1 /*
2   Name:     imrat.c
3   Purpose:  Arbitrary precision rational arithmetic routines.
4   Author:   M. J. Fromberger <http://spinning-yarns.org/michael/>
5 
6   Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
7 
8   Permission is hereby granted, free of charge, to any person obtaining a copy
9   of this software and associated documentation files (the "Software"), to deal
10   in the Software without restriction, including without limitation the rights
11   to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12   copies of the Software, and to permit persons to whom the Software is
13   furnished to do so, subject to the following conditions:
14 
15   The above copyright notice and this permission notice shall be included in
16   all copies or substantial portions of the Software.
17 
18   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
21   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24   SOFTWARE.
25  */
26 
27 #include "imrat.h"
28 #include <stdlib.h>
29 #include <string.h>
30 #include <ctype.h>
31 #include <assert.h>
32 
33 #define TEMP(K) (temp + (K))
34 #define SETUP(E, C) \
35 do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0)
36 
37 /* Argument checking:
38    Use CHECK() where a return value is required; NRCHECK() elsewhere */
39 #define CHECK(TEST)   assert(TEST)
40 #define NRCHECK(TEST) assert(TEST)
41 
42 /* Reduce the given rational, in place, to lowest terms and canonical form.
43    Zero is represented as 0/1, one as 1/1.  Signs are adjusted so that the sign
44    of the numerator is definitive. */
45 static mp_result s_rat_reduce(mp_rat r);
46 
47 /* Common code for addition and subtraction operations on rationals. */
48 static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c,
49 			       mp_result (*comb_f)(mp_int, mp_int, mp_int));
50 
mp_rat_init(mp_rat r)51 mp_result mp_rat_init(mp_rat r)
52 {
53   mp_result res;
54 
55   if ((res = mp_int_init(MP_NUMER_P(r))) != MP_OK)
56     return res;
57   if ((res = mp_int_init(MP_DENOM_P(r))) != MP_OK) {
58     mp_int_clear(MP_NUMER_P(r));
59     return res;
60   }
61 
62   return mp_int_set_value(MP_DENOM_P(r), 1);
63 }
64 
mp_rat_alloc(void)65 mp_rat mp_rat_alloc(void)
66 {
67   mp_rat out = malloc(sizeof(*out));
68 
69   if (out != NULL) {
70     if (mp_rat_init(out) != MP_OK) {
71       free(out);
72       return NULL;
73     }
74   }
75 
76   return out;
77 }
78 
mp_rat_reduce(mp_rat r)79 mp_result mp_rat_reduce(mp_rat r) {
80   return s_rat_reduce(r);
81 }
82 
mp_rat_init_size(mp_rat r,mp_size n_prec,mp_size d_prec)83 mp_result mp_rat_init_size(mp_rat r, mp_size n_prec, mp_size d_prec)
84 {
85   mp_result res;
86 
87   if ((res = mp_int_init_size(MP_NUMER_P(r), n_prec)) != MP_OK)
88     return res;
89   if ((res = mp_int_init_size(MP_DENOM_P(r), d_prec)) != MP_OK) {
90     mp_int_clear(MP_NUMER_P(r));
91     return res;
92   }
93 
94   return mp_int_set_value(MP_DENOM_P(r), 1);
95 }
96 
mp_rat_init_copy(mp_rat r,mp_rat old)97 mp_result mp_rat_init_copy(mp_rat r, mp_rat old)
98 {
99   mp_result res;
100 
101   if ((res = mp_int_init_copy(MP_NUMER_P(r), MP_NUMER_P(old))) != MP_OK)
102     return res;
103   if ((res = mp_int_init_copy(MP_DENOM_P(r), MP_DENOM_P(old))) != MP_OK)
104     mp_int_clear(MP_NUMER_P(r));
105 
106   return res;
107 }
108 
