1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
10 // GPU mapping strategy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "polly/CodeGen/PPCGCodeGeneration.h"
15 #include "polly/CodeGen/CodeGeneration.h"
16 #include "polly/CodeGen/IslAst.h"
17 #include "polly/CodeGen/IslNodeBuilder.h"
18 #include "polly/CodeGen/PerfMonitor.h"
19 #include "polly/CodeGen/Utils.h"
20 #include "polly/DependenceInfo.h"
21 #include "polly/LinkAllPasses.h"
22 #include "polly/Options.h"
23 #include "polly/ScopDetection.h"
24 #include "polly/ScopInfo.h"
25 #include "polly/Support/SCEVValidator.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/IR/IntrinsicsNVPTX.h"
29 #include "llvm/IR/LegacyPassManager.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/IRReader/IRReader.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Linker/Linker.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/TargetRegistry.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "isl/union_map.h"
40 #include <algorithm>
41 
42 extern "C" {
43 #include "ppcg/cuda.h"
44 #include "ppcg/gpu.h"
45 #include "ppcg/ppcg.h"
46 }
47 
48 #include "llvm/Support/Debug.h"
49 
50 using namespace polly;
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "polly-codegen-ppcg"
54 
55 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
56                                   cl::desc("Dump the computed GPU Schedule"),
57                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
58                                   cl::cat(PollyCategory));
59 
60 static cl::opt<bool>
61     DumpCode("polly-acc-dump-code",
62              cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
63              cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
64 
65 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
66                                   cl::desc("Dump the kernel LLVM-IR"),
67                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
68                                   cl::cat(PollyCategory));
69 
70 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm",
71                                    cl::desc("Dump the kernel assembly code"),
72                                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
73                                    cl::cat(PollyCategory));
74 
75 static cl::opt<bool> FastMath("polly-acc-fastmath",
76                               cl::desc("Allow unsafe math optimizations"),
77                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
78                               cl::cat(PollyCategory));
79 static cl::opt<bool> SharedMemory("polly-acc-use-shared",
80                                   cl::desc("Use shared memory"), cl::Hidden,
81                                   cl::init(false), cl::ZeroOrMore,
82                                   cl::cat(PollyCategory));
83 static cl::opt<bool> PrivateMemory("polly-acc-use-private",
84                                    cl::desc("Use private memory"), cl::Hidden,
85                                    cl::init(false), cl::ZeroOrMore,
86                                    cl::cat(PollyCategory));
87 
88 bool polly::PollyManagedMemory;
89 static cl::opt<bool, true>
90     XManagedMemory("polly-acc-codegen-managed-memory",
91                    cl::desc("Generate Host kernel code assuming"
92                             " that all memory has been"
93                             " declared as managed memory"),
94                    cl::location(PollyManagedMemory), cl::Hidden,
95                    cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
96 
97 static cl::opt<bool>
98     FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure",
99                               cl::desc("Fail and generate a backtrace if"
100                                        " verifyModule fails on the GPU "
101                                        " kernel module."),
102                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
103                               cl::cat(PollyCategory));
104 
105 static cl::opt<std::string> CUDALibDevice(
106     "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden,
107     cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"),
108     cl::ZeroOrMore, cl::cat(PollyCategory));
109 
110 static cl::opt<std::string>
111     CudaVersion("polly-acc-cuda-version",
112                 cl::desc("The CUDA version to compile for"), cl::Hidden,
113                 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory));
114 
115 static cl::opt<int>
116     MinCompute("polly-acc-mincompute",
117                cl::desc("Minimal number of compute statements to run on GPU."),
118                cl::Hidden, cl::init(10 * 512 * 512));
119 
120 extern bool polly::PerfMonitoring;
121 
122 /// Return  a unique name for a Scop, which is the scop region with the
123 /// function name.
getUniqueScopName(const Scop * S)124 std::string getUniqueScopName(const Scop *S) {
125   return "Scop Region: " + S->getNameStr() +
126          " | Function: " + std::string(S->getFunction().getName());
127 }
128 
129 /// Used to store information PPCG wants for kills. This information is
130 /// used by live range reordering.
131 ///
132 /// @see computeLiveRangeReordering
133 /// @see GPUNodeBuilder::createPPCGScop
134 /// @see GPUNodeBuilder::createPPCGProg
135 struct MustKillsInfo {
136   /// Collection of all kill statements that will be sequenced at the end of
137   /// PPCGScop->schedule.
138   ///
139   /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set`
140   /// which merges schedules in *arbitrary* order.
141   /// (we don't care about the order of the kills anyway).
142   isl::schedule KillsSchedule;
143   /// Map from kill statement instances to scalars that need to be
144   /// killed.
145   ///
146   /// We currently derive kill information for:
147   ///  1. phi nodes. PHI nodes are not alive outside the scop and can
148   ///     consequently all be killed.
149   ///  2. Scalar arrays that are not used outside the Scop. This is
150   ///     checked by `isScalarUsesContainedInScop`.
151   /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
152   isl::union_map TaggedMustKills;
153 
154   /// Tagged must kills stripped of the tags.
155   /// [params] -> { Stmt_phantom[]  -> scalar_to_kill[] }
156   isl::union_map MustKills;
157 
MustKillsInfoMustKillsInfo158   MustKillsInfo() : KillsSchedule(nullptr) {}
159 };
160 
161 /// Check if SAI's uses are entirely contained within Scop S.
162 /// If a scalar is used only with a Scop, we are free to kill it, as no data
163 /// can flow in/out of the value any more.
164 /// @see computeMustKillsInfo
isScalarUsesContainedInScop(const Scop & S,const ScopArrayInfo * SAI)165 static bool isScalarUsesContainedInScop(const Scop &S,
166                                         const ScopArrayInfo *SAI) {
167   assert(SAI->isValueKind() && "this function only deals with scalars."
168                                " Dealing with arrays required alias analysis");
169 
170   const Region &R = S.getRegion();
171   for (User *U : SAI->getBasePtr()->users()) {
172     Instruction *I = dyn_cast<Instruction>(U);
173     assert(I && "invalid user of scop array info");
174     if (!R.contains(I))
175       return false;
176   }
177   return true;
178 }
179 
180 /// Compute must-kills needed to enable live range reordering with PPCG.
181 ///
182 /// @params S The Scop to compute live range reordering information
183 /// @returns live range reordering information that can be used to setup
184 /// PPCG.
computeMustKillsInfo(const Scop & S)185 static MustKillsInfo computeMustKillsInfo(const Scop &S) {
186   const isl::space ParamSpace = S.getParamSpace();
187   MustKillsInfo Info;
188 
189   // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria:
190   //      1.1 phi nodes in scop.
191   //      1.2 scalars that are only used within the scop
192   SmallVector<isl::id, 4> KillMemIds;
193   for (ScopArrayInfo *SAI : S.arrays()) {
194     if (SAI->isPHIKind() ||
195         (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI)))
196       KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release()));
197   }
198 
199   Info.TaggedMustKills = isl::union_map::empty(ParamSpace);
200   Info.MustKills = isl::union_map::empty(ParamSpace);
201 
202   // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the
203   // schedule:
204   //     - filter: "[control] -> { }"
205   // So, we choose to not create this to keep the output a little nicer,
206   // at the cost of some code complexity.
207   Info.KillsSchedule = nullptr;
208 
209   for (isl::id &ToKillId : KillMemIds) {
210     isl::id KillStmtId = isl::id::alloc(
211         S.getIslCtx(),
212         std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr);
213 
214     // NOTE: construction of tagged_must_kill:
215     // 2. We need to construct a map:
216     //     [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
217     // To construct this, we use `isl_map_domain_product` on 2 maps`:
218     // 2a. StmtToScalar:
219     //         [param] -> { Stmt_phantom[] -> scalar_to_kill[] }
220     // 2b. PhantomRefToScalar:
221     //         [param] -> { ref_phantom[] -> scalar_to_kill[] }
222     //
223     // Combining these with `isl_map_domain_product` gives us
224     // TaggedMustKill:
225     //     [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
226 
227     // 2a. [param] -> { Stmt[] -> scalar_to_kill[] }
228     isl::map StmtToScalar = isl::map::universe(ParamSpace);
229     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId));
230     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId));
231 
232     isl::id PhantomRefId = isl::id::alloc(
233         S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(),
234         nullptr);
235 
236     // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] }
237     isl::map PhantomRefToScalar = isl::map::universe(ParamSpace);
238     PhantomRefToScalar =
239         PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId);
240     PhantomRefToScalar =
241         PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId);
242 
243     // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
244     isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar);
245     Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill);
246 
247     // 2. [param] -> { Stmt[] -> scalar_to_kill[] }
248     Info.MustKills = Info.TaggedMustKills.domain_factor_domain();
249 
250     // 3. Create the kill schedule of the form:
251     //     "[param] -> { Stmt_phantom[] }"
252     // Then add this to Info.KillsSchedule.
253     isl::space KillStmtSpace = ParamSpace;
254     KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId);
255     isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace);
256 
257     isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain);
258     if (Info.KillsSchedule)
259       Info.KillsSchedule = isl::manage(
260           isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy()));
261     else
262       Info.KillsSchedule = KillSchedule;
263   }
264 
265   return Info;
266 }
267 
268 /// Create the ast expressions for a ScopStmt.
269 ///
270 /// This function is a callback for to generate the ast expressions for each
271 /// of the scheduled ScopStmts.
pollyBuildAstExprForStmt(void * StmtT,__isl_take isl_ast_build * Build_C,isl_multi_pw_aff * (* FunctionIndex)(__isl_take isl_multi_pw_aff * MPA,isl_id * Id,void * User),void * UserIndex,isl_ast_expr * (* FunctionExpr)(isl_ast_expr * Expr,isl_id * Id,void * User),void * UserExpr)272 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
273     void *StmtT, __isl_take isl_ast_build *Build_C,
274     isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
275                                        isl_id *Id, void *User),
276     void *UserIndex,
277     isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
278     void *UserExpr) {
279 
280   ScopStmt *Stmt = (ScopStmt *)StmtT;
281 
282   if (!Stmt || !Build_C)
283     return NULL;
284 
285   isl::ast_build Build = isl::manage_copy(Build_C);
286   isl::ctx Ctx = Build.get_ctx();
287   isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0);
288 
289   Stmt->setAstBuild(Build);
290 
291   for (MemoryAccess *Acc : *Stmt) {
292     isl::map AddrFunc = Acc->getAddressFunction();
293     AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain());
294 
295     isl::id RefId = Acc->getId();
296     isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc);
297 
298     isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA);
299     MPA = MPA.coalesce();
300     MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex));
301 
302     isl::ast_expr Access = Build.access_from(MPA);
303     Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr));
304     RefToExpr = RefToExpr.set(RefId, Access);
305   }
306 
307   return RefToExpr.release();
308 }
309 
310 /// Given a LLVM Type, compute its size in bytes,
computeSizeInBytes(const Type * T)311 static int computeSizeInBytes(const Type *T) {
312   int bytes = T->getPrimitiveSizeInBits() / 8;
313   if (bytes == 0)
314     bytes = T->getScalarSizeInBits() / 8;
315   return bytes;
316 }
317 
318 /// Generate code for a GPU specific isl AST.
319 ///
320 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
321 /// generates code for general-purpose AST nodes, with special functionality
322 /// for generating GPU specific user nodes.
323 ///
324 /// @see GPUNodeBuilder::createUser
325 class GPUNodeBuilder : public IslNodeBuilder {
326 public:
GPUNodeBuilder(PollyIRBuilder & Builder,ScopAnnotator & Annotator,const DataLayout & DL,LoopInfo & LI,ScalarEvolution & SE,DominatorTree & DT,Scop & S,BasicBlock * StartBlock,gpu_prog * Prog,GPURuntime Runtime,GPUArch Arch)327   GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
328                  const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
329                  DominatorTree &DT, Scop &S, BasicBlock *StartBlock,
330                  gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch)
331       : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock),
332         Prog(Prog), Runtime(Runtime), Arch(Arch) {
333     getExprBuilder().setIDToSAI(&IDToSAI);
334   }
335 
336   /// Create after-run-time-check initialization code.
337   void initializeAfterRTH();
338 
339   /// Finalize the generated scop.
340   void finalize() override;
341 
342   /// Track if the full build process was successful.
343   ///
344   /// This value is set to false, if throughout the build process an error
345   /// occurred which prevents us from generating valid GPU code.
346   bool BuildSuccessful = true;
347 
348   /// The maximal number of loops surrounding a sequential kernel.
349   unsigned DeepestSequential = 0;
350 
351   /// The maximal number of loops surrounding a parallel kernel.
352   unsigned DeepestParallel = 0;
353 
354   /// Return the name to set for the ptx_kernel.
355   std::string getKernelFuncName(int Kernel_id);
356 
357 private:
358   /// A vector of array base pointers for which a new ScopArrayInfo was created.
359   ///
360   /// This vector is used to delete the ScopArrayInfo when it is not needed any
361   /// more.
362   std::vector<Value *> LocalArrays;
363 
364   /// A map from ScopArrays to their corresponding device allocations.
365   std::map<ScopArrayInfo *, Value *> DeviceAllocations;
366 
367   /// The current GPU context.
368   Value *GPUContext;
369 
370   /// The set of isl_ids allocated in the kernel
371   std::vector<isl_id *> KernelIds;
372 
373   /// A module containing GPU code.
374   ///
375   /// This pointer is only set in case we are currently generating GPU code.
376   std::unique_ptr<Module> GPUModule;
377 
378   /// The GPU program we generate code for.
379   gpu_prog *Prog;
380 
381   /// The GPU Runtime implementation to use (OpenCL or CUDA).
382   GPURuntime Runtime;
383 
384   /// The GPU Architecture to target.
385   GPUArch Arch;
386 
387   /// Class to free isl_ids.
388   class IslIdDeleter {
389   public:
operator ()(__isl_take isl_id * Id)390     void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
391   };
392 
393   /// A set containing all isl_ids allocated in a GPU kernel.
394   ///
395   /// By releasing this set all isl_ids will be freed.
396   std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
397 
398   IslExprBuilder::IDToScopArrayInfoTy IDToSAI;
399 
400   /// Create code for user-defined AST nodes.
401   ///
402   /// These AST nodes can be of type:
403   ///
404   ///   - ScopStmt:      A computational statement (TODO)
405   ///   - Kernel:        A GPU kernel call (TODO)
406   ///   - Data-Transfer: A GPU <-> CPU data-transfer
407   ///   - In-kernel synchronization
408   ///   - In-kernel memory copy statement
409   ///
410   /// @param UserStmt The ast node to generate code for.
411   void createUser(__isl_take isl_ast_node *UserStmt) override;
412 
413   void createFor(__isl_take isl_ast_node *Node) override;
414 
415   enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST };
416 
417   /// Create code for a data transfer statement
418   ///
419   /// @param TransferStmt The data transfer statement.
420   /// @param Direction The direction in which to transfer data.
421   void createDataTransfer(__isl_take isl_ast_node *TransferStmt,
422                           enum DataDirection Direction);
423 
424   /// Find llvm::Values referenced in GPU kernel.
425   ///
426   /// @param Kernel The kernel to scan for llvm::Values
427   ///
428   /// @returns A tuple, whose:
429   ///          - First element contains the set of values referenced by the
430   ///            kernel
431   ///          - Second element contains the set of functions referenced by the
432   ///             kernel. All functions in the set satisfy
433   ///             `isValidFunctionInKernel`.
434   ///          - Third element contains loops that have induction variables
435   ///            which are used in the kernel, *and* these loops are *neither*
436   ///            in the scop, nor do they immediately surroung the Scop.
437   ///            See [Code generation of induction variables of loops outside
438   ///            Scops]
439   std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
440              isl::space>
441   getReferencesInKernel(ppcg_kernel *Kernel);
442 
443   /// Compute the sizes of the execution grid for a given kernel.
444   ///
445   /// @param Kernel The kernel to compute grid sizes for.
446   ///
447   /// @returns A tuple with grid sizes for X and Y dimension
448   std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel);
449 
450   /// Get the managed array pointer for sending host pointers to the device.
451   /// \note
452   /// This is to be used only with managed memory
453   Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo);
454 
455   /// Compute the sizes of the thread blocks for a given kernel.
456   ///
457   /// @param Kernel The kernel to compute thread block sizes for.
458   ///
459   /// @returns A tuple with thread block sizes for X, Y, and Z dimensions.
460   std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel);
461 
462   /// Store a specific kernel launch parameter in the array of kernel launch
463   /// parameters.
464   ///
465   /// @param Parameters The list of parameters in which to store.
