• Home
  • History
  • Annotate
Name Date Size #Lines LOC

..--

AsmParser/23-Nov-2023-2,0361,706

Disassembler/23-Nov-2023-452360

InstPrinter/23-Nov-2023-556434

MCTargetDesc/23-Nov-2023-2,4261,783

TargetInfo/23-Nov-2023-5538

CMakeLists.txtD23-Nov-20231.4 KiB5046

LLVMBuild.txtD23-Nov-20231.1 KiB3632

PPC.hD23-Nov-20233.3 KiB10553

PPC.tdD23-Nov-202323.5 KiB452420

PPCAsmPrinter.cppD23-Nov-202354.8 KiB1,4291,054

PPCBoolRetToInt.cppD23-Nov-20238.8 KiB257168

PPCBranchSelector.cppD23-Nov-20238.4 KiB241148

PPCCCState.cppD23-Nov-20231.1 KiB3623

PPCCCState.hD23-Nov-20231.2 KiB4323

PPCCTRLoops.cppD23-Nov-202323.6 KiB729552

PPCCallingConv.hD23-Nov-20231.1 KiB3614

PPCCallingConv.tdD23-Nov-202312.6 KiB287230

PPCEarlyReturn.cppD23-Nov-20237.2 KiB214152

PPCFastISel.cppD23-Nov-202381.3 KiB2,3581,602

PPCFrameLowering.cppD23-Nov-202369.1 KiB1,9451,369

PPCFrameLowering.hD23-Nov-20236.4 KiB15062

PPCHazardRecognizers.cppD23-Nov-202314.1 KiB437281

PPCHazardRecognizers.hD23-Nov-20233.8 KiB10352

PPCISelDAGToDAG.cppD23-Nov-2023161.2 KiB4,4303,205

PPCISelLowering.cppD23-Nov-2023473.6 KiB12,1458,655

PPCISelLowering.hD23-Nov-202342.7 KiB964453

PPCInstr64Bit.tdD23-Nov-202360 KiB1,3001,164

PPCInstrAltivec.tdD23-Nov-202367.1 KiB1,4001,226

PPCInstrBuilder.hD23-Nov-20231.5 KiB4414

PPCInstrFormats.tdD23-Nov-202349.3 KiB1,9341,594

PPCInstrHTM.tdD23-Nov-20235.1 KiB173124

PPCInstrInfo.cppD23-Nov-202370 KiB1,8781,433

PPCInstrInfo.hD23-Nov-202311.4 KiB279166

PPCInstrInfo.tdD23-Nov-2023188.6 KiB4,2473,776

PPCInstrQPX.tdD23-Nov-202357.4 KiB1,2171,105

PPCInstrSPE.tdD23-Nov-202326.5 KiB448407

PPCInstrVSX.tdD23-Nov-2023103.7 KiB2,2432,012

PPCLoopPreIncPrep.cppD23-Nov-202314.9 KiB441318

PPCMCInstLower.cppD23-Nov-20236 KiB188144

PPCMIPeephole.cppD23-Nov-20237.6 KiB233137

PPCMachineFunctionInfo.cppD23-Nov-20231.8 KiB4731

PPCMachineFunctionInfo.hD23-Nov-20237.7 KiB218104

PPCPerfectShuffle.hD23-Nov-2023397.5 KiB6,5926,567

PPCQPXLoadSplat.cppD23-Nov-20235.4 KiB167104

PPCRegisterInfo.cppD23-Nov-202339.5 KiB1,068723

PPCRegisterInfo.hD23-Nov-20235.5 KiB146100

PPCRegisterInfo.tdD23-Nov-202313.1 KiB364315

PPCSchedule.tdD23-Nov-20234.9 KiB134130

PPCSchedule440.tdD23-Nov-202335 KiB609594

PPCScheduleA2.tdD23-Nov-20237.9 KiB173162

PPCScheduleE500mc.tdD23-Nov-202319.2 KiB322314

PPCScheduleE5500.tdD23-Nov-202323.7 KiB382372

PPCScheduleG3.tdD23-Nov-20234.4 KiB8178

PPCScheduleG4.tdD23-Nov-20235.3 KiB9794

PPCScheduleG4Plus.tdD23-Nov-20236.5 KiB113110

PPCScheduleG5.tdD23-Nov-20237.1 KiB131123

PPCScheduleP7.tdD23-Nov-202321.7 KiB398381

PPCScheduleP8.tdD23-Nov-202323.4 KiB407390

PPCSubtarget.cppD23-Nov-20237.9 KiB252172

PPCSubtarget.hD23-Nov-202310.2 KiB318215

PPCTLSDynamicCall.cppD23-Nov-20235.7 KiB175114

PPCTOCRegDeps.cppD23-Nov-20235.2 KiB15671

PPCTargetMachine.cppD23-Nov-202315.8 KiB443297

PPCTargetMachine.hD23-Nov-20232.7 KiB8651

PPCTargetObjectFile.cppD23-Nov-20232.5 KiB6231

PPCTargetObjectFile.hD23-Nov-20231.2 KiB3615

PPCTargetStreamer.hD23-Nov-2023866 2815

PPCTargetTransformInfo.cppD23-Nov-202314.8 KiB434269

PPCTargetTransformInfo.hD23-Nov-20233.7 KiB10059

PPCVSXCopy.cppD23-Nov-20236.3 KiB188131

PPCVSXFMAMutate.cppD23-Nov-202315.2 KiB395224

PPCVSXSwapRemoval.cppD23-Nov-202336 KiB1,035648

README.txtD23-Nov-202318.1 KiB661509

README_ALTIVEC.txtD23-Nov-202311.7 KiB344262

README_P9.txtD23-Nov-202322.2 KiB606479

p9-instrs.txtD23-Nov-202314.1 KiB443317

README.txt