mp_rat_set_value(mp_rat r,mp_small numer,mp_small denom)109 mp_result mp_rat_set_value(mp_rat r, mp_small numer, mp_small denom)
110 {
111   mp_result res;
112 
113   if (denom == 0)
114     return MP_UNDEF;
115 
116   if ((res = mp_int_set_value(MP_NUMER_P(r), numer)) != MP_OK)
117     return res;
118   if ((res = mp_int_set_value(MP_DENOM_P(r), denom)) != MP_OK)
119     return res;
120 
121   return s_rat_reduce(r);
122 }
123 
mp_rat_set_uvalue(mp_rat r,mp_usmall numer,mp_usmall denom)124 mp_result mp_rat_set_uvalue(mp_rat r, mp_usmall numer, mp_usmall denom)
125 {
126   mp_result res;
127 
128   if (denom == 0)
129     return MP_UNDEF;
130 
131   if ((res = mp_int_set_uvalue(MP_NUMER_P(r), numer)) != MP_OK)
132     return res;
133   if ((res = mp_int_set_uvalue(MP_DENOM_P(r), denom)) != MP_OK)
134     return res;
135 
136   return s_rat_reduce(r);
137 }
138 
mp_rat_clear(mp_rat r)139 void      mp_rat_clear(mp_rat r)
140 {
141   mp_int_clear(MP_NUMER_P(r));
142   mp_int_clear(MP_DENOM_P(r));
143 
144 }
145 
mp_rat_free(mp_rat r)146 void      mp_rat_free(mp_rat r)
147 {
148   NRCHECK(r != NULL);
149 
150   if (r->num.digits != NULL)
151     mp_rat_clear(r);
152 
153   free(r);
154 }
155 
mp_rat_numer(mp_rat r,mp_int z)156 mp_result mp_rat_numer(mp_rat r, mp_int z)
157 {
158   return mp_int_copy(MP_NUMER_P(r), z);
159 }
160 
mp_rat_numer_ref(mp_rat r)161 mp_int mp_rat_numer_ref(mp_rat r)
162 {
163   return MP_NUMER_P(r);
164 }
165 
166 
mp_rat_denom(mp_rat r,mp_int z)167 mp_result mp_rat_denom(mp_rat r, mp_int z)
168 {
169   return mp_int_copy(MP_DENOM_P(r), z);
170 }
171 
mp_rat_denom_ref(mp_rat r)172 mp_int    mp_rat_denom_ref(mp_rat r)
173 {
174   return MP_DENOM_P(r);
175 }
176 
mp_rat_sign(mp_rat r)177 mp_sign   mp_rat_sign(mp_rat r)
178 {
179   return MP_SIGN(MP_NUMER_P(r));
180 }
181 
mp_rat_copy(mp_rat a,mp_rat c)182 mp_result mp_rat_copy(mp_rat a, mp_rat c)
183 {
184   mp_result res;
185 
186   if ((res = mp_int_copy(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
187     return res;
188 
189   res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
190   return res;
191 }
192 
mp_rat_zero(mp_rat r)193 void      mp_rat_zero(mp_rat r)
194 {
195   mp_int_zero(MP_NUMER_P(r));
196   mp_int_set_value(MP_DENOM_P(r), 1);
197 
198 }
199 
mp_rat_abs(mp_rat a,mp_rat c)200 mp_result mp_rat_abs(mp_rat a, mp_rat c)
201 {
202   mp_result res;
203 
204   if ((res = mp_int_abs(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
205     return res;
206 
207   res = mp_int_abs(MP_DENOM_P(a), MP_DENOM_P(c));
208   return res;
209 }
210 
mp_rat_neg(mp_rat a,mp_rat c)211 mp_result mp_rat_neg(mp_rat a, mp_rat c)
212 {
213   mp_result res;
214 
215   if ((res = mp_int_neg(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
216     return res;
217 
218   res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
219   return res;
220 }
221 
mp_rat_recip(mp_rat a,mp_rat c)222 mp_result mp_rat_recip(mp_rat a, mp_rat c)
223 {
224   mp_result res;
225 
226   if (mp_rat_compare_zero(a) == 0)
227     return MP_UNDEF;
228 
229   if ((res = mp_rat_copy(a, c)) != MP_OK)
230     return res;
231 
232   mp_int_swap(MP_NUMER_P(c), MP_DENOM_P(c));
233 
234   /* Restore the signs of the swapped elements */
235   {
236     mp_sign tmp = MP_SIGN(MP_NUMER_P(c));
237 