466   /// @param Param      The kernel launch parameter to store.
467   /// @param Index      The index in the parameter list, at which to store the
468   ///                   parameter.
469   void insertStoreParameter(Instruction *Parameters, Instruction *Param,
470                             int Index);
471 
472   /// Create kernel launch parameters.
473   ///
474   /// @param Kernel        The kernel to create parameters for.
475   /// @param F             The kernel function that has been created.
476   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
477   ///
478   /// @returns A stack allocated array with pointers to the parameter
479   ///          values that are passed to the kernel.
480   Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F,
481                                 SetVector<Value *> SubtreeValues);
482 
483   /// Create declarations for kernel variable.
484   ///
485   /// This includes shared memory declarations.
486   ///
487   /// @param Kernel        The kernel definition to create variables for.
488   /// @param FN            The function into which to generate the variables.
489   void createKernelVariables(ppcg_kernel *Kernel, Function *FN);
490 
491   /// Add CUDA annotations to module.
492   ///
493   /// Add a set of CUDA annotations that declares the maximal block dimensions
494   /// that will be used to execute the CUDA kernel. This allows the NVIDIA
495   /// PTX compiler to bound the number of allocated registers to ensure the
496   /// resulting kernel is known to run with up to as many block dimensions
497   /// as specified here.
498   ///
499   /// @param M         The module to add the annotations to.
500   /// @param BlockDimX The size of block dimension X.
501   /// @param BlockDimY The size of block dimension Y.
502   /// @param BlockDimZ The size of block dimension Z.
503   void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY,
504                           Value *BlockDimZ);
505 
506   /// Create GPU kernel.
507   ///
508   /// Code generate the kernel described by @p KernelStmt.
509   ///
510   /// @param KernelStmt The ast node to generate kernel code for.
511   void createKernel(__isl_take isl_ast_node *KernelStmt);
512 
513   /// Generate code that computes the size of an array.
514   ///
515   /// @param Array The array for which to compute a size.
516   Value *getArraySize(gpu_array_info *Array);
517 
518   /// Generate code to compute the minimal offset at which an array is accessed.
519   ///
520   /// The offset of an array is the minimal array location accessed in a scop.
521   ///
522   /// Example:
523   ///
524   ///   for (long i = 0; i < 100; i++)
525   ///     A[i + 42] += ...
526   ///
527   ///   getArrayOffset(A) results in 42.
528   ///
529   /// @param Array The array for which to compute the offset.
530   /// @returns An llvm::Value that contains the offset of the array.
531   Value *getArrayOffset(gpu_array_info *Array);
532 
533   /// Prepare the kernel arguments for kernel code generation
534   ///
535   /// @param Kernel The kernel to generate code for.
536   /// @param FN     The function created for the kernel.
537   void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN);
538 
539   /// Create kernel function.
540   ///
541   /// Create a kernel function located in a newly created module that can serve
542   /// as target for device code generation. Set the Builder to point to the
543   /// start block of this newly created function.
544   ///
545   /// @param Kernel The kernel to generate code for.
546   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
547   /// @param SubtreeFunctions The set of llvm::Functions referenced by this
548   ///                         kernel.
549   void createKernelFunction(ppcg_kernel *Kernel,
550                             SetVector<Value *> &SubtreeValues,
551                             SetVector<Function *> &SubtreeFunctions);
552 
553   /// Create the declaration of a kernel function.
554   ///
555   /// The kernel function takes as arguments:
556   ///
557   ///   - One i8 pointer for each external array reference used in the kernel.
558   ///   - Host iterators
559   ///   - Parameters
560   ///   - Other LLVM Value references (TODO)
561   ///
562   /// @param Kernel The kernel to generate the function declaration for.
563   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
564   ///
565   /// @returns The newly declared function.
566   Function *createKernelFunctionDecl(ppcg_kernel *Kernel,
567                                      SetVector<Value *> &SubtreeValues);
568 
569   /// Insert intrinsic functions to obtain thread and block ids.
570   ///
571   /// @param The kernel to generate the intrinsic functions for.
572   void insertKernelIntrinsics(ppcg_kernel *Kernel);
573 
574   /// Insert function calls to retrieve the SPIR group/local ids.
575   ///
576   /// @param Kernel The kernel to generate the function calls for.
577   /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit.
578   void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit);
579 
580   /// Setup the creation of functions referenced by the GPU kernel.
581   ///
582   /// 1. Create new function declarations in GPUModule which are the same as
583   /// SubtreeFunctions.
584   ///
585   /// 2. Populate IslNodeBuilder::ValueMap with mappings from
586   /// old functions (that come from the original module) to new functions
587   /// (that are created within GPUModule). That way, we generate references
588   /// to the correct function (in GPUModule) in BlockGenerator.
589   ///
590   /// @see IslNodeBuilder::ValueMap
591   /// @see BlockGenerator::GlobalMap
592   /// @see BlockGenerator::getNewValue
593   /// @see GPUNodeBuilder::getReferencesInKernel.
594   ///
595   /// @param SubtreeFunctions The set of llvm::Functions referenced by
596   ///                         this kernel.
597   void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions);
598 
599   /// Create a global-to-shared or shared-to-global copy statement.
600   ///
601   /// @param CopyStmt The copy statement to generate code for
602   void createKernelCopy(ppcg_kernel_stmt *CopyStmt);
603 
604   /// Create code for a ScopStmt called in @p Expr.
605   ///
606   /// @param Expr The expression containing the call.
607   /// @param KernelStmt The kernel statement referenced in the call.
608   void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt);
609 
610   /// Create an in-kernel synchronization call.
611   void createKernelSync();
612 
613   /// Create a PTX assembly string for the current GPU kernel.
614   ///
615   /// @returns A string containing the corresponding PTX assembly code.
616   std::string createKernelASM();
617 
618   /// Remove references from the dominator tree to the kernel function @p F.
619   ///
620   /// @param F The function to remove references to.
621   void clearDominators(Function *F);
622 
623   /// Remove references from scalar evolution to the kernel function @p F.
624   ///
625   /// @param F The function to remove references to.
626   void clearScalarEvolution(Function *F);
627 
628   /// Remove references from loop info to the kernel function @p F.
629   ///
630   /// @param F The function to remove references to.
631   void clearLoops(Function *F);
632 
633   /// Check if the scop requires to be linked with CUDA's libdevice.
634   bool requiresCUDALibDevice();
635 
636   /// Link with the NVIDIA libdevice library (if needed and available).
637   void addCUDALibDevice();
638 
639   /// Finalize the generation of the kernel function.
640   ///
641   /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
642   /// dump its IR to stderr.
643   ///
644   /// @returns The Assembly string of the kernel.
645   std::string finalizeKernelFunction();
646 
647   /// Finalize the generation of the kernel arguments.
648   ///
649   /// This function ensures that not-read-only scalars used in a kernel are
650   /// stored back to the global memory location they are backed with before
651   /// the kernel terminates.
652   ///
653   /// @params Kernel The kernel to finalize kernel arguments for.
654   void finalizeKernelArguments(ppcg_kernel *Kernel);
655 
656   /// Create code that allocates memory to store arrays on device.
657   void allocateDeviceArrays();
658 
659   /// Create code to prepare the managed device pointers.
660   void prepareManagedDeviceArrays();
661 
662   /// Free all allocated device arrays.
663   void freeDeviceArrays();
664 
665   /// Create a call to initialize the GPU context.
666   ///
667   /// @returns A pointer to the newly initialized context.
668   Value *createCallInitContext();
669 
670   /// Create a call to get the device pointer for a kernel allocation.
671   ///
672   /// @param Allocation The Polly GPU allocation
673   ///
674   /// @returns The device parameter corresponding to this allocation.
675   Value *createCallGetDevicePtr(Value *Allocation);
676 
677   /// Create a call to free the GPU context.
678   ///
679   /// @param Context A pointer to an initialized GPU context.
680   void createCallFreeContext(Value *Context);
681 
682   /// Create a call to allocate memory on the device.
683   ///
684   /// @param Size The size of memory to allocate
685   ///
686   /// @returns A pointer that identifies this allocation.
687   Value *createCallAllocateMemoryForDevice(Value *Size);
688 
689   /// Create a call to free a device array.
690   ///
691   /// @param Array The device array to free.
692   void createCallFreeDeviceMemory(Value *Array);
693 
694   /// Create a call to copy data from host to device.
695   ///
696   /// @param HostPtr A pointer to the host data that should be copied.
697   /// @param DevicePtr A device pointer specifying the location to copy to.
698   void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr,
699                                       Value *Size);
700 
701   /// Create a call to copy data from device to host.
702   ///
703   /// @param DevicePtr A pointer to the device data that should be copied.
704   /// @param HostPtr A host pointer specifying the location to copy to.
705   void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr,
706                                       Value *Size);
707 
708   /// Create a call to synchronize Host & Device.
709   /// \note
710   /// This is to be used only with managed memory.
711   void createCallSynchronizeDevice();
712 
713   /// Create a call to get a kernel from an assembly string.
714   ///
715   /// @param Buffer The string describing the kernel.
716   /// @param Entry  The name of the kernel function to call.
717   ///
718   /// @returns A pointer to a kernel object
719   Value *createCallGetKernel(Value *Buffer, Value *Entry);
720 
721   /// Create a call to free a GPU kernel.
722   ///
723   /// @param GPUKernel THe kernel to free.
724   void createCallFreeKernel(Value *GPUKernel);
725 
726   /// Create a call to launch a GPU kernel.
727   ///
728   /// @param GPUKernel  The kernel to launch.
729   /// @param GridDimX   The size of the first grid dimension.
730   /// @param GridDimY   The size of the second grid dimension.
731   /// @param GridBlockX The size of the first block dimension.
732   /// @param GridBlockY The size of the second block dimension.
733   /// @param GridBlockZ The size of the third block dimension.
734   /// @param Parameters A pointer to an array that contains itself pointers to
735   ///                   the parameter values passed for each kernel argument.
736   void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
737                               Value *GridDimY, Value *BlockDimX,
738                               Value *BlockDimY, Value *BlockDimZ,
739                               Value *Parameters);
740 };
741 
getKernelFuncName(int Kernel_id)742 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) {
743   return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" +
744          std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id);
745 }
746 
initializeAfterRTH()747 void GPUNodeBuilder::initializeAfterRTH() {
748   BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(),
749                                  &*Builder.GetInsertPoint(), &DT, &LI);
750   NewBB->setName("polly.acc.initialize");
751   Builder.SetInsertPoint(&NewBB->front());
752 
753   GPUContext = createCallInitContext();
754 
755   if (!PollyManagedMemory)
756     allocateDeviceArrays();
757   else
758     prepareManagedDeviceArrays();
759 }
760 
finalize()761 void GPUNodeBuilder::finalize() {
762   if (!PollyManagedMemory)
763     freeDeviceArrays();
764 
765   createCallFreeContext(GPUContext);
766   IslNodeBuilder::finalize();
767 }
768 
allocateDeviceArrays()769 void GPUNodeBuilder::allocateDeviceArrays() {
770   assert(!PollyManagedMemory &&
771          "Managed memory will directly send host pointers "
772          "to the kernel. There is no need for device arrays");
773   isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release());
774 
775   for (int i = 0; i < Prog->n_array; ++i) {
776     gpu_array_info *Array = &Prog->array[i];
777     auto *ScopArray = (ScopArrayInfo *)Array->user;
778     std::string DevArrayName("p_dev_array_");
779     DevArrayName.append(Array->name);
780 
781     Value *ArraySize = getArraySize(Array);
782     Value *Offset = getArrayOffset(Array);
783     if (Offset)
784       ArraySize = Builder.CreateSub(
785           ArraySize,
786           Builder.CreateMul(Offset,
787                             Builder.getInt64(ScopArray->getElemSizeInBytes())));
788     const SCEV *SizeSCEV = SE.getSCEV(ArraySize);
789     // It makes no sense to have an array of size 0. The CUDA API will
790     // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We
791     // choose to be defensive and catch this at the compile phase. It is
792     // most likely that we are doing something wrong with size computation.
793     if (SizeSCEV->isZero()) {
794       errs() << getUniqueScopName(&S)
795              << " has computed array size 0: " << *ArraySize
796              << " | for array: " << *(ScopArray->getBasePtr())
797              << ". This is illegal, exiting.\n";
798       report_fatal_error("array size was computed to be 0");
799     }
800 
801     Value *DevArray = createCallAllocateMemoryForDevice(ArraySize);
802     DevArray->setName(DevArrayName);
803     DeviceAllocations[ScopArray] = DevArray;
804   }
805 
806   isl_ast_build_free(Build);
807 }
808 
prepareManagedDeviceArrays()809 void GPUNodeBuilder::prepareManagedDeviceArrays() {
810   assert(PollyManagedMemory &&
811          "Device array most only be prepared in managed-memory mode");
812   for (int i = 0; i < Prog->n_array; ++i) {
813     gpu_array_info *Array = &Prog->array[i];
814     ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user;
815     Value *HostPtr;
816 
817     if (gpu_array_is_scalar(Array))
818       HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
819     else
820       HostPtr = ScopArray->getBasePtr();
821     HostPtr = getLatestValue(HostPtr);
822 
823     Value *Offset = getArrayOffset(Array);
824     if (Offset) {
825       HostPtr = Builder.CreatePointerCast(
826           HostPtr, ScopArray->getElementType()->getPointerTo());
827       HostPtr = Builder.CreateGEP(HostPtr, Offset);
828     }
829 
830     HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
831     DeviceAllocations[ScopArray] = HostPtr;
832   }
833 }
834 
addCUDAAnnotations(Module * M,Value * BlockDimX,Value * BlockDimY,Value * BlockDimZ)835 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX,
836                                         Value *BlockDimY, Value *BlockDimZ) {
837   auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations");
838 
839   for (auto &F : *M) {
840     if (F.getCallingConv() != CallingConv::PTX_Kernel)
841       continue;
842 
843     Value *V[] = {BlockDimX, BlockDimY, BlockDimZ};
844 
845     Metadata *Elements[] = {
846         ValueAsMetadata::get(&F),   MDString::get(M->getContext(), "maxntidx"),
847         ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"),
848         ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"),
849         ValueAsMetadata::get(V[2]),
850     };
851     MDNode *Node = MDNode::get(M->getContext(), Elements);
852     AnnotationNode->addOperand(Node);
853   }
854 }
855 
freeDeviceArrays()856 void GPUNodeBuilder::freeDeviceArrays() {
857   assert(!PollyManagedMemory && "Managed memory does not use device arrays");
858   for (auto &Array : DeviceAllocations)
859     createCallFreeDeviceMemory(Array.second);
860 }
861 
createCallGetKernel(Value * Buffer,Value * Entry)862 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) {
863   const char *Name = "polly_getKernel";
864   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
865   Function *F = M->getFunction(Name);
866 
867   // If F is not available, declare it.
868   if (!F) {
869     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
870     std::vector<Type *> Args;
871     Args.push_back(Builder.getInt8PtrTy());
872     Args.push_back(Builder.getInt8PtrTy());
873     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
874     F = Function::Create(Ty, Linkage, Name, M);
875   }
876 
877   return Builder.CreateCall(F, {Buffer, Entry});
878 }
879 
createCallGetDevicePtr(Value * Allocation)880 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) {
881   const char *Name = "polly_getDevicePtr";
882   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
883   Function *F = M->getFunction(Name);
884 
885   // If F is not available, declare it.
886   if (!F) {
887     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
888     std::vector<Type *> Args;
889     Args.push_back(Builder.getInt8PtrTy());
890     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
891     F = Function::Create(Ty, Linkage, Name, M);
892   }
893 
894   return Builder.CreateCall(F, {Allocation});
895 }
896 
createCallLaunchKernel(Value * GPUKernel,Value * GridDimX,Value * GridDimY,Value * BlockDimX,Value * BlockDimY,Value * BlockDimZ,Value * Parameters)897 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
898                                             Value *GridDimY, Value *BlockDimX,
899                                             Value *BlockDimY, Value *BlockDimZ,
900                                             Value *Parameters) {
901   const char *Name = "polly_launchKernel";
902   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
903   Function *F = M->getFunction(Name);
904 
905   // If F is not available, declare it.
906   if (!F) {
907     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
908     std::vector<Type *> Args;
909     Args.push_back(Builder.getInt8PtrTy());
910     Args.push_back(Builder.getInt32Ty());
911     Args.push_back(Builder.getInt32Ty());
912     Args.push_back(Builder.getInt32Ty());
913     Args.push_back(Builder.getInt32Ty());
914     Args.push_back(Builder.getInt32Ty());
915     Args.push_back(Builder.getInt8PtrTy());
916     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
917     F = Function::Create(Ty, Linkage, Name, M);
918   }
919 
920   Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
921                          BlockDimZ, Parameters});
922 }
923 
createCallFreeKernel(Value * GPUKernel)924 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) {
925   const char *Name = "polly_freeKernel";
926   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
927   Function *F = M->getFunction(Name);
928 
929   // If F is not available, declare it.
