1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs a simple dominator tree walk that eliminates trivially
10 // redundant instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/EarlyCSE.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/GuardUtils.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/Statepoint.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Allocator.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/DebugCounter.h"
55 #include "llvm/Support/RecyclingAllocator.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
59 #include "llvm/Transforms/Utils/GuardUtils.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <cassert>
62 #include <deque>
63 #include <memory>
64 #include <utility>
65
66 using namespace llvm;
67 using namespace llvm::PatternMatch;
68
69 #define DEBUG_TYPE "early-cse"
70
71 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
72 STATISTIC(NumCSE, "Number of instructions CSE'd");
73 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd");
74 STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
75 STATISTIC(NumCSECall, "Number of call instructions CSE'd");
76 STATISTIC(NumDSE, "Number of trivial dead stores removed");
77
78 DEBUG_COUNTER(CSECounter, "early-cse",
79 "Controls which instructions are removed");
80
81 static cl::opt<unsigned> EarlyCSEMssaOptCap(
82 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
83 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
84 "for faster compile. Caps the MemorySSA clobbering calls."));
85
86 static cl::opt<bool> EarlyCSEDebugHash(
87 "earlycse-debug-hash", cl::init(false), cl::Hidden,
88 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
89 "function is well-behaved w.r.t. its isEqual predicate"));
90
91 //===----------------------------------------------------------------------===//
92 // SimpleValue
93 //===----------------------------------------------------------------------===//
94
95 namespace {
96
97 /// Struct representing the available values in the scoped hash table.
98 struct SimpleValue {
99 Instruction *Inst;
100
SimpleValue__anon3ae9eefb0111::SimpleValue101 SimpleValue(Instruction *I) : Inst(I) {
102 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
103 }
104
isSentinel__anon3ae9eefb0111::SimpleValue105 bool isSentinel() const {
106 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
107 Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
108 }
109
canHandle__anon3ae9eefb0111::SimpleValue110 static bool canHandle(Instruction *Inst) {
111 // This can only handle non-void readnone functions.
112 if (CallInst *CI = dyn_cast<CallInst>(Inst))
113 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
114 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
115 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
116 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) ||
117 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
118 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) ||
119 isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst);
120 }
121 };
122
123 } // end anonymous namespace
124
125 namespace llvm {
126
127 template <> struct DenseMapInfo<SimpleValue> {
getEmptyKeyllvm::DenseMapInfo128 static inline SimpleValue getEmptyKey() {
129 return DenseMapInfo<Instruction *>::getEmptyKey();
130 }
131
getTombstoneKeyllvm::DenseMapInfo132 static inline SimpleValue getTombstoneKey() {
133 return DenseMapInfo<Instruction *>::getTombstoneKey();
134 }
135
136 static unsigned getHashValue(SimpleValue Val);
137 static bool isEqual(SimpleValue LHS, SimpleValue RHS);
138 };
139
140 } // end namespace llvm
141
142 /// Match a 'select' including an optional 'not's of the condition.
matchSelectWithOptionalNotCond(Value * V,Value * & Cond,Value * & A,Value * & B,SelectPatternFlavor & Flavor)143 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
144 Value *&B,
145 SelectPatternFlavor &Flavor) {
146 // Return false if V is not even a select.
147 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
148 return false;
149
150 // Look through a 'not' of the condition operand by swapping A/B.
151 Value *CondNot;
152 if (match(Cond, m_Not(m_Value(CondNot)))) {
153 Cond = CondNot;
154 std::swap(A, B);
155 }
156
157 // Match canonical forms of min/max. We are not using ValueTracking's
158 // more powerful matchSelectPattern() because it may rely on instruction flags
159 // such as "nsw". That would be incompatible with the current hashing
160 // mechanism that may remove flags to increase the likelihood of CSE.
161
162 Flavor = SPF_UNKNOWN;
163 CmpInst::Predicate Pred;
164
165 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
166 // Check for commuted variants of min/max by swapping predicate.
167 // If we do not match the standard or commuted patterns, this is not a
168 // recognized form of min/max, but it is still a select, so return true.
169 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
170 return true;
171 Pred = ICmpInst::getSwappedPredicate(Pred);
172 }
173
174 switch (Pred) {
175 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
176 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
177 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
178 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
179 // Non-strict inequalities.
180 case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break;
181 case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break;
182 case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break;
183 case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break;
184 default: break;
185 }
186
187 return true;
188 }
189
getHashValueImpl(SimpleValue Val)190 static unsigned getHashValueImpl(SimpleValue Val) {
191 Instruction *Inst = Val.Inst;
192 // Hash in all of the operands as pointers.
193 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
194 Value *LHS = BinOp->getOperand(0);
195 Value *RHS = BinOp->getOperand(1);
196 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
197 std::swap(LHS, RHS);
198
199 return hash_combine(BinOp->getOpcode(), LHS, RHS);
200 }
201
202 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
203 // Compares can be commuted by swapping the comparands and
204 // updating the predicate. Choose the form that has the
205 // comparands in sorted order, or in the case of a tie, the
206 // one with the lower predicate.
207 Value *LHS = CI->getOperand(0);
208 Value *RHS = CI->getOperand(1);
209 CmpInst::Predicate Pred = CI->getPredicate();
210 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
211 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
212 std::swap(LHS, RHS);
213 Pred = SwappedPred;
214 }
215 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
216 }
217
218 // Hash general selects to allow matching commuted true/false operands.
219 SelectPatternFlavor SPF;
220 Value *Cond, *A, *B;
221 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
222 // Hash min/max (cmp + select) to allow for commuted operands.
223 // Min/max may also have non-canonical compare predicate (eg, the compare for
224 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
225 // compare.
226 // TODO: We should also detect FP min/max.
227 if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
228 SPF == SPF_UMIN || SPF == SPF_UMAX) {
229 if (A > B)
230 std::swap(A, B);
231 return hash_combine(Inst->getOpcode(), SPF, A, B);
232 }
233
234 // Hash general selects to allow matching commuted true/false operands.
235
236 // If we do not have a compare as the condition, just hash in the condition.
237 CmpInst::Predicate Pred;
238 Value *X, *Y;
239 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
240 return hash_combine(Inst->getOpcode(), Cond, A, B);
241
242 // Similar to cmp normalization (above) - canonicalize the predicate value:
243 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
244 if (CmpInst::getInversePredicate(Pred) < Pred) {
245 Pred = CmpInst::getInversePredicate(Pred);
246 std::swap(A, B);
247 }
248 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
249 }
250
251 if (CastInst *CI = dyn_cast<CastInst>(Inst))
252 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
253
254 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
255 return hash_combine(FI->getOpcode(), FI->getOperand(0));
256
257 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
258 return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
259 hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
260
261 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
262 return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
263 IVI->getOperand(1),
264 hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
265
266 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
267 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
268 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) ||
269 isa<FreezeInst>(Inst)) &&
270 "Invalid/unknown instruction");
271
272 // Handle intrinsics with commutative operands.
273 // TODO: Extend this to handle intrinsics with >2 operands where the 1st
274 // 2 operands are commutative.
275 auto *II = dyn_cast<IntrinsicInst>(Inst);
276 if (II && II->isCommutative() && II->getNumArgOperands() == 2) {
277 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
278 if (LHS > RHS)
279 std::swap(LHS, RHS);
280 return hash_combine(II->getOpcode(), LHS, RHS);
281 }
282
283 // Mix in the opcode.