238     MP_SIGN(MP_NUMER_P(c)) = MP_SIGN(MP_DENOM_P(c));
239     MP_SIGN(MP_DENOM_P(c)) = tmp;
240   }
241 
242   return MP_OK;
243 }
244 
mp_rat_add(mp_rat a,mp_rat b,mp_rat c)245 mp_result mp_rat_add(mp_rat a, mp_rat b, mp_rat c)
246 {
247   return s_rat_combine(a, b, c, mp_int_add);
248 
249 }
250 
mp_rat_sub(mp_rat a,mp_rat b,mp_rat c)251 mp_result mp_rat_sub(mp_rat a, mp_rat b, mp_rat c)
252 {
253   return s_rat_combine(a, b, c, mp_int_sub);
254 
255 }
256 
mp_rat_mul(mp_rat a,mp_rat b,mp_rat c)257 mp_result mp_rat_mul(mp_rat a, mp_rat b, mp_rat c)
258 {
259   mp_result res;
260 
261   if ((res = mp_int_mul(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK)
262     return res;
263 
264   if (mp_int_compare_zero(MP_NUMER_P(c)) != 0) {
265     if ((res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c))) != MP_OK)
266       return res;
267   }
268 
269   return s_rat_reduce(c);
270 }
271 
mp_rat_div(mp_rat a,mp_rat b,mp_rat c)272 mp_result mp_rat_div(mp_rat a, mp_rat b, mp_rat c)
273 {
274   mp_result res = MP_OK;
275 
276   if (mp_rat_compare_zero(b) == 0)
277     return MP_UNDEF;
278 
279   if (c == a || c == b) {
280     mpz_t tmp;
281 
282     if ((res = mp_int_init(&tmp)) != MP_OK) return res;
283     if ((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), &tmp)) != MP_OK)
284       goto CLEANUP;
285     if ((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK)
286       goto CLEANUP;
287     res = mp_int_copy(&tmp, MP_NUMER_P(c));
288 
289   CLEANUP:
290     mp_int_clear(&tmp);
291   }
292   else {
293     if ((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), MP_NUMER_P(c))) != MP_OK)
294       return res;
295     if ((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK)
296       return res;
297   }
298 
299   if (res != MP_OK)
300     return res;
301   else
302     return s_rat_reduce(c);
303 }
304 
mp_rat_add_int(mp_rat a,mp_int b,mp_rat c)305 mp_result mp_rat_add_int(mp_rat a, mp_int b, mp_rat c)
306 {
307   mpz_t tmp;
308   mp_result res;
309 
310   if ((res = mp_int_init_copy(&tmp, b)) != MP_OK)
311     return res;
312 
313   if ((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK)
314     goto CLEANUP;
315 
316   if ((res = mp_rat_copy(a, c)) != MP_OK)
317     goto CLEANUP;
318 
319   if ((res = mp_int_add(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK)
320     goto CLEANUP;
321 
322   res = s_rat_reduce(c);
323 
324  CLEANUP:
325   mp_int_clear(&tmp);
326   return res;
327 }
328 
mp_rat_sub_int(mp_rat a,mp_int b,mp_rat c)329 mp_result mp_rat_sub_int(mp_rat a, mp_int b, mp_rat c)
330 {
331   mpz_t tmp;
332   mp_result res;
333 
334   if ((res = mp_int_init_copy(&tmp, b)) != MP_OK)
335     return res;
336 
337   if ((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK)
338     goto CLEANUP;
339 
340   if ((res = mp_rat_copy(a, c)) != MP_OK)
341     goto CLEANUP;
342 
343   if ((res = mp_int_sub(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK)
344     goto CLEANUP;
345 
346   res = s_rat_reduce(c);
347 
348  CLEANUP:
349   mp_int_clear(&tmp);
350   return res;
351 }
352 
mp_rat_mul_int(mp_rat a,mp_int b,mp_rat c)353 mp_result mp_rat_mul_int(mp_rat a, mp_int b, mp_rat c)
354 {
355   mp_result res;
356 
357   if ((res = mp_rat_copy(a, c)) != MP_OK)
358     return res;
359 
360   if ((res = mp_int_mul(MP_NUMER_P(c), b, MP_NUMER_P(c))) != MP_OK)