930   if (!F) {
931     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
932     std::vector<Type *> Args;
933     Args.push_back(Builder.getInt8PtrTy());
934     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
935     F = Function::Create(Ty, Linkage, Name, M);
936   }
937 
938   Builder.CreateCall(F, {GPUKernel});
939 }
940 
createCallFreeDeviceMemory(Value * Array)941 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) {
942   assert(!PollyManagedMemory &&
943          "Managed memory does not allocate or free memory "
944          "for device");
945   const char *Name = "polly_freeDeviceMemory";
946   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
947   Function *F = M->getFunction(Name);
948 
949   // If F is not available, declare it.
950   if (!F) {
951     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
952     std::vector<Type *> Args;
953     Args.push_back(Builder.getInt8PtrTy());
954     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
955     F = Function::Create(Ty, Linkage, Name, M);
956   }
957 
958   Builder.CreateCall(F, {Array});
959 }
960 
createCallAllocateMemoryForDevice(Value * Size)961 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) {
962   assert(!PollyManagedMemory &&
963          "Managed memory does not allocate or free memory "
964          "for device");
965   const char *Name = "polly_allocateMemoryForDevice";
966   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
967   Function *F = M->getFunction(Name);
968 
969   // If F is not available, declare it.
970   if (!F) {
971     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
972     std::vector<Type *> Args;
973     Args.push_back(Builder.getInt64Ty());
974     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
975     F = Function::Create(Ty, Linkage, Name, M);
976   }
977 
978   return Builder.CreateCall(F, {Size});
979 }
980 
createCallCopyFromHostToDevice(Value * HostData,Value * DeviceData,Value * Size)981 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData,
982                                                     Value *DeviceData,
983                                                     Value *Size) {
984   assert(!PollyManagedMemory &&
985          "Managed memory does not transfer memory between "
986          "device and host");
987   const char *Name = "polly_copyFromHostToDevice";
988   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
989   Function *F = M->getFunction(Name);
990 
991   // If F is not available, declare it.
992   if (!F) {
993     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
994     std::vector<Type *> Args;
995     Args.push_back(Builder.getInt8PtrTy());
996     Args.push_back(Builder.getInt8PtrTy());
997     Args.push_back(Builder.getInt64Ty());
998     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
999     F = Function::Create(Ty, Linkage, Name, M);
1000   }
1001 
1002   Builder.CreateCall(F, {HostData, DeviceData, Size});
1003 }
1004 
createCallCopyFromDeviceToHost(Value * DeviceData,Value * HostData,Value * Size)1005 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData,
1006                                                     Value *HostData,
1007                                                     Value *Size) {
1008   assert(!PollyManagedMemory &&
1009          "Managed memory does not transfer memory between "
1010          "device and host");
1011   const char *Name = "polly_copyFromDeviceToHost";
1012   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1013   Function *F = M->getFunction(Name);
1014 
1015   // If F is not available, declare it.
1016   if (!F) {
1017     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1018     std::vector<Type *> Args;
1019     Args.push_back(Builder.getInt8PtrTy());
1020     Args.push_back(Builder.getInt8PtrTy());
1021     Args.push_back(Builder.getInt64Ty());
1022     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1023     F = Function::Create(Ty, Linkage, Name, M);
1024   }
1025 
1026   Builder.CreateCall(F, {DeviceData, HostData, Size});
1027 }
1028 
createCallSynchronizeDevice()1029 void GPUNodeBuilder::createCallSynchronizeDevice() {
1030   assert(PollyManagedMemory && "explicit synchronization is only necessary for "
1031                                "managed memory");
1032   const char *Name = "polly_synchronizeDevice";
1033   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1034   Function *F = M->getFunction(Name);
1035 
1036   // If F is not available, declare it.
1037   if (!F) {
1038     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1039     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
1040     F = Function::Create(Ty, Linkage, Name, M);
1041   }
1042 
1043   Builder.CreateCall(F);
1044 }
1045 
createCallInitContext()1046 Value *GPUNodeBuilder::createCallInitContext() {
1047   const char *Name;
1048 
1049   switch (Runtime) {
1050   case GPURuntime::CUDA:
1051     Name = "polly_initContextCUDA";
1052     break;
1053   case GPURuntime::OpenCL:
1054     Name = "polly_initContextCL";
1055     break;
1056   }
1057 
1058   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1059   Function *F = M->getFunction(Name);
1060 
1061   // If F is not available, declare it.
1062   if (!F) {
1063     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1064     std::vector<Type *> Args;
1065     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
1066     F = Function::Create(Ty, Linkage, Name, M);
1067   }
1068 
1069   return Builder.CreateCall(F, {});
1070 }
1071 
createCallFreeContext(Value * Context)1072 void GPUNodeBuilder::createCallFreeContext(Value *Context) {
1073   const char *Name = "polly_freeContext";
1074   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1075   Function *F = M->getFunction(Name);
1076 
1077   // If F is not available, declare it.
1078   if (!F) {
1079     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1080     std::vector<Type *> Args;
1081     Args.push_back(Builder.getInt8PtrTy());
1082     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1083     F = Function::Create(Ty, Linkage, Name, M);
1084   }
1085 
1086   Builder.CreateCall(F, {Context});
1087 }
1088 
1089 /// Check if one string is a prefix of another.
1090 ///
1091 /// @param String The string in which to look for the prefix.
1092 /// @param Prefix The prefix to look for.
isPrefix(std::string String,std::string Prefix)1093 static bool isPrefix(std::string String, std::string Prefix) {
1094   return String.find(Prefix) == 0;
1095 }
1096 
getArraySize(gpu_array_info * Array)1097 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) {
1098   isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1099   Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size);
1100 
1101   if (!gpu_array_is_scalar(Array)) {
1102     isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound);
1103 
1104     isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0);
1105     isl::ast_expr Res = Build.expr_from(OffsetDimZero);
1106 
1107     for (unsigned int i = 1; i < Array->n_index; i++) {
1108       isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i);
1109       isl::ast_expr Expr = Build.expr_from(Bound_I);
1110       Res = Res.mul(Expr);
1111     }
1112 
1113     Value *NumElements = ExprBuilder.create(Res.release());
1114     if (NumElements->getType() != ArraySize->getType())
1115       NumElements = Builder.CreateSExt(NumElements, ArraySize->getType());
1116     ArraySize = Builder.CreateMul(ArraySize, NumElements);
1117   }
1118   return ArraySize;
1119 }
1120 
getArrayOffset(gpu_array_info * Array)1121 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) {
1122   if (gpu_array_is_scalar(Array))
1123     return nullptr;
1124 
1125   isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1126 
1127   isl::set Min = isl::manage_copy(Array->extent).lexmin();
1128 
1129   isl::set ZeroSet = isl::set::universe(Min.get_space());
1130 
1131   for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++)
1132     ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0);
1133 
1134   if (Min.is_subset(ZeroSet)) {
1135     return nullptr;
1136   }
1137 
1138   isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0));
1139 
1140   for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) {
1141     if (i > 0) {
1142       isl::pw_aff Bound_I =
1143           isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1));
1144       isl::ast_expr BExpr = Build.expr_from(Bound_I);
1145       Result = Result.mul(BExpr);
1146     }
1147     isl::pw_aff DimMin = Min.dim_min(i);
1148     isl::ast_expr MExpr = Build.expr_from(DimMin);
1149     Result = Result.add(MExpr);
1150   }
1151 
1152   return ExprBuilder.create(Result.release());
1153 }
1154 
getManagedDeviceArray(gpu_array_info * Array,ScopArrayInfo * ArrayInfo)1155 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array,
1156                                              ScopArrayInfo *ArrayInfo) {
1157   assert(PollyManagedMemory && "Only used when you wish to get a host "
1158                                "pointer for sending data to the kernel, "
1159                                "with managed memory");
1160   std::map<ScopArrayInfo *, Value *>::iterator it;
1161   it = DeviceAllocations.find(ArrayInfo);
1162   assert(it != DeviceAllocations.end() &&
1163          "Device array expected to be available");
1164   return it->second;
1165 }
1166 
createDataTransfer(__isl_take isl_ast_node * TransferStmt,enum DataDirection Direction)1167 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt,
1168                                         enum DataDirection Direction) {
1169   assert(!PollyManagedMemory && "Managed memory needs no data transfers");
1170   isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt);
1171   isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0);
1172   isl_id *Id = isl_ast_expr_get_id(Arg);
1173   auto Array = (gpu_array_info *)isl_id_get_user(Id);
1174   auto ScopArray = (ScopArrayInfo *)(Array->user);
1175 
1176   Value *Size = getArraySize(Array);
1177   Value *Offset = getArrayOffset(Array);
1178   Value *DevPtr = DeviceAllocations[ScopArray];
1179 
1180   Value *HostPtr;
1181 
1182   if (gpu_array_is_scalar(Array))
1183     HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
1184   else
1185     HostPtr = ScopArray->getBasePtr();
1186   HostPtr = getLatestValue(HostPtr);
1187 
1188   if (Offset) {
1189     HostPtr = Builder.CreatePointerCast(
1190         HostPtr, ScopArray->getElementType()->getPointerTo());
1191     HostPtr = Builder.CreateGEP(HostPtr, Offset);
1192   }
1193 
1194   HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
1195 
1196   if (Offset) {
1197     Size = Builder.CreateSub(
1198         Size, Builder.CreateMul(
1199                   Offset, Builder.getInt64(ScopArray->getElemSizeInBytes())));
1200   }
1201 
1202   if (Direction == HOST_TO_DEVICE)
1203     createCallCopyFromHostToDevice(HostPtr, DevPtr, Size);
1204   else
1205     createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size);
1206 
1207   isl_id_free(Id);
1208   isl_ast_expr_free(Arg);
1209   isl_ast_expr_free(Expr);
1210   isl_ast_node_free(TransferStmt);
1211 }
1212 
createUser(__isl_take isl_ast_node * UserStmt)1213 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
1214   isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
1215   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1216   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1217   isl_id_free(Id);
1218   isl_ast_expr_free(StmtExpr);
1219 
1220   const char *Str = isl_id_get_name(Id);
1221   if (!strcmp(Str, "kernel")) {
1222     createKernel(UserStmt);
1223     if (PollyManagedMemory)
1224       createCallSynchronizeDevice();
1225     isl_ast_expr_free(Expr);
1226     return;
1227   }
1228   if (!strcmp(Str, "init_device")) {
1229     initializeAfterRTH();
1230     isl_ast_node_free(UserStmt);
1231     isl_ast_expr_free(Expr);
1232     return;
1233   }
1234   if (!strcmp(Str, "clear_device")) {
1235     finalize();
1236     isl_ast_node_free(UserStmt);
1237     isl_ast_expr_free(Expr);
1238     return;
1239   }
1240   if (isPrefix(Str, "to_device")) {
1241     if (!PollyManagedMemory)
1242       createDataTransfer(UserStmt, HOST_TO_DEVICE);
1243     else
1244       isl_ast_node_free(UserStmt);
1245 
1246     isl_ast_expr_free(Expr);
1247     return;
1248   }
1249 
1250   if (isPrefix(Str, "from_device")) {
1251     if (!PollyManagedMemory) {
1252       createDataTransfer(UserStmt, DEVICE_TO_HOST);
1253     } else {
1254       isl_ast_node_free(UserStmt);
1255     }
1256     isl_ast_expr_free(Expr);
1257     return;
1258   }
1259 
1260   isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
1261   struct ppcg_kernel_stmt *KernelStmt =
1262       (struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
1263   isl_id_free(Anno);
1264 
1265   switch (KernelStmt->type) {
1266   case ppcg_kernel_domain:
1267     createScopStmt(Expr, KernelStmt);
1268     isl_ast_node_free(UserStmt);
1269     return;
1270   case ppcg_kernel_copy:
1271     createKernelCopy(KernelStmt);
1272     isl_ast_expr_free(Expr);
1273     isl_ast_node_free(UserStmt);
1274     return;
1275   case ppcg_kernel_sync:
1276     createKernelSync();
1277     isl_ast_expr_free(Expr);
1278     isl_ast_node_free(UserStmt);
1279     return;
1280   }
1281 
1282   isl_ast_expr_free(Expr);
1283   isl_ast_node_free(UserStmt);
1284 }
1285 
createFor(__isl_take isl_ast_node * Node)1286 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) {
1287   createForSequential(isl::manage(Node), false);
1288 }
1289 
createKernelCopy(ppcg_kernel_stmt * KernelStmt)1290 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) {
1291   isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index);
1292   LocalIndex = isl_ast_expr_address_of(LocalIndex);
1293   Value *LocalAddr = ExprBuilder.create(LocalIndex);
1294   isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index);
1295   Index = isl_ast_expr_address_of(Index);
1296   Value *GlobalAddr = ExprBuilder.create(Index);
1297 
1298   if (KernelStmt->u.c.read) {
1299     LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read");
1300     Builder.CreateStore(Load, LocalAddr);
1301   } else {
1302     LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write");
1303     Builder.CreateStore(Load, GlobalAddr);
1304   }
1305 }
1306 
createScopStmt(isl_ast_expr * Expr,ppcg_kernel_stmt * KernelStmt)1307 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr,
1308                                     ppcg_kernel_stmt *KernelStmt) {
1309   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1310   isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr;
1311 
1312   LoopToScevMapT LTS;
1313   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
1314 
1315   createSubstitutions(Expr, Stmt, LTS);
1316 
1317   if (Stmt->isBlockStmt())
1318     BlockGen.copyStmt(*Stmt, LTS, Indexes);
1319   else
1320     RegionGen.copyStmt(*Stmt, LTS, Indexes);
1321 }
1322 
createKernelSync()1323 void GPUNodeBuilder::createKernelSync() {
1324   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1325   const char *SpirName = "__gen_ocl_barrier_global";
1326 
1327   Function *Sync;
1328 
1329   switch (Arch) {
1330   case GPUArch::SPIR64:
1331   case GPUArch::SPIR32:
1332     Sync = M->getFunction(SpirName);
1333 
1334     // If Sync is not available, declare it.
1335     if (!Sync) {
1336       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1337       std::vector<Type *> Args;
1338       FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1339       Sync = Function::Create(Ty, Linkage, SpirName, M);
1340       Sync->setCallingConv(CallingConv::SPIR_FUNC);
1341     }
1342     break;
1343   case GPUArch::NVPTX64:
1344     Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
1345     break;
1346   }
1347 
1348   Builder.CreateCall(Sync, {});
1349 }
1350 
1351 /// Collect llvm::Values referenced from @p Node
1352 ///
1353 /// This function only applies to isl_ast_nodes that are user_nodes referring
1354 /// to a ScopStmt. All other node types are ignore.
1355 ///
1356 /// @param Node The node to collect references for.
1357 /// @param User A user pointer used as storage for the data that is collected.
1358 ///
1359 /// @returns isl_bool_true if data could be collected successfully.
collectReferencesInGPUStmt(__isl_keep isl_ast_node * Node,void * User)1360 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) {
1361   if (isl_ast_node_get_type(Node) != isl_ast_node_user)
1362     return isl_bool_true;
1363 
1364   isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node);
1365   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1366   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1367   const char *Str = isl_id_get_name(Id);
1368   isl_id_free(Id);
1369   isl_ast_expr_free(StmtExpr);
1370   isl_ast_expr_free(Expr);
1371 
1372   if (!isPrefix(Str, "Stmt"))
1373     return isl_bool_true;
1374 
1375   Id = isl_ast_node_get_annotation(Node);
1376   auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id);
1377   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1378   isl_id_free(Id);
1379 
1380   addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */);
1381 
1382   return isl_bool_true;
1383 }
1384 
1385 /// A list of functions that are available in NVIDIA's libdevice.
1386 const std::set<std::string> CUDALibDeviceFunctions = {
1387     "exp",      "expf",      "expl",      "cos", "cosf", "sqrt", "sqrtf",
1388     "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"};
1389 
1390 // A map from intrinsics to their corresponding libdevice functions.
1391 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = {
1392     {"llvm.exp.f64", "exp"},
1393     {"llvm.exp.f32", "expf"},
1394     {"llvm.powi.f64", "powi"},
1395     {"llvm.powi.f32", "powif"}};
1396 
1397 /// Return the corresponding CUDA libdevice function name @p Name.