284 return hash_combine(
285 Inst->getOpcode(),
286 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
287 }
288
getHashValue(SimpleValue Val)289 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
290 #ifndef NDEBUG
291 // If -earlycse-debug-hash was specified, return a constant -- this
292 // will force all hashing to collide, so we'll exhaustively search
293 // the table for a match, and the assertion in isEqual will fire if
294 // there's a bug causing equal keys to hash differently.
295 if (EarlyCSEDebugHash)
296 return 0;
297 #endif
298 return getHashValueImpl(Val);
299 }
300
isEqualImpl(SimpleValue LHS,SimpleValue RHS)301 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
302 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
303
304 if (LHS.isSentinel() || RHS.isSentinel())
305 return LHSI == RHSI;
306
307 if (LHSI->getOpcode() != RHSI->getOpcode())
308 return false;
309 if (LHSI->isIdenticalToWhenDefined(RHSI))
310 return true;
311
312 // If we're not strictly identical, we still might be a commutable instruction
313 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
314 if (!LHSBinOp->isCommutative())
315 return false;
316
317 assert(isa<BinaryOperator>(RHSI) &&
318 "same opcode, but different instruction type?");
319 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
320
321 // Commuted equality
322 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
323 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
324 }
325 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
326 assert(isa<CmpInst>(RHSI) &&
327 "same opcode, but different instruction type?");
328 CmpInst *RHSCmp = cast<CmpInst>(RHSI);
329 // Commuted equality
330 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
331 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
332 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
333 }
334
335 // TODO: Extend this for >2 args by matching the trailing N-2 args.
336 auto *LII = dyn_cast<IntrinsicInst>(LHSI);
337 auto *RII = dyn_cast<IntrinsicInst>(RHSI);
338 if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() &&
339 LII->isCommutative() && LII->getNumArgOperands() == 2) {
340 return LII->getArgOperand(0) == RII->getArgOperand(1) &&
341 LII->getArgOperand(1) == RII->getArgOperand(0);
342 }
343
344 // Min/max can occur with commuted operands, non-canonical predicates,
345 // and/or non-canonical operands.
346 // Selects can be non-trivially equivalent via inverted conditions and swaps.
347 SelectPatternFlavor LSPF, RSPF;
348 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
349 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
350 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
351 if (LSPF == RSPF) {
352 // TODO: We should also detect FP min/max.
353 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
354 LSPF == SPF_UMIN || LSPF == SPF_UMAX)
355 return ((LHSA == RHSA && LHSB == RHSB) ||
356 (LHSA == RHSB && LHSB == RHSA));
357
358 // select Cond, A, B <--> select not(Cond), B, A
359 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
360 return true;
361 }
362
363 // If the true/false operands are swapped and the conditions are compares
364 // with inverted predicates, the selects are equal:
365 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
366 //
367 // This also handles patterns with a double-negation in the sense of not +
368 // inverse, because we looked through a 'not' in the matching function and
369 // swapped A/B:
370 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
371 //
372 // This intentionally does NOT handle patterns with a double-negation in
373 // the sense of not + not, because doing so could result in values
374 // comparing
375 // as equal that hash differently in the min/max cases like:
376 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
377 // ^ hashes as min ^ would not hash as min
378 // In the context of the EarlyCSE pass, however, such cases never reach
379 // this code, as we simplify the double-negation before hashing the second
380 // select (and so still succeed at CSEing them).
381 if (LHSA == RHSB && LHSB == RHSA) {
382 CmpInst::Predicate PredL, PredR;
383 Value *X, *Y;
384 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
385 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
386 CmpInst::getInversePredicate(PredL) == PredR)
387 return true;
388 }
389 }
390
391 return false;
392 }
393
isEqual(SimpleValue LHS,SimpleValue RHS)394 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
395 // These comparisons are nontrivial, so assert that equality implies
396 // hash equality (DenseMap demands this as an invariant).
397 bool Result = isEqualImpl(LHS, RHS);
398 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
399 getHashValueImpl(LHS) == getHashValueImpl(RHS));
400 return Result;
401 }
402
403 //===----------------------------------------------------------------------===//
404 // CallValue
405 //===----------------------------------------------------------------------===//
406
407 namespace {
408
409 /// Struct representing the available call values in the scoped hash
410 /// table.
411 struct CallValue {
412 Instruction *Inst;
413
CallValue__anon3ae9eefb0211::CallValue414 CallValue(Instruction *I) : Inst(I) {
415 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
416 }
417
isSentinel__anon3ae9eefb0211::CallValue418 bool isSentinel() const {
419 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
420 Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
421 }
422
canHandle__anon3ae9eefb0211::CallValue423 static bool canHandle(Instruction *Inst) {
424 // Don't value number anything that returns void.
425 if (Inst->getType()->isVoidTy())
426 return false;
427
428 CallInst *CI = dyn_cast<CallInst>(Inst);
429 if (!CI || !CI->onlyReadsMemory())
430 return false;
431 return true;
432 }
433 };
434
435 } // end anonymous namespace
436
437 namespace llvm {
438
439 template <> struct DenseMapInfo<CallValue> {
getEmptyKeyllvm::DenseMapInfo440 static inline CallValue getEmptyKey() {
441 return DenseMapInfo<Instruction *>::getEmptyKey();
442 }
443
getTombstoneKeyllvm::DenseMapInfo444 static inline CallValue getTombstoneKey() {
445 return DenseMapInfo<Instruction *>::getTombstoneKey();
446 }
447
448 static unsigned getHashValue(CallValue Val);
449 static bool isEqual(CallValue LHS, CallValue RHS);
450 };
451
452 } // end namespace llvm
453
getHashValue(CallValue Val)454 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
455 Instruction *Inst = Val.Inst;
456
457 // gc.relocate is 'special' call: its second and third operands are
458 // not real values, but indices into statepoint's argument list.
459 // Get values they point to.
460 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
461 return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
462 GCR->getBasePtr(), GCR->getDerivedPtr());
463
464 // Hash all of the operands as pointers and mix in the opcode.
465 return hash_combine(
466 Inst->getOpcode(),
467 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
468 }
469
isEqual(CallValue LHS,CallValue RHS)470 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
471 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
472 if (LHS.isSentinel() || RHS.isSentinel())
473 return LHSI == RHSI;
474
475 // See comment above in `getHashValue()`.
476 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
477 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
478 return GCR1->getOperand(0) == GCR2->getOperand(0) &&
479 GCR1->getBasePtr() == GCR2->getBasePtr() &&
480 GCR1->getDerivedPtr() == GCR2->getDerivedPtr();
481
482 return LHSI->isIdenticalTo(RHSI);
483 }
484
485 //===----------------------------------------------------------------------===//
486 // EarlyCSE implementation
487 //===----------------------------------------------------------------------===//
488
489 namespace {
490
491 /// A simple and fast domtree-based CSE pass.
492 ///
493 /// This pass does a simple depth-first walk over the dominator tree,
494 /// eliminating trivially redundant instructions and using instsimplify to
495 /// canonicalize things as it goes. It is intended to be fast and catch obvious
496 /// cases so that instcombine and other passes are more effective. It is
497 /// expected that a later pass of GVN will catch the interesting/hard cases.