361     return res;
362 
363   return s_rat_reduce(c);
364 }
365 
mp_rat_div_int(mp_rat a,mp_int b,mp_rat c)366 mp_result mp_rat_div_int(mp_rat a, mp_int b, mp_rat c)
367 {
368   mp_result res;
369 
370   if (mp_int_compare_zero(b) == 0)
371     return MP_UNDEF;
372 
373   if ((res = mp_rat_copy(a, c)) != MP_OK)
374     return res;
375 
376   if ((res = mp_int_mul(MP_DENOM_P(c), b, MP_DENOM_P(c))) != MP_OK)
377     return res;
378 
379   return s_rat_reduce(c);
380 }
381 
mp_rat_expt(mp_rat a,mp_small b,mp_rat c)382 mp_result mp_rat_expt(mp_rat a, mp_small b, mp_rat c)
383 {
384   mp_result  res;
385 
386   /* Special cases for easy powers. */
387   if (b == 0)
388     return mp_rat_set_value(c, 1, 1);
389   else if(b == 1)
390     return mp_rat_copy(a, c);
391 
392   /* Since rationals are always stored in lowest terms, it is not necessary to
393      reduce again when raising to an integer power. */
394   if ((res = mp_int_expt(MP_NUMER_P(a), b, MP_NUMER_P(c))) != MP_OK)
395     return res;
396 
397   return mp_int_expt(MP_DENOM_P(a), b, MP_DENOM_P(c));
398 }
399 
mp_rat_compare(mp_rat a,mp_rat b)400 int       mp_rat_compare(mp_rat a, mp_rat b)
401 {
402   /* Quick check for opposite signs.  Works because the sign of the numerator
403      is always definitive. */
404   if (MP_SIGN(MP_NUMER_P(a)) != MP_SIGN(MP_NUMER_P(b))) {
405     if (MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS)
406       return 1;
407     else
408       return -1;
409   }
410   else {
411     /* Compare absolute magnitudes; if both are positive, the answer stands,
412        otherwise it needs to be reflected about zero. */
413     int cmp = mp_rat_compare_unsigned(a, b);
414 
415     if (MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS)
416       return cmp;
417     else
418       return -cmp;
419   }
420 }
421 
mp_rat_compare_unsigned(mp_rat a,mp_rat b)422 int       mp_rat_compare_unsigned(mp_rat a, mp_rat b)
423 {
424   /* If the denominators are equal, we can quickly compare numerators without
425      multiplying.  Otherwise, we actually have to do some work. */
426   if (mp_int_compare_unsigned(MP_DENOM_P(a), MP_DENOM_P(b)) == 0)
427     return mp_int_compare_unsigned(MP_NUMER_P(a), MP_NUMER_P(b));
428 
429   else {
430     mpz_t  temp[2];
431     mp_result res;
432     int  cmp = INT_MAX, last = 0;
433 
434     /* t0 = num(a) * den(b), t1 = num(b) * den(a) */
435     SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
436     SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
437 
438     if ((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK ||
439 	(res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK)
440       goto CLEANUP;
441 
442     cmp = mp_int_compare_unsigned(TEMP(0), TEMP(1));
443 
444   CLEANUP:
445     while (--last >= 0)
446       mp_int_clear(TEMP(last));
447 
448     return cmp;
449   }
450 }
451 
mp_rat_compare_zero(mp_rat r)452 int       mp_rat_compare_zero(mp_rat r)
453 {
454   return mp_int_compare_zero(MP_NUMER_P(r));
455 }
456 
mp_rat_compare_value(mp_rat r,mp_small n,mp_small d)457 int       mp_rat_compare_value(mp_rat r, mp_small n, mp_small d)
458 {
459   mpq_t tmp;
460   mp_result res;
461   int  out = INT_MAX;
462 
463   if ((res = mp_rat_init(&tmp)) != MP_OK)
464     return out;