1398 /// Note that this function will try to convert instrinsics in the list
1399 /// IntrinsicToLibdeviceFunc into libdevice functions.
1400 /// This is because some intrinsics such as `exp`
1401 /// are not supported by the NVPTX backend.
1402 /// If this restriction of the backend is lifted, we should refactor our code
1403 /// so that we use intrinsics whenever possible.
1404 ///
1405 /// Return "" if we are not compiling for CUDA.
getCUDALibDeviceFuntion(StringRef NameRef)1406 std::string getCUDALibDeviceFuntion(StringRef NameRef) {
1407   std::string Name = NameRef.str();
1408   auto It = IntrinsicToLibdeviceFunc.find(Name);
1409   if (It != IntrinsicToLibdeviceFunc.end())
1410     return getCUDALibDeviceFuntion(It->second);
1411 
1412   if (CUDALibDeviceFunctions.count(Name))
1413     return ("__nv_" + Name);
1414 
1415   return "";
1416 }
1417 
1418 /// Check if F is a function that we can code-generate in a GPU kernel.
isValidFunctionInKernel(llvm::Function * F,bool AllowLibDevice)1419 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) {
1420   assert(F && "F is an invalid pointer");
1421   // We string compare against the name of the function to allow
1422   // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and
1423   // "llvm.copysign".
1424   const StringRef Name = F->getName();
1425 
1426   if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0)
1427     return true;
1428 
1429   return F->isIntrinsic() &&
1430          (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") ||
1431           Name.startswith("llvm.copysign"));
1432 }
1433 
1434 /// Do not take `Function` as a subtree value.
1435 ///
1436 /// We try to take the reference of all subtree values and pass them along
1437 /// to the kernel from the host. Taking an address of any function and
1438 /// trying to pass along is nonsensical. Only allow `Value`s that are not
1439 /// `Function`s.
isValidSubtreeValue(llvm::Value * V)1440 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); }
1441 
1442 /// Return `Function`s from `RawSubtreeValues`.
1443 static SetVector<Function *>
getFunctionsFromRawSubtreeValues(SetVector<Value * > RawSubtreeValues,bool AllowCUDALibDevice)1444 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues,
1445                                  bool AllowCUDALibDevice) {
1446   SetVector<Function *> SubtreeFunctions;
1447   for (Value *It : RawSubtreeValues) {
1448     Function *F = dyn_cast<Function>(It);
1449     if (F) {
1450       assert(isValidFunctionInKernel(F, AllowCUDALibDevice) &&
1451              "Code should have bailed out by "
1452              "this point if an invalid function "
1453              "were present in a kernel.");
1454       SubtreeFunctions.insert(F);
1455     }
1456   }
1457   return SubtreeFunctions;
1458 }
1459 
1460 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
1461            isl::space>
getReferencesInKernel(ppcg_kernel * Kernel)1462 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) {
1463   SetVector<Value *> SubtreeValues;
1464   SetVector<const SCEV *> SCEVs;
1465   SetVector<const Loop *> Loops;
1466   isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params();
1467   SubtreeReferences References = {
1468       LI,         SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(),
1469       &ParamSpace};
1470 
1471   for (const auto &I : IDToValue)
1472     SubtreeValues.insert(I.second);
1473 
1474   // NOTE: this is populated in IslNodeBuilder::addParameters
1475   // See [Code generation of induction variables of loops outside Scops].
1476   for (const auto &I : OutsideLoopIterations)
1477     SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue());
1478 
1479   isl_ast_node_foreach_descendant_top_down(
1480       Kernel->tree, collectReferencesInGPUStmt, &References);
1481 
1482   for (const SCEV *Expr : SCEVs) {
1483     findValues(Expr, SE, SubtreeValues);
1484     findLoops(Expr, Loops);
1485   }
1486 
1487   Loops.remove_if([this](const Loop *L) {
1488     return S.contains(L) || L->contains(S.getEntry());
1489   });
1490 
1491   for (auto &SAI : S.arrays())
1492     SubtreeValues.remove(SAI->getBasePtr());
1493 
1494   isl_space *Space = S.getParamSpace().release();
1495   for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) {
1496     isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i);
1497     assert(IDToValue.count(Id));
1498     Value *Val = IDToValue[Id];
1499     SubtreeValues.remove(Val);
1500     isl_id_free(Id);
1501   }
1502   isl_space_free(Space);
1503 
1504   for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) {
1505     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1506     assert(IDToValue.count(Id));
1507     Value *Val = IDToValue[Id];
1508     SubtreeValues.remove(Val);
1509     isl_id_free(Id);
1510   }
1511 
1512   // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions
1513   // SubtreeValues. This is important, because we should not lose any
1514   // SubtreeValues in the process of constructing the
1515   // "ValidSubtree{Values, Functions} sets. Nor should the set
1516   // ValidSubtree{Values, Functions} have any common element.
1517   auto ValidSubtreeValuesIt =
1518       make_filter_range(SubtreeValues, isValidSubtreeValue);
1519   SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(),
1520                                         ValidSubtreeValuesIt.end());
1521 
1522   bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64;
1523 
1524   SetVector<Function *> ValidSubtreeFunctions(
1525       getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice));
1526 
1527   // @see IslNodeBuilder::getReferencesInSubtree
1528   SetVector<Value *> ReplacedValues;
1529   for (Value *V : ValidSubtreeValues) {
1530     auto It = ValueMap.find(V);
1531     if (It == ValueMap.end())
1532       ReplacedValues.insert(V);
1533     else
1534       ReplacedValues.insert(It->second);
1535   }
1536   return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops,
1537                          ParamSpace);
1538 }
1539 
clearDominators(Function * F)1540 void GPUNodeBuilder::clearDominators(Function *F) {
1541   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
1542   std::vector<BasicBlock *> Nodes;
1543   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
1544     Nodes.push_back(I->getBlock());
1545 
1546   for (BasicBlock *BB : Nodes)
1547     DT.eraseNode(BB);
1548 }
1549 
clearScalarEvolution(Function * F)1550 void GPUNodeBuilder::clearScalarEvolution(Function *F) {
1551   for (BasicBlock &BB : *F) {
1552     Loop *L = LI.getLoopFor(&BB);
1553     if (L)
1554       SE.forgetLoop(L);
1555   }
1556 }
1557 
clearLoops(Function * F)1558 void GPUNodeBuilder::clearLoops(Function *F) {
1559   SmallSet<Loop *, 1> WorkList;
1560   for (BasicBlock &BB : *F) {
1561     Loop *L = LI.getLoopFor(&BB);
1562     if (L)
1563       WorkList.insert(L);
1564   }
1565   for (auto *L : WorkList)
1566     LI.erase(L);
1567 }
1568 
getGridSizes(ppcg_kernel * Kernel)1569 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) {
1570   std::vector<Value *> Sizes;
1571   isl::ast_build Context = isl::ast_build::from_context(S.getContext());
1572 
1573   isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size);
1574   for (long i = 0; i < Kernel->n_grid; i++) {
1575     isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i);
1576     isl::ast_expr GridSize = Context.expr_from(Size);
1577     Value *Res = ExprBuilder.create(GridSize.release());
1578     Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
1579     Sizes.push_back(Res);
1580   }
1581 
1582   for (long i = Kernel->n_grid; i < 3; i++)
1583     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1584 
1585   return std::make_tuple(Sizes[0], Sizes[1]);
1586 }
1587 
1588 std::tuple<Value *, Value *, Value *>
getBlockSizes(ppcg_kernel * Kernel)1589 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) {
1590   std::vector<Value *> Sizes;
1591 
1592   for (long i = 0; i < Kernel->n_block; i++) {
1593     Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]);
1594     Sizes.push_back(Res);
1595   }
1596 
1597   for (long i = Kernel->n_block; i < 3; i++)
1598     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1599 
1600   return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]);
1601 }
1602 
insertStoreParameter(Instruction * Parameters,Instruction * Param,int Index)1603 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters,
1604                                           Instruction *Param, int Index) {
1605   Value *Slot = Builder.CreateGEP(
1606       Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1607   Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1608   Builder.CreateStore(ParamTyped, Slot);
1609 }
1610 
1611 Value *
createLaunchParameters(ppcg_kernel * Kernel,Function * F,SetVector<Value * > SubtreeValues)1612 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F,
1613                                        SetVector<Value *> SubtreeValues) {
1614   const int NumArgs = F->arg_size();
1615   std::vector<int> ArgSizes(NumArgs);
1616 
1617   // If we are using the OpenCL Runtime, we need to add the kernel argument
1618   // sizes to the end of the launch-parameter list, so OpenCL can determine
1619   // how big the respective kernel arguments are.
1620   // Here we need to reserve adequate space for that.
1621   Type *ArrayTy;
1622   if (Runtime == GPURuntime::OpenCL)
1623     ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs);
1624   else
1625     ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs);
1626 
1627   BasicBlock *EntryBlock =
1628       &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1629   auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace();
1630   std::string Launch = "polly_launch_" + std::to_string(Kernel->id);
1631   Instruction *Parameters = new AllocaInst(
1632       ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator());
1633 
1634   int Index = 0;
1635   for (long i = 0; i < Prog->n_array; i++) {
1636     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1637       continue;
1638 
1639     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1640     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1641 
1642     if (Runtime == GPURuntime::OpenCL)
1643       ArgSizes[Index] = SAI->getElemSizeInBytes();
1644 
1645     Value *DevArray = nullptr;
1646     if (PollyManagedMemory) {
1647       DevArray = getManagedDeviceArray(&Prog->array[i],
1648                                        const_cast<ScopArrayInfo *>(SAI));
1649     } else {
1650       DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)];
1651       DevArray = createCallGetDevicePtr(DevArray);
1652     }
1653     assert(DevArray != nullptr && "Array to be offloaded to device not "
1654                                   "initialized");
1655     Value *Offset = getArrayOffset(&Prog->array[i]);
1656 
1657     if (Offset) {
1658       DevArray = Builder.CreatePointerCast(
1659           DevArray, SAI->getElementType()->getPointerTo());
1660       DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset));
1661       DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy());
1662     }
1663     Value *Slot = Builder.CreateGEP(
1664         Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1665 
1666     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1667       Value *ValPtr = nullptr;
1668       if (PollyManagedMemory)
1669         ValPtr = DevArray;
1670       else
1671         ValPtr = BlockGen.getOrCreateAlloca(SAI);
1672 
1673       assert(ValPtr != nullptr && "ValPtr that should point to a valid object"
1674                                   " to be stored into Parameters");
1675       Value *ValPtrCast =
1676           Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy());
1677       Builder.CreateStore(ValPtrCast, Slot);
1678     } else {
1679       Instruction *Param =
1680           new AllocaInst(Builder.getInt8PtrTy(), AddressSpace,
1681                          Launch + "_param_" + std::to_string(Index),
1682                          EntryBlock->getTerminator());
1683       Builder.CreateStore(DevArray, Param);
1684       Value *ParamTyped =
1685           Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1686       Builder.CreateStore(ParamTyped, Slot);
1687     }
1688     Index++;
1689   }
1690 
1691   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1692 
1693   for (long i = 0; i < NumHostIters; i++) {
1694     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1695     Value *Val = IDToValue[Id];
1696     isl_id_free(Id);
1697 
1698     if (Runtime == GPURuntime::OpenCL)
1699       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1700 
1701     Instruction *Param =
1702         new AllocaInst(Val->getType(), AddressSpace,
1703                        Launch + "_param_" + std::to_string(Index),
1704                        EntryBlock->getTerminator());
1705     Builder.CreateStore(Val, Param);
1706     insertStoreParameter(Parameters, Param, Index);
1707     Index++;
1708   }
1709 
1710   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1711 
1712   for (long i = 0; i < NumVars; i++) {
1713     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1714     Value *Val = IDToValue[Id];
1715     if (ValueMap.count(Val))
1716       Val = ValueMap[Val];
1717     isl_id_free(Id);
1718 
1719     if (Runtime == GPURuntime::OpenCL)
1720       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1721 
1722     Instruction *Param =
1723         new AllocaInst(Val->getType(), AddressSpace,
1724                        Launch + "_param_" + std::to_string(Index),
1725                        EntryBlock->getTerminator());
1726     Builder.CreateStore(Val, Param);
1727     insertStoreParameter(Parameters, Param, Index);
1728     Index++;
1729   }
1730 
1731   for (auto Val : SubtreeValues) {
1732     if (Runtime == GPURuntime::OpenCL)
1733       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1734 
1735     Instruction *Param =
1736         new AllocaInst(Val->getType(), AddressSpace,
1737                        Launch + "_param_" + std::to_string(Index),
1738                        EntryBlock->getTerminator());
1739     Builder.CreateStore(Val, Param);
1740     insertStoreParameter(Parameters, Param, Index);
1741     Index++;
1742   }
1743 
1744   if (Runtime == GPURuntime::OpenCL) {
1745     for (int i = 0; i < NumArgs; i++) {
1746       Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]);
1747       Instruction *Param =
1748           new AllocaInst(Builder.getInt32Ty(), AddressSpace,
1749                          Launch + "_param_size_" + std::to_string(i),
1750                          EntryBlock->getTerminator());
1751       Builder.CreateStore(Val, Param);
1752       insertStoreParameter(Parameters, Param, Index);
1753       Index++;
1754     }
1755   }
1756 
1757   auto Location = EntryBlock->getTerminator();
1758   return new BitCastInst(Parameters, Builder.getInt8PtrTy(),
1759                          Launch + "_params_i8ptr", Location);
1760 }
1761 
setupKernelSubtreeFunctions(SetVector<Function * > SubtreeFunctions)1762 void GPUNodeBuilder::setupKernelSubtreeFunctions(
1763     SetVector<Function *> SubtreeFunctions) {
1764   for (auto Fn : SubtreeFunctions) {
1765     const std::string ClonedFnName = Fn->getName().str();
1766     Function *Clone = GPUModule->getFunction(ClonedFnName);
1767     if (!Clone)
1768       Clone =
1769           Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage,
1770                            ClonedFnName, GPUModule.get());
1771     assert(Clone && "Expected cloned function to be initialized.");
1772     assert(ValueMap.find(Fn) == ValueMap.end() &&
1773            "Fn already present in ValueMap");
1774     ValueMap[Fn] = Clone;
1775   }
1776 }
createKernel(__isl_take isl_ast_node * KernelStmt)1777 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
1778   isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
1779   ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
1780   isl_id_free(Id);
1781   isl_ast_node_free(KernelStmt);
1782 
1783   if (Kernel->n_grid > 1)
1784     DeepestParallel = std::max(
1785         DeepestParallel, (unsigned)isl_space_dim(Kernel->space, isl_dim_set));
1786   else
1787     DeepestSequential = std::max(
1788         DeepestSequential, (unsigned)isl_space_dim(Kernel->space, isl_dim_set));
1789 
1790   Value *BlockDimX, *BlockDimY, *BlockDimZ;
1791   std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel);
1792 
1793   SetVector<Value *> SubtreeValues;
1794   SetVector<Function *> SubtreeFunctions;
1795   SetVector<const Loop *> Loops;
1796   isl::space ParamSpace;
1797   std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) =
1798       getReferencesInKernel(Kernel);
1799 
1800   // Add parameters that appear only in the access function to the kernel
1801   // space. This is important to make sure that all isl_ids are passed as
1802   // parameters to the kernel, even though we may not have all parameters
1803   // in the context to improve compile time.
1804   Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release());
1805 
1806   assert(Kernel->tree && "Device AST of kernel node is empty");
1807 
1808   Instruction &HostInsertPoint = *Builder.GetInsertPoint();
1809   IslExprBuilder::IDToValueTy HostIDs = IDToValue;
1810   ValueMapT HostValueMap = ValueMap;
1811   BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap;
1812   ScalarMap.clear();
1813   BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap;
1814   EscapeMap.clear();
1815 
1816   // Create for all loops we depend on values that contain the current loop
1817   // iteration. These values are necessary to generate code for SCEVs that
1818   // depend on such loops. As a result we need to pass them to the subfunction.
