• Home
  • History
  • Annotate
Name Date Size #Lines LOC

..--

AsmParser/23-Nov-2023-1,8001,504

Disassembler/23-Nov-2023-440318

GISel/23-Nov-2023-319171

MCTargetDesc/23-Nov-2023-3,6612,700

TargetInfo/23-Nov-2023-6939

CMakeLists.txtD23-Nov-20232 KiB8476

P9InstrResources.tdD23-Nov-202337.4 KiB1,4321,344

PPC.hD23-Nov-20236.1 KiB16992

PPC.tdD23-Nov-202332.4 KiB626585

PPCAsmPrinter.cppD23-Nov-202380.1 KiB2,0981,482

PPCBoolRetToInt.cppD23-Nov-202310 KiB291193

PPCBranchCoalescing.cppD23-Nov-202330.2 KiB794399

PPCBranchSelector.cppD23-Nov-202316 KiB420232

PPCCCState.cppD23-Nov-20231.1 KiB3523

PPCCCState.hD23-Nov-20231.2 KiB4223

PPCCTRLoops.cppD23-Nov-20236.7 KiB221164

PPCCallingConv.cppD23-Nov-20236.2 KiB163109

PPCCallingConv.hD23-Nov-20232 KiB4828

PPCCallingConv.tdD23-Nov-202315.8 KiB361297

PPCEarlyReturn.cppD23-Nov-20237.4 KiB215151

PPCExpandISEL.cppD23-Nov-202317.9 KiB492308

PPCFastISel.cppD23-Nov-202386.1 KiB2,4851,702

PPCFrameLowering.cppD23-Nov-202396.7 KiB2,5431,781

PPCFrameLowering.hD23-Nov-20237.5 KiB17672

PPCHazardRecognizers.cppD23-Nov-202314 KiB434279

PPCHazardRecognizers.hD23-Nov-20233.8 KiB10252

PPCISelDAGToDAG.cppD23-Nov-2023257.3 KiB6,7954,948

PPCISelLowering.cppD23-Nov-2023666.9 KiB17,05312,103

PPCISelLowering.hD23-Nov-202357.5 KiB1,342628

PPCInstr64Bit.tdD23-Nov-202377 KiB1,6331,449

PPCInstrAltivec.tdD23-Nov-202378.8 KiB1,6241,431

PPCInstrBuilder.hD23-Nov-20231.5 KiB4314

PPCInstrFormats.tdD23-Nov-202356.1 KiB2,1451,769

PPCInstrHTM.tdD23-Nov-20235.4 KiB176128

PPCInstrInfo.cppD23-Nov-2023187.1 KiB5,0953,763

PPCInstrInfo.hD23-Nov-202330.8 KiB681415

PPCInstrInfo.tdD23-Nov-2023235.3 KiB5,3164,725

PPCInstrPrefix.tdD23-Nov-2023116.6 KiB2,6412,414

PPCInstrSPE.tdD23-Nov-202349.4 KiB890783

PPCInstrVSX.tdD23-Nov-2023224.6 KiB4,6704,275

PPCLoopInstrFormPrep.cppD23-Nov-202334.3 KiB915616

PPCLowerMASSVEntries.cppD23-Nov-20236.4 KiB197119

PPCMCInstLower.cppD23-Nov-20237.3 KiB205168

PPCMIPeephole.cppD23-Nov-202364.5 KiB1,6661,197

PPCMachineFunctionInfo.cppD23-Nov-20232.6 KiB6649

PPCMachineFunctionInfo.hD23-Nov-20238.9 KiB22993

PPCMachineScheduler.cppD23-Nov-20234 KiB12076

PPCMachineScheduler.hD23-Nov-20231.8 KiB5330

PPCMacroFusion.cppD23-Nov-20236.7 KiB204126

PPCMacroFusion.defD23-Nov-20231.8 KiB4637

PPCMacroFusion.hD23-Nov-2023886 234

PPCPerfectShuffle.hD23-Nov-2023397.6 KiB6,5916,567

PPCPfmCounters.tdD23-Nov-2023705 1916

PPCPreEmitPeephole.cppD23-Nov-202322.6 KiB573422

PPCReduceCRLogicals.cppD23-Nov-202328.7 KiB739572

PPCRegisterInfo.cppD23-Nov-202355.6 KiB1,442988

PPCRegisterInfo.hD23-Nov-20236.9 KiB181127

PPCRegisterInfo.tdD23-Nov-202317 KiB458400

PPCSchedule.tdD23-Nov-20235.2 KiB140136

PPCSchedule440.tdD23-Nov-202334.6 KiB601586

PPCScheduleA2.tdD23-Nov-20237.9 KiB170159

PPCScheduleE500.tdD23-Nov-202316.6 KiB280272

PPCScheduleE500mc.tdD23-Nov-202320.9 KiB335327

PPCScheduleE5500.tdD23-Nov-202323.6 KiB379369

PPCScheduleG3.tdD23-Nov-20234.5 KiB8178

PPCScheduleG4.tdD23-Nov-20235.4 KiB9794

PPCScheduleG4Plus.tdD23-Nov-20236.4 KiB111108

PPCScheduleG5.tdD23-Nov-20237.1 KiB129121

PPCScheduleP7.tdD23-Nov-202322.3 KiB405388

PPCScheduleP8.tdD23-Nov-202324 KiB414397

PPCScheduleP9.tdD23-Nov-202312.3 KiB431357

PPCSubtarget.cppD23-Nov-20238.1 KiB260193

PPCSubtarget.hD23-Nov-202313.6 KiB418301

PPCTLSDynamicCall.cppD23-Nov-20237.6 KiB217148

PPCTOCRegDeps.cppD23-Nov-20235.3 KiB15672

PPCTargetMachine.cppD23-Nov-202319.5 KiB579408

PPCTargetMachine.hD23-Nov-20232.3 KiB7038

PPCTargetObjectFile.cppD23-Nov-20232.4 KiB5929

PPCTargetObjectFile.hD23-Nov-20231.2 KiB3414

PPCTargetStreamer.hD23-Nov-20231 KiB3519

PPCTargetTransformInfo.cppD23-Nov-202346.7 KiB1,256934

PPCTargetTransformInfo.hD23-Nov-20236 KiB13898

PPCVSXCopy.cppD23-Nov-20235.7 KiB173118

PPCVSXFMAMutate.cppD23-Nov-202315.1 KiB399229

PPCVSXSwapRemoval.cppD23-Nov-202337.8 KiB1,072679

README.txtD23-Nov-202316.1 KiB608473

README_ALTIVEC.txtD23-Nov-202311.5 KiB339259

README_P9.txtD23-Nov-202322.2 KiB606479

README.txt

1//===- README.txt - Notes for improving PowerPC-specific code gen ---------===//
2
3TODO:
4* lmw/stmw pass a la arm load store optimizer for prolog/epilog
5
6===-------------------------------------------------------------------------===
7
8This code:
9
10unsigned add32carry(unsigned sum, unsigned x) {
11 unsigned z = sum + x;
12 if (sum + x < x)
13     z++;
14 return z;
15}
16
17Should compile to something like:
18
19	addc r3,r3,r4
20	addze r3,r3
21
22instead we get:
23
24	add r3, r4, r3
25	cmplw cr7, r3, r4
26	mfcr r4 ; 1
27	rlwinm r4, r4, 29, 31, 31
28	add r3, r3, r4
29
30Ick.
31
32===-------------------------------------------------------------------------===
33
34We compile the hottest inner loop of viterbi to:
35
36        li r6, 0
37        b LBB1_84       ;bb432.i
38LBB1_83:        ;bb420.i
39        lbzx r8, r5, r7
40        addi r6, r7, 1
41        stbx r8, r4, r7
42LBB1_84:        ;bb432.i
43        mr r7, r6
44        cmplwi cr0, r7, 143
45        bne cr0, LBB1_83        ;bb420.i
46
47The CBE manages to produce:
48
49	li r0, 143
50	mtctr r0
51loop:
52	lbzx r2, r2, r11
53	stbx r0, r2, r9
54	addi r2, r2, 1
55	bdz later
56	b loop
57
58This could be much better (bdnz instead of bdz) but it still beats us.  If we
59produced this with bdnz, the loop would be a single dispatch group.
60
61===-------------------------------------------------------------------------===
62
63Lump the constant pool for each function into ONE pic object, and reference
64pieces of it as offsets from the start.  For functions like this (contrived
65to have lots of constants obviously):
66
67double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; }
68
69We generate:
70
71_X:
72        lis r2, ha16(.CPI_X_0)
73        lfd f0, lo16(.CPI_X_0)(r2)
74        lis r2, ha16(.CPI_X_1)
75        lfd f2, lo16(.CPI_X_1)(r2)
76        fmadd f0, f1, f0, f2
77        lis r2, ha16(.CPI_X_2)
78        lfd f1, lo16(.CPI_X_2)(r2)
79        lis r2, ha16(.CPI_X_3)
80        lfd f2, lo16(.CPI_X_3)(r2)
81        fmadd f1, f0, f1, f2
82        blr
83
84It would be better to materialize .CPI_X into a register, then use immediates
85off of the register to avoid the lis's.  This is even more important in PIC
86mode.
87
88Note that this (and the static variable version) is discussed here for GCC:
89http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
90
91Here's another example (the sgn function):
92double testf(double a) {
93       return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
94}
95
96it produces a BB like this:
97LBB1_1: ; cond_true
98        lis r2, ha16(LCPI1_0)
99        lfs f0, lo16(LCPI1_0)(r2)
100        lis r2, ha16(LCPI1_1)
101        lis r3, ha16(LCPI1_2)
102        lfs f2, lo16(LCPI1_2)(r3)
103        lfs f3, lo16(LCPI1_1)(r2)
104        fsub f0, f0, f1
105        fsel f1, f0, f2, f3
106        blr
107
108===-------------------------------------------------------------------------===
109
110PIC Code Gen IPO optimization:
111
112Squish small scalar globals together into a single global struct, allowing the
113address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size
114of the GOT on targets with one).
115
116Note that this is discussed here for GCC:
117http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
118
119===-------------------------------------------------------------------------===
120