465   if ((res = mp_rat_set_value(&tmp, n, d)) != MP_OK)
466     goto CLEANUP;
467 
468   out = mp_rat_compare(r, &tmp);
469 
470  CLEANUP:
471   mp_rat_clear(&tmp);
472   return out;
473 }
474 
mp_rat_is_integer(mp_rat r)475 int       mp_rat_is_integer(mp_rat r)
476 {
477   return (mp_int_compare_value(MP_DENOM_P(r), 1) == 0);
478 }
479 
mp_rat_to_ints(mp_rat r,mp_small * num,mp_small * den)480 mp_result mp_rat_to_ints(mp_rat r, mp_small *num, mp_small *den)
481 {
482   mp_result res;
483 
484   if ((res = mp_int_to_int(MP_NUMER_P(r), num)) != MP_OK)
485     return res;
486 
487   res = mp_int_to_int(MP_DENOM_P(r), den);
488   return res;
489 }
490 
mp_rat_to_string(mp_rat r,mp_size radix,char * str,int limit)491 mp_result mp_rat_to_string(mp_rat r, mp_size radix, char *str, int limit)
492 {
493   char *start;
494   int   len;
495   mp_result res;
496 
497   /* Write the numerator.  The sign of the rational number is written by the
498      underlying integer implementation. */
499   if ((res = mp_int_to_string(MP_NUMER_P(r), radix, str, limit)) != MP_OK)
500     return res;
501 
502   /* If the value is zero, don't bother writing any denominator */
503   if (mp_int_compare_zero(MP_NUMER_P(r)) == 0)
504     return MP_OK;
505 
506   /* Locate the end of the numerator, and make sure we are not going to exceed
507      the limit by writing a slash. */
508   len = strlen(str);
509   start = str + len;
510   limit -= len;
511   if(limit == 0)
512     return MP_TRUNC;
513 
514   *start++ = '/';
515   limit -= 1;
516 
517   res = mp_int_to_string(MP_DENOM_P(r), radix, start, limit);
518   return res;
519 }
520 
mp_rat_to_decimal(mp_rat r,mp_size radix,mp_size prec,mp_round_mode round,char * str,int limit)521 mp_result mp_rat_to_decimal(mp_rat r, mp_size radix, mp_size prec,
522                             mp_round_mode round, char *str, int limit)
523 {
524   mpz_t temp[3];
525   mp_result res;
526   char *start = str;
527   int len, lead_0, left = limit, last = 0;
528 
529   SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(r)), last);
530   SETUP(mp_int_init(TEMP(last)), last);
531   SETUP(mp_int_init(TEMP(last)), last);
532 
533   /* Get the unsigned integer part by dividing denominator into the absolute
534      value of the numerator. */
535   mp_int_abs(TEMP(0), TEMP(0));
536   if ((res = mp_int_div(TEMP(0), MP_DENOM_P(r), TEMP(0), TEMP(1))) != MP_OK)
537     goto CLEANUP;
538 
539   /* Now:  T0 = integer portion, unsigned;
540            T1 = remainder, from which fractional part is computed. */
541 
542   /* Count up leading zeroes after the radix point. */
543   for (lead_0 = 0; lead_0 < prec && mp_int_compare(TEMP(1), MP_DENOM_P(r)) < 0;
544       ++lead_0) {
545     if ((res = mp_int_mul_value(TEMP(1), radix, TEMP(1))) != MP_OK)
546       goto CLEANUP;
547   }
548 
549   /* Multiply remainder by a power of the radix sufficient to get the right
550      number of significant figures. */
551   if (prec > lead_0) {
552     if ((res = mp_int_expt_value(radix, prec - lead_0, TEMP(2))) != MP_OK)
553       goto CLEANUP;
554     if ((res = mp_int_mul(TEMP(1), TEMP(2), TEMP(1))) != MP_OK)
555       goto CLEANUP;
556   }
557   if ((res = mp_int_div(TEMP(1), MP_DENOM_P(r), TEMP(1), TEMP(2))) != MP_OK)
558     goto CLEANUP;
559 
560   /* Now:  T1 = significant digits of fractional part;