1819   for (const Loop *L : Loops) {
1820     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1821                                             SE.getUnknown(Builder.getInt64(1)),
1822                                             L, SCEV::FlagAnyWrap);
1823     Value *V = generateSCEV(OuterLIV);
1824     OutsideLoopIterations[L] = SE.getUnknown(V);
1825     SubtreeValues.insert(V);
1826   }
1827 
1828   createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions);
1829   setupKernelSubtreeFunctions(SubtreeFunctions);
1830 
1831   create(isl_ast_node_copy(Kernel->tree));
1832 
1833   finalizeKernelArguments(Kernel);
1834   Function *F = Builder.GetInsertBlock()->getParent();
1835   if (Arch == GPUArch::NVPTX64)
1836     addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ);
1837   clearDominators(F);
1838   clearScalarEvolution(F);
1839   clearLoops(F);
1840 
1841   IDToValue = HostIDs;
1842 
1843   ValueMap = std::move(HostValueMap);
1844   ScalarMap = std::move(HostScalarMap);
1845   EscapeMap = std::move(HostEscapeMap);
1846   IDToSAI.clear();
1847   Annotator.resetAlternativeAliasBases();
1848   for (auto &BasePtr : LocalArrays)
1849     S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array);
1850   LocalArrays.clear();
1851 
1852   std::string ASMString = finalizeKernelFunction();
1853   Builder.SetInsertPoint(&HostInsertPoint);
1854   Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues);
1855 
1856   std::string Name = getKernelFuncName(Kernel->id);
1857   Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name);
1858   Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name");
1859   Value *GPUKernel = createCallGetKernel(KernelString, NameString);
1860 
1861   Value *GridDimX, *GridDimY;
1862   std::tie(GridDimX, GridDimY) = getGridSizes(Kernel);
1863 
1864   createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
1865                          BlockDimZ, Parameters);
1866   createCallFreeKernel(GPUKernel);
1867 
1868   for (auto Id : KernelIds)
1869     isl_id_free(Id);
1870 
1871   KernelIds.clear();
1872 }
1873 
1874 /// Compute the DataLayout string for the NVPTX backend.
1875 ///
1876 /// @param is64Bit Are we looking for a 64 bit architecture?
computeNVPTXDataLayout(bool is64Bit)1877 static std::string computeNVPTXDataLayout(bool is64Bit) {
1878   std::string Ret = "";
1879 
1880   if (!is64Bit) {
1881     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1882            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1883            "64-v128:128:128-n16:32:64";
1884   } else {
1885     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1886            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1887            "64-v128:128:128-n16:32:64";
1888   }
1889 
1890   return Ret;
1891 }
1892 
1893 /// Compute the DataLayout string for a SPIR kernel.
1894 ///
1895 /// @param is64Bit Are we looking for a 64 bit architecture?
computeSPIRDataLayout(bool is64Bit)1896 static std::string computeSPIRDataLayout(bool is64Bit) {
1897   std::string Ret = "";
1898 
1899   if (!is64Bit) {
1900     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1901            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1902            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1903            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1904   } else {
1905     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1906            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1907            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1908            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1909   }
1910 
1911   return Ret;
1912 }
1913 
1914 Function *
createKernelFunctionDecl(ppcg_kernel * Kernel,SetVector<Value * > & SubtreeValues)1915 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel,
1916                                          SetVector<Value *> &SubtreeValues) {
1917   std::vector<Type *> Args;
1918   std::string Identifier = getKernelFuncName(Kernel->id);
1919 
1920   std::vector<Metadata *> MemoryType;
1921 
1922   for (long i = 0; i < Prog->n_array; i++) {
1923     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1924       continue;
1925 
1926     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1927       isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1928       const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1929       Args.push_back(SAI->getElementType());
1930       MemoryType.push_back(
1931           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1932     } else {
1933       static const int UseGlobalMemory = 1;
1934       Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory));
1935       MemoryType.push_back(
1936           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1)));
1937     }
1938   }
1939 
1940   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1941 
1942   for (long i = 0; i < NumHostIters; i++) {
1943     Args.push_back(Builder.getInt64Ty());
1944     MemoryType.push_back(
1945         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1946   }
1947 
1948   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1949 
1950   for (long i = 0; i < NumVars; i++) {
1951     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1952     Value *Val = IDToValue[Id];
1953     isl_id_free(Id);
1954     Args.push_back(Val->getType());
1955     MemoryType.push_back(
1956         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1957   }
1958 
1959   for (auto *V : SubtreeValues) {
1960     Args.push_back(V->getType());
1961     MemoryType.push_back(
1962         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1963   }
1964 
1965   auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
1966   auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
1967                               GPUModule.get());
1968 
1969   std::vector<Metadata *> EmptyStrings;
1970 
1971   for (unsigned int i = 0; i < MemoryType.size(); i++) {
1972     EmptyStrings.push_back(MDString::get(FN->getContext(), ""));
1973   }
1974 
1975   if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) {
1976     FN->setMetadata("kernel_arg_addr_space",
1977                     MDNode::get(FN->getContext(), MemoryType));
1978     FN->setMetadata("kernel_arg_name",
1979                     MDNode::get(FN->getContext(), EmptyStrings));
1980     FN->setMetadata("kernel_arg_access_qual",
1981                     MDNode::get(FN->getContext(), EmptyStrings));
1982     FN->setMetadata("kernel_arg_type",
1983                     MDNode::get(FN->getContext(), EmptyStrings));
1984     FN->setMetadata("kernel_arg_type_qual",
1985                     MDNode::get(FN->getContext(), EmptyStrings));
1986     FN->setMetadata("kernel_arg_base_type",
1987                     MDNode::get(FN->getContext(), EmptyStrings));
1988   }
1989 
1990   switch (Arch) {
1991   case GPUArch::NVPTX64:
1992     FN->setCallingConv(CallingConv::PTX_Kernel);
1993     break;
1994   case GPUArch::SPIR32:
1995   case GPUArch::SPIR64:
1996     FN->setCallingConv(CallingConv::SPIR_KERNEL);
1997     break;
1998   }
1999 
2000   auto Arg = FN->arg_begin();
2001   for (long i = 0; i < Kernel->n_array; i++) {
2002     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2003       continue;
2004 
2005     Arg->setName(Kernel->array[i].array->name);
2006 
2007     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2008     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2009     Type *EleTy = SAI->getElementType();
2010     Value *Val = &*Arg;
2011     SmallVector<const SCEV *, 4> Sizes;
2012     isl_ast_build *Build =
2013         isl_ast_build_from_context(isl_set_copy(Prog->context));
2014     Sizes.push_back(nullptr);
2015     for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) {
2016       isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff(
2017           Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j));
2018       auto V = ExprBuilder.create(DimSize);
2019       Sizes.push_back(SE.getSCEV(V));
2020     }
2021     const ScopArrayInfo *SAIRep =
2022         S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array);
2023     LocalArrays.push_back(Val);
2024 
2025     isl_ast_build_free(Build);
2026     KernelIds.push_back(Id);
2027     IDToSAI[Id] = SAIRep;
2028     Arg++;
2029   }
2030 
2031   for (long i = 0; i < NumHostIters; i++) {
2032     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
2033     Arg->setName(isl_id_get_name(Id));
2034     IDToValue[Id] = &*Arg;
2035     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2036     Arg++;
2037   }
2038 
2039   for (long i = 0; i < NumVars; i++) {
2040     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
2041     Arg->setName(isl_id_get_name(Id));
2042     Value *Val = IDToValue[Id];
2043     ValueMap[Val] = &*Arg;
2044     IDToValue[Id] = &*Arg;
2045     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2046     Arg++;
2047   }
2048 
2049   for (auto *V : SubtreeValues) {
2050     Arg->setName(V->getName());
2051     ValueMap[V] = &*Arg;
2052     Arg++;
2053   }
2054 
2055   return FN;
2056 }
2057 
insertKernelIntrinsics(ppcg_kernel * Kernel)2058 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
2059   Intrinsic::ID IntrinsicsBID[2];
2060   Intrinsic::ID IntrinsicsTID[3];
2061 
2062   switch (Arch) {
2063   case GPUArch::SPIR64:
2064   case GPUArch::SPIR32:
2065     llvm_unreachable("Cannot generate NVVM intrinsics for SPIR");
2066   case GPUArch::NVPTX64:
2067     IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x;
2068     IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y;
2069 
2070     IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x;
2071     IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y;
2072     IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z;
2073     break;
2074   }
2075 
2076   auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
2077     std::string Name = isl_id_get_name(Id);
2078     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2079     Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
2080     Value *Val = Builder.CreateCall(IntrinsicFn, {});
2081     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2082     IDToValue[Id] = Val;
2083     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2084   };
2085 
2086   for (int i = 0; i < Kernel->n_grid; ++i) {
2087     isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
2088     addId(Id, IntrinsicsBID[i]);
2089   }
2090 
2091   for (int i = 0; i < Kernel->n_block; ++i) {
2092     isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
2093     addId(Id, IntrinsicsTID[i]);
2094   }
2095 }
2096 
insertKernelCallsSPIR(ppcg_kernel * Kernel,bool SizeTypeIs64bit)2097 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel,
2098                                            bool SizeTypeIs64bit) {
2099   const char *GroupName[3] = {"__gen_ocl_get_group_id0",
2100                               "__gen_ocl_get_group_id1",
2101                               "__gen_ocl_get_group_id2"};
2102 
2103   const char *LocalName[3] = {"__gen_ocl_get_local_id0",
2104                               "__gen_ocl_get_local_id1",
2105                               "__gen_ocl_get_local_id2"};
2106   IntegerType *SizeT =
2107       SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty();
2108 
2109   auto createFunc = [this](const char *Name, __isl_take isl_id *Id,
2110                            IntegerType *SizeT) mutable {
2111     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2112     Function *FN = M->getFunction(Name);
2113 
2114     // If FN is not available, declare it.
2115     if (!FN) {
2116       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
2117       std::vector<Type *> Args;
2118       FunctionType *Ty = FunctionType::get(SizeT, Args, false);
2119       FN = Function::Create(Ty, Linkage, Name, M);
2120       FN->setCallingConv(CallingConv::SPIR_FUNC);
2121     }
2122 
2123     Value *Val = Builder.CreateCall(FN, {});
2124     if (SizeT == Builder.getInt32Ty())
2125       Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2126     IDToValue[Id] = Val;
2127     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2128   };
2129 
2130   for (int i = 0; i < Kernel->n_grid; ++i)
2131     createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT);
2132 
2133   for (int i = 0; i < Kernel->n_block; ++i)
2134     createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT);
2135 }
2136 
prepareKernelArguments(ppcg_kernel * Kernel,Function * FN)2137 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) {
2138   auto Arg = FN->arg_begin();
2139   for (long i = 0; i < Kernel->n_array; i++) {
2140     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2141       continue;
2142 
2143     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2144     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2145     isl_id_free(Id);
2146 
2147     if (SAI->getNumberOfDimensions() > 0) {
2148       Arg++;
2149       continue;
2150     }
2151 
2152     Value *Val = &*Arg;
2153 
2154     if (!gpu_array_is_read_only_scalar(&Prog->array[i])) {
2155       Type *TypePtr = SAI->getElementType()->getPointerTo();
2156       Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr);
2157       Val = Builder.CreateLoad(TypedArgPtr);
2158     }
2159 
2160     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2161     Builder.CreateStore(Val, Alloca);
2162 
2163     Arg++;
2164   }
2165 }
2166 
finalizeKernelArguments(ppcg_kernel * Kernel)2167 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) {
2168   auto *FN = Builder.GetInsertBlock()->getParent();
2169   auto Arg = FN->arg_begin();
2170 
2171   bool StoredScalar = false;
2172   for (long i = 0; i < Kernel->n_array; i++) {
2173     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2174       continue;
2175 
2176     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2177     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2178     isl_id_free(Id);
2179 
2180     if (SAI->getNumberOfDimensions() > 0) {
2181       Arg++;
2182       continue;
2183     }
2184 
2185     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
2186       Arg++;
2187       continue;
2188     }
2189 
2190     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2191     Value *ArgPtr = &*Arg;
2192     Type *TypePtr = SAI->getElementType()->getPointerTo();
2193     Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr);
2194     Value *Val = Builder.CreateLoad(Alloca);
2195     Builder.CreateStore(Val, TypedArgPtr);
2196     StoredScalar = true;
2197 
2198     Arg++;
2199   }
2200 
2201   if (StoredScalar) {
2202     /// In case more than one thread contains scalar stores, the generated
2203     /// code might be incorrect, if we only store at the end of the kernel.
2204     /// To support this case we need to store these scalars back at each
2205     /// memory store or at least before each kernel barrier.
2206     if (Kernel->n_block != 0 || Kernel->n_grid != 0) {
2207       BuildSuccessful = 0;
2208       LLVM_DEBUG(
2209           dbgs() << getUniqueScopName(&S)
2210                  << " has a store to a scalar value that"
2211                     " would be undefined to run in parallel. Bailing out.\n";);
2212     }
2213   }
2214 }
2215 
createKernelVariables(ppcg_kernel * Kernel,Function * FN)2216 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) {
2217   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2218 
2219   for (int i = 0; i < Kernel->n_var; ++i) {
2220     struct ppcg_kernel_var &Var = Kernel->var[i];
2221     isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set);
2222     Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType();
2223 
2224     Type *ArrayTy = EleTy;
2225     SmallVector<const SCEV *, 4> Sizes;
2226 
2227     Sizes.push_back(nullptr);
2228     for (unsigned int j = 1; j < Var.array->n_index; ++j) {
2229       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2230       long Bound = isl_val_get_num_si(Val);
2231       isl_val_free(Val);
2232       Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound));
2233     }
2234 
2235     for (int j = Var.array->n_index - 1; j >= 0; --j) {
2236       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2237       long Bound = isl_val_get_num_si(Val);
2238       isl_val_free(Val);
2239       ArrayTy = ArrayType::get(ArrayTy, Bound);
2240     }
2241 
2242     const ScopArrayInfo *SAI;
2243     Value *Allocation;
2244     if (Var.type == ppcg_access_shared) {
2245       auto GlobalVar = new GlobalVariable(
2246           *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name,
2247           nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3);
2248       GlobalVar->setAlignment(llvm::Align(EleTy->getPrimitiveSizeInBits() / 8));
2249       GlobalVar->setInitializer(Constant::getNullValue(ArrayTy));
2250 
2251       Allocation = GlobalVar;
2252     } else if (Var.type == ppcg_access_private) {
2253       Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array");
2254     } else {
2255       llvm_unreachable("unknown variable type");
2256     }
2257     SAI =
2258         S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array);
2259     Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr);
2260     IDToValue[Id] = Allocation;
2261     LocalArrays.push_back(Allocation);
2262     KernelIds.push_back(Id);
2263     IDToSAI[Id] = SAI;
2264   }
2265 }
2266 
createKernelFunction(ppcg_kernel * Kernel,SetVector<Value * > & SubtreeValues,SetVector<Function * > & SubtreeFunctions)2267 void GPUNodeBuilder::createKernelFunction(
2268     ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues,
2269     SetVector<Function *> &SubtreeFunctions) {
2270   std::string Identifier = getKernelFuncName(Kernel->id);
2271   GPUModule.reset(new Module(Identifier, Builder.getContext()));
2272 
2273   switch (Arch) {
2274   case GPUArch::NVPTX64:
2275     if (Runtime == GPURuntime::CUDA)
2276       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2277     else if (Runtime == GPURuntime::OpenCL)
2278       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl"));
2279     GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
2280     break;
2281   case GPUArch::SPIR32:
2282     GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown"));
2283     GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */));
2284     break;
2285   case GPUArch::SPIR64:
2286     GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown"));
2287     GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */));
2288     break;
2289   }
2290 
2291   Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues);
2292 
2293   BasicBlock *PrevBlock = Builder.GetInsertBlock();
2294   auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
2295 
2296   DT.addNewBlock(EntryBlock, PrevBlock);
2297 
2298   Builder.SetInsertPoint(EntryBlock);
2299   Builder.CreateRetVoid();
2300   Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
2301 
2302   ScopDetection::markFunctionAsInvalid(FN);
2303 
2304   prepareKernelArguments(Kernel, FN);
2305   createKernelVariables(Kernel, FN);
2306 
2307   switch (Arch) {
2308   case GPUArch::NVPTX64:
2309     insertKernelIntrinsics(Kernel);
2310     break;
2311   case GPUArch::SPIR32:
2312     insertKernelCallsSPIR(Kernel, false);
2313     break;
2314   case GPUArch::SPIR64:
2315     insertKernelCallsSPIR(Kernel, true);
2316     break;
2317   }
2318 }
2319 
createKernelASM()2320 std::string GPUNodeBuilder::createKernelASM() {
2321   llvm::Triple GPUTriple;
2322 
2323   switch (Arch) {
2324   case GPUArch::NVPTX64:
2325     switch (Runtime) {
2326     case GPURuntime::CUDA:
2327       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda"));
2328       break;
2329     case GPURuntime::OpenCL:
2330       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl"));
2331       break;
2332     }
2333     break;
2334   case GPUArch::SPIR64:
2335   case GPUArch::SPIR32:
2336     std::string SPIRAssembly;
2337     raw_string_ostream IROstream(SPIRAssembly);
2338     IROstream << *GPUModule;
2339     IROstream.flush();
2340     return SPIRAssembly;
2341   }
2342 
2343   std::string ErrMsg;
2344   auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg);
2345 
2346   if (!GPUTarget) {
2347     errs() << ErrMsg << "\n";
2348     return "";
2349   }
2350 
2351   TargetOptions Options;
2352   Options.UnsafeFPMath = FastMath;
2353 
2354   std::string subtarget;
2355 
2356   switch (Arch) {
2357   case GPUArch::NVPTX64:
2358     subtarget = CudaVersion;
2359     break;
2360   case GPUArch::SPIR32:
2361   case GPUArch::SPIR64:
2362     llvm_unreachable("No subtarget for SPIR architecture");
2363   }
2364 
2365   std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine(
2366       GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>()));
2367 
2368   SmallString<0> ASMString;
2369   raw_svector_ostream ASMStream(ASMString);
2370   llvm::legacy::PassManager PM;
2371 
2372   PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis()));
2373 
2374   if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, CGFT_AssemblyFile,
2375                                    true /* verify */)) {
2376     errs() << "The target does not support generation of this file type!\n";
2377     return "";
2378   }
2379 
2380   PM.run(*GPUModule);
2381 
2382   return ASMStream.str().str();
2383 }
2384 
requiresCUDALibDevice()2385 bool GPUNodeBuilder::requiresCUDALibDevice() {
2386   bool RequiresLibDevice = false;
2387   for (Function &F : GPUModule->functions()) {
2388     if (!F.isDeclaration())
2389       continue;
2390 
2391     const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName());
2392     if (CUDALibDeviceFunc.length() != 0) {
2393       // We need to handle the case where a module looks like this:
2394       // @expf(..)