121Fold add and sub with constant into non-extern, non-weak addresses so this:
122
123static int a;
124void bar(int b) { a = b; }
125void foo(unsigned char *c) {
126  *c = a;
127}
128
129So that
130
131_foo:
132        lis r2, ha16(_a)
133        la r2, lo16(_a)(r2)
134        lbz r2, 3(r2)
135        stb r2, 0(r3)
136        blr
137
138Becomes
139
140_foo:
141        lis r2, ha16(_a+3)
142        lbz r2, lo16(_a+3)(r2)
143        stb r2, 0(r3)
144        blr
145
146===-------------------------------------------------------------------------===
147
148We should compile these two functions to the same thing:
149
150#include <stdlib.h>
151void f(int a, int b, int *P) {
152  *P = (a-b)>=0?(a-b):(b-a);
153}
154void g(int a, int b, int *P) {
155  *P = abs(a-b);
156}
157
158Further, they should compile to something better than:
159
160_g:
161        subf r2, r4, r3
162        subfic r3, r2, 0
163        cmpwi cr0, r2, -1
164        bgt cr0, LBB2_2 ; entry
165LBB2_1: ; entry
166        mr r2, r3
167LBB2_2: ; entry
168        stw r2, 0(r5)
169        blr
170
171GCC produces:
172
173_g:
174        subf r4,r4,r3
175        srawi r2,r4,31
176        xor r0,r2,r4
177        subf r0,r2,r0
178        stw r0,0(r5)
179        blr
180
181... which is much nicer.
182
183This theoretically may help improve twolf slightly (used in dimbox.c:142?).
184
185===-------------------------------------------------------------------------===
186
187PR5945: This:
188define i32 @clamp0g(i32 %a) {
189entry:
190        %cmp = icmp slt i32 %a, 0
191        %sel = select i1 %cmp, i32 0, i32 %a
192        ret i32 %sel
193}
194
195Is compile to this with the PowerPC (32-bit) backend:
196
197_clamp0g:
198        cmpwi cr0, r3, 0
199        li r2, 0
200        blt cr0, LBB1_2
201; %bb.1:                                                    ; %entry
202        mr r2, r3
203LBB1_2:                                                     ; %entry
204        mr r3, r2
205        blr
206
207This could be reduced to the much simpler:
208
209_clamp0g:
210        srawi r2, r3, 31
211        andc r3, r3, r2
212        blr
213
214===-------------------------------------------------------------------------===
215
216int foo(int N, int ***W, int **TK, int X) {
217  int t, i;
218
219  for (t = 0; t < N; ++t)
220    for (i = 0; i < 4; ++i)
221      W[t / X][i][t % X] = TK[i][t];
222
223  return 5;
224}
225
226We generate relatively atrocious code for this loop compared to gcc.
227
228We could also strength reduce the rem and the div:
229http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf
230
231===-------------------------------------------------------------------------===
232
233We generate ugly code for this:
234
235void func(unsigned int *ret, float dx, float dy, float dz, float dw) {
236  unsigned code = 0;
237  if(dx < -dw) code |= 1;
238  if(dx > dw)  code |= 2;
239  if(dy < -dw) code |= 4;
240  if(dy > dw)  code |= 8;
241  if(dz < -dw) code |= 16;
242  if(dz > dw)  code |= 32;
243  *ret = code;
244}
245
246===-------------------------------------------------------------------------===
247
248%struct.B = type { i8, [3 x i8] }
249
250define void @bar(%struct.B* %b) {
251entry:
252        %tmp = bitcast %struct.B* %b to i32*              ; <uint*> [#uses=1]
253        %tmp = load i32* %tmp          ; <uint> [#uses=1]
254        %tmp3 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=1]
255        %tmp4 = load i32* %tmp3                ; <uint> [#uses=1]
256        %tmp8 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=2]
257        %tmp9 = load i32* %tmp8                ; <uint> [#uses=1]
258        %tmp4.mask17 = shl i32 %tmp4, i8 1          ; <uint> [#uses=1]
259        %tmp1415 = and i32 %tmp4.mask17, 2147483648            ; <uint> [#uses=1]
260        %tmp.masked = and i32 %tmp, 2147483648         ; <uint> [#uses=1]
261        %tmp11 = or i32 %tmp1415, %tmp.masked          ; <uint> [#uses=1]
262        %tmp12 = and i32 %tmp9, 2147483647             ; <uint> [#uses=1]
263        %tmp13 = or i32 %tmp12, %tmp11         ; <uint> [#uses=1]
264        store i32 %tmp13, i32* %tmp8
265        ret void
266}
267
268We emit:
269
270_foo:
271        lwz r2, 0(r3)
272        slwi r4, r2, 1
273        or r4, r4, r2
274        rlwimi r2, r4, 0, 0, 0
275        stw r2, 0(r3)
276        blr
277
278We could collapse a bunch of those ORs and ANDs and generate the following
279equivalent code:
280
281_foo:
282        lwz r2, 0(r3)
283        rlwinm r4, r2, 1, 0, 0
284        or r2, r2, r4
285        stw r2, 0(r3)
286        blr
287
288===-------------------------------------------------------------------------===
289
290Consider a function like this:
291
292float foo(float X) { return X + 1234.4123f; }
293
294The FP constant ends up in the constant pool, so we need to get the LR register.
295 This ends up producing code like this:
296
297_foo:
298.LBB_foo_0:     ; entry
299        mflr r11
300***     stw r11, 8(r1)
301        bl "L00000$pb"
302"L00000$pb":
303        mflr r2
304        addis r2, r2, ha16(.CPI_foo_0-"L00000$pb")
305        lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2)
306        fadds f1, f1, f0
307***     lwz r11, 8(r1)
308        mtlr r11
309        blr
310
311This is functional, but there is no reason to spill the LR register all the way
312to the stack (the two marked instrs): spilling it to a GPR is quite enough.
313
314Implementing this will require some codegen improvements.  Nate writes:
315
316"So basically what we need to support the "no stack frame save and restore" is a
317generalization of the LR optimization to "callee-save regs".
318
319Currently, we have LR marked as a callee-save reg.  The register allocator sees
320that it's callee save, and spills it directly to the stack.
321
322Ideally, something like this would happen:
323
324LR would be in a separate register class from the GPRs. The class of LR would be
325marked "unspillable".  When the register allocator came across an unspillable
326reg, it would ask "what is the best class to copy this into that I *can* spill"
327If it gets a class back, which it will in this case (the gprs), it grabs a free
328register of that class.  If it is then later necessary to spill that reg, so be
329it.
330
331===-------------------------------------------------------------------------===
332
333We compile this:
334int test(_Bool X) {
335  return X ? 524288 : 0;
336}
337
338to:
339_test:
340        cmplwi cr0, r3, 0
341        lis r2, 8
342        li r3, 0
343        beq cr0, LBB1_2 ;entry
344LBB1_1: ;entry
345        mr r3, r2
346LBB1_2: ;entry
347        blr
348
349instead of:
350_test:
351        addic r2,r3,-1
352        subfe r0,r2,r3
353        slwi r3,r0,19
354        blr
355
356This sort of thing occurs a lot due to globalopt.
357
358===-------------------------------------------------------------------------===
359
360We compile:
361
362define i32 @bar(i32 %x) nounwind readnone ssp {
363entry:
364  %0 = icmp eq i32 %x, 0                          ; <i1> [#uses=1]
365  %neg = sext i1 %0 to i32              ; <i32> [#uses=1]
366  ret i32 %neg
367}
368
369to:
370
371_bar:
372	cntlzw r2, r3
373	slwi r2, r2, 26
374	srawi r3, r2, 31
375	blr
376
377it would be better to produce:
378
379_bar:
380        addic r3,r3,-1
381        subfe r3,r3,r3
382        blr
383
384===-------------------------------------------------------------------------===