561            T2 = leftovers, to use for rounding.
562 
563      At this point, what we do depends on the rounding mode.  The default is
564      MP_ROUND_DOWN, for which everything is as it should be already.
565   */
566   switch (round) {
567     int cmp;
568 
569   case MP_ROUND_UP:
570     if (mp_int_compare_zero(TEMP(2)) != 0) {
571       if (prec == 0)
572 	res = mp_int_add_value(TEMP(0), 1, TEMP(0));
573       else
574 	res = mp_int_add_value(TEMP(1), 1, TEMP(1));
575     }
576     break;
577 
578   case MP_ROUND_HALF_UP:
579   case MP_ROUND_HALF_DOWN:
580     if ((res = mp_int_mul_pow2(TEMP(2), 1, TEMP(2))) != MP_OK)
581       goto CLEANUP;
582 
583     cmp = mp_int_compare(TEMP(2), MP_DENOM_P(r));
584 
585     if (round == MP_ROUND_HALF_UP)
586       cmp += 1;
587 
588     if (cmp > 0) {
589       if (prec == 0)
590 	res = mp_int_add_value(TEMP(0), 1, TEMP(0));
591       else
592 	res = mp_int_add_value(TEMP(1), 1, TEMP(1));
593     }
594     break;
595 
596   case MP_ROUND_DOWN:
597     break;  /* No action required */
598 
599   default:
600     return MP_BADARG; /* Invalid rounding specifier */
601   }
602 
603   /* The sign of the output should be the sign of the numerator, but if all the
604      displayed digits will be zero due to the precision, a negative shouldn't
605      be shown. */
606   if (MP_SIGN(MP_NUMER_P(r)) == MP_NEG &&
607       (mp_int_compare_zero(TEMP(0)) != 0 ||
608        mp_int_compare_zero(TEMP(1)) != 0)) {
609     *start++ = '-';
610     left -= 1;
611   }
612 
613   if ((res = mp_int_to_string(TEMP(0), radix, start, left)) != MP_OK)
614     goto CLEANUP;
615 
616   len = strlen(start);
617   start += len;
618   left -= len;
619 
620   if (prec == 0)
621     goto CLEANUP;
622 
623   *start++ = '.';
624   left -= 1;
625 
626   if (left < prec + 1) {
627     res = MP_TRUNC;
628     goto CLEANUP;
629   }
630 
631   memset(start, '0', lead_0 - 1);
632   left -= lead_0;
633   start += lead_0 - 1;
634 
635   res = mp_int_to_string(TEMP(1), radix, start, left);
636 
637  CLEANUP:
638   while (--last >= 0)
639     mp_int_clear(TEMP(last));
640 
641   return res;
642 }
643 
mp_rat_string_len(mp_rat r,mp_size radix)644 mp_result mp_rat_string_len(mp_rat r, mp_size radix)
645 {
646   mp_result n_len, d_len = 0;
647 
648   n_len = mp_int_string_len(MP_NUMER_P(r), radix);
649 
650   if (mp_int_compare_zero(MP_NUMER_P(r)) != 0)
651     d_len = mp_int_string_len(MP_DENOM_P(r), radix);
652 
653   /* Though simplistic, this formula is correct.  Space for the sign flag is
654      included in n_len, and the space for the NUL that is counted in n_len
655      counts for the separator here.  The space for the NUL counted in d_len
656      counts for the final terminator here. */
657 
658   return n_len + d_len;
659 
660 }
661 
mp_rat_decimal_len(mp_rat r,mp_size radix,mp_size prec)662 mp_result mp_rat_decimal_len(mp_rat r, mp_size radix, mp_size prec)
663 {
664   int  z_len, f_len;
665 
666   z_len = mp_int_string_len(MP_NUMER_P(r), radix);
667 
668   if (prec == 0)
669     f_len = 1; /* terminator only */
670   else
671     f_len = 1 + prec + 1; /* decimal point, digits, terminator */
672 
673   return z_len + f_len;
674 }
675 
mp_rat_read_string(mp_rat r,mp_size radix,const char * str)676 mp_result mp_rat_read_string(mp_rat r, mp_size radix, const char *str)
677 {
678   return mp_rat_read_cstring(r, radix, str, NULL);
679 }
680 
mp_rat_read_cstring(mp_rat r,mp_size radix,const char * str,char ** end)681 mp_result mp_rat_read_cstring(mp_rat r, mp_size radix, const char *str,
682 			      char **end)
683 {
684   mp_result res;
685   char *endp;
686 
687   if ((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
688       (res != MP_TRUNC))
689     return res;
690 
691   /* Skip whitespace between numerator and (possible) separator */
692   while (isspace((unsigned char) *endp))
693     ++endp;
694 
695   /* If there is no separator, we will stop reading at this point. */
696   if (*endp != '/') {
697     mp_int_set_value(MP_DENOM_P(r), 1);
698     if (end != NULL)
699       *end = endp;
700     return res;
701   }
702 
703   ++endp; /* skip separator */
704   if ((res = mp_int_read_cstring(MP_DENOM_P(r), radix, endp, end)) != MP_OK)
705     return res;
706 
707   /* Make sure the value is well-defined */
708   if (mp_int_compare_zero(MP_DENOM_P(r)) == 0)
709     return MP_UNDEF;
710 
711   /* Reduce to lowest terms */
712   return s_rat_reduce(r);
713 }
714 
715 /* Read a string and figure out what format it's in.  The radix may be supplied
716    as zero to use "default" behaviour.