2395       // @llvm.exp.f64(..)
2396       // Both of these functions would be renamed to `__nv_expf`.
2397       //
2398       // So, we must first check for the existence of the libdevice function.
2399       // If this exists, we replace our current function with it.
2400       //
2401       // If it does not exist, we rename the current function to the
2402       // libdevice functiono name.
2403       if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc))
2404         F.replaceAllUsesWith(Replacement);
2405       else
2406         F.setName(CUDALibDeviceFunc);
2407       RequiresLibDevice = true;
2408     }
2409   }
2410 
2411   return RequiresLibDevice;
2412 }
2413 
addCUDALibDevice()2414 void GPUNodeBuilder::addCUDALibDevice() {
2415   if (Arch != GPUArch::NVPTX64)
2416     return;
2417 
2418   if (requiresCUDALibDevice()) {
2419     SMDiagnostic Error;
2420 
2421     errs() << CUDALibDevice << "\n";
2422     auto LibDeviceModule =
2423         parseIRFile(CUDALibDevice, Error, GPUModule->getContext());
2424 
2425     if (!LibDeviceModule) {
2426       BuildSuccessful = false;
2427       report_fatal_error("Could not find or load libdevice. Skipping GPU "
2428                          "kernel generation. Please set -polly-acc-libdevice "
2429                          "accordingly.\n");
2430       return;
2431     }
2432 
2433     Linker L(*GPUModule);
2434 
2435     // Set an nvptx64 target triple to avoid linker warnings. The original
2436     // triple of the libdevice files are nvptx-unknown-unknown.
2437     LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2438     L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded);
2439   }
2440 }
2441 
finalizeKernelFunction()2442 std::string GPUNodeBuilder::finalizeKernelFunction() {
2443 
2444   if (verifyModule(*GPUModule)) {
2445     LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n";
2446                GPUModule->print(dbgs(), nullptr); dbgs() << "\n";);
2447     LLVM_DEBUG(dbgs() << "verifyModule Error:\n";
2448                verifyModule(*GPUModule, &dbgs()););
2449 
2450     if (FailOnVerifyModuleFailure)
2451       llvm_unreachable("VerifyModule failed.");
2452 
2453     BuildSuccessful = false;
2454     return "";
2455   }
2456 
2457   addCUDALibDevice();
2458 
2459   if (DumpKernelIR)
2460     outs() << *GPUModule << "\n";
2461 
2462   if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) {
2463     // Optimize module.
2464     llvm::legacy::PassManager OptPasses;
2465     PassManagerBuilder PassBuilder;
2466     PassBuilder.OptLevel = 3;
2467     PassBuilder.SizeLevel = 0;
2468     PassBuilder.populateModulePassManager(OptPasses);
2469     OptPasses.run(*GPUModule);
2470   }
2471 
2472   std::string Assembly = createKernelASM();
2473 
2474   if (DumpKernelASM)
2475     outs() << Assembly << "\n";
2476 
2477   GPUModule.release();
2478   KernelIDs.clear();
2479 
2480   return Assembly;
2481 }
2482 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff`
2483 /// @param PwAffs The list of piecewise affine functions to create an
2484 ///               `isl_pw_aff_list` from. We expect an rvalue ref because
2485 ///               all the isl_pw_aff are used up by this function.
2486 ///
2487 /// @returns  The `isl_pw_aff_list`.
2488 __isl_give isl_pw_aff_list *
createPwAffList(isl_ctx * Context,const std::vector<__isl_take isl_pw_aff * > && PwAffs)2489 createPwAffList(isl_ctx *Context,
2490                 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) {
2491   isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size());
2492 
2493   for (unsigned i = 0; i < PwAffs.size(); i++) {
2494     List = isl_pw_aff_list_insert(List, i, PwAffs[i]);
2495   }
2496   return List;
2497 }
2498 
2499 /// Align all the `PwAffs` such that they have the same parameter dimensions.
2500 ///
2501 /// We loop over all `pw_aff` and align all of their spaces together to
2502 /// create a common space for all the `pw_aff`. This common space is the
2503 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start
2504 /// with the given `SeedSpace`.
2505 /// @param PwAffs    The list of piecewise affine functions we want to align.
2506 ///                  This is an rvalue reference because the entire vector is
2507 ///                  used up by the end of the operation.
2508 /// @param SeedSpace The space to start the alignment process with.
2509 /// @returns         A std::pair, whose first element is the aligned space,
2510 ///                  whose second element is the vector of aligned piecewise
2511 ///                  affines.
2512 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>>
alignPwAffs(const std::vector<__isl_take isl_pw_aff * > && PwAffs,__isl_take isl_space * SeedSpace)2513 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs,
2514             __isl_take isl_space *SeedSpace) {
2515   assert(SeedSpace && "Invalid seed space given.");
2516 
2517   isl_space *AlignSpace = SeedSpace;
2518   for (isl_pw_aff *PwAff : PwAffs) {
2519     isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff);
2520     AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace);
2521   }
2522   std::vector<isl_pw_aff *> AdjustedPwAffs;
2523 
2524   for (unsigned i = 0; i < PwAffs.size(); i++) {
2525     isl_pw_aff *Adjusted = PwAffs[i];
2526     assert(Adjusted && "Invalid pw_aff given.");
2527     Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace));
2528     AdjustedPwAffs.push_back(Adjusted);
2529   }
2530   return std::make_pair(AlignSpace, AdjustedPwAffs);
2531 }
2532 
2533 namespace {
2534 class PPCGCodeGeneration : public ScopPass {
2535 public:
2536   static char ID;
2537 
2538   GPURuntime Runtime = GPURuntime::CUDA;
2539 
2540   GPUArch Architecture = GPUArch::NVPTX64;
2541 
2542   /// The scop that is currently processed.
2543   Scop *S;
2544 
2545   LoopInfo *LI;
2546   DominatorTree *DT;
2547   ScalarEvolution *SE;
2548   const DataLayout *DL;
2549   RegionInfo *RI;
2550 
PPCGCodeGeneration()2551   PPCGCodeGeneration() : ScopPass(ID) {}
2552 
2553   /// Construct compilation options for PPCG.
2554   ///
2555   /// @returns The compilation options.
createPPCGOptions()2556   ppcg_options *createPPCGOptions() {
2557     auto DebugOptions =
2558         (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
2559     auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
2560 
2561     DebugOptions->dump_schedule_constraints = false;
2562     DebugOptions->dump_schedule = false;
2563     DebugOptions->dump_final_schedule = false;
2564     DebugOptions->dump_sizes = false;
2565     DebugOptions->verbose = false;
2566 
2567     Options->debug = DebugOptions;
2568 
2569     Options->group_chains = false;
2570     Options->reschedule = true;
2571     Options->scale_tile_loops = false;
2572     Options->wrap = false;
2573 
2574     Options->non_negative_parameters = false;
2575     Options->ctx = nullptr;
2576     Options->sizes = nullptr;
2577 
2578     Options->tile = true;
2579     Options->tile_size = 32;
2580 
2581     Options->isolate_full_tiles = false;
2582 
2583     Options->use_private_memory = PrivateMemory;
2584     Options->use_shared_memory = SharedMemory;
2585     Options->max_shared_memory = 48 * 1024;
2586 
2587     Options->target = PPCG_TARGET_CUDA;
2588     Options->openmp = false;
2589     Options->linearize_device_arrays = true;
2590     Options->allow_gnu_extensions = false;
2591 
2592     Options->unroll_copy_shared = false;
2593     Options->unroll_gpu_tile = false;
2594     Options->live_range_reordering = true;
2595 
2596     Options->live_range_reordering = true;
2597     Options->hybrid = false;
2598     Options->opencl_compiler_options = nullptr;
2599     Options->opencl_use_gpu = false;
2600     Options->opencl_n_include_file = 0;
2601     Options->opencl_include_files = nullptr;
2602     Options->opencl_print_kernel_types = false;
2603     Options->opencl_embed_kernel_code = false;
2604 
2605     Options->save_schedule_file = nullptr;
2606     Options->load_schedule_file = nullptr;
2607 
2608     return Options;
2609   }
2610 
2611   /// Get a tagged access relation containing all accesses of type @p AccessTy.
2612   ///
2613   /// Instead of a normal access of the form:
2614   ///
2615   ///   Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
2616   ///
2617   /// a tagged access has the form
2618   ///
2619   ///   [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
2620   ///
2621   /// where 'id' is an additional space that references the memory access that
2622   /// triggered the access.
2623   ///
2624   /// @param AccessTy The type of the memory accesses to collect.
2625   ///
2626   /// @return The relation describing all tagged memory accesses.
getTaggedAccesses(enum MemoryAccess::AccessType AccessTy)2627   isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
2628     isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release());
2629 
2630     for (auto &Stmt : *S)
2631       for (auto &Acc : Stmt)
2632         if (Acc->getType() == AccessTy) {
2633           isl_map *Relation = Acc->getAccessRelation().release();
2634           Relation =
2635               isl_map_intersect_domain(Relation, Stmt.getDomain().release());
2636 
2637           isl_space *Space = isl_map_get_space(Relation);
2638           Space = isl_space_range(Space);
2639           Space = isl_space_from_range(Space);
2640           Space =
2641               isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2642           isl_map *Universe = isl_map_universe(Space);
2643           Relation = isl_map_domain_product(Relation, Universe);
2644           Accesses = isl_union_map_add_map(Accesses, Relation);
2645         }
2646 
2647     return Accesses;
2648   }
2649 
2650   /// Get the set of all read accesses, tagged with the access id.
2651   ///
2652   /// @see getTaggedAccesses
getTaggedReads()2653   isl_union_map *getTaggedReads() {
2654     return getTaggedAccesses(MemoryAccess::READ);
2655   }
2656 
2657   /// Get the set of all may (and must) accesses, tagged with the access id.
2658   ///
2659   /// @see getTaggedAccesses
getTaggedMayWrites()2660   isl_union_map *getTaggedMayWrites() {
2661     return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
2662                                getTaggedAccesses(MemoryAccess::MUST_WRITE));
2663   }
2664 
2665   /// Get the set of all must accesses, tagged with the access id.
2666   ///
2667   /// @see getTaggedAccesses
getTaggedMustWrites()2668   isl_union_map *getTaggedMustWrites() {
2669     return getTaggedAccesses(MemoryAccess::MUST_WRITE);
2670   }
2671 
2672   /// Collect parameter and array names as isl_ids.
2673   ///
2674   /// To reason about the different parameters and arrays used, ppcg requires
2675   /// a list of all isl_ids in use. As PPCG traditionally performs
2676   /// source-to-source compilation each of these isl_ids is mapped to the
2677   /// expression that represents it. As we do not have a corresponding
2678   /// expression in Polly, we just map each id to a 'zero' expression to match
2679   /// the data format that ppcg expects.
2680   ///
2681   /// @returns Retun a map from collected ids to 'zero' ast expressions.
getNames()2682   __isl_give isl_id_to_ast_expr *getNames() {
2683     auto *Names = isl_id_to_ast_expr_alloc(
2684         S->getIslCtx().get(),
2685         S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
2686     auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get()));
2687 
2688     for (const SCEV *P : S->parameters()) {
2689       isl_id *Id = S->getIdForParam(P).release();
2690       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2691     }
2692 
2693     for (auto &Array : S->arrays()) {
2694       auto Id = Array->getBasePtrId().release();
2695       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2696     }
2697 
2698     isl_ast_expr_free(Zero);
2699 
2700     return Names;
2701   }
2702 
2703   /// Create a new PPCG scop from the current scop.
2704   ///
2705   /// The PPCG scop is initialized with data from the current polly::Scop. From
2706   /// this initial data, the data-dependences in the PPCG scop are initialized.
2707   /// We do not use Polly's dependence analysis for now, to ensure we match
2708   /// the PPCG default behaviour more closely.
2709   ///
2710   /// @returns A new ppcg scop.
createPPCGScop()2711   ppcg_scop *createPPCGScop() {
2712     MustKillsInfo KillsInfo = computeMustKillsInfo(*S);
2713 
2714     auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
2715 
2716     PPCGScop->options = createPPCGOptions();
2717     // enable live range reordering
2718     PPCGScop->options->live_range_reordering = 1;
2719 
2720     PPCGScop->start = 0;
2721     PPCGScop->end = 0;
2722 
2723     PPCGScop->context = S->getContext().release();
2724     PPCGScop->domain = S->getDomains().release();
2725     // TODO: investigate this further. PPCG calls collect_call_domains.
2726     PPCGScop->call = isl_union_set_from_set(S->getContext().release());
2727     PPCGScop->tagged_reads = getTaggedReads();
2728     PPCGScop->reads = S->getReads().release();
2729     PPCGScop->live_in = nullptr;
2730     PPCGScop->tagged_may_writes = getTaggedMayWrites();
2731     PPCGScop->may_writes = S->getWrites().release();
2732     PPCGScop->tagged_must_writes = getTaggedMustWrites();
2733     PPCGScop->must_writes = S->getMustWrites().release();
2734     PPCGScop->live_out = nullptr;
2735     PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release();
2736     PPCGScop->must_kills = KillsInfo.MustKills.release();
2737 
2738     PPCGScop->tagger = nullptr;
2739     PPCGScop->independence =
2740         isl_union_map_empty(isl_set_get_space(PPCGScop->context));
2741     PPCGScop->dep_flow = nullptr;
2742     PPCGScop->tagged_dep_flow = nullptr;
2743     PPCGScop->dep_false = nullptr;
2744     PPCGScop->dep_forced = nullptr;
2745     PPCGScop->dep_order = nullptr;
2746     PPCGScop->tagged_dep_order = nullptr;
2747 
2748     PPCGScop->schedule = S->getScheduleTree().release();
2749     // If we have something non-trivial to kill, add it to the schedule
2750     if (KillsInfo.KillsSchedule.get())
2751       PPCGScop->schedule = isl_schedule_sequence(
2752           PPCGScop->schedule, KillsInfo.KillsSchedule.release());
2753 
2754     PPCGScop->names = getNames();
2755     PPCGScop->pet = nullptr;
2756 
2757     compute_tagger(PPCGScop);
2758     compute_dependences(PPCGScop);
2759     eliminate_dead_code(PPCGScop);
2760 
2761     return PPCGScop;
2762   }
2763 
2764   /// Collect the array accesses in a statement.
2765   ///
2766   /// @param Stmt The statement for which to collect the accesses.