498 class EarlyCSE {
499 public:
500 const TargetLibraryInfo &TLI;
501 const TargetTransformInfo &TTI;
502 DominatorTree &DT;
503 AssumptionCache &AC;
504 const SimplifyQuery SQ;
505 MemorySSA *MSSA;
506 std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
507
508 using AllocatorTy =
509 RecyclingAllocator<BumpPtrAllocator,
510 ScopedHashTableVal<SimpleValue, Value *>>;
511 using ScopedHTType =
512 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
513 AllocatorTy>;
514
515 /// A scoped hash table of the current values of all of our simple
516 /// scalar expressions.
517 ///
518 /// As we walk down the domtree, we look to see if instructions are in this:
519 /// if so, we replace them with what we find, otherwise we insert them so
520 /// that dominated values can succeed in their lookup.
521 ScopedHTType AvailableValues;
522
523 /// A scoped hash table of the current values of previously encountered
524 /// memory locations.
525 ///
526 /// This allows us to get efficient access to dominating loads or stores when
527 /// we have a fully redundant load. In addition to the most recent load, we
528 /// keep track of a generation count of the read, which is compared against
529 /// the current generation count. The current generation count is incremented
530 /// after every possibly writing memory operation, which ensures that we only
531 /// CSE loads with other loads that have no intervening store. Ordering
532 /// events (such as fences or atomic instructions) increment the generation
533 /// count as well; essentially, we model these as writes to all possible
534 /// locations. Note that atomic and/or volatile loads and stores can be
535 /// present the table; it is the responsibility of the consumer to inspect
536 /// the atomicity/volatility if needed.
537 struct LoadValue {
538 Instruction *DefInst = nullptr;
539 unsigned Generation = 0;
540 int MatchingId = -1;
541 bool IsAtomic = false;
542
543 LoadValue() = default;
LoadValue__anon3ae9eefb0311::EarlyCSE::LoadValue544 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
545 bool IsAtomic)
546 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
547 IsAtomic(IsAtomic) {}
548 };
549
550 using LoadMapAllocator =
551 RecyclingAllocator<BumpPtrAllocator,
552 ScopedHashTableVal<Value *, LoadValue>>;
553 using LoadHTType =
554 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
555 LoadMapAllocator>;
556
557 LoadHTType AvailableLoads;
558
559 // A scoped hash table mapping memory locations (represented as typed
560 // addresses) to generation numbers at which that memory location became
561 // (henceforth indefinitely) invariant.
562 using InvariantMapAllocator =
563 RecyclingAllocator<BumpPtrAllocator,
564 ScopedHashTableVal<MemoryLocation, unsigned>>;
565 using InvariantHTType =
566 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
567 InvariantMapAllocator>;
568 InvariantHTType AvailableInvariants;
569
570 /// A scoped hash table of the current values of read-only call
571 /// values.
572 ///
573 /// It uses the same generation count as loads.
574 using CallHTType =
575 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
576 CallHTType AvailableCalls;
577
578 /// This is the current generation of the memory value.
579 unsigned CurrentGeneration = 0;
580
581 /// Set up the EarlyCSE runner for a particular function.
EarlyCSE(const DataLayout & DL,const TargetLibraryInfo & TLI,const TargetTransformInfo & TTI,DominatorTree & DT,AssumptionCache & AC,MemorySSA * MSSA)582 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
583 const TargetTransformInfo &TTI, DominatorTree &DT,
584 AssumptionCache &AC, MemorySSA *MSSA)
585 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
586 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
587
588 bool run();
589
590 private:
591 unsigned ClobberCounter = 0;
592 // Almost a POD, but needs to call the constructors for the scoped hash
593 // tables so that a new scope gets pushed on. These are RAII so that the
594 // scope gets popped when the NodeScope is destroyed.
595 class NodeScope {
596 public:
NodeScope(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,InvariantHTType & AvailableInvariants,CallHTType & AvailableCalls)597 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
598 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
599 : Scope(AvailableValues), LoadScope(AvailableLoads),
600 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
601 NodeScope(const NodeScope &) = delete;
602 NodeScope &operator=(const NodeScope &) = delete;
603
604 private:
605 ScopedHTType::ScopeTy Scope;
606 LoadHTType::ScopeTy LoadScope;
607 InvariantHTType::ScopeTy InvariantScope;
608 CallHTType::ScopeTy CallScope;
609 };
610
611 // Contains all the needed information to create a stack for doing a depth
612 // first traversal of the tree. This includes scopes for values, loads, and
613 // calls as well as the generation. There is a child iterator so that the
614 // children do not need to be store separately.
615 class StackNode {
616 public:
StackNode(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,InvariantHTType & AvailableInvariants,CallHTType & AvailableCalls,unsigned cg,DomTreeNode * n,DomTreeNode::const_iterator child,DomTreeNode::const_iterator end)617 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
618 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
619 unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child,
620 DomTreeNode::const_iterator end)
621 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
622 EndIter(end),
623 Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
624 AvailableCalls)
625 {}
626 StackNode(const StackNode &) = delete;
627 StackNode &operator=(const StackNode &) = delete;
628
629 // Accessors.
currentGeneration() const630 unsigned currentGeneration() const { return CurrentGeneration; }
childGeneration() const631 unsigned childGeneration() const { return ChildGeneration; }
childGeneration(unsigned generation)632 void childGeneration(unsigned generation) { ChildGeneration = generation; }
node()633 DomTreeNode *node() { return Node; }
childIter() const634 DomTreeNode::const_iterator childIter() const { return ChildIter; }
635
nextChild()636 DomTreeNode *nextChild() {
637 DomTreeNode *child = *ChildIter;
638 ++ChildIter;
639 return child;
640 }
641
end() const642 DomTreeNode::const_iterator end() const { return EndIter; }
isProcessed() const643 bool isProcessed() const { return Processed; }
process()644 void process() { Processed = true; }
645
646 private:
647 unsigned CurrentGeneration;
648 unsigned ChildGeneration;
649 DomTreeNode *Node;
650 DomTreeNode::const_iterator ChildIter;
651 DomTreeNode::const_iterator EndIter;
652 NodeScope Scopes;
653 bool Processed = false;
654 };
655
656 /// Wrapper class to handle memory instructions, including loads,
657 /// stores and intrinsic loads and stores defined by the target.
658 class ParseMemoryInst {
659 public:
ParseMemoryInst(Instruction * Inst,const TargetTransformInfo & TTI)660 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
661 : Inst(Inst) {
662 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
663 IntrID = II->getIntrinsicID();
664 if (TTI.getTgtMemIntrinsic(II, Info))
665 return;
666 if (isHandledNonTargetIntrinsic(IntrID)) {
667 switch (IntrID) {
668 case Intrinsic::masked_load:
669 Info.PtrVal = Inst->getOperand(0);
670 Info.MatchingId = Intrinsic::masked_load;
671 Info.ReadMem = true;
672 Info.WriteMem = false;
673 Info.IsVolatile = false;
674 break;
675 case Intrinsic::masked_store:
676 Info.PtrVal = Inst->getOperand(1);
677 // Use the ID of masked load as the "matching id". This will
678 // prevent matching non-masked loads/stores with masked ones
679 // (which could be done), but at the moment, the code here
680 // does not support matching intrinsics with non-intrinsics,
681 // so keep the MatchingIds specific to masked instructions
682 // for now (TODO).