717 
718    This function will accept either a/b notation or decimal notation.
719  */
mp_rat_read_ustring(mp_rat r,mp_size radix,const char * str,char ** end)720 mp_result mp_rat_read_ustring(mp_rat r, mp_size radix, const char *str,
721 			      char **end)
722 {
723   char      *endp;
724   mp_result  res;
725 
726   if (radix == 0)
727     radix = 10;  /* default to decimal input */
728 
729   if ((res = mp_rat_read_cstring(r, radix, str, &endp)) != MP_OK) {
730     if (res == MP_TRUNC) {
731       if (*endp == '.')
732 	res = mp_rat_read_cdecimal(r, radix, str, &endp);
733     }
734     else
735       return res;
736   }
737 
738   if (end != NULL)
739     *end = endp;
740 
741   return res;
742 }
743 
mp_rat_read_decimal(mp_rat r,mp_size radix,const char * str)744 mp_result mp_rat_read_decimal(mp_rat r, mp_size radix, const char *str)
745 {
746   return mp_rat_read_cdecimal(r, radix, str, NULL);
747 }
748 
mp_rat_read_cdecimal(mp_rat r,mp_size radix,const char * str,char ** end)749 mp_result mp_rat_read_cdecimal(mp_rat r, mp_size radix, const char *str,
750 			       char **end)
751 {
752   mp_result res;
753   mp_sign   osign;
754   char *endp;
755 
756   while (isspace((unsigned char) *str))
757     ++str;
758 
759   switch (*str) {
760   case '-':
761     osign = MP_NEG;
762     break;
763   default:
764     osign = MP_ZPOS;
765   }
766 
767   if ((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
768      (res != MP_TRUNC))
769     return res;
770 
771   /* This needs to be here. */
772   (void) mp_int_set_value(MP_DENOM_P(r), 1);
773 
774   if (*endp != '.') {
775     if (end != NULL)
776       *end = endp;
777     return res;
778   }
779 
780   /* If the character following the decimal point is whitespace or a sign flag,
781      we will consider this a truncated value.  This special case is because
782      mp_int_read_string() will consider whitespace or sign flags to be valid
783      starting characters for a value, and we do not want them following the
784      decimal point.
785 
786      Once we have done this check, it is safe to read in the value of the
787      fractional piece as a regular old integer.
788   */
789   ++endp;
790   if (*endp == '\0') {
791     if (end != NULL)
792       *end = endp;
793     return MP_OK;
794   }
795   else if(isspace((unsigned char) *endp) || *endp == '-' || *endp == '+') {
796     return MP_TRUNC;
797   }
798   else {
799     mpz_t  frac;
800     mp_result save_res;
801     char  *save = endp;
802     int    num_lz = 0;
803 
804     /* Make a temporary to hold the part after the decimal point. */
805     if ((res = mp_int_init(&frac)) != MP_OK)
806       return res;
807 
808     if ((res = mp_int_read_cstring(&frac, radix, endp, &endp)) != MP_OK &&
809        (res != MP_TRUNC))
810       goto CLEANUP;
811 
812     /* Save this response for later. */
813     save_res = res;
814 
815     if (mp_int_compare_zero(&frac) == 0)
816       goto FINISHED;
817 
818     /* Discard trailing zeroes (somewhat inefficiently) */
819     while (mp_int_divisible_value(&frac, radix))
820       if ((res = mp_int_div_value(&frac, radix, &frac, NULL)) != MP_OK)
821 	goto CLEANUP;
822 
823     /* Count leading zeros after the decimal point */
824     while (save[num_lz] == '0')
825       ++num_lz;
826 
827     /* Find the least power of the radix that is at least as large as the
828        significant value of the fractional part, ignoring leading zeroes.  */
829     (void) mp_int_set_value(MP_DENOM_P(r), radix);
830 
831     while (mp_int_compare(MP_DENOM_P(r), &frac) < 0) {
832       if ((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK)
833 	goto CLEANUP;
834     }
835 
836     /* Also shift by enough to account for leading zeroes */
837     while (num_lz > 0) {
838       if ((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK)