385
386We generate horrible ppc code for this:
387
388#define N  2000000
389double   a[N],c[N];
390void simpleloop() {
391   int j;
392   for (j=0; j<N; j++)
393     c[j] = a[j];
394}
395
396LBB1_1: ;bb
397        lfdx f0, r3, r4
398        addi r5, r5, 1                 ;; Extra IV for the exit value compare.
399        stfdx f0, r2, r4
400        addi r4, r4, 8
401
402        xoris r6, r5, 30               ;; This is due to a large immediate.
403        cmplwi cr0, r6, 33920
404        bne cr0, LBB1_1
405
406//===---------------------------------------------------------------------===//
407
408This:
409        #include <algorithm>
410        inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
411        { return std::make_pair(a + b, a + b < a); }
412        bool no_overflow(unsigned a, unsigned b)
413        { return !full_add(a, b).second; }
414
415Should compile to:
416
417__Z11no_overflowjj:
418        add r4,r3,r4
419        subfc r3,r3,r4
420        li r3,0
421        adde r3,r3,r3
422        blr
423
424(or better) not:
425
426__Z11no_overflowjj:
427        add r2, r4, r3
428        cmplw cr7, r2, r3
429        mfcr r2
430        rlwinm r2, r2, 29, 31, 31
431        xori r3, r2, 1
432        blr
433
434//===---------------------------------------------------------------------===//
435
436We compile some FP comparisons into an mfcr with two rlwinms and an or.  For
437example:
438#include <math.h>
439int test(double x, double y) { return islessequal(x, y);}
440int test2(double x, double y) {  return islessgreater(x, y);}
441int test3(double x, double y) {  return !islessequal(x, y);}
442
443Compiles into (all three are similar, but the bits differ):
444
445_test:
446	fcmpu cr7, f1, f2
447	mfcr r2
448	rlwinm r3, r2, 29, 31, 31
449	rlwinm r2, r2, 31, 31, 31
450	or r3, r2, r3
451	blr
452
453GCC compiles this into:
454
455 _test:
456	fcmpu cr7,f1,f2
457	cror 30,28,30
458	mfcr r3
459	rlwinm r3,r3,31,1
460	blr
461
462which is more efficient and can use mfocr.  See PR642 for some more context.
463
464//===---------------------------------------------------------------------===//
465
466void foo(float *data, float d) {
467   long i;
468   for (i = 0; i < 8000; i++)
469      data[i] = d;
470}
471void foo2(float *data, float d) {
472   long i;
473   data--;
474   for (i = 0; i < 8000; i++) {
475      data[1] = d;
476      data++;
477   }
478}
479
480These compile to:
481
482_foo:
483	li r2, 0
484LBB1_1:	; bb
485	addi r4, r2, 4
486	stfsx f1, r3, r2
487	cmplwi cr0, r4, 32000
488	mr r2, r4
489	bne cr0, LBB1_1	; bb
490	blr
491_foo2:
492	li r2, 0
493LBB2_1:	; bb
494	addi r4, r2, 4
495	stfsx f1, r3, r2
496	cmplwi cr0, r4, 32000
497	mr r2, r4
498	bne cr0, LBB2_1	; bb
499	blr
500
501The 'mr' could be eliminated to folding the add into the cmp better.
502
503//===---------------------------------------------------------------------===//
504Codegen for the following (low-probability) case deteriorated considerably
505when the correctness fixes for unordered comparisons went in (PR 642, 58871).
506It should be possible to recover the code quality described in the comments.
507
508; RUN: llvm-as < %s | llc -march=ppc32  | grep or | count 3
509; This should produce one 'or' or 'cror' instruction per function.
510
511; RUN: llvm-as < %s | llc -march=ppc32  | grep mfcr | count 3
512; PR2964
513
514define i32 @test(double %x, double %y) nounwind  {
515entry:
516	%tmp3 = fcmp ole double %x, %y		; <i1> [#uses=1]
517	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
518	ret i32 %tmp345
519}
520
521define i32 @test2(double %x, double %y) nounwind  {
522entry:
523	%tmp3 = fcmp one double %x, %y		; <i1> [#uses=1]
524	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
525	ret i32 %tmp345
526}
527
528define i32 @test3(double %x, double %y) nounwind  {
529entry:
530	%tmp3 = fcmp ugt double %x, %y		; <i1> [#uses=1]
531	%tmp34 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
532	ret i32 %tmp34
533}
534
535//===---------------------------------------------------------------------===//
536for the following code:
537
538void foo (float *__restrict__ a, int *__restrict__ b, int n) {
539      a[n] = b[n]  * 2.321;
540}
541
542we load b[n] to GPR, then move it VSX register and convert it float. We should
543use vsx scalar integer load instructions to avoid direct moves
544
545//===----------------------------------------------------------------------===//
546; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg
547
548; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and
549; should not be generated except with -enable-finite-only-fp-math or the like).
550; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to
551; recognize a more elaborate tree than a simple SETxx.
552
553define double @test_FNEG_sel(double %A, double %B, double %C) {
554        %D = fsub double -0.000000e+00, %A               ; <double> [#uses=1]
555        %Cond = fcmp ugt double %D, -0.000000e+00               ; <i1> [#uses=1]
556        %E = select i1 %Cond, double %B, double %C              ; <double> [#uses=1]
557        ret double %E
558}
559
560//===----------------------------------------------------------------------===//
561The save/restore sequence for CR in prolog/epilog is terrible:
562- Each CR subreg is saved individually, rather than doing one save as a unit.
563- On Darwin, the save is done after the decrement of SP, which means the offset
564from SP of the save slot can be too big for a store instruction, which means we
565need an additional register (currently hacked in 96015+96020; the solution there
566is correct, but poor).
567- On SVR4 the same thing can happen, and I don't think saving before the SP
568decrement is safe on that target, as there is no red zone.  This is currently
569broken AFAIK, although it's not a target I can exercise.
570The following demonstrates the problem:
571extern void bar(char *p);
572void foo() {
573  char x[100000];
574  bar(x);
575  __asm__("" ::: "cr2");
576}
577
578//===-------------------------------------------------------------------------===
579Naming convention for instruction formats is very haphazard.
580We have agreed on a naming scheme as follows:
581
582<INST_form>{_<OP_type><OP_len>}+
583
584Where:
585INST_form is the instruction format (X-form, etc.)
586OP_type is the operand type - one of OPC (opcode), RD (register destination),
587                              RS (register source),
588                              RDp (destination register pair),
589                              RSp (source register pair), IM (immediate),
590                              XO (extended opcode)
591OP_len is the length of the operand in bits
592
593VSX register operands would be of length 6 (split across two fields),
594condition register fields of length 3.
595We would not need denote reserved fields in names of instruction formats.
596
597//===----------------------------------------------------------------------===//
598
599Instruction fusion was introduced in ISA 2.06 and more opportunities added in
600ISA 2.07.  LLVM needs to add infrastructure to recognize fusion opportunities
601and force instruction pairs to be scheduled together.
602
603-----------------------------------------------------------------------------
604
605More general handling of any_extend and zero_extend:
606
607See https://reviews.llvm.org/D24924#555306
608