683 Info.MatchingId = Intrinsic::masked_load;
684 Info.ReadMem = false;
685 Info.WriteMem = true;
686 Info.IsVolatile = false;
687 break;
688 }
689 }
690 }
691 }
692
get()693 Instruction *get() { return Inst; }
get() const694 const Instruction *get() const { return Inst; }
695
isLoad() const696 bool isLoad() const {
697 if (IntrID != 0)
698 return Info.ReadMem;
699 return isa<LoadInst>(Inst);
700 }
701
isStore() const702 bool isStore() const {
703 if (IntrID != 0)
704 return Info.WriteMem;
705 return isa<StoreInst>(Inst);
706 }
707
isAtomic() const708 bool isAtomic() const {
709 if (IntrID != 0)
710 return Info.Ordering != AtomicOrdering::NotAtomic;
711 return Inst->isAtomic();
712 }
713
isUnordered() const714 bool isUnordered() const {
715 if (IntrID != 0)
716 return Info.isUnordered();
717
718 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
719 return LI->isUnordered();
720 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
721 return SI->isUnordered();
722 }
723 // Conservative answer
724 return !Inst->isAtomic();
725 }
726
isVolatile() const727 bool isVolatile() const {
728 if (IntrID != 0)
729 return Info.IsVolatile;
730
731 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
732 return LI->isVolatile();
733 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
734 return SI->isVolatile();
735 }
736 // Conservative answer
737 return true;
738 }
739
isInvariantLoad() const740 bool isInvariantLoad() const {
741 if (auto *LI = dyn_cast<LoadInst>(Inst))
742 return LI->hasMetadata(LLVMContext::MD_invariant_load);
743 return false;
744 }
745
isValid() const746 bool isValid() const { return getPointerOperand() != nullptr; }
747
748 // For regular (non-intrinsic) loads/stores, this is set to -1. For
749 // intrinsic loads/stores, the id is retrieved from the corresponding
750 // field in the MemIntrinsicInfo structure. That field contains
751 // non-negative values only.
getMatchingId() const752 int getMatchingId() const {
753 if (IntrID != 0)
754 return Info.MatchingId;
755 return -1;
756 }
757
getPointerOperand() const758 Value *getPointerOperand() const {
759 if (IntrID != 0)
760 return Info.PtrVal;
761 return getLoadStorePointerOperand(Inst);
762 }
763
mayReadFromMemory() const764 bool mayReadFromMemory() const {
765 if (IntrID != 0)
766 return Info.ReadMem;
767 return Inst->mayReadFromMemory();
768 }
769
mayWriteToMemory() const770 bool mayWriteToMemory() const {
771 if (IntrID != 0)
772 return Info.WriteMem;
773 return Inst->mayWriteToMemory();
774 }
775
776 private:
777 Intrinsic::ID IntrID = 0;
778 MemIntrinsicInfo Info;
779 Instruction *Inst;
780 };
781
782 // This function is to prevent accidentally passing a non-target
783 // intrinsic ID to TargetTransformInfo.
isHandledNonTargetIntrinsic(Intrinsic::ID ID)784 static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) {
785 switch (ID) {
786 case Intrinsic::masked_load:
787 case Intrinsic::masked_store:
788 return true;
789 }
790 return false;
791 }
isHandledNonTargetIntrinsic(const Value * V)792 static bool isHandledNonTargetIntrinsic(const Value *V) {
793 if (auto *II = dyn_cast<IntrinsicInst>(V))
794 return isHandledNonTargetIntrinsic(II->getIntrinsicID());
795 return false;
796 }
797
798 bool processNode(DomTreeNode *Node);
799
800 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
801 const BasicBlock *BB, const BasicBlock *Pred);
802
803 Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
804 unsigned CurrentGeneration);
805
806 bool overridingStores(const ParseMemoryInst &Earlier,
807 const ParseMemoryInst &Later);
808
getOrCreateResult(Value * Inst,Type * ExpectedType) const809 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
810 if (auto *LI = dyn_cast<LoadInst>(Inst))
811 return LI;
812 if (auto *SI = dyn_cast<StoreInst>(Inst))
813 return SI->getValueOperand();
814 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
815 auto *II = cast<IntrinsicInst>(Inst);
816 if (isHandledNonTargetIntrinsic(II->getIntrinsicID()))
817 return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType);
818 return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType);
819 }
820
getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst * II,Type * ExpectedType) const821 Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II,
822 Type *ExpectedType) const {
823 switch (II->getIntrinsicID()) {
824 case Intrinsic::masked_load:
825 return II;
826 case Intrinsic::masked_store:
827 return II->getOperand(0);
828 }
829 return nullptr;
830 }
831
832 /// Return true if the instruction is known to only operate on memory
833 /// provably invariant in the given "generation".
834 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
835
836 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
837 Instruction *EarlierInst, Instruction *LaterInst);
838
isNonTargetIntrinsicMatch(const IntrinsicInst * Earlier,const IntrinsicInst * Later)839 bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier,
840 const IntrinsicInst *Later) {
841 auto IsSubmask = [](const Value *Mask0, const Value *Mask1) {
842 // Is Mask0 a submask of Mask1?
843 if (Mask0 == Mask1)
844 return true;
845 if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1))
846 return false;
847 auto *Vec0 = dyn_cast<ConstantVector>(Mask0);
848 auto *Vec1 = dyn_cast<ConstantVector>(Mask1);
849 if (!Vec0 || !Vec1)
850 return false;
851 assert(Vec0->getType() == Vec1->getType() &&
852 "Masks should have the same type");
853 for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) {
854 Constant *Elem0 = Vec0->getOperand(i);
855 Constant *Elem1 = Vec1->getOperand(i);
856 auto *Int0 = dyn_cast<ConstantInt>(Elem0);
857 if (Int0 && Int0->isZero())
858 continue;
859 auto *Int1 = dyn_cast<ConstantInt>(Elem1);
860 if (Int1 && !Int1->isZero())
861 continue;
862 if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1))
863 return false;
864 if (Elem0 == Elem1)
865 continue;
866 return false;
867 }
868 return true;
869 };
870 auto PtrOp = [](const IntrinsicInst *II) {
871 if (II->getIntrinsicID() == Intrinsic::masked_load)
872 return II->getOperand(0);
873 if (II->getIntrinsicID() == Intrinsic::masked_store)
874 return II->getOperand(1);
875 llvm_unreachable("Unexpected IntrinsicInst");
876 };
877 auto MaskOp = [](const IntrinsicInst *II) {
878 if (II->getIntrinsicID() == Intrinsic::masked_load)
879 return II->getOperand(2);
880 if (II->getIntrinsicID() == Intrinsic::masked_store)
881 return II->getOperand(3);
882 llvm_unreachable("Unexpected IntrinsicInst");
883 };
884 auto ThruOp = [](const IntrinsicInst *II) {
885 if (II->getIntrinsicID() == Intrinsic::masked_load)
886 return II->getOperand(3);
887 llvm_unreachable("Unexpected IntrinsicInst");
888 };
889
890 if (PtrOp(Earlier) != PtrOp(Later))
891 return false;
892
893 Intrinsic::ID IDE = Earlier->getIntrinsicID();
894 Intrinsic::ID IDL = Later->getIntrinsicID();
895 // We could really use specific intrinsic classes for masked loads
896 // and stores in IntrinsicInst.h.
897 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) {
898 // Trying to replace later masked load with the earlier one.
899 // Check that the pointers are the same, and
900 // - masks and pass-throughs are the same, or
901 // - replacee's pass-through is "undef" and replacer's mask is a
902 // super-set of the replacee's mask.