2767   ///
2768   /// @returns A list of array accesses.
getStmtAccesses(ScopStmt & Stmt)2769   gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
2770     gpu_stmt_access *Accesses = nullptr;
2771 
2772     for (MemoryAccess *Acc : Stmt) {
2773       auto Access =
2774           isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access);
2775       Access->read = Acc->isRead();
2776       Access->write = Acc->isWrite();
2777       Access->access = Acc->getAccessRelation().release();
2778       isl_space *Space = isl_map_get_space(Access->access);
2779       Space = isl_space_range(Space);
2780       Space = isl_space_from_range(Space);
2781       Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2782       isl_map *Universe = isl_map_universe(Space);
2783       Access->tagged_access =
2784           isl_map_domain_product(Acc->getAccessRelation().release(), Universe);
2785       Access->exact_write = !Acc->isMayWrite();
2786       Access->ref_id = Acc->getId().release();
2787       Access->next = Accesses;
2788       Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions();
2789       // TODO: Also mark one-element accesses to arrays as fixed-element.
2790       Access->fixed_element =
2791           Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false;
2792       Accesses = Access;
2793     }
2794 
2795     return Accesses;
2796   }
2797 
2798   /// Collect the list of GPU statements.
2799   ///
2800   /// Each statement has an id, a pointer to the underlying data structure,
2801   /// as well as a list with all memory accesses.
2802   ///
2803   /// TODO: Initialize the list of memory accesses.
2804   ///
2805   /// @returns A linked-list of statements.
getStatements()2806   gpu_stmt *getStatements() {
2807     gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt,
2808                                        std::distance(S->begin(), S->end()));
2809 
2810     int i = 0;
2811     for (auto &Stmt : *S) {
2812       gpu_stmt *GPUStmt = &Stmts[i];
2813 
2814       GPUStmt->id = Stmt.getDomainId().release();
2815 
2816       // We use the pet stmt pointer to keep track of the Polly statements.
2817       GPUStmt->stmt = (pet_stmt *)&Stmt;
2818       GPUStmt->accesses = getStmtAccesses(Stmt);
2819       i++;
2820     }
2821 
2822     return Stmts;
2823   }
2824 
2825   /// Derive the extent of an array.
2826   ///
2827   /// The extent of an array is the set of elements that are within the
2828   /// accessed array. For the inner dimensions, the extent constraints are
2829   /// 0 and the size of the corresponding array dimension. For the first
2830   /// (outermost) dimension, the extent constraints are the minimal and maximal
2831   /// subscript value for the first dimension.
2832   ///
2833   /// @param Array The array to derive the extent for.
2834   ///
2835   /// @returns An isl_set describing the extent of the array.
getExtent(ScopArrayInfo * Array)2836   isl::set getExtent(ScopArrayInfo *Array) {
2837     unsigned NumDims = Array->getNumberOfDimensions();
2838 
2839     if (Array->getNumberOfDimensions() == 0)
2840       return isl::set::universe(Array->getSpace());
2841 
2842     isl::union_map Accesses = S->getAccesses(Array);
2843     isl::union_set AccessUSet = Accesses.range();
2844     AccessUSet = AccessUSet.coalesce();
2845     AccessUSet = AccessUSet.detect_equalities();
2846     AccessUSet = AccessUSet.coalesce();
2847 
2848     if (AccessUSet.is_empty())
2849       return isl::set::empty(Array->getSpace());
2850 
2851     isl::set AccessSet = AccessUSet.extract_set(Array->getSpace());
2852 
2853     isl::local_space LS = isl::local_space(Array->getSpace());
2854 
2855     isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0);
2856     isl::pw_aff OuterMin = AccessSet.dim_min(0);
2857     isl::pw_aff OuterMax = AccessSet.dim_max(0);
2858     OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2859     OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2860     OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2861     OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2862 
2863     isl::set Extent = isl::set::universe(Array->getSpace());
2864 
2865     Extent = Extent.intersect(OuterMin.le_set(Val));
2866     Extent = Extent.intersect(OuterMax.ge_set(Val));
2867 
2868     for (unsigned i = 1; i < NumDims; ++i)
2869       Extent = Extent.lower_bound_si(isl::dim::set, i, 0);
2870 
2871     for (unsigned i = 0; i < NumDims; ++i) {
2872       isl::pw_aff PwAff = Array->getDimensionSizePw(i);
2873 
2874       // isl_pw_aff can be NULL for zero dimension. Only in the case of a
2875       // Fortran array will we have a legitimate dimension.
2876       if (PwAff.is_null()) {
2877         assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension");
2878         continue;
2879       }
2880 
2881       isl::pw_aff Val = isl::aff::var_on_domain(
2882           isl::local_space(Array->getSpace()), isl::dim::set, i);
2883       PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2884       PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in));
2885       isl::set Set = PwAff.gt_set(Val);
2886       Extent = Set.intersect(Extent);
2887     }
2888 
2889     return Extent;
2890   }
2891 
2892   /// Derive the bounds of an array.
2893   ///
2894   /// For the first dimension we derive the bound of the array from the extent
2895   /// of this dimension. For inner dimensions we obtain their size directly from
2896   /// ScopArrayInfo.
2897   ///
2898   /// @param PPCGArray The array to compute bounds for.
2899   /// @param Array The polly array from which to take the information.
setArrayBounds(gpu_array_info & PPCGArray,ScopArrayInfo * Array)2900   void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
2901     std::vector<isl_pw_aff *> Bounds;
2902 
2903     if (PPCGArray.n_index > 0) {
2904       if (isl_set_is_empty(PPCGArray.extent)) {
2905         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2906         isl_local_space *LS = isl_local_space_from_space(
2907             isl_space_params(isl_set_get_space(Dom)));
2908         isl_set_free(Dom);
2909         isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS));
2910         Bounds.push_back(Zero);
2911       } else {
2912         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2913         Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
2914         isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
2915         isl_set_free(Dom);
2916         Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
2917         isl_local_space *LS =
2918             isl_local_space_from_space(isl_set_get_space(Dom));
2919         isl_aff *One = isl_aff_zero_on_domain(LS);
2920         One = isl_aff_add_constant_si(One, 1);
2921         Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
2922         Bound = isl_pw_aff_gist(Bound, S->getContext().release());
2923         Bounds.push_back(Bound);
2924       }
2925     }
2926 
2927     for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
2928       isl_pw_aff *Bound = Array->getDimensionSizePw(i).release();
2929       auto LS = isl_pw_aff_get_domain_space(Bound);
2930       auto Aff = isl_multi_aff_zero(LS);
2931 
2932       // We need types to work out, which is why we perform this weird dance
2933       // with `Aff` and `Bound`. Consider this example:
2934 
2935       // LS: [p] -> { [] }
2936       // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }.
2937       // This `~` is used to denote a "null space" (which is different from
2938       // a *zero dimensional* space), which is something that ISL does not
2939       // show you when pretty printing.
2940 
2941       // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional*
2942       // space, not a "null space" which does not exist at all.
2943 
2944       // When we pullback (precompose) `Bound` with `Zero`, we get:
2945       // Bound . Zero =
2946       //     ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) =
2947       //     [p] -> { ~ -> [(10p)] } =
2948       //     [p] -> [(10p)] (as ISL pretty prints it)
2949       // Bound Pullback: [p] -> { [(10p)] }
2950 
2951       // We want this kind of an expression for Bound, without a
2952       // zero dimensional input, but with a "null space" input for the types
2953       // to work out later on, as far as I (Siddharth Bhat) understand.
2954       // I was unable to find a reference to this in the ISL manual.
2955       // References: Tobias Grosser.
2956 
2957       Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
2958       Bounds.push_back(Bound);
2959     }
2960 
2961     /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff`
2962     /// to have the same parameter dimensions. So, we need to align them to an
2963     /// appropriate space.
2964     /// Scop::Context is _not_ an appropriate space, because when we have
2965     /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not
2966     /// contain all parameter dimensions.
2967     /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together.
2968     isl_space *SeedAlignSpace = S->getParamSpace().release();
2969     SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1);
2970 
2971     isl_space *AlignSpace = nullptr;
2972     std::vector<isl_pw_aff *> AlignedBounds;
2973     std::tie(AlignSpace, AlignedBounds) =
2974         alignPwAffs(std::move(Bounds), SeedAlignSpace);
2975 
2976     assert(AlignSpace && "alignPwAffs did not initialise AlignSpace");
2977 
2978     isl_pw_aff_list *BoundsList =
2979         createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds));
2980 
2981     isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent);
2982     BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace);
2983 
2984     assert(BoundsSpace && "Unable to access space of array.");
2985     assert(BoundsList && "Unable to access list of bounds.");
2986 
2987     PPCGArray.bound =
2988         isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList);
2989     assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly.");
2990   }
2991 
2992   /// Create the arrays for @p PPCGProg.
2993   ///
2994   /// @param PPCGProg The program to compute the arrays for.
createArrays(gpu_prog * PPCGProg,const SmallVector<ScopArrayInfo *,4> & ValidSAIs)2995   void createArrays(gpu_prog *PPCGProg,
2996                     const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) {
2997     int i = 0;
2998     for (auto &Array : ValidSAIs) {
2999       std::string TypeName;
3000       raw_string_ostream OS(TypeName);
3001 
3002       OS << *Array->getElementType();
3003       TypeName = OS.str();
3004 
3005       gpu_array_info &PPCGArray = PPCGProg->array[i];
3006 
3007       PPCGArray.space = Array->getSpace().release();
3008       PPCGArray.type = strdup(TypeName.c_str());
3009       PPCGArray.size = DL->getTypeAllocSize(Array->getElementType());
3010       PPCGArray.name = strdup(Array->getName().c_str());
3011       PPCGArray.extent = nullptr;
3012       PPCGArray.n_index = Array->getNumberOfDimensions();
3013       PPCGArray.extent = getExtent(Array).release();
3014       PPCGArray.n_ref = 0;
3015       PPCGArray.refs = nullptr;
3016       PPCGArray.accessed = true;
3017       PPCGArray.read_only_scalar =
3018           Array->isReadOnly() && Array->getNumberOfDimensions() == 0;
3019       PPCGArray.has_compound_element = false;
3020       PPCGArray.local = false;
3021       PPCGArray.declare_local = false;
3022       PPCGArray.global = false;
3023       PPCGArray.linearize = false;
3024       PPCGArray.dep_order = nullptr;
3025       PPCGArray.user = Array;
3026 
3027       PPCGArray.bound = nullptr;
3028       setArrayBounds(PPCGArray, Array);
3029       i++;
3030 
3031       collect_references(PPCGProg, &PPCGArray);
3032       PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray);
3033     }
3034   }
3035 
3036   /// Create an identity map between the arrays in the scop.
3037   ///
3038   /// @returns An identity map between the arrays in the scop.
getArrayIdentity()3039   isl_union_map *getArrayIdentity() {
3040     isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release());
3041 
3042     for (auto &Array : S->arrays()) {
3043       isl_space *Space = Array->getSpace().release();
3044       Space = isl_space_map_from_set(Space);
3045       isl_map *Identity = isl_map_identity(Space);
3046       Maps = isl_union_map_add_map(Maps, Identity);
3047     }
3048 
3049     return Maps;
3050   }
3051 
3052   /// Create a default-initialized PPCG GPU program.
3053   ///
3054   /// @returns A new gpu program description.
createPPCGProg(ppcg_scop * PPCGScop)3055   gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
3056 
3057     if (!PPCGScop)
3058       return nullptr;
3059 
3060     auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog);
3061 
3062     PPCGProg->ctx = S->getIslCtx().get();
3063     PPCGProg->scop = PPCGScop;
3064     PPCGProg->context = isl_set_copy(PPCGScop->context);
3065     PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
3066     PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
3067     PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
3068     PPCGProg->tagged_must_kill =
3069         isl_union_map_copy(PPCGScop->tagged_must_kills);
3070     PPCGProg->to_inner = getArrayIdentity();
3071     PPCGProg->to_outer = getArrayIdentity();
3072     // TODO: verify that this assignment is correct.
3073     PPCGProg->any_to_outer = nullptr;
3074     PPCGProg->n_stmts = std::distance(S->begin(), S->end());
3075     PPCGProg->stmts = getStatements();
3076 
3077     // Only consider arrays that have a non-empty extent.
3078     // Otherwise, this will cause us to consider the following kinds of
3079     // empty arrays:
3080     //     1. Invariant loads that are represented by SAI objects.
3081     //     2. Arrays with statically known zero size.
3082     auto ValidSAIsRange =
3083         make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool {
3084           return !getExtent(SAI).is_empty();
3085         });
3086     SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(),
3087                                               ValidSAIsRange.end());
3088 
3089     PPCGProg->n_array =
3090         ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end());
3091     PPCGProg->array = isl_calloc_array(
3092         S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array);
3093 
3094     createArrays(PPCGProg, ValidSAIs);
3095 
3096     PPCGProg->array_order = nullptr;
3097     collect_order_dependences(PPCGProg);
3098 
3099     PPCGProg->may_persist = compute_may_persist(PPCGProg);
3100     return PPCGProg;
3101   }
3102 
3103   struct PrintGPUUserData {
3104     struct cuda_info *CudaInfo;
3105     struct gpu_prog *PPCGProg;
3106     std::vector<ppcg_kernel *> Kernels;
3107   };
3108 
3109   /// Print a user statement node in the host code.
3110   ///
3111   /// We use ppcg's printing facilities to print the actual statement and
3112   /// additionally build up a list of all kernels that are encountered in the
3113   /// host ast.
3114   ///
3115   /// @param P The printer to print to
3116   /// @param Options The printing options to use
3117   /// @param Node The node to print
3118   /// @param User A user pointer to carry additional data. This pointer is
3119   ///             expected to be of type PrintGPUUserData.
3120   ///
3121   /// @returns A printer to which the output has been printed.
3122   static __isl_give isl_printer *
printHostUser(__isl_take isl_printer * P,__isl_take isl_ast_print_options * Options,__isl_take isl_ast_node * Node,void * User)3123   printHostUser(__isl_take isl_printer *P,
3124                 __isl_take isl_ast_print_options *Options,
3125                 __isl_take isl_ast_node *Node, void *User) {
3126     auto Data = (struct PrintGPUUserData *)User;
3127     auto Id = isl_ast_node_get_annotation(Node);
3128 
3129     if (Id) {
3130       bool IsUser = !strcmp(isl_id_get_name(Id), "user");
3131 
3132       // If this is a user statement, format it ourselves as ppcg would
3133       // otherwise try to call pet functionality that is not available in
3134       // Polly.
3135       if (IsUser) {
3136         P = isl_printer_start_line(P);
3137         P = isl_printer_print_ast_node(P, Node);
3138         P = isl_printer_end_line(P);
3139         isl_id_free(Id);
3140         isl_ast_print_options_free(Options);
3141         return P;
3142       }
3143 
3144       auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
3145       isl_id_free(Id);
3146       Data->Kernels.push_back(Kernel);
3147     }
3148 
3149     return print_host_user(P, Options, Node, User);
3150   }
3151 
3152   /// Print C code corresponding to the control flow in @p Kernel.
3153   ///
3154   /// @param Kernel The kernel to print
printKernel(ppcg_kernel * Kernel)3155   void printKernel(ppcg_kernel *Kernel) {
3156     auto *P = isl_printer_to_str(S->getIslCtx().get());
3157     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3158     auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get());
3159     P = isl_ast_node_print(Kernel->tree, P, Options);
3160     char *String = isl_printer_get_str(P);
3161     outs() << String << "\n";
3162     free(String);
3163     isl_printer_free(P);
3164   }
3165 
3166   /// Print C code corresponding to the GPU code described by @p Tree.
3167   ///
3168   /// @param Tree An AST describing GPU code
3169   /// @param PPCGProg The PPCG program from which @Tree has been constructed.
printGPUTree(isl_ast_node * Tree,gpu_prog * PPCGProg)3170   void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
3171     auto *P = isl_printer_to_str(S->getIslCtx().get());
3172     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3173 
3174     PrintGPUUserData Data;
3175     Data.PPCGProg = PPCGProg;
3176 
3177     auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get());
3178     Options =
3179         isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
3180     P = isl_ast_node_print(Tree, P, Options);
3181     char *String = isl_printer_get_str(P);
3182     outs() << "# host\n";
3183     outs() << String << "\n";
3184     free(String);
3185     isl_printer_free(P);
3186 
3187     for (auto Kernel : Data.Kernels) {
3188       outs() << "# kernel" << Kernel->id << "\n";
3189       printKernel(Kernel);
3190     }
3191   }
3192 
3193   // Generate a GPU program using PPCG.
3194   //
3195   // GPU mapping consists of multiple steps:
3196   //
3197   //  1) Compute new schedule for the program.