README_ALTIVEC.txt

1//===- README_ALTIVEC.txt - Notes for improving Altivec code gen ----------===//
2
3Implement PPCInstrInfo::isLoadFromStackSlot/isStoreToStackSlot for vector
4registers, to generate better spill code.
5
6//===----------------------------------------------------------------------===//
7
8The first should be a single lvx from the constant pool, the second should be
9a xor/stvx:
10
11void foo(void) {
12  int x[8] __attribute__((aligned(128))) = { 1, 1, 1, 17, 1, 1, 1, 1 };
13  bar (x);
14}
15
16#include <string.h>
17void foo(void) {
18  int x[8] __attribute__((aligned(128)));
19  memset (x, 0, sizeof (x));
20  bar (x);
21}
22
23//===----------------------------------------------------------------------===//
24
25Altivec: Codegen'ing MUL with vector FMADD should add -0.0, not 0.0:
26http://gcc.gnu.org/bugzilla/show_bug.cgi?id=8763
27
28When -ffast-math is on, we can use 0.0.
29
30//===----------------------------------------------------------------------===//
31
32  Consider this:
33  v4f32 Vector;
34  v4f32 Vector2 = { Vector.X, Vector.X, Vector.X, Vector.X };
35
36Since we know that "Vector" is 16-byte aligned and we know the element offset
37of ".X", we should change the load into a lve*x instruction, instead of doing
38a load/store/lve*x sequence.
39
40//===----------------------------------------------------------------------===//
41
42Implement passing vectors by value into calls and receiving them as arguments.
43
44//===----------------------------------------------------------------------===//
45
46GCC apparently tries to codegen { C1, C2, Variable, C3 } as a constant pool load
47of C1/C2/C3, then a load and vperm of Variable.
48
49//===----------------------------------------------------------------------===//
50
51We need a way to teach tblgen that some operands of an intrinsic are required to
52be constants.  The verifier should enforce this constraint.
53
54//===----------------------------------------------------------------------===//
55
56We currently codegen SCALAR_TO_VECTOR as a store of the scalar to a 16-byte
57aligned stack slot, followed by a load/vperm.  We should probably just store it
58to a scalar stack slot, then use lvsl/vperm to load it.  If the value is already
59in memory this is a big win.
60
61//===----------------------------------------------------------------------===//
62
63extract_vector_elt of an arbitrary constant vector can be done with the
64following instructions:
65
66vTemp = vec_splat(v0,2);    // 2 is the element the src is in.
67vec_ste(&destloc,0,vTemp);
68
69We can do an arbitrary non-constant value by using lvsr/perm/ste.
70
71//===----------------------------------------------------------------------===//
72
73If we want to tie instruction selection into the scheduler, we can do some
74constant formation with different instructions.  For example, we can generate
75"vsplti -1" with "vcmpequw R,R" and 1,1,1,1 with "vsubcuw R,R", and 0,0,0,0 with
76"vsplti 0" or "vxor", each of which use different execution units, thus could
77help scheduling.
78
79This is probably only reasonable for a post-pass scheduler.
80
81//===----------------------------------------------------------------------===//
82
83For this function:
84
85void test(vector float *A, vector float *B) {
86  vector float C = (vector float)vec_cmpeq(*A, *B);
87  if (!vec_any_eq(*A, *B))
88    *B = (vector float){0,0,0,0};
89  *A = C;
90}
91
92we get the following basic block:
93
94	...
95        lvx v2, 0, r4
96        lvx v3, 0, r3
97        vcmpeqfp v4, v3, v2
98        vcmpeqfp. v2, v3, v2
99        bne cr6, LBB1_2 ; cond_next
100
101The vcmpeqfp/vcmpeqfp. instructions currently cannot be merged when the
102vcmpeqfp. result is used by a branch.  This can be improved.
103
104//===----------------------------------------------------------------------===//
105
106The code generated for this is truly aweful:
107
108vector float test(float a, float b) {
109 return (vector float){ 0.0, a, 0.0, 0.0};
110}
111
112LCPI1_0:                                        ;  float
113        .space  4
114        .text
115        .globl  _test
116        .align  4
117_test:
118        mfspr r2, 256
119        oris r3, r2, 4096
120        mtspr 256, r3
121        lis r3, ha16(LCPI1_0)
122        addi r4, r1, -32
123        stfs f1, -16(r1)
124        addi r5, r1, -16
125        lfs f0, lo16(LCPI1_0)(r3)
126        stfs f0, -32(r1)
127        lvx v2, 0, r4
128        lvx v3, 0, r5
129        vmrghw v3, v3, v2
130        vspltw v2, v2, 0
131        vmrghw v2, v2, v3
132        mtspr 256, r2
133        blr
134
135//===----------------------------------------------------------------------===//
136
137int foo(vector float *x, vector float *y) {
138        if (vec_all_eq(*x,*y)) return 3245;
139        else return 12;
140}
141
142A predicate compare being used in a select_cc should have the same peephole
143applied to it as a predicate compare used by a br_cc.  There should be no
144mfcr here:
145
146_foo:
147        mfspr r2, 256
148        oris r5, r2, 12288
149        mtspr 256, r5
150        li r5, 12
151        li r6, 3245
152        lvx v2, 0, r4
153        lvx v3, 0, r3
154        vcmpeqfp. v2, v3, v2
155        mfcr r3, 2
156        rlwinm r3, r3, 25, 31, 31
157        cmpwi cr0, r3, 0
158        bne cr0, LBB1_2 ; entry
159LBB1_1: ; entry
160        mr r6, r5
161LBB1_2: ; entry
162        mr r3, r6
163        mtspr 256, r2
164        blr
165
166//===----------------------------------------------------------------------===//
167
168CodeGen/PowerPC/vec_constants.ll has an and operation that should be
169codegen'd to andc.  The issue is that the 'all ones' build vector is
170SelectNodeTo'd a VSPLTISB instruction node before the and/xor is selected
171which prevents the vnot pattern from matching.
172
173
174//===----------------------------------------------------------------------===//
175
176An alternative to the store/store/load approach for illegal insert element
177lowering would be:
178
1791. store element to any ol' slot
1802. lvx the slot
1813. lvsl 0; splat index; vcmpeq to generate a select mask
1824. lvsl slot + x; vperm to rotate result into correct slot
1835. vsel result together.
184
185//===----------------------------------------------------------------------===//
186
187Should codegen branches on vec_any/vec_all to avoid mfcr.  Two examples:
188
189#include <altivec.h>
190 int f(vector float a, vector float b)
191 {
192  int aa = 0;
193  if (vec_all_ge(a, b))
194    aa |= 0x1;
195  if (vec_any_ge(a,b))
196    aa |= 0x2;
197  return aa;
198}
199
200vector float f(vector float a, vector float b) {
201  if (vec_any_eq(a, b))
202    return a;
203  else
204    return b;
205}
206
207//===----------------------------------------------------------------------===//
208
209We should do a little better with eliminating dead stores.
210The stores to the stack are dead since %a and %b are not needed
211
212; Function Attrs: nounwind
213define <16 x i8> @test_vpmsumb() #0 {
214  entry:
215  %a = alloca <16 x i8>, align 16
216  %b = alloca <16 x i8>, align 16
217  store <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8, i8 9, i8 10, i8 11, i8 12, i8 13, i8 14, i8 15, i8 16>, <16 x i8>* %a, align 16
218  store <16 x i8> <i8 113, i8 114, i8 115, i8 116, i8 117, i8 118, i8 119, i8 120, i8 121, i8 122, i8 123, i8 124, i8 125, i8 126, i8 127, i8 112>, <16 x i8>* %b, align 16
219  %0 = load <16 x i8>* %a, align 16
220  %1 = load <16 x i8>* %b, align 16
221  %2 = call <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8> %0, <16 x i8> %1)
222  ret <16 x i8> %2
223}
224
225
226; Function Attrs: nounwind readnone
227declare <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8>, <16 x i8>) #1
228
229
230Produces the following code with -mtriple=powerpc64-unknown-linux-gnu:
231# %bb.0:                                # %entry
232    addis 3, 2, .LCPI0_0@toc@ha
233    addis 4, 2, .LCPI0_1@toc@ha
234    addi 3, 3, .LCPI0_0@toc@l
235    addi 4, 4, .LCPI0_1@toc@l
236    lxvw4x 0, 0, 3
237    addi 3, 1, -16
238    lxvw4x 35, 0, 4
239    stxvw4x 0, 0, 3
240    ori 2, 2, 0
241    lxvw4x 34, 0, 3
242    addi 3, 1, -32
243    stxvw4x 35, 0, 3
244    vpmsumb 2, 2, 3
245    blr
246    .long   0
247    .quad   0
248
249The two stxvw4x instructions are not needed.
250With -mtriple=powerpc64le-unknown-linux-gnu, the associated permutes
251are present too.
252
253//===----------------------------------------------------------------------===//
254
255The following example is found in test/CodeGen/PowerPC/vec_add_sub_doubleword.ll:
256
257define <2 x i64> @increment_by_val(<2 x i64> %x, i64 %val) nounwind {
258       %tmpvec = insertelement <2 x i64> <i64 0, i64 0>, i64 %val, i32 0
259       %tmpvec2 = insertelement <2 x i64> %tmpvec, i64 %val, i32 1
260       %result = add <2 x i64> %x, %tmpvec2
261       ret <2 x i64> %result
262
263This will generate the following instruction sequence:
264        std 5, -8(1)
265        std 5, -16(1)
266        addi 3, 1, -16
267        ori 2, 2, 0
268        lxvd2x 35, 0, 3
269        vaddudm 2, 2, 3
270        blr
271
272This will almost certainly cause a load-hit-store hazard.
273Since val is a value parameter, it should not need to be saved onto
274the stack, unless it's being done set up the vector register. Instead,
275it would be better to splat the value into a vector register, and then
276remove the (dead) stores to the stack.
277
278//===----------------------------------------------------------------------===//
279
280At the moment we always generate a lxsdx in preference to lfd, or stxsdx in
281preference to stfd.  When we have a reg-immediate addressing mode, this is a
282poor choice, since we have to load the address into an index register.  This
283should be fixed for P7/P8.
284
285//===----------------------------------------------------------------------===//
286
287Right now, ShuffleKind 0 is supported only on BE, and ShuffleKind 2 only on LE.
288However, we could actually support both kinds on either endianness, if we check
289for the appropriate shufflevector pattern for each case ...  this would cause
290some additional shufflevectors to be recognized and implemented via the
291"swapped" form.
292
293//===----------------------------------------------------------------------===//
294
295There is a utility program called PerfectShuffle that generates a table of the
296shortest instruction sequence for implementing a shufflevector operation on
297PowerPC.  However, this was designed for big-endian code generation.  We could
298modify this program to create a little endian version of the table.  The table
299is used in PPCISelLowering.cpp, PPCTargetLowering::LOWERVECTOR_SHUFFLE().
300
301//===----------------------------------------------------------------------===//
302
303Opportunies to use instructions from PPCInstrVSX.td during code gen
304  - Conversion instructions (Sections 7.6.1.5 and 7.6.1.6 of ISA 2.07)
305  - Scalar comparisons (xscmpodp and xscmpudp)
306  - Min and max (xsmaxdp, xsmindp, xvmaxdp, xvmindp, xvmaxsp, xvminsp)
307
308Related to this: we currently do not generate the lxvw4x instruction for either
309v4f32 or v4i32, probably because adding a dag pattern to the recognizer requires
310a single target type.  This should probably be addressed in the PPCISelDAGToDAG logic.
311
312//===----------------------------------------------------------------------===//
313
314Currently EXTRACT_VECTOR_ELT and INSERT_VECTOR_ELT are type-legal only
315for v2f64 with VSX available.  We should create custom lowering
316support for the other vector types.  Without this support, we generate
317sequences with load-hit-store hazards.
318
319v4f32 can be supported with VSX by shifting the correct element into
320big-endian lane 0, using xscvspdpn to produce a double-precision
321representation of the single-precision value in big-endian
322double-precision lane 0, and reinterpreting lane 0 as an FPR or
323vector-scalar register.
324
325v2i64 can be supported with VSX and P8Vector in the same manner as
326v2f64, followed by a direct move to a GPR.
327
328v4i32 can be supported with VSX and P8Vector by shifting the correct
329element into big-endian lane 1, using a direct move to a GPR, and
330sign-extending the 32-bit result to 64 bits.
331
332v8i16 can be supported with VSX and P8Vector by shifting the correct
333element into big-endian lane 3, using a direct move to a GPR, and
334sign-extending the 16-bit result to 64 bits.
335
336v16i8 can be supported with VSX and P8Vector by shifting the correct
337element into big-endian lane 7, using a direct move to a GPR, and
338sign-extending the 8-bit result to 64 bits.
339