903 if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later))
904 return true;
905 if (!isa<UndefValue>(ThruOp(Later)))
906 return false;
907 return IsSubmask(MaskOp(Later), MaskOp(Earlier));
908 }
909 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) {
910 // Trying to replace a load of a stored value with the store's value.
911 // Check that the pointers are the same, and
912 // - load's mask is a subset of store's mask, and
913 // - load's pass-through is "undef".
914 if (!IsSubmask(MaskOp(Later), MaskOp(Earlier)))
915 return false;
916 return isa<UndefValue>(ThruOp(Later));
917 }
918 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) {
919 // Trying to remove a store of the loaded value.
920 // Check that the pointers are the same, and
921 // - store's mask is a subset of the load's mask.
922 return IsSubmask(MaskOp(Later), MaskOp(Earlier));
923 }
924 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) {
925 // Trying to remove a dead store (earlier).
926 // Check that the pointers are the same,
927 // - the to-be-removed store's mask is a subset of the other store's
928 // mask.
929 return IsSubmask(MaskOp(Earlier), MaskOp(Later));
930 }
931 return false;
932 }
933
removeMSSA(Instruction & Inst)934 void removeMSSA(Instruction &Inst) {
935 if (!MSSA)
936 return;
937 if (VerifyMemorySSA)
938 MSSA->verifyMemorySSA();
939 // Removing a store here can leave MemorySSA in an unoptimized state by
940 // creating MemoryPhis that have identical arguments and by creating
941 // MemoryUses whose defining access is not an actual clobber. The phi case
942 // is handled by MemorySSA when passing OptimizePhis = true to
943 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated
944 // by MemorySSA's getClobberingMemoryAccess.
945 MSSAUpdater->removeMemoryAccess(&Inst, true);
946 }
947 };
948
949 } // end anonymous namespace
950
951 /// Determine if the memory referenced by LaterInst is from the same heap
952 /// version as EarlierInst.
953 /// This is currently called in two scenarios:
954 ///
955 /// load p
956 /// ...
957 /// load p
958 ///
959 /// and
960 ///
961 /// x = load p
962 /// ...
963 /// store x, p
964 ///
965 /// in both cases we want to verify that there are no possible writes to the
966 /// memory referenced by p between the earlier and later instruction.
isSameMemGeneration(unsigned EarlierGeneration,unsigned LaterGeneration,Instruction * EarlierInst,Instruction * LaterInst)967 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
968 unsigned LaterGeneration,
969 Instruction *EarlierInst,
970 Instruction *LaterInst) {
971 // Check the simple memory generation tracking first.
972 if (EarlierGeneration == LaterGeneration)
973 return true;
974
975 if (!MSSA)
976 return false;
977
978 // If MemorySSA has determined that one of EarlierInst or LaterInst does not
979 // read/write memory, then we can safely return true here.
980 // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
981 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
982 // by also checking the MemorySSA MemoryAccess on the instruction. Initial
983 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
984 // with the default optimization pipeline.
985 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
986 if (!EarlierMA)
987 return true;
988 auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
989 if (!LaterMA)
990 return true;
991
992 // Since we know LaterDef dominates LaterInst and EarlierInst dominates
993 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
994 // EarlierInst and LaterInst and neither can any other write that potentially
995 // clobbers LaterInst.
996 MemoryAccess *LaterDef;
997 if (ClobberCounter < EarlyCSEMssaOptCap) {
998 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
999 ClobberCounter++;
1000 } else
1001 LaterDef = LaterMA->getDefiningAccess();
1002
1003 return MSSA->dominates(LaterDef, EarlierMA);
1004 }
1005
isOperatingOnInvariantMemAt(Instruction * I,unsigned GenAt)1006 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
1007 // A location loaded from with an invariant_load is assumed to *never* change
1008 // within the visible scope of the compilation.
1009 if (auto *LI = dyn_cast<LoadInst>(I))
1010 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1011 return true;
1012
1013 auto MemLocOpt = MemoryLocation::getOrNone(I);
1014 if (!MemLocOpt)
1015 // "target" intrinsic forms of loads aren't currently known to
1016 // MemoryLocation::get. TODO
1017 return false;
1018 MemoryLocation MemLoc = *MemLocOpt;
1019 if (!AvailableInvariants.count(MemLoc))
1020 return false;
1021
1022 // Is the generation at which this became invariant older than the
1023 // current one?
1024 return AvailableInvariants.lookup(MemLoc) <= GenAt;
1025 }
1026
handleBranchCondition(Instruction * CondInst,const BranchInst * BI,const BasicBlock * BB,const BasicBlock * Pred)1027 bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
1028 const BranchInst *BI, const BasicBlock *BB,
1029 const BasicBlock *Pred) {
1030 assert(BI->isConditional() && "Should be a conditional branch!");
1031 assert(BI->getCondition() == CondInst && "Wrong condition?");
1032 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
1033 auto *TorF = (BI->getSuccessor(0) == BB)
1034 ? ConstantInt::getTrue(BB->getContext())
1035 : ConstantInt::getFalse(BB->getContext());
1036 auto MatchBinOp = [](Instruction *I, unsigned Opcode) {
1037 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I))
1038 return BOp->getOpcode() == Opcode;
1039 return false;
1040 };
1041 // If the condition is AND operation, we can propagate its operands into the
1042 // true branch. If it is OR operation, we can propagate them into the false
1043 // branch.
1044 unsigned PropagateOpcode =
1045 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
1046
1047 bool MadeChanges = false;
1048 SmallVector<Instruction *, 4> WorkList;
1049 SmallPtrSet<Instruction *, 4> Visited;
1050 WorkList.push_back(CondInst);
1051 while (!WorkList.empty()) {
1052 Instruction *Curr = WorkList.pop_back_val();
1053
1054 AvailableValues.insert(Curr, TorF);
1055 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
1056 << Curr->getName() << "' as " << *TorF << " in "
1057 << BB->getName() << "\n");
1058 if (!DebugCounter::shouldExecute(CSECounter)) {
1059 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1060 } else {
1061 // Replace all dominated uses with the known value.
1062 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
1063 BasicBlockEdge(Pred, BB))) {
1064 NumCSECVP += Count;
1065 MadeChanges = true;
1066 }
1067 }
1068
1069 if (MatchBinOp(Curr, PropagateOpcode))
1070 for (auto &Op : cast<BinaryOperator>(Curr)->operands())
1071 if (Instruction *OPI = dyn_cast<Instruction>(Op))
1072 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
1073 WorkList.push_back(OPI);
1074 }
1075
1076 return MadeChanges;
1077 }
1078
getMatchingValue(LoadValue & InVal,ParseMemoryInst & MemInst,unsigned CurrentGeneration)1079 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
1080 unsigned CurrentGeneration) {
1081 if (InVal.DefInst == nullptr)
1082 return nullptr;
1083 if (InVal.MatchingId != MemInst.getMatchingId())
1084 return nullptr;
1085 // We don't yet handle removing loads with ordering of any kind.
1086 if (MemInst.isVolatile() || !MemInst.isUnordered())
1087 return nullptr;
1088 // We can't replace an atomic load with one which isn't also atomic.
1089 if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic())
1090 return nullptr;
1091 // The value V returned from this function is used differently depending
1092 // on whether MemInst is a load or a store. If it's a load, we will replace
1093 // MemInst with V, if it's a store, we will check if V is the same as the
1094 // available value.