1//===- README.txt - Notes for improving PowerPC-specific code gen ---------===//
2
3TODO:
4* lmw/stmw pass a la arm load store optimizer for prolog/epilog
5
6===-------------------------------------------------------------------------===
7
8This code:
9
10unsigned add32carry(unsigned sum, unsigned x) {
11 unsigned z = sum + x;
12 if (sum + x < x)
13     z++;
14 return z;
15}
16
17Should compile to something like:
18
19	addc r3,r3,r4
20	addze r3,r3
21
22instead we get:
23
24	add r3, r4, r3
25	cmplw cr7, r3, r4
26	mfcr r4 ; 1
27	rlwinm r4, r4, 29, 31, 31
28	add r3, r3, r4
29
30Ick.
31
32===-------------------------------------------------------------------------===
33
34We compile the hottest inner loop of viterbi to:
35
36        li r6, 0
37        b LBB1_84       ;bb432.i
38LBB1_83:        ;bb420.i
39        lbzx r8, r5, r7
40        addi r6, r7, 1
41        stbx r8, r4, r7
42LBB1_84:        ;bb432.i
43        mr r7, r6
44        cmplwi cr0, r7, 143
45        bne cr0, LBB1_83        ;bb420.i
46
47The CBE manages to produce:
48
49	li r0, 143
50	mtctr r0
51loop:
52	lbzx r2, r2, r11
53	stbx r0, r2, r9
54	addi r2, r2, 1
55	bdz later
56	b loop
57
58This could be much better (bdnz instead of bdz) but it still beats us.  If we
59produced this with bdnz, the loop would be a single dispatch group.
60
61===-------------------------------------------------------------------------===
62
63Lump the constant pool for each function into ONE pic object, and reference
64pieces of it as offsets from the start.  For functions like this (contrived
65to have lots of constants obviously):
66
67double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; }
68
69We generate:
70
71_X:
72        lis r2, ha16(.CPI_X_0)
73        lfd f0, lo16(.CPI_X_0)(r2)
74        lis r2, ha16(.CPI_X_1)
75        lfd f2, lo16(.CPI_X_1)(r2)
76        fmadd f0, f1, f0, f2
77        lis r2, ha16(.CPI_X_2)
78        lfd f1, lo16(.CPI_X_2)(r2)
79        lis r2, ha16(.CPI_X_3)
80        lfd f2, lo16(.CPI_X_3)(r2)
81        fmadd f1, f0, f1, f2
82        blr
83
84It would be better to materialize .CPI_X into a register, then use immediates
85off of the register to avoid the lis's.  This is even more important in PIC
86mode.
87
88Note that this (and the static variable version) is discussed here for GCC:
89http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
90
91Here's another example (the sgn function):
92double testf(double a) {
93       return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
94}
95
96it produces a BB like this:
97LBB1_1: ; cond_true
98        lis r2, ha16(LCPI1_0)
99        lfs f0, lo16(LCPI1_0)(r2)
100        lis r2, ha16(LCPI1_1)
101        lis r3, ha16(LCPI1_2)
102        lfs f2, lo16(LCPI1_2)(r3)
103        lfs f3, lo16(LCPI1_1)(r2)
104        fsub f0, f0, f1
105        fsel f1, f0, f2, f3
106        blr
107
108===-------------------------------------------------------------------------===
109
110PIC Code Gen IPO optimization:
111
112Squish small scalar globals together into a single global struct, allowing the
113address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size
114of the GOT on targets with one).
115
116Note that this is discussed here for GCC:
117http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
118
119===-------------------------------------------------------------------------===
120
121Darwin Stub removal:
122
123We still generate calls to foo$stub, and stubs, on Darwin.  This is not