README_P9.txt

1//===- README_P9.txt - Notes for improving Power9 code gen ----------------===//
2
3TODO: Instructions Need Implement Instrinstics or Map to LLVM IR
4
5Altivec:
6- Vector Compare Not Equal (Zero):
7  vcmpneb(.) vcmpneh(.) vcmpnew(.)
8  vcmpnezb(.) vcmpnezh(.) vcmpnezw(.)
9  . Same as other VCMP*, use VCMP/VCMPo form (support intrinsic)
10
11- Vector Extract Unsigned: vextractub vextractuh vextractuw vextractd
12  . Don't use llvm extractelement because they have different semantics
13  . Use instrinstics:
14    (set v2i64:$vD, (int_ppc_altivec_vextractub v16i8:$vA, imm:$UIMM))
15    (set v2i64:$vD, (int_ppc_altivec_vextractuh v8i16:$vA, imm:$UIMM))
16    (set v2i64:$vD, (int_ppc_altivec_vextractuw v4i32:$vA, imm:$UIMM))
17    (set v2i64:$vD, (int_ppc_altivec_vextractd  v2i64:$vA, imm:$UIMM))
18
19- Vector Extract Unsigned Byte Left/Right-Indexed:
20  vextublx vextubrx vextuhlx vextuhrx vextuwlx vextuwrx
21  . Use instrinstics:
22    // Left-Indexed
23    (set i64:$rD, (int_ppc_altivec_vextublx i64:$rA, v16i8:$vB))
24    (set i64:$rD, (int_ppc_altivec_vextuhlx i64:$rA, v8i16:$vB))
25    (set i64:$rD, (int_ppc_altivec_vextuwlx i64:$rA, v4i32:$vB))
26
27    // Right-Indexed
28    (set i64:$rD, (int_ppc_altivec_vextubrx i64:$rA, v16i8:$vB))
29    (set i64:$rD, (int_ppc_altivec_vextuhrx i64:$rA, v8i16:$vB))
30    (set i64:$rD, (int_ppc_altivec_vextuwrx i64:$rA, v4i32:$vB))
31
32- Vector Insert Element Instructions: vinsertb vinsertd vinserth vinsertw
33    (set v16i8:$vD, (int_ppc_altivec_vinsertb v16i8:$vA, imm:$UIMM))
34    (set v8i16:$vD, (int_ppc_altivec_vinsertd v8i16:$vA, imm:$UIMM))
35    (set v4i32:$vD, (int_ppc_altivec_vinserth v4i32:$vA, imm:$UIMM))
36    (set v2i64:$vD, (int_ppc_altivec_vinsertw v2i64:$vA, imm:$UIMM))
37
38- Vector Count Leading/Trailing Zero LSB. Result is placed into GPR[rD]:
39  vclzlsbb vctzlsbb
40  . Use intrinsic:
41    (set i64:$rD, (int_ppc_altivec_vclzlsbb v16i8:$vB))
42    (set i64:$rD, (int_ppc_altivec_vctzlsbb v16i8:$vB))
43
44- Vector Count Trailing Zeros: vctzb vctzh vctzw vctzd
45  . Map to llvm cttz
46    (set v16i8:$vD, (cttz v16i8:$vB))     // vctzb
47    (set v8i16:$vD, (cttz v8i16:$vB))     // vctzh
48    (set v4i32:$vD, (cttz v4i32:$vB))     // vctzw
49    (set v2i64:$vD, (cttz v2i64:$vB))     // vctzd
50
51- Vector Extend Sign: vextsb2w vextsh2w vextsb2d vextsh2d vextsw2d
52  . vextsb2w:
53    (set v4i32:$vD, (sext v4i8:$vB))
54
55    // PowerISA_V3.0:
56    do i = 0 to 3
57       VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].byte[3])
58    end
59
60  . vextsh2w:
61    (set v4i32:$vD, (sext v4i16:$vB))
62
63    // PowerISA_V3.0:
64    do i = 0 to 3
65       VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].hword[1])
66    end
67
68  . vextsb2d
69    (set v2i64:$vD, (sext v2i8:$vB))
70
71    // PowerISA_V3.0:
72    do i = 0 to 1
73       VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].byte[7])
74    end
75
76  . vextsh2d
77    (set v2i64:$vD, (sext v2i16:$vB))
78
79    // PowerISA_V3.0:
80    do i = 0 to 1
81       VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].hword[3])
82    end
83
84  . vextsw2d
85    (set v2i64:$vD, (sext v2i32:$vB))
86
87    // PowerISA_V3.0:
88    do i = 0 to 1
89       VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].word[1])
90    end
91
92- Vector Integer Negate: vnegw vnegd
93  . Map to llvm ineg
94    (set v4i32:$rT, (ineg v4i32:$rA))       // vnegw
95    (set v2i64:$rT, (ineg v2i64:$rA))       // vnegd
96
97- Vector Parity Byte: vprtybw vprtybd vprtybq
98  . Use intrinsic:
99    (set v4i32:$rD, (int_ppc_altivec_vprtybw v4i32:$vB))
100    (set v2i64:$rD, (int_ppc_altivec_vprtybd v2i64:$vB))
101    (set v1i128:$rD, (int_ppc_altivec_vprtybq v1i128:$vB))
102
103- Vector (Bit) Permute (Right-indexed):
104  . vbpermd: Same as "vbpermq", use VX1_Int_Ty2:
105    VX1_Int_Ty2<1484, "vbpermd", int_ppc_altivec_vbpermd, v2i64, v2i64>;
106
107  . vpermr: use VA1a_Int_Ty3
108    VA1a_Int_Ty3<59, "vpermr", int_ppc_altivec_vpermr, v16i8, v16i8, v16i8>;
109
110- Vector Rotate Left Mask/Mask-Insert: vrlwnm vrlwmi vrldnm vrldmi
111  . Use intrinsic:
112    VX1_Int_Ty<389, "vrlwnm", int_ppc_altivec_vrlwnm, v4i32>;
113    VX1_Int_Ty<133, "vrlwmi", int_ppc_altivec_vrlwmi, v4i32>;
114    VX1_Int_Ty<453, "vrldnm", int_ppc_altivec_vrldnm, v2i64>;
115    VX1_Int_Ty<197, "vrldmi", int_ppc_altivec_vrldmi, v2i64>;
116
117- Vector Shift Left/Right: vslv vsrv
118  . Use intrinsic, don't map to llvm shl and lshr, because they have different
119    semantics, e.g. vslv:
120
121      do i = 0 to 15
122         sh ← VR[VRB].byte[i].bit[5:7]
123         VR[VRT].byte[i] ← src.byte[i:i+1].bit[sh:sh+7]
124      end
125
126    VR[VRT].byte[i] is composed of 2 bytes from src.byte[i:i+1]
127
128  . VX1_Int_Ty<1860, "vslv", int_ppc_altivec_vslv, v16i8>;
129    VX1_Int_Ty<1796, "vsrv", int_ppc_altivec_vsrv, v16i8>;
130
131- Vector Multiply-by-10 (& Write Carry) Unsigned Quadword:
132  vmul10uq vmul10cuq
133  . Use intrinsic:
134    VX1_Int_Ty<513, "vmul10uq",   int_ppc_altivec_vmul10uq,  v1i128>;
135    VX1_Int_Ty<  1, "vmul10cuq",  int_ppc_altivec_vmul10cuq, v1i128>;
136
137- Vector Multiply-by-10 Extended (& Write Carry) Unsigned Quadword:
138  vmul10euq vmul10ecuq
139  . Use intrinsic:
140    VX1_Int_Ty<577, "vmul10euq",  int_ppc_altivec_vmul10euq, v1i128>;
141    VX1_Int_Ty< 65, "vmul10ecuq", int_ppc_altivec_vmul10ecuq, v1i128>;
142
143- Decimal Convert From/to National/Zoned/Signed-QWord:
144  bcdcfn. bcdcfz. bcdctn. bcdctz. bcdcfsq. bcdctsq.
145  . Use instrinstics:
146    (set v1i128:$vD, (int_ppc_altivec_bcdcfno  v1i128:$vB, i1:$PS))
147    (set v1i128:$vD, (int_ppc_altivec_bcdcfzo  v1i128:$vB, i1:$PS))
148    (set v1i128:$vD, (int_ppc_altivec_bcdctno  v1i128:$vB))
149    (set v1i128:$vD, (int_ppc_altivec_bcdctzo  v1i128:$vB, i1:$PS))
150    (set v1i128:$vD, (int_ppc_altivec_bcdcfsqo v1i128:$vB, i1:$PS))
151    (set v1i128:$vD, (int_ppc_altivec_bcdctsqo v1i128:$vB))
152
153- Decimal Copy-Sign/Set-Sign: bcdcpsgn. bcdsetsgn.
154  . Use instrinstics:
155    (set v1i128:$vD, (int_ppc_altivec_bcdcpsgno v1i128:$vA, v1i128:$vB))