1095 bool MemInstMatching = !MemInst.isLoad();
1096 Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst;
1097 Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get();
1098
1099 // For stores check the result values before checking memory generation
1100 // (otherwise isSameMemGeneration may crash).
1101 Value *Result = MemInst.isStore()
1102 ? getOrCreateResult(Matching, Other->getType())
1103 : nullptr;
1104 if (MemInst.isStore() && InVal.DefInst != Result)
1105 return nullptr;
1106
1107 // Deal with non-target memory intrinsics.
1108 bool MatchingNTI = isHandledNonTargetIntrinsic(Matching);
1109 bool OtherNTI = isHandledNonTargetIntrinsic(Other);
1110 if (OtherNTI != MatchingNTI)
1111 return nullptr;
1112 if (OtherNTI && MatchingNTI) {
1113 if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst),
1114 cast<IntrinsicInst>(MemInst.get())))
1115 return nullptr;
1116 }
1117
1118 if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) &&
1119 !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst,
1120 MemInst.get()))
1121 return nullptr;
1122
1123 if (!Result)
1124 Result = getOrCreateResult(Matching, Other->getType());
1125 return Result;
1126 }
1127
overridingStores(const ParseMemoryInst & Earlier,const ParseMemoryInst & Later)1128 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier,
1129 const ParseMemoryInst &Later) {
1130 // Can we remove Earlier store because of Later store?
1131
1132 assert(Earlier.isUnordered() && !Earlier.isVolatile() &&
1133 "Violated invariant");
1134 if (Earlier.getPointerOperand() != Later.getPointerOperand())
1135 return false;
1136 if (Earlier.getMatchingId() != Later.getMatchingId())
1137 return false;
1138 // At the moment, we don't remove ordered stores, but do remove
1139 // unordered atomic stores. There's no special requirement (for
1140 // unordered atomics) about removing atomic stores only in favor of
1141 // other atomic stores since we were going to execute the non-atomic
1142 // one anyway and the atomic one might never have become visible.
1143 if (!Earlier.isUnordered() || !Later.isUnordered())
1144 return false;
1145
1146 // Deal with non-target memory intrinsics.
1147 bool ENTI = isHandledNonTargetIntrinsic(Earlier.get());
1148 bool LNTI = isHandledNonTargetIntrinsic(Later.get());
1149 if (ENTI && LNTI)
1150 return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()),
1151 cast<IntrinsicInst>(Later.get()));
1152
1153 // Because of the check above, at least one of them is false.
1154 // For now disallow matching intrinsics with non-intrinsics,
1155 // so assume that the stores match if neither is an intrinsic.
1156 return ENTI == LNTI;
1157 }
1158
processNode(DomTreeNode * Node)1159 bool EarlyCSE::processNode(DomTreeNode *Node) {
1160 bool Changed = false;
1161 BasicBlock *BB = Node->getBlock();
1162
1163 // If this block has a single predecessor, then the predecessor is the parent
1164 // of the domtree node and all of the live out memory values are still current
1165 // in this block. If this block has multiple predecessors, then they could
1166 // have invalidated the live-out memory values of our parent value. For now,
1167 // just be conservative and invalidate memory if this block has multiple
1168 // predecessors.
1169 if (!BB->getSinglePredecessor())
1170 ++CurrentGeneration;
1171
1172 // If this node has a single predecessor which ends in a conditional branch,
1173 // we can infer the value of the branch condition given that we took this
1174 // path. We need the single predecessor to ensure there's not another path
1175 // which reaches this block where the condition might hold a different
1176 // value. Since we're adding this to the scoped hash table (like any other
1177 // def), it will have been popped if we encounter a future merge block.
1178 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1179 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
1180 if (BI && BI->isConditional()) {
1181 auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
1182 if (CondInst && SimpleValue::canHandle(CondInst))
1183 Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
1184 }
1185 }
1186
1187 /// LastStore - Keep track of the last non-volatile store that we saw... for
1188 /// as long as there in no instruction that reads memory. If we see a store
1189 /// to the same location, we delete the dead store. This zaps trivial dead
1190 /// stores which can occur in bitfield code among other things.
1191 Instruction *LastStore = nullptr;
1192
1193 // See if any instructions in the block can be eliminated. If so, do it. If
1194 // not, add them to AvailableValues.
1195 for (Instruction &Inst : make_early_inc_range(BB->getInstList())) {
1196 // Dead instructions should just be removed.
1197 if (isInstructionTriviallyDead(&Inst, &TLI)) {
1198 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
1199 if (!DebugCounter::shouldExecute(CSECounter)) {
1200 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1201 continue;
1202 }
1203
1204 salvageKnowledge(&Inst, &AC);
1205 salvageDebugInfo(Inst);
1206 removeMSSA(Inst);
1207 Inst.eraseFromParent();
1208 Changed = true;
1209 ++NumSimplify;
1210 continue;
1211 }
1212
1213 // Skip assume intrinsics, they don't really have side effects (although
1214 // they're marked as such to ensure preservation of control dependencies),
1215 // and this pass will not bother with its removal. However, we should mark
1216 // its condition as true for all dominated blocks.
1217 if (match(&Inst, m_Intrinsic<Intrinsic::assume>())) {
1218 auto *CondI =
1219 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0));
1220 if (CondI && SimpleValue::canHandle(CondI)) {
1221 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
1222 << '\n');
1223 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1224 } else
1225 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
1226 continue;
1227 }
1228
1229 // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
1230 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
1231 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
1232 continue;
1233 }
1234
1235 // We can skip all invariant.start intrinsics since they only read memory,
1236 // and we can forward values across it. For invariant starts without
1237 // invariant ends, we can use the fact that the invariantness never ends to
1238 // start a scope in the current generaton which is true for all future
1239 // generations. Also, we dont need to consume the last store since the
1240 // semantics of invariant.start allow us to perform DSE of the last
1241 // store, if there was a store following invariant.start. Consider:
1242 //
1243 // store 30, i8* p
1244 // invariant.start(p)
1245 // store 40, i8* p
1246 // We can DSE the store to 30, since the store 40 to invariant location p
1247 // causes undefined behaviour.
1248 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
1249 // If there are any uses, the scope might end.
1250 if (!Inst.use_empty())
1251 continue;
1252 MemoryLocation MemLoc =
1253 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
1254 // Don't start a scope if we already have a better one pushed
1255 if (!AvailableInvariants.count(MemLoc))
1256 AvailableInvariants.insert(MemLoc, CurrentGeneration);
1257 continue;
1258 }
1259
1260 if (isGuard(&Inst)) {
1261 if (auto *CondI =
1262 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
1263 if (SimpleValue::canHandle(CondI)) {
1264 // Do we already know the actual value of this condition?
1265 if (auto *KnownCond = AvailableValues.lookup(CondI)) {
1266 // Is the condition known to be true?
1267 if (isa<ConstantInt>(KnownCond) &&
1268 cast<ConstantInt>(KnownCond)->isOne()) {
1269 LLVM_DEBUG(dbgs()
1270 << "EarlyCSE removing guard: " << Inst << '\n');
1271 salvageKnowledge(&Inst, &AC);
1272 removeMSSA(Inst);
1273 Inst.eraseFromParent();
1274 Changed = true;
1275 continue;
1276 } else
1277 // Use the known value if it wasn't true.