3198   //  2) Map schedule to GPU (TODO)
3199   //  3) Generate code for new schedule (TODO)
3200   //
3201   // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
3202   // is mostly CPU specific. Instead, we use PPCG's GPU code generation
3203   // strategy directly from this pass.
generateGPU(ppcg_scop * PPCGScop,gpu_prog * PPCGProg)3204   gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
3205 
3206     auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen);
3207 
3208     PPCGGen->ctx = S->getIslCtx().get();
3209     PPCGGen->options = PPCGScop->options;
3210     PPCGGen->print = nullptr;
3211     PPCGGen->print_user = nullptr;
3212     PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
3213     PPCGGen->prog = PPCGProg;
3214     PPCGGen->tree = nullptr;
3215     PPCGGen->types.n = 0;
3216     PPCGGen->types.name = nullptr;
3217     PPCGGen->sizes = nullptr;
3218     PPCGGen->used_sizes = nullptr;
3219     PPCGGen->kernel_id = 0;
3220 
3221     // Set scheduling strategy to same strategy PPCG is using.
3222     isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
3223     isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
3224     isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
3225 
3226     isl_schedule *Schedule = get_schedule(PPCGGen);
3227 
3228     int has_permutable = has_any_permutable_node(Schedule);
3229 
3230     Schedule =
3231         isl_schedule_align_params(Schedule, S->getFullParamSpace().release());
3232 
3233     if (!has_permutable || has_permutable < 0) {
3234       Schedule = isl_schedule_free(Schedule);
3235       LLVM_DEBUG(dbgs() << getUniqueScopName(S)
3236                         << " does not have permutable bands. Bailing out\n";);
3237     } else {
3238       const bool CreateTransferToFromDevice = !PollyManagedMemory;
3239       Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice);
3240       PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
3241     }
3242 
3243     if (DumpSchedule) {
3244       isl_printer *P = isl_printer_to_str(S->getIslCtx().get());
3245       P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
3246       P = isl_printer_print_str(P, "Schedule\n");
3247       P = isl_printer_print_str(P, "========\n");
3248       if (Schedule)
3249         P = isl_printer_print_schedule(P, Schedule);
3250       else
3251         P = isl_printer_print_str(P, "No schedule found\n");
3252 
3253       outs() << isl_printer_get_str(P) << "\n";
3254       isl_printer_free(P);
3255     }
3256 
3257     if (DumpCode) {
3258       outs() << "Code\n";
3259       outs() << "====\n";
3260       if (PPCGGen->tree)
3261         printGPUTree(PPCGGen->tree, PPCGProg);
3262       else
3263         outs() << "No code generated\n";
3264     }
3265 
3266     isl_schedule_free(Schedule);
3267 
3268     return PPCGGen;
3269   }
3270 
3271   /// Free gpu_gen structure.
3272   ///
3273   /// @param PPCGGen The ppcg_gen object to free.
freePPCGGen(gpu_gen * PPCGGen)3274   void freePPCGGen(gpu_gen *PPCGGen) {
3275     isl_ast_node_free(PPCGGen->tree);
3276     isl_union_map_free(PPCGGen->sizes);
3277     isl_union_map_free(PPCGGen->used_sizes);
3278     free(PPCGGen);
3279   }
3280 
3281   /// Free the options in the ppcg scop structure.
3282   ///
3283   /// ppcg is not freeing these options for us. To avoid leaks we do this
3284   /// ourselves.
3285   ///
3286   /// @param PPCGScop The scop referencing the options to free.
freeOptions(ppcg_scop * PPCGScop)3287   void freeOptions(ppcg_scop *PPCGScop) {
3288     free(PPCGScop->options->debug);
3289     PPCGScop->options->debug = nullptr;
3290     free(PPCGScop->options);
3291     PPCGScop->options = nullptr;
3292   }
3293 
3294   /// Approximate the number of points in the set.
3295   ///
3296   /// This function returns an ast expression that overapproximates the number
3297   /// of points in an isl set through the rectangular hull surrounding this set.
3298   ///
3299   /// @param Set   The set to count.
3300   /// @param Build The isl ast build object to use for creating the ast
3301   ///              expression.
3302   ///
3303   /// @returns An approximation of the number of points in the set.
approxPointsInSet(__isl_take isl_set * Set,__isl_keep isl_ast_build * Build)3304   __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set,
3305                                              __isl_keep isl_ast_build *Build) {
3306 
3307     isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1);
3308     auto *Expr = isl_ast_expr_from_val(isl_val_copy(One));
3309 
3310     isl_space *Space = isl_set_get_space(Set);
3311     Space = isl_space_params(Space);
3312     auto *Univ = isl_set_universe(Space);
3313     isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One);
3314 
3315     for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) {
3316       isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i);
3317       isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i);
3318       isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min);
3319       DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff));
3320       auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize);
3321       Expr = isl_ast_expr_mul(Expr, DimSizeExpr);
3322     }
3323 
3324     isl_set_free(Set);
3325     isl_pw_aff_free(OneAff);
3326 
3327     return Expr;
3328   }
3329 
3330   /// Approximate a number of dynamic instructions executed by a given
3331   /// statement.
3332   ///
3333   /// @param Stmt  The statement for which to compute the number of dynamic
3334   ///              instructions.
3335   /// @param Build The isl ast build object to use for creating the ast
3336   ///              expression.
3337   /// @returns An approximation of the number of dynamic instructions executed
3338   ///          by @p Stmt.
approxDynamicInst(ScopStmt & Stmt,__isl_keep isl_ast_build * Build)3339   __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt,
3340                                              __isl_keep isl_ast_build *Build) {
3341     auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build);
3342 
3343     long InstCount = 0;
3344 
3345     if (Stmt.isBlockStmt()) {
3346       auto *BB = Stmt.getBasicBlock();
3347       InstCount = std::distance(BB->begin(), BB->end());
3348     } else {
3349       auto *R = Stmt.getRegion();
3350 
3351       for (auto *BB : R->blocks()) {
3352         InstCount += std::distance(BB->begin(), BB->end());
3353       }
3354     }
3355 
3356     isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount);
3357     auto *InstExpr = isl_ast_expr_from_val(InstVal);
3358     return isl_ast_expr_mul(InstExpr, Iterations);
3359   }
3360 
3361   /// Approximate dynamic instructions executed in scop.
3362   ///
3363   /// @param S     The scop for which to approximate dynamic instructions.
3364   /// @param Build The isl ast build object to use for creating the ast
3365   ///              expression.
3366   /// @returns An approximation of the number of dynamic instructions executed
3367   ///          in @p S.
3368   __isl_give isl_ast_expr *
getNumberOfIterations(Scop & S,__isl_keep isl_ast_build * Build)3369   getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) {
3370     isl_ast_expr *Instructions;
3371 
3372     isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0);
3373     Instructions = isl_ast_expr_from_val(Zero);
3374 
3375     for (ScopStmt &Stmt : S) {
3376       isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build);
3377       Instructions = isl_ast_expr_add(Instructions, StmtInstructions);
3378     }
3379     return Instructions;
3380   }
3381 
3382   /// Create a check that ensures sufficient compute in scop.
3383   ///
3384   /// @param S     The scop for which to ensure sufficient compute.
3385   /// @param Build The isl ast build object to use for creating the ast
3386   ///              expression.
3387   /// @returns An expression that evaluates to TRUE in case of sufficient
3388   ///          compute and to FALSE, otherwise.
3389   __isl_give isl_ast_expr *
createSufficientComputeCheck(Scop & S,__isl_keep isl_ast_build * Build)3390   createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) {
3391     auto Iterations = getNumberOfIterations(S, Build);
3392     auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute);
3393     auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal);
3394     return isl_ast_expr_ge(Iterations, MinComputeExpr);
3395   }
3396 
3397   /// Check if the basic block contains a function we cannot codegen for GPU
3398   /// kernels.
3399   ///
3400   /// If this basic block does something with a `Function` other than calling
3401   /// a function that we support in a kernel, return true.
containsInvalidKernelFunctionInBlock(const BasicBlock * BB,bool AllowCUDALibDevice)3402   bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB,
3403                                             bool AllowCUDALibDevice) {
3404     for (const Instruction &Inst : *BB) {
3405       const CallInst *Call = dyn_cast<CallInst>(&Inst);
3406       if (Call && isValidFunctionInKernel(Call->getCalledFunction(),
3407                                           AllowCUDALibDevice))
3408         continue;
3409 
3410       for (Value *Op : Inst.operands())
3411         // Look for (<func-type>*) among operands of Inst
3412         if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) {
3413           if (isa<FunctionType>(PtrTy->getElementType())) {
3414             LLVM_DEBUG(dbgs()
3415                        << Inst << " has illegal use of function in kernel.\n");
3416             return true;
3417           }
3418         }
3419     }
3420     return false;
3421   }
3422 
3423   /// Return whether the Scop S uses functions in a way that we do not support.
containsInvalidKernelFunction(const Scop & S,bool AllowCUDALibDevice)3424   bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) {
3425     for (auto &Stmt : S) {
3426       if (Stmt.isBlockStmt()) {
3427         if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(),
3428                                                  AllowCUDALibDevice))
3429           return true;
3430       } else {
3431         assert(Stmt.isRegionStmt() &&
3432                "Stmt was neither block nor region statement");
3433         for (const BasicBlock *BB : Stmt.getRegion()->blocks())
3434           if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice))
3435             return true;
3436       }
3437     }
3438     return false;
3439   }
3440 
3441   /// Generate code for a given GPU AST described by @p Root.
3442   ///
3443   /// @param Root An isl_ast_node pointing to the root of the GPU AST.
3444   /// @param Prog The GPU Program to generate code for.
generateCode(__isl_take isl_ast_node * Root,gpu_prog * Prog)3445   void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
3446     ScopAnnotator Annotator;
3447     Annotator.buildAliasScopes(*S);
3448 
3449     Region *R = &S->getRegion();
3450 
3451     simplifyRegion(R, DT, LI, RI);
3452 
3453     BasicBlock *EnteringBB = R->getEnteringBlock();
3454 
3455     PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(),
3456                            IRInserter(Annotator));
3457     Builder.SetInsertPoint(EnteringBB->getTerminator());
3458 
3459     // Only build the run-time condition and parameters _after_ having
3460     // introduced the conditional branch. This is important as the conditional
3461     // branch will guard the original scop from new induction variables that
3462     // the SCEVExpander may introduce while code generating the parameters and
3463     // which may introduce scalar dependences that prevent us from correctly
3464     // code generating this scop.
3465     BBPair StartExitBlocks;
3466     BranchInst *CondBr = nullptr;
3467     std::tie(StartExitBlocks, CondBr) =
3468         executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI);
3469     BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
3470 
3471     assert(CondBr && "CondBr not initialized by executeScopConditionally");
3472 
3473     GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S,
3474                                StartBlock, Prog, Runtime, Architecture);
3475 
3476     // TODO: Handle LICM
3477     auto SplitBlock = StartBlock->getSinglePredecessor();
3478     Builder.SetInsertPoint(SplitBlock->getTerminator());
3479 
3480     isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get());
3481     isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build);
3482     isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build);
3483     Condition = isl_ast_expr_and(Condition, SufficientCompute);
3484     isl_ast_build_free(Build);
3485 
3486     // preload invariant loads. Note: This should happen before the RTC
3487     // because the RTC may depend on values that are invariant load hoisted.
3488     if (!NodeBuilder.preloadInvariantLoads()) {
3489       // Patch the introduced branch condition to ensure that we always execute
3490       // the original SCoP.
3491       auto *FalseI1 = Builder.getFalse();
3492       auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator();
3493       SplitBBTerm->setOperand(0, FalseI1);
3494 
3495       LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " +
3496                                S->getFunction().getName() +
3497                                " | Scop Region: " + S->getNameStr());
3498       // adjust the dominator tree accordingly.
3499       auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3500       assert(ExitingBlock);
3501       auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
3502       assert(MergeBlock);
3503       polly::markBlockUnreachable(*StartBlock, Builder);
3504       polly::markBlockUnreachable(*ExitingBlock, Builder);
3505       auto *ExitingBB = S->getExitingBlock();
3506       assert(ExitingBB);
3507 
3508       DT->changeImmediateDominator(MergeBlock, ExitingBB);
3509       DT->eraseNode(ExitingBlock);
3510       isl_ast_expr_free(Condition);
3511       isl_ast_node_free(Root);
3512     } else {
3513 
3514       if (polly::PerfMonitoring) {
3515         PerfMonitor P(*S, EnteringBB->getParent()->getParent());
3516         P.initialize();
3517         P.insertRegionStart(SplitBlock->getTerminator());
3518 
3519         // TODO: actually think if this is the correct exiting block to place
3520         // the `end` performance marker. Invariant load hoisting changes
3521         // the CFG in a way that I do not precisely understand, so I
3522         // (Siddharth<siddu.druid@gmail.com>) should come back to this and
3523         // think about which exiting block to use.
3524         auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3525         assert(ExitingBlock);
3526         BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor();
3527         P.insertRegionEnd(MergeBlock->getTerminator());
3528       }
3529 
3530       NodeBuilder.addParameters(S->getContext().release());
3531       Value *RTC = NodeBuilder.createRTC(Condition);
3532       Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
3533 
3534       Builder.SetInsertPoint(&*StartBlock->begin());
3535 
3536       NodeBuilder.create(Root);
3537     }
3538 
3539     /// In case a sequential kernel has more surrounding loops as any parallel
3540     /// kernel, the SCoP is probably mostly sequential. Hence, there is no
3541     /// point in running it on a GPU.
3542     if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel)
3543       CondBr->setOperand(0, Builder.getFalse());
3544 
3545     if (!NodeBuilder.BuildSuccessful)
3546       CondBr->setOperand(0, Builder.getFalse());
3547   }
3548 
runOnScop(Scop & CurrentScop)3549   bool runOnScop(Scop &CurrentScop) override {
3550     S = &CurrentScop;
3551     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3552     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3553     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3554     DL = &S->getRegion().getEntry()->getModule()->getDataLayout();
3555     RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
3556 
3557     LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S)
3558                       << " | loop depth: " << S->getMaxLoopDepth() << "\n");
3559 
3560     // We currently do not support functions other than intrinsics inside
3561     // kernels, as code generation will need to offload function calls to the
3562     // kernel. This may lead to a kernel trying to call a function on the host.
3563     // This also allows us to prevent codegen from trying to take the
3564     // address of an intrinsic function to send to the kernel.
3565     if (containsInvalidKernelFunction(CurrentScop,
3566                                       Architecture == GPUArch::NVPTX64)) {
3567       LLVM_DEBUG(
3568           dbgs() << getUniqueScopName(S)
3569                  << " contains function which cannot be materialised in a GPU "
3570                     "kernel. Bailing out.\n";);
3571       return false;
3572     }
3573 
3574     auto PPCGScop = createPPCGScop();
3575     auto PPCGProg = createPPCGProg(PPCGScop);
3576     auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
3577 
3578     if (PPCGGen->tree) {
3579       generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
3580       CurrentScop.markAsToBeSkipped();
3581     } else {
3582       LLVM_DEBUG(dbgs() << getUniqueScopName(S)
3583                         << " has empty PPCGGen->tree. Bailing out.\n");
3584     }
3585 
3586     freeOptions(PPCGScop);
3587     freePPCGGen(PPCGGen);
3588     gpu_prog_free(PPCGProg);
3589     ppcg_scop_free(PPCGScop);
3590 
3591     return true;
3592   }
3593 
printScop(raw_ostream &,Scop &) const3594   void printScop(raw_ostream &, Scop &) const override {}
3595 
getAnalysisUsage(AnalysisUsage & AU) const3596   void getAnalysisUsage(AnalysisUsage &AU) const override {
3597     ScopPass::getAnalysisUsage(AU);
3598 
3599     AU.addRequired<DominatorTreeWrapperPass>();
3600     AU.addRequired<RegionInfoPass>();
3601     AU.addRequired<ScalarEvolutionWrapperPass>();
3602     AU.addRequired<ScopDetectionWrapperPass>();
3603     AU.addRequired<ScopInfoRegionPass>();
3604     AU.addRequired<LoopInfoWrapperPass>();
3605 
3606     // FIXME: We do not yet add regions for the newly generated code to the
3607     //        region tree.
3608   }
3609 };
3610 } // namespace
3611 
3612 char PPCGCodeGeneration::ID = 1;
3613 
createPPCGCodeGenerationPass(GPUArch Arch,GPURuntime Runtime)3614 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) {
3615   PPCGCodeGeneration *generator = new PPCGCodeGeneration();
3616   generator->Runtime = Runtime;
3617   generator->Architecture = Arch;
3618   return generator;
3619 }
3620 
3621 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
3622                       "Polly - Apply PPCG translation to SCOP", false, false)
3623 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
3624 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
3625 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
3626 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
3627 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
3628 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
3629 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
3630                     "Polly - Apply PPCG translation to SCOP", false, false)
3631