156    (set v1i128:$vD, (int_ppc_altivec_bcdsetsgno v1i128:$vB, i1:$PS))
157
158- Decimal Shift/Unsigned-Shift/Shift-and-Round: bcds. bcdus. bcdsr.
159  . Use instrinstics:
160    (set v1i128:$vD, (int_ppc_altivec_bcdso  v1i128:$vA, v1i128:$vB, i1:$PS))
161    (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
162    (set v1i128:$vD, (int_ppc_altivec_bcdsro v1i128:$vA, v1i128:$vB, i1:$PS))
163
164  . Note! Their VA is accessed only 1 byte, i.e. VA.byte[7]
165
166- Decimal (Unsigned) Truncate: bcdtrunc. bcdutrunc.
167  . Use instrinstics:
168    (set v1i128:$vD, (int_ppc_altivec_bcdso  v1i128:$vA, v1i128:$vB, i1:$PS))
169    (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
170
171  . Note! Their VA is accessed only 2 byte, i.e. VA.hword[3] (VA.bit[48:63])
172
173VSX:
174- QP Copy Sign: xscpsgnqp
175  . Similar to xscpsgndp
176  . (set f128:$vT, (fcopysign f128:$vB, f128:$vA)
177
178- QP Absolute/Negative-Absolute/Negate: xsabsqp xsnabsqp xsnegqp
179  . Similar to xsabsdp/xsnabsdp/xsnegdp
180  . (set f128:$vT, (fabs f128:$vB))             // xsabsqp
181    (set f128:$vT, (fneg (fabs f128:$vB)))      // xsnabsqp
182    (set f128:$vT, (fneg f128:$vB))             // xsnegqp
183
184- QP Add/Divide/Multiply/Subtract/Square-Root:
185  xsaddqp xsdivqp xsmulqp xssubqp xssqrtqp
186  . Similar to xsadddp
187  . isCommutable = 1
188    (set f128:$vT, (fadd f128:$vA, f128:$vB))   // xsaddqp
189    (set f128:$vT, (fmul f128:$vA, f128:$vB))   // xsmulqp
190
191  . isCommutable = 0
192    (set f128:$vT, (fdiv f128:$vA, f128:$vB))   // xsdivqp
193    (set f128:$vT, (fsub f128:$vA, f128:$vB))   // xssubqp
194    (set f128:$vT, (fsqrt f128:$vB)))           // xssqrtqp
195
196- Round to Odd of QP Add/Divide/Multiply/Subtract/Square-Root:
197  xsaddqpo xsdivqpo xsmulqpo xssubqpo xssqrtqpo
198  . Similar to xsrsqrtedp??
199      def XSRSQRTEDP : XX2Form<60, 74,
200                               (outs vsfrc:$XT), (ins vsfrc:$XB),
201                               "xsrsqrtedp $XT, $XB", IIC_VecFP,
202                               [(set f64:$XT, (PPCfrsqrte f64:$XB))]>;
203
204  . Define DAG Node in PPCInstrInfo.td:
205    def PPCfaddrto: SDNode<"PPCISD::FADDRTO", SDTFPBinOp, []>;
206    def PPCfdivrto: SDNode<"PPCISD::FDIVRTO", SDTFPBinOp, []>;
207    def PPCfmulrto: SDNode<"PPCISD::FMULRTO", SDTFPBinOp, []>;
208    def PPCfsubrto: SDNode<"PPCISD::FSUBRTO", SDTFPBinOp, []>;
209    def PPCfsqrtrto: SDNode<"PPCISD::FSQRTRTO", SDTFPUnaryOp, []>;
210
211    DAG patterns of each instruction (PPCInstrVSX.td):
212    . isCommutable = 1
213      (set f128:$vT, (PPCfaddrto f128:$vA, f128:$vB))   // xsaddqpo
214      (set f128:$vT, (PPCfmulrto f128:$vA, f128:$vB))   // xsmulqpo
215
216    . isCommutable = 0
217      (set f128:$vT, (PPCfdivrto f128:$vA, f128:$vB))   // xsdivqpo
218      (set f128:$vT, (PPCfsubrto f128:$vA, f128:$vB))   // xssubqpo
219      (set f128:$vT, (PPCfsqrtrto f128:$vB))            // xssqrtqpo
220
221- QP (Negative) Multiply-{Add/Subtract}: xsmaddqp xsmsubqp xsnmaddqp xsnmsubqp
222  . Ref: xsmaddadp/xsmsubadp/xsnmaddadp/xsnmsubadp
223
224  . isCommutable = 1
225    // xsmaddqp
226    [(set f128:$vT, (fma f128:$vA, f128:$vB, f128:$vTi))]>,
227    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
228    AltVSXFMARel;
229
230    // xsmsubqp
231    [(set f128:$vT, (fma f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
232    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
233    AltVSXFMARel;
234
235    // xsnmaddqp
236    [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, f128:$vTi)))]>,
237    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
238    AltVSXFMARel;
239
240    // xsnmsubqp
241    [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
242    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
243    AltVSXFMARel;
244
245- Round to Odd of QP (Negative) Multiply-{Add/Subtract}:
246  xsmaddqpo xsmsubqpo xsnmaddqpo xsnmsubqpo
247  . Similar to xsrsqrtedp??
248
249  . Define DAG Node in PPCInstrInfo.td:
250    def PPCfmarto: SDNode<"PPCISD::FMARTO", SDTFPTernaryOp, []>;
251
252    It looks like we only need to define "PPCfmarto" for these instructions,
253    because according to PowerISA_V3.0, these instructions perform RTO on
254    fma's result:
255        xsmaddqp(o)
256        v      ← bfp_MULTIPLY_ADD(src1, src3, src2)
257        rnd    ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
258        result ← bfp_CONVERT_TO_BFP128(rnd)
259
260        xsmsubqp(o)
261        v      ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
262        rnd    ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
263        result ← bfp_CONVERT_TO_BFP128(rnd)
264
265        xsnmaddqp(o)
266        v      ← bfp_MULTIPLY_ADD(src1,src3,src2)
267        rnd    ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
268        result ← bfp_CONVERT_TO_BFP128(rnd)
269
270        xsnmsubqp(o)
271        v      ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
272        rnd    ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
273        result ← bfp_CONVERT_TO_BFP128(rnd)
274
275    DAG patterns of each instruction (PPCInstrVSX.td):
276    . isCommutable = 1
277      // xsmaddqpo
278      [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, f128:$vTi))]>,
279      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
280      AltVSXFMARel;
281
282      // xsmsubqpo
283      [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
284      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
285      AltVSXFMARel;
286
287      // xsnmaddqpo
288      [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, f128:$vTi)))]>,
289      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
290      AltVSXFMARel;
291
292      // xsnmsubqpo
293      [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
294      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
295      AltVSXFMARel;
296
297- QP Compare Ordered/Unordered: xscmpoqp xscmpuqp
298  . ref: XSCMPUDP
299      def XSCMPUDP : XX3Form_1<60, 35,
300                               (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
301                               "xscmpudp $crD, $XA, $XB", IIC_FPCompare, []>;