1278 cast<CallInst>(Inst).setArgOperand(0, KnownCond);
1279 }
1280 // The condition we're on guarding here is true for all dominated
1281 // locations.
1282 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1283 }
1284 }
1285
1286 // Guard intrinsics read all memory, but don't write any memory.
1287 // Accordingly, don't update the generation but consume the last store (to
1288 // avoid an incorrect DSE).
1289 LastStore = nullptr;
1290 continue;
1291 }
1292
1293 // If the instruction can be simplified (e.g. X+0 = X) then replace it with
1294 // its simpler value.
1295 if (Value *V = SimplifyInstruction(&Inst, SQ)) {
1296 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V
1297 << '\n');
1298 if (!DebugCounter::shouldExecute(CSECounter)) {
1299 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1300 } else {
1301 bool Killed = false;
1302 if (!Inst.use_empty()) {
1303 Inst.replaceAllUsesWith(V);
1304 Changed = true;
1305 }
1306 if (isInstructionTriviallyDead(&Inst, &TLI)) {
1307 salvageKnowledge(&Inst, &AC);
1308 removeMSSA(Inst);
1309 Inst.eraseFromParent();
1310 Changed = true;
1311 Killed = true;
1312 }
1313 if (Changed)
1314 ++NumSimplify;
1315 if (Killed)
1316 continue;
1317 }
1318 }
1319
1320 // If this is a simple instruction that we can value number, process it.
1321 if (SimpleValue::canHandle(&Inst)) {
1322 // See if the instruction has an available value. If so, use it.
1323 if (Value *V = AvailableValues.lookup(&Inst)) {
1324 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V
1325 << '\n');
1326 if (!DebugCounter::shouldExecute(CSECounter)) {
1327 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1328 continue;
1329 }
1330 if (auto *I = dyn_cast<Instruction>(V))
1331 I->andIRFlags(&Inst);
1332 Inst.replaceAllUsesWith(V);
1333 salvageKnowledge(&Inst, &AC);
1334 removeMSSA(Inst);
1335 Inst.eraseFromParent();
1336 Changed = true;
1337 ++NumCSE;
1338 continue;
1339 }
1340
1341 // Otherwise, just remember that this value is available.
1342 AvailableValues.insert(&Inst, &Inst);
1343 continue;
1344 }
1345
1346 ParseMemoryInst MemInst(&Inst, TTI);
1347 // If this is a non-volatile load, process it.
1348 if (MemInst.isValid() && MemInst.isLoad()) {
1349 // (conservatively) we can't peak past the ordering implied by this
1350 // operation, but we can add this load to our set of available values
1351 if (MemInst.isVolatile() || !MemInst.isUnordered()) {
1352 LastStore = nullptr;
1353 ++CurrentGeneration;
1354 }
1355
1356 if (MemInst.isInvariantLoad()) {
1357 // If we pass an invariant load, we know that memory location is
1358 // indefinitely constant from the moment of first dereferenceability.
1359 // We conservatively treat the invariant_load as that moment. If we
1360 // pass a invariant load after already establishing a scope, don't
1361 // restart it since we want to preserve the earliest point seen.
1362 auto MemLoc = MemoryLocation::get(&Inst);
1363 if (!AvailableInvariants.count(MemLoc))
1364 AvailableInvariants.insert(MemLoc, CurrentGeneration);
1365 }
1366
1367 // If we have an available version of this load, and if it is the right
1368 // generation or the load is known to be from an invariant location,
1369 // replace this instruction.
1370 //
1371 // If either the dominating load or the current load are invariant, then
1372 // we can assume the current load loads the same value as the dominating
1373 // load.
1374 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1375 if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1376 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
1377 << " to: " << *InVal.DefInst << '\n');
1378 if (!DebugCounter::shouldExecute(CSECounter)) {
1379 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1380 continue;
1381 }
1382 if (!Inst.use_empty())
1383 Inst.replaceAllUsesWith(Op);
1384 salvageKnowledge(&Inst, &AC);
1385 removeMSSA(Inst);
1386 Inst.eraseFromParent();
1387 Changed = true;
1388 ++NumCSELoad;
1389 continue;
1390 }
1391
1392 // Otherwise, remember that we have this instruction.
1393 AvailableLoads.insert(MemInst.getPointerOperand(),
1394 LoadValue(&Inst, CurrentGeneration,
1395 MemInst.getMatchingId(),
1396 MemInst.isAtomic()));
1397 LastStore = nullptr;
1398 continue;
1399 }
1400
1401 // If this instruction may read from memory or throw (and potentially read
1402 // from memory in the exception handler), forget LastStore. Load/store
1403 // intrinsics will indicate both a read and a write to memory. The target
1404 // may override this (e.g. so that a store intrinsic does not read from
1405 // memory, and thus will be treated the same as a regular store for
1406 // commoning purposes).
1407 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
1408 !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1409 LastStore = nullptr;
1410
1411 // If this is a read-only call, process it.
1412 if (CallValue::canHandle(&Inst)) {
1413 // If we have an available version of this call, and if it is the right
1414 // generation, replace this instruction.
1415 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
1416 if (InVal.first != nullptr &&
1417 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1418 &Inst)) {
1419 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
1420 << " to: " << *InVal.first << '\n');
1421 if (!DebugCounter::shouldExecute(CSECounter)) {
1422 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1423 continue;
1424 }
1425 if (!Inst.use_empty())
1426 Inst.replaceAllUsesWith(InVal.first);
1427 salvageKnowledge(&Inst, &AC);
1428 removeMSSA(Inst);
1429 Inst.eraseFromParent();
1430 Changed = true;
1431 ++NumCSECall;
1432 continue;
1433 }
1434
1435 // Otherwise, remember that we have this instruction.
1436 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
1437 continue;
1438 }
1439
1440 // A release fence requires that all stores complete before it, but does
1441 // not prevent the reordering of following loads 'before' the fence. As a
1442 // result, we don't need to consider it as writing to memory and don't need
1443 // to advance the generation. We do need to prevent DSE across the fence,
1444 // but that's handled above.
1445 if (auto *FI = dyn_cast<FenceInst>(&Inst))
1446 if (FI->getOrdering() == AtomicOrdering::Release) {
1447 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
1448 continue;
1449 }
1450
1451 // write back DSE - If we write back the same value we just loaded from
1452 // the same location and haven't passed any intervening writes or ordering
1453 // operations, we can remove the write. The primary benefit is in allowing
1454 // the available load table to remain valid and value forward past where
1455 // the store originally was.
1456 if (MemInst.isValid() && MemInst.isStore()) {
1457 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1458 if (InVal.DefInst &&
1459 InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1460 // It is okay to have a LastStore to a different pointer here if MemorySSA
1461 // tells us that the load and store are from the same memory generation.
1462 // In that case, LastStore should keep its present value since we're
1463 // removing the current store.
1464 assert((!LastStore ||
1465 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1466 MemInst.getPointerOperand() ||
1467 MSSA) &&
1468 "can't have an intervening store if not using MemorySSA!");
1469 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
1470 if (!DebugCounter::shouldExecute(CSECounter)) {
1471 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1472 continue;
1473 }
1474 salvageKnowledge(&Inst, &AC);
1475 removeMSSA(Inst);
1476 Inst.eraseFromParent();
1477 Changed = true;
1478 ++NumDSE;
1479 // We can avoid incrementing the generation count since we were able
1480 // to eliminate this store.