124necessary when building with the Leopard (10.5) or later linker, as stubs are
125generated by ld when necessary.  Parameterizing this based on the deployment
126target (-mmacosx-version-min) is probably enough.  x86-32 does this right, see
127its logic.
128
129===-------------------------------------------------------------------------===
130
131Darwin Stub LICM optimization:
132
133Loops like this:
134
135  for (...)  bar();
136
137Have to go through an indirect stub if bar is external or linkonce.  It would
138be better to compile it as:
139
140     fp = &bar;
141     for (...)  fp();
142
143which only computes the address of bar once (instead of each time through the
144stub).  This is Darwin specific and would have to be done in the code generator.
145Probably not a win on x86.
146
147===-------------------------------------------------------------------------===
148
149Simple IPO for argument passing, change:
150  void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y)
151
152the Darwin ABI specifies that any integer arguments in the first 32 bytes worth
153of arguments get assigned to r3 through r10. That is, if you have a function
154foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the
155argument bytes for r4 and r5. The trick then would be to shuffle the argument
156order for functions we can internalize so that the maximum number of
157integers/pointers get passed in regs before you see any of the fp arguments.
158
159Instead of implementing this, it would actually probably be easier to just
160implement a PPC fastcc, where we could do whatever we wanted to the CC,
161including having this work sanely.
162
163===-------------------------------------------------------------------------===
164
165Fix Darwin FP-In-Integer Registers ABI
166
167Darwin passes doubles in structures in integer registers, which is very very
168bad.  Add something like a BITCAST to LLVM, then do an i-p transformation that
169percolates these things out of functions.
170
171Check out how horrible this is:
172http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html
173
174This is an extension of "interprocedural CC unmunging" that can't be done with
175just fastcc.
176
177===-------------------------------------------------------------------------===
178
179Fold add and sub with constant into non-extern, non-weak addresses so this:
180
181static int a;
182void bar(int b) { a = b; }
183void foo(unsigned char *c) {
184  *c = a;
185}
186
187So that
188
189_foo:
190        lis r2, ha16(_a)
191        la r2, lo16(_a)(r2)
192        lbz r2, 3(r2)
193        stb r2, 0(r3)
194        blr
195
196Becomes
197
198_foo:
199        lis r2, ha16(_a+3)
200        lbz r2, lo16(_a+3)(r2)
201        stb r2, 0(r3)
202        blr
203
204===-------------------------------------------------------------------------===
205
206We should compile these two functions to the same thing:
207
208#include <stdlib.h>
209void f(int a, int b, int *P) {
210  *P = (a-b)>=0?(a-b):(b-a);
211}
212void g(int a, int b, int *P) {
213  *P = abs(a-b);
214}
215
216Further, they should compile to something better than:
217
218_g:
219        subf r2, r4, r3
220        subfic r3, r2, 0
221        cmpwi cr0, r2, -1
222        bgt cr0, LBB2_2 ; entry
223LBB2_1: ; entry
224        mr r2, r3
225LBB2_2: ; entry
226        stw r2, 0(r5)
227        blr
228
229GCC produces:
230
231_g:
232        subf r4,r4,r3
233        srawi r2,r4,31
234        xor r0,r2,r4
235        subf r0,r2,r0
236        stw r0,0(r5)
