>y)?x:y for single-precision and double-precision arguments."
458
459 Note! c type and j type have different behavior when:
460 1. Either input is NaN
461 2. Both input are +-Infinity, +-Zero
462
463 . dtype map to llvm fmaxnum/fminnum
464 jtype use intrinsic
465
466 . xsmaxcdp xsmincdp
467 (set f64:$XT, (fmaxnum f64:$XA, f64:$XB))
468 (set f64:$XT, (fminnum f64:$XA, f64:$XB))
469
470 . xsmaxjdp xsminjdp
471 (set f64:$XT, (int_ppc_vsx_xsmaxjdp f64:$XA, f64:$XB))
472 (set f64:$XT, (int_ppc_vsx_xsminjdp f64:$XA, f64:$XB))
473
474- Vector Byte-Reverse H/W/D/Q Word: xxbrh xxbrw xxbrd xxbrq
475 . Use intrinsic
476 (set v8i16:$XT, (int_ppc_vsx_xxbrh v8i16:$XB))
477 (set v4i32:$XT, (int_ppc_vsx_xxbrw v4i32:$XB))
478 (set v2i64:$XT, (int_ppc_vsx_xxbrd v2i64:$XB))
479 (set v1i128:$XT, (int_ppc_vsx_xxbrq v1i128:$XB))
480
481- Vector Permute: xxperm xxpermr
482 . I have checked "PPCxxswapd" in PPCInstrVSX.td, but they are different
483 . Use intrinsic
484 (set v16i8:$XT, (int_ppc_vsx_xxperm v16i8:$XA, v16i8:$XB))
485 (set v16i8:$XT, (int_ppc_vsx_xxpermr v16i8:$XA, v16i8:$XB))
486
487- Vector Splat Immediate Byte: xxspltib
488 . Similar to XXSPLTW:
489 def XXSPLTW : XX2Form_2<60, 164,
490 (outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM),
491 "xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>;
492
493 . No SDAG, intrinsic, builtin are required?
494
495- Load/Store Vector: lxv stxv
496 . Has likely SDAG match:
497 (set v?:$XT, (load ix16addr:$src))
498 (set v?:$XT, (store ix16addr:$dst))
499
500 . Need define ix16addr in PPCInstrInfo.td
501 ix16addr: 16-byte aligned, see "def memrix16" in PPCInstrInfo.td
502
503- Load/Store Vector Indexed: lxvx stxvx
504 . Has likely SDAG match:
505 (set v?:$XT, (load xoaddr:$src))
506 (set v?:$XT, (store xoaddr:$dst))
507
508- Load/Store DWord: lxsd stxsd
509 . Similar to lxsdx/stxsdx:
510 def LXSDX : XX1Form<31, 588,
511 (outs vsfrc:$XT), (ins memrr:$src),
512 "lxsdx $XT, $src", IIC_LdStLFD,
513 [(set f64:$XT, (load xoaddr:$src))]>;
514
515 . (set f64:$XT, (load iaddrX4:$src))
516 (set f64:$XT, (store iaddrX4:$dst))
517
518- Load/Store SP, with conversion from/to DP: lxssp stxssp
519 . Similar to lxsspx/stxsspx:
520 def LXSSPX : XX1Form<31, 524, (outs vssrc:$XT), (ins memrr:$src),
521 "lxsspx $XT, $src", IIC_LdStLFD,
522 [(set f32:$XT, (load xoaddr:$src))]>;
523
524 . (set f32:$XT, (load iaddrX4:$src))
525 (set f32:$XT, (store iaddrX4:$dst))
526
527- Load as Integer Byte/Halfword & Zero Indexed: lxsibzx lxsihzx
528 . Similar to lxsiwzx:
529 def LXSIWZX : XX1Form<31, 12, (outs vsfrc:$XT), (ins memrr:$src),
530 "lxsiwzx $XT, $src", IIC_LdStLFD,
531 [(set f64:$XT, (PPClfiwzx xoaddr:$src))]>;
532
533 . (set f64:$XT, (PPClfiwzx xoaddr:$src))
534
535- Store as Integer Byte/Halfword Indexed: stxsibx stxsihx
536 . Similar to stxsiwx:
537 def STXSIWX : XX1Form<31, 140, (outs), (ins vsfrc:$XT, memrr:$dst),
538 "stxsiwx $XT, $dst", IIC_LdStSTFD,
539 [(PPCstfiwx f64:$XT, xoaddr:$dst)]>;
540
541 . (PPCstfiwx f64:$XT, xoaddr:$dst)
542
543- Load Vector Halfword*8/Byte*16 Indexed: lxvh8x lxvb16x
544 . Similar to lxvd2x/lxvw4x:
545 def LXVD2X : XX1Form<31, 844,
546 (outs vsrc:$XT), (ins memrr:$src),
547 "lxvd2x $XT, $src", IIC_LdStLFD,
548 [(set v2f64:$XT, (int_ppc_vsx_lxvd2x xoaddr:$src))]>;
549
550 . (set v8i16:$XT, (int_ppc_vsx_lxvh8x xoaddr:$src))
551 (set v16i8:$XT, (int_ppc_vsx_lxvb16x xoaddr:$src))
552
553- Store Vector Halfword*8/Byte*16 Indexed: stxvh8x stxvb16x
554 . Similar to stxvd2x/stxvw4x:
555 def STXVD2X : XX1Form<31, 972,
556 (outs), (ins vsrc:$XT, memrr:$dst),
557 "stxvd2x $XT, $dst", IIC_LdStSTFD,
558 [(store v2f64:$XT, xoaddr:$dst)]>;
559
560 . (store v8i16:$XT, xoaddr:$dst)
561 (store v16i8:$XT, xoaddr:$dst)
562
563- Load/Store Vector (Left-justified) with Length: lxvl lxvll stxvl stxvll
564 . Likely needs an intrinsic
565 . (set v?:$XT, (int_ppc_vsx_lxvl xoaddr:$src))
566 (set v?:$XT, (int_ppc_vsx_lxvll xoaddr:$src))
567
568 . (int_ppc_vsx_stxvl xoaddr:$dst))
569 (int_ppc_vsx_stxvll xoaddr:$dst))
570
571- Load Vector Word & Splat Indexed: lxvwsx
572 . Likely needs an intrinsic
573 . (set v?:$XT, (int_ppc_vsx_lxvwsx xoaddr:$src))
574
575Atomic operations (l[dw]at, st[dw]at):
576- Provide custom lowering for common atomic operations to use these
577 instructions with the correct Function Code
578- Ensure the operands are in the correct register (i.e. RT+1, RT+2)
579- Provide builtins since not all FC's necessarily have an existing LLVM
580 atomic operation
581
582Load Doubleword Monitored (ldmx):
583- Investigate whether there are any uses for this. It seems to be related to
584 Garbage Collection so it isn't likely to be all that useful for most
585 languages we deal with.
586
587Move to CR from XER Extended (mcrxrx):
588- Is there a use for this in LLVM?
589
590Fixed Point Facility:
591
592- Copy-Paste Facility: copy copy_first cp_abort paste paste. paste_last
593 . Use instrinstics:
594 (int_ppc_copy_first i32:$rA, i32:$rB)
595 (int_ppc_copy i32:$rA, i32:$rB)
596
597 (int_ppc_paste i32:$rA, i32:$rB)
598 (int_ppc_paste_last i32:$rA, i32:$rB)
599
600 (int_cp_abort)
601
602- Message Synchronize: msgsync
603- SLB*: slbieg slbsync
604- stop
605 . No instrinstics
606