1481 continue;
1482 }
1483 }
1484
1485 // Okay, this isn't something we can CSE at all. Check to see if it is
1486 // something that could modify memory. If so, our available memory values
1487 // cannot be used so bump the generation count.
1488 if (Inst.mayWriteToMemory()) {
1489 ++CurrentGeneration;
1490
1491 if (MemInst.isValid() && MemInst.isStore()) {
1492 // We do a trivial form of DSE if there are two stores to the same
1493 // location with no intervening loads. Delete the earlier store.
1494 if (LastStore) {
1495 if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) {
1496 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1497 << " due to: " << Inst << '\n');
1498 if (!DebugCounter::shouldExecute(CSECounter)) {
1499 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1500 } else {
1501 salvageKnowledge(&Inst, &AC);
1502 removeMSSA(*LastStore);
1503 LastStore->eraseFromParent();
1504 Changed = true;
1505 ++NumDSE;
1506 LastStore = nullptr;
1507 }
1508 }
1509 // fallthrough - we can exploit information about this store
1510 }
1511
1512 // Okay, we just invalidated anything we knew about loaded values. Try
1513 // to salvage *something* by remembering that the stored value is a live
1514 // version of the pointer. It is safe to forward from volatile stores
1515 // to non-volatile loads, so we don't have to check for volatility of
1516 // the store.
1517 AvailableLoads.insert(MemInst.getPointerOperand(),
1518 LoadValue(&Inst, CurrentGeneration,
1519 MemInst.getMatchingId(),
1520 MemInst.isAtomic()));
1521
1522 // Remember that this was the last unordered store we saw for DSE. We
1523 // don't yet handle DSE on ordered or volatile stores since we don't
1524 // have a good way to model the ordering requirement for following
1525 // passes once the store is removed. We could insert a fence, but
1526 // since fences are slightly stronger than stores in their ordering,
1527 // it's not clear this is a profitable transform. Another option would
1528 // be to merge the ordering with that of the post dominating store.
1529 if (MemInst.isUnordered() && !MemInst.isVolatile())
1530 LastStore = &Inst;
1531 else
1532 LastStore = nullptr;
1533 }
1534 }
1535 }
1536
1537 return Changed;
1538 }
1539
run()1540 bool EarlyCSE::run() {
1541 // Note, deque is being used here because there is significant performance
1542 // gains over vector when the container becomes very large due to the
1543 // specific access patterns. For more information see the mailing list
1544 // discussion on this:
1545 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1546 std::deque<StackNode *> nodesToProcess;
1547
1548 bool Changed = false;
1549
1550 // Process the root node.
1551 nodesToProcess.push_back(new StackNode(
1552 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1553 CurrentGeneration, DT.getRootNode(),
1554 DT.getRootNode()->begin(), DT.getRootNode()->end()));
1555
1556 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
1557
1558 // Process the stack.
1559 while (!nodesToProcess.empty()) {
1560 // Grab the first item off the stack. Set the current generation, remove
1561 // the node from the stack, and process it.
1562 StackNode *NodeToProcess = nodesToProcess.back();
1563
1564 // Initialize class members.
1565 CurrentGeneration = NodeToProcess->currentGeneration();
1566
1567 // Check if the node needs to be processed.
1568 if (!NodeToProcess->isProcessed()) {
1569 // Process the node.
1570 Changed |= processNode(NodeToProcess->node());
1571 NodeToProcess->childGeneration(CurrentGeneration);
1572 NodeToProcess->process();
1573 } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1574 // Push the next child onto the stack.
1575 DomTreeNode *child = NodeToProcess->nextChild();
1576 nodesToProcess.push_back(
1577 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
1578 AvailableCalls, NodeToProcess->childGeneration(),
1579 child, child->begin(), child->end()));
1580 } else {
1581 // It has been processed, and there are no more children to process,
1582 // so delete it and pop it off the stack.
1583 delete NodeToProcess;
1584 nodesToProcess.pop_back();
1585 }
1586 } // while (!nodes...)
1587
1588 return Changed;
1589 }
1590
run(Function & F,FunctionAnalysisManager & AM)1591 PreservedAnalyses EarlyCSEPass::run(Function &F,
1592 FunctionAnalysisManager &AM) {
1593 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1594 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1595 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1596 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1597 auto *MSSA =
1598 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1599
1600 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1601
1602 if (!CSE.run())
1603 return PreservedAnalyses::all();
1604
1605 PreservedAnalyses PA;
1606 PA.preserveSet<CFGAnalyses>();
1607 PA.preserve<GlobalsAA>();
1608 if (UseMemorySSA)
1609 PA.preserve<MemorySSAAnalysis>();
1610 return PA;
1611 }
1612
1613 namespace {
1614
1615 /// A simple and fast domtree-based CSE pass.
1616 ///
1617 /// This pass does a simple depth-first walk over the dominator tree,
1618 /// eliminating trivially redundant instructions and using instsimplify to
1619 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1620 /// cases so that instcombine and other passes are more effective. It is
1621 /// expected that a later pass of GVN will catch the interesting/hard cases.
1622 template<bool UseMemorySSA>
1623 class EarlyCSELegacyCommonPass : public FunctionPass {
1624 public:
1625 static char ID;
1626
EarlyCSELegacyCommonPass()1627 EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1628 if (UseMemorySSA)
1629 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1630 else
1631 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1632 }
1633
runOnFunction(Function & F)1634 bool runOnFunction(Function &F) override {
1635 if (skipFunction(F))
1636 return false;
1637
1638 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1639 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1640 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1641 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1642 auto *MSSA =
1643 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1644
1645 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1646
1647 return CSE.run();
1648 }
1649
getAnalysisUsage(AnalysisUsage & AU) const1650 void getAnalysisUsage(AnalysisUsage &AU) const override {
1651 AU.addRequired<AssumptionCacheTracker>();
1652 AU.addRequired<DominatorTreeWrapperPass>();
1653 AU.addRequired<TargetLibraryInfoWrapperPass>();
1654 AU.addRequired<TargetTransformInfoWrapperPass>();
1655 if (UseMemorySSA) {
1656 AU.addRequired<AAResultsWrapperPass>();
1657 AU.addRequired<MemorySSAWrapperPass>();
1658 AU.addPreserved<MemorySSAWrapperPass>();
1659 }
1660 AU.addPreserved<GlobalsAAWrapperPass>();
1661 AU.addPreserved<AAResultsWrapperPass>();
1662 AU.setPreservesCFG();
1663 }
1664 };
1665
1666 } // end anonymous namespace
1667
1668 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1669
1670 template<>
1671 char EarlyCSELegacyPass::ID = 0;
1672
1673 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1674 false)
1675 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1676 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1677 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1678 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1679 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1680
1681 using EarlyCSEMemSSALegacyPass =
1682 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1683
1684 template<>
1685 char EarlyCSEMemSSALegacyPass::ID = 0;
1686
createEarlyCSEPass(bool UseMemorySSA)1687 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1688 if (UseMemorySSA)
1689 return new EarlyCSEMemSSALegacyPass();
1690 else
1691 return new EarlyCSELegacyPass();
1692 }
1693
1694 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1695 "Early CSE w/ MemorySSA", false, false)
1696 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1697 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1698 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1699 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1700 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1701 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1702 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1703 "Early CSE w/ MemorySSA", false, false)
1704