839 	goto CLEANUP;
840 
841       --num_lz;
842     }
843 
844     /* Having found this power, shift the numerator leftward that many, digits,
845        and add the nonzero significant digits of the fractional part to get the
846        result. */
847     if ((res = mp_int_mul(MP_NUMER_P(r), MP_DENOM_P(r), MP_NUMER_P(r))) != MP_OK)
848       goto CLEANUP;
849 
850     { /* This addition needs to be unsigned. */
851       MP_SIGN(MP_NUMER_P(r)) = MP_ZPOS;
852       if ((res = mp_int_add(MP_NUMER_P(r), &frac, MP_NUMER_P(r))) != MP_OK)
853 	goto CLEANUP;
854 
855       MP_SIGN(MP_NUMER_P(r)) = osign;
856     }
857     if ((res = s_rat_reduce(r)) != MP_OK)
858       goto CLEANUP;
859 
860     /* At this point, what we return depends on whether reading the fractional
861        part was truncated or not.  That information is saved from when we
862        called mp_int_read_string() above. */
863   FINISHED:
864     res = save_res;
865     if (end != NULL)
866       *end = endp;
867 
868   CLEANUP:
869     mp_int_clear(&frac);
870 
871     return res;
872   }
873 }
874 
875 /* Private functions for internal use.  Make unchecked assumptions about format
876    and validity of inputs. */
877 
s_rat_reduce(mp_rat r)878 static mp_result s_rat_reduce(mp_rat r)
879 {
880   mpz_t gcd;
881   mp_result res = MP_OK;
882 
883   if (mp_int_compare_zero(MP_NUMER_P(r)) == 0) {
884     mp_int_set_value(MP_DENOM_P(r), 1);
885     return MP_OK;
886   }
887 
888   /* If the greatest common divisor of the numerator and denominator is greater
889      than 1, divide it out. */
890   if ((res = mp_int_init(&gcd)) != MP_OK)
891     return res;
892 
893   if ((res = mp_int_gcd(MP_NUMER_P(r), MP_DENOM_P(r), &gcd)) != MP_OK)
894     goto CLEANUP;
895 
896   if (mp_int_compare_value(&gcd, 1) != 0) {
897     if ((res = mp_int_div(MP_NUMER_P(r), &gcd, MP_NUMER_P(r), NULL)) != MP_OK)
898       goto CLEANUP;
899     if ((res = mp_int_div(MP_DENOM_P(r), &gcd, MP_DENOM_P(r), NULL)) != MP_OK)
900       goto CLEANUP;
901   }
902 
903   /* Fix up the signs of numerator and denominator */
904   if (MP_SIGN(MP_NUMER_P(r)) == MP_SIGN(MP_DENOM_P(r)))
905     MP_SIGN(MP_NUMER_P(r)) = MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS;
906   else {
907     MP_SIGN(MP_NUMER_P(r)) = MP_NEG;
908     MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS;
909   }
910 
911  CLEANUP:
912   mp_int_clear(&gcd);
913 
914   return res;
915 }
916 
s_rat_combine(mp_rat a,mp_rat b,mp_rat c,mp_result (* comb_f)(mp_int,mp_int,mp_int))917 static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c,
918 			       mp_result (*comb_f)(mp_int, mp_int, mp_int))
919 {
920   mp_result res;
921 
922   /* Shortcut when denominators are already common */
923   if (mp_int_compare(MP_DENOM_P(a), MP_DENOM_P(b)) == 0) {
924     if ((res = (comb_f)(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK)
925       return res;
926     if ((res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c))) != MP_OK)
927       return res;
928 
929     return s_rat_reduce(c);
930   }
931   else {
932     mpz_t  temp[2];
933     int    last = 0;
934 
935     SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
936     SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
937 
938     if ((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK)
939       goto CLEANUP;
940     if ((res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK)
941       goto CLEANUP;
942     if ((res = (comb_f)(TEMP(0), TEMP(1), MP_NUMER_P(c))) != MP_OK)
943       goto CLEANUP;
944 
945     res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c));
946 
947   CLEANUP:
948     while (--last >= 0)
949       mp_int_clear(TEMP(last));
950 
951     if (res == MP_OK)
952       return s_rat_reduce(c);
953     else
954       return res;
955   }
956 }
957 
958 /* Here there be dragons */
959