302
303  . No SDAG, intrinsic, builtin are required??
304    Or llvm fcmp order/unorder compare??
305
306- DP/QP Compare Exponents: xscmpexpdp xscmpexpqp
307  . No SDAG, intrinsic, builtin are required?
308
309- DP Compare ==, >=, >, !=: xscmpeqdp xscmpgedp xscmpgtdp xscmpnedp
310  . I checked existing instruction "XSCMPUDP". They are different in target
311    register. "XSCMPUDP" write to CR field, xscmp*dp write to VSX register
312
313  . Use instrinsic:
314    (set i128:$XT, (int_ppc_vsx_xscmpeqdp f64:$XA, f64:$XB))
315    (set i128:$XT, (int_ppc_vsx_xscmpgedp f64:$XA, f64:$XB))
316    (set i128:$XT, (int_ppc_vsx_xscmpgtdp f64:$XA, f64:$XB))
317    (set i128:$XT, (int_ppc_vsx_xscmpnedp f64:$XA, f64:$XB))
318
319- Vector Compare Not Equal: xvcmpnedp xvcmpnedp. xvcmpnesp xvcmpnesp.
320  . Similar to xvcmpeqdp:
321      defm XVCMPEQDP : XX3Form_Rcr<60, 99,
322                                 "xvcmpeqdp", "$XT, $XA, $XB", IIC_VecFPCompare,
323                                 int_ppc_vsx_xvcmpeqdp, v2i64, v2f64>;
324
325  . So we should use "XX3Form_Rcr" to implement instrinsic
326
327- Convert DP -> QP: xscvdpqp
328  . Similar to XSCVDPSP:
329      def XSCVDPSP : XX2Form<60, 265,
330                          (outs vsfrc:$XT), (ins vsfrc:$XB),
331                          "xscvdpsp $XT, $XB", IIC_VecFP, []>;
332  . So, No SDAG, intrinsic, builtin are required??
333
334- Round & Convert QP -> DP (dword[1] is set to zero): xscvqpdp xscvqpdpo
335  . Similar to XSCVDPSP
336  . No SDAG, intrinsic, builtin are required??
337
338- Truncate & Convert QP -> (Un)Signed (D)Word (dword[1] is set to zero):
339  xscvqpsdz xscvqpswz xscvqpudz xscvqpuwz
340  . According to PowerISA_V3.0, these are similar to "XSCVDPSXDS", "XSCVDPSXWS",
341    "XSCVDPUXDS", "XSCVDPUXWS"
342
343  . DAG patterns:
344    (set f128:$XT, (PPCfctidz f128:$XB))    // xscvqpsdz
345    (set f128:$XT, (PPCfctiwz f128:$XB))    // xscvqpswz
346    (set f128:$XT, (PPCfctiduz f128:$XB))   // xscvqpudz
347    (set f128:$XT, (PPCfctiwuz f128:$XB))   // xscvqpuwz
348
349- Convert (Un)Signed DWord -> QP: xscvsdqp xscvudqp
350  . Similar to XSCVSXDSP
351  . (set f128:$XT, (PPCfcfids f64:$XB))     // xscvsdqp
352    (set f128:$XT, (PPCfcfidus f64:$XB))    // xscvudqp
353
354- (Round &) Convert DP <-> HP: xscvdphp xscvhpdp
355  . Similar to XSCVDPSP
356  . No SDAG, intrinsic, builtin are required??
357
358- Vector HP -> SP: xvcvhpsp xvcvsphp
359  . Similar to XVCVDPSP:
360      def XVCVDPSP : XX2Form<60, 393,
361                          (outs vsrc:$XT), (ins vsrc:$XB),
362                          "xvcvdpsp $XT, $XB", IIC_VecFP, []>;
363  . No SDAG, intrinsic, builtin are required??
364
365- Round to Quad-Precision Integer: xsrqpi xsrqpix
366  . These are combination of "XSRDPI", "XSRDPIC", "XSRDPIM", .., because you
367    need to assign rounding mode in instruction
368  . Provide builtin?
369    (set f128:$vT, (int_ppc_vsx_xsrqpi f128:$vB))
370    (set f128:$vT, (int_ppc_vsx_xsrqpix f128:$vB))
371
372- Round Quad-Precision to Double-Extended Precision (fp80): xsrqpxp
373  . Provide builtin?
374    (set f128:$vT, (int_ppc_vsx_xsrqpxp f128:$vB))
375
376Fixed Point Facility:
377
378- Exploit cmprb and cmpeqb (perhaps for something like
379  isalpha/isdigit/isupper/islower and isspace respectivelly). This can
380  perhaps be done through a builtin.
381
382- Provide testing for cnttz[dw]
383- Insert Exponent DP/QP: xsiexpdp xsiexpqp
384  . Use intrinsic?
385  . xsiexpdp:
386    // Note: rA and rB are the unsigned integer value.
387    (set f128:$XT, (int_ppc_vsx_xsiexpdp i64:$rA, i64:$rB))
388
389  . xsiexpqp:
390    (set f128:$vT, (int_ppc_vsx_xsiexpqp f128:$vA, f64:$vB))
391
392- Extract Exponent/Significand DP/QP: xsxexpdp xsxsigdp xsxexpqp xsxsigqp
393  . Use intrinsic?
394  . (set i64:$rT, (int_ppc_vsx_xsxexpdp f64$XB))    // xsxexpdp
395    (set i64:$rT, (int_ppc_vsx_xsxsigdp f64$XB))    // xsxsigdp
396    (set f128:$vT, (int_ppc_vsx_xsxexpqp f128$vB))  // xsxexpqp
397    (set f128:$vT, (int_ppc_vsx_xsxsigqp f128$vB))  // xsxsigqp
398
399- Vector Insert Word: xxinsertw
400  - Useful for inserting f32/i32 elements into vectors (the element to be
401    inserted needs to be prepared)
402  . Note: llvm has insertelem in "Vector Operations"
403    ; yields <n x <ty>>
404    <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>
405
406    But how to map to it??
407    [(set v1f128:$XT, (insertelement v1f128:$XTi, f128:$XB, i4:$UIMM))]>,
408    RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
409
410  . Or use intrinsic?
411    (set v1f128:$XT, (int_ppc_vsx_xxinsertw v1f128:$XTi, f128:$XB, i4:$UIMM))
412
413- Vector Extract Unsigned Word: xxextractuw
414  - Not useful for extraction of f32 from v4f32 (the current pattern is better -
415    shift->convert)
416  - It is useful for (uint_to_fp (vector_extract v4i32, N))
417  - Unfortunately, it can't be used for (sint_to_fp (vector_extract v4i32, N))
418  . Note: llvm has extractelement in "Vector Operations"
419    ; yields <ty>
420    <result> = extractelement <n x <ty>> <val>, <ty2> <idx>
421
422    How to map to it??
423    [(set f128:$XT, (extractelement v1f128:$XB, i4:$UIMM))]
424
425  . Or use intrinsic?
426    (set f128:$XT, (int_ppc_vsx_xxextractuw v1f128:$XB, i4:$UIMM))
427
428- Vector Insert Exponent DP/SP: xviexpdp xviexpsp
429  . Use intrinsic
430    (set v2f64:$XT, (int_ppc_vsx_xviexpdp v2f64:$XA, v2f64:$XB))
431    (set v4f32:$XT, (int_ppc_vsx_xviexpsp v4f32:$XA, v4f32:$XB))
432
433- Vector Extract Exponent/Significand DP/SP: xvxexpdp xvxexpsp xvxsigdp xvxsigsp
434  . Use intrinsic
435    (set v2f64:$XT, (int_ppc_vsx_xvxexpdp v2f64:$XB))
436    (set v4f32:$XT, (int_ppc_vsx_xvxexpsp v4f32:$XB))
437    (set v2f64:$XT, (int_ppc_vsx_xvxsigdp v2f64:$XB))
438    (set v4f32:$XT, (int_ppc_vsx_xvxsigsp v4f32:$XB))
439
440- Test Data Class SP/DP/QP: xststdcsp xststdcdp xststdcqp
441  . No SDAG, intrinsic, builtin are required?
442    Because it seems that we have no way to map BF field?
443
444    Instruction Form: [PO T XO B XO BX TX]
445    Asm: xststd* BF,XB,DCMX
446
447    BF is an index to CR register field.
448
449- Vector Test Data Class SP/DP: xvtstdcsp xvtstdcdp
450  . Use intrinsic
451    (set v4f32:$XT, (int_ppc_vsx_xvtstdcsp v4f32:$XB, i7:$DCMX))
452    (set v2f64:$XT, (int_ppc_vsx_xvtstdcdp v2f64:$XB, i7:$DCMX))
453
454- Maximum/Minimum Type-C/Type-J DP: xsmaxcdp xsmaxjdp xsmincdp xsminjdp
455  . PowerISA_V3.0:
456    "xsmaxcdp can be used to implement the C/C++/Java conditional operation
457     (x>y)?x:y for single-precision and double-precision arguments."
458
459    Note! c type and j type have different behavior when:
460    1. Either input is NaN
461    2. Both input are +-Infinity, +-Zero
462
463  . dtype map to llvm fmaxnum/fminnum
464    jtype use intrinsic
465
466  . xsmaxcdp xsmincdp
467    (set f64:$XT, (fmaxnum f64:$XA, f64:$XB))
468    (set f64:$XT, (fminnum f64:$XA, f64:$XB))
469
470  . xsmaxjdp xsminjdp
471    (set f64:$XT, (int_ppc_vsx_xsmaxjdp f64:$XA, f64:$XB))
472    (set f64:$XT, (int_ppc_vsx_xsminjdp f64:$XA, f64:$XB))
473
474- Vector Byte-Reverse H/W/D/Q Word: xxbrh xxbrw xxbrd xxbrq
475  . Use intrinsic
476    (set v8i16:$XT, (int_ppc_vsx_xxbrh v8i16:$XB))
477    (set v4i32:$XT, (int_ppc_vsx_xxbrw v4i32:$XB))
478    (set v2i64:$XT, (int_ppc_vsx_xxbrd v2i64:$XB))
479    (set v1i128:$XT, (int_ppc_vsx_xxbrq v1i128:$XB))
480
481- Vector Permute: xxperm xxpermr
482  . I have checked "PPCxxswapd" in PPCInstrVSX.td, but they are different
483  . Use intrinsic
484    (set v16i8:$XT, (int_ppc_vsx_xxperm v16i8:$XA, v16i8:$XB))
485    (set v16i8:$XT, (int_ppc_vsx_xxpermr v16i8:$XA, v16i8:$XB))
486
487- Vector Splat Immediate Byte: xxspltib
488  . Similar to XXSPLTW:
489      def XXSPLTW : XX2Form_2<60, 164,
490                           (outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM),
491                           "xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>;
492
493  . No SDAG, intrinsic, builtin are required?
494
495- Load/Store Vector: lxv stxv
496  . Has likely SDAG match:
497    (set v?:$XT, (load ix16addr:$src))
498    (set v?:$XT, (store ix16addr:$dst))
499
500  . Need define ix16addr in PPCInstrInfo.td
501    ix16addr: 16-byte aligned, see "def memrix16" in PPCInstrInfo.td
502
503- Load/Store Vector Indexed: lxvx stxvx
504  . Has likely SDAG match:
505    (set v?:$XT, (load xoaddr:$src))
506    (set v?:$XT, (store xoaddr:$dst))
507
508- Load/Store DWord: lxsd stxsd
509  . Similar to lxsdx/stxsdx:
510    def LXSDX : XX1Form<31, 588,
511                        (outs vsfrc:$XT), (ins memrr:$src),
512                        "lxsdx $XT, $src", IIC_LdStLFD,
513                        [(set f64:$XT, (load xoaddr:$src))]>;
514
515  . (set f64:$XT, (load iaddrX4:$src))
516    (set f64:$XT, (store iaddrX4:$dst))
517
518- Load/Store SP, with conversion from/to DP: lxssp stxssp
519  . Similar to lxsspx/stxsspx:
520    def LXSSPX : XX1Form<31, 524, (outs vssrc:$XT), (ins memrr:$src),
521                         "lxsspx $XT, $src", IIC_LdStLFD,
522                         [(set f32:$XT, (load xoaddr:$src))]>;
523
524  . (set f32:$XT, (load iaddrX4:$src))
525    (set f32:$XT, (store iaddrX4:$dst))
526
527- Load as Integer Byte/Halfword & Zero Indexed: lxsibzx lxsihzx
528  . Similar to lxsiwzx:
529    def LXSIWZX : XX1Form<31, 12, (outs vsfrc:$XT), (ins memrr:$src),
530                          "lxsiwzx $XT, $src", IIC_LdStLFD,
531                          [(set f64:$XT, (PPClfiwzx xoaddr:$src))]>;
532
533  . (set f64:$XT, (PPClfiwzx xoaddr:$src))
534
535- Store as Integer Byte/Halfword Indexed: stxsibx stxsihx
536  . Similar to stxsiwx:
537    def STXSIWX : XX1Form<31, 140, (outs), (ins vsfrc:$XT, memrr:$dst),
538                          "stxsiwx $XT, $dst", IIC_LdStSTFD,
539                          [(PPCstfiwx f64:$XT, xoaddr:$dst)]>;
540
541  . (PPCstfiwx f64:$XT, xoaddr:$dst)
542
543- Load Vector Halfword*8/Byte*16 Indexed: lxvh8x lxvb16x
544  . Similar to lxvd2x/lxvw4x:
545    def LXVD2X : XX1Form<31, 844,
546                         (outs vsrc:$XT), (ins memrr:$src),
547                         "lxvd2x $XT, $src", IIC_LdStLFD,
548                         [(set v2f64:$XT, (int_ppc_vsx_lxvd2x xoaddr:$src))]>;
549
550  . (set v8i16:$XT, (int_ppc_vsx_lxvh8x xoaddr:$src))
551    (set v16i8:$XT, (int_ppc_vsx_lxvb16x xoaddr:$src))
552
553- Store Vector Halfword*8/Byte*16 Indexed: stxvh8x stxvb16x
554  . Similar to stxvd2x/stxvw4x:
555    def STXVD2X : XX1Form<31, 972,
556                         (outs), (ins vsrc:$XT, memrr:$dst),
557                         "stxvd2x $XT, $dst", IIC_LdStSTFD,
558                         [(store v2f64:$XT, xoaddr:$dst)]>;
559
560  . (store v8i16:$XT, xoaddr:$dst)
561    (store v16i8:$XT, xoaddr:$dst)
562
563- Load/Store Vector (Left-justified) with Length: lxvl lxvll stxvl stxvll
564  . Likely needs an intrinsic
565  . (set v?:$XT, (int_ppc_vsx_lxvl xoaddr:$src))
566    (set v?:$XT, (int_ppc_vsx_lxvll xoaddr:$src))
567
568  . (int_ppc_vsx_stxvl xoaddr:$dst))
569    (int_ppc_vsx_stxvll xoaddr:$dst))
570
571- Load Vector Word & Splat Indexed: lxvwsx
572  . Likely needs an intrinsic
573  . (set v?:$XT, (int_ppc_vsx_lxvwsx xoaddr:$src))
574
575Atomic operations (l[dw]at, st[dw]at):
576- Provide custom lowering for common atomic operations to use these
577  instructions with the correct Function Code
578- Ensure the operands are in the correct register (i.e. RT+1, RT+2)
579- Provide builtins since not all FC's necessarily have an existing LLVM
580  atomic operation
581
582Load Doubleword Monitored (ldmx):
583- Investigate whether there are any uses for this. It seems to be related to
584  Garbage Collection so it isn't likely to be all that useful for most
585  languages we deal with.
586
587Move to CR from XER Extended (mcrxrx):
588- Is there a use for this in LLVM?
589
590Fixed Point Facility:
591
592- Copy-Paste Facility: copy copy_first cp_abort paste paste. paste_last
593  . Use instrinstics:
594    (int_ppc_copy_first i32:$rA, i32:$rB)
595    (int_ppc_copy i32:$rA, i32:$rB)
596
597    (int_ppc_paste i32:$rA, i32:$rB)
598    (int_ppc_paste_last i32:$rA, i32:$rB)
599
600    (int_cp_abort)
601
602- Message Synchronize: msgsync
603- SLB*: slbieg slbsync
604- stop
605  . No instrinstics
606