237        blr
238
239... which is much nicer.
240
241This theoretically may help improve twolf slightly (used in dimbox.c:142?).
242
243===-------------------------------------------------------------------------===
244
245PR5945: This:
246define i32 @clamp0g(i32 %a) {
247entry:
248        %cmp = icmp slt i32 %a, 0
249        %sel = select i1 %cmp, i32 0, i32 %a
250        ret i32 %sel
251}
252
253Is compile to this with the PowerPC (32-bit) backend:
254
255_clamp0g:
256        cmpwi cr0, r3, 0
257        li r2, 0
258        blt cr0, LBB1_2
259; BB#1:                                                     ; %entry
260        mr r2, r3
261LBB1_2:                                                     ; %entry
262        mr r3, r2
263        blr
264
265This could be reduced to the much simpler:
266
267_clamp0g:
268        srawi r2, r3, 31
269        andc r3, r3, r2
270        blr
271
272===-------------------------------------------------------------------------===
273
274int foo(int N, int ***W, int **TK, int X) {
275  int t, i;
276
277  for (t = 0; t < N; ++t)
278    for (i = 0; i < 4; ++i)
279      W[t / X][i][t % X] = TK[i][t];
280
281  return 5;
282}
283
284We generate relatively atrocious code for this loop compared to gcc.
285
286We could also strength reduce the rem and the div:
287http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf
288
289===-------------------------------------------------------------------------===
290
291We generate ugly code for this:
292
293void func(unsigned int *ret, float dx, float dy, float dz, float dw) {
294  unsigned code = 0;
295  if(dx < -dw) code |= 1;
296  if(dx > dw)  code |= 2;
297  if(dy < -dw) code |= 4;
298  if(dy > dw)  code |= 8;
299  if(dz < -dw) code |= 16;
300  if(dz > dw)  code |= 32;
301  *ret = code;
302}
303
304===-------------------------------------------------------------------------===
305
306%struct.B = type { i8, [3 x i8] }
307
308define void @bar(%struct.B* %b) {
309entry:
310        %tmp = bitcast %struct.B* %b to i32*              ; <uint*> [#uses=1]
311        %tmp = load i32* %tmp          ; <uint> [#uses=1]
312        %tmp3 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=1]
313        %tmp4 = load i32* %tmp3                ; <uint> [#uses=1]
314        %tmp8 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=2]
315        %tmp9 = load i32* %tmp8                ; <uint> [#uses=1]
316        %tmp4.mask17 = shl i32 %tmp4, i8 1          ; <uint> [#uses=1]
317        %tmp1415 = and i32 %tmp4.mask17, 2147483648            ; <uint> [#uses=1]
318        %tmp.masked = and i32 %tmp, 2147483648         ; <uint> [#uses=1]
319        %tmp11 = or i32 %tmp1415, %tmp.masked          ; <uint> [#uses=1]
320        %tmp12 = and i32 %tmp9, 2147483647             ; <uint> [#uses=1]
321        %tmp13 = or i32 %tmp12, %tmp11         ; <uint> [#uses=1]
322        store i32 %tmp13, i32* %tmp8
323        ret void
324}
325
326We emit:
327
328_foo:
329        lwz r2, 0(r3)
330        slwi r4, r2, 1
331        or r4, r4, r2
332        rlwimi r2, r4, 0, 0, 0
333        stw r2, 0(r3)
334        blr
335
336We could collapse a bunch of those ORs and ANDs and generate the following
337equivalent code:
338
339_foo:
340        lwz r2, 0(r3)
341        rlwinm r4, r2, 1, 0, 0
342        or r2, r2, r4
343        stw r2, 0(r3)
344        blr
345
346===-------------------------------------------------------------------------===
347
348Consider a function like this:
349
350float foo(float X) { return X + 1234.4123f; }
351
352The FP constant ends up in the constant pool, so we need to get the LR register.
353 This ends up producing code like this:
354
355_foo:
356.LBB_foo_0:     ; entry
357        mflr r11
358***     stw r11, 8(r1)
359        bl "L00000$pb"
360"L00000$pb":
361        mflr r2
362        addis r2, r2, ha16(.CPI_foo_0-"L00000$pb")
363        lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2)
364        fadds f1, f1, f0
365***     lwz r11, 8(r1)
366        mtlr r11
367        blr
368
369This is functional, but there is no reason to spill the LR register all the way
370to the stack (the two marked instrs): spilling it to a GPR is quite enough.
371
372Implementing this will require some codegen improvements.  Nate writes:
373
374"So basically what we need to support the "no stack frame save and restore" is a
375generalization of the LR optimization to "callee-save regs".
376
377Currently, we have LR marked as a callee-save reg.  The register allocator sees
378that it's callee save, and spills it directly to the stack.
379
380Ideally, something like this would happen:
381
382LR would be in a separate register class from the GPRs. The class of LR would be
383marked "unspillable".  When the register allocator came across an unspillable
384reg, it would ask "what is the best class to copy this into that I *can* spill"
385If it gets a class back, which it will in this case (the gprs), it grabs a free
386register of that class.  If it is then later necessary to spill that reg, so be
387it.
388
389===-------------------------------------------------------------------------===
390
391We compile this:
392int test(_Bool X) {
393  return X ? 524288 : 0;
394}
395
396to:
397_test:
398        cmplwi cr0, r3, 0
399        lis r2, 8
400        li r3, 0
401        beq cr0, LBB1_2 ;entry
402LBB1_1: ;entry
403        mr r3, r2
404LBB1_2: ;entry
405        blr
406
407instead of:
408_test:
409        addic r2,r3,-1
410        subfe r0,r2,r3
411        slwi r3,r0,19
412        blr
413
414This sort of thing occurs a lot due to globalopt.
415
416===-------------------------------------------------------------------------===
417
418We compile:
419
420define i32 @bar(i32 %x) nounwind readnone ssp {
421entry:
422  %0 = icmp eq i32 %x, 0                          ; <i1> [#uses=1]
423  %neg = sext i1 %0 to i32              ; <i32> [#uses=1]
424  ret i32 %neg
425}
426
427to:
428
429_bar:
430	cntlzw r2, r3
431	slwi r2, r2, 26
432	srawi r3, r2, 31
433	blr
434
435it would be better to produce:
436
437_bar:
438        addic r3,r3,-1
439        subfe r3,r3,r3
440        blr
441
442===-------------------------------------------------------------------------===
443
444We generate horrible ppc code for this:
445
446#define N  2000000
447double   a[N],c[N];
448void simpleloop() {
449   int j;
450   for (j=0; j<N; j++)
451     c[j] = a[j];
452}
453
454LBB1_1: ;bb
455        lfdx f0, r3, r4
456        addi r5, r5, 1                 ;; Extra IV for the exit value compare.
457        stfdx f0, r2, r4
458        addi r4, r4, 8
459
460        xoris r6, r5, 30               ;; This is due to a large immediate.
461        cmplwi cr0, r6, 33920
462        bne cr0, LBB1_1
463
464//===---------------------------------------------------------------------===//
465
466This:
467        #include <algorithm>
468        inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
469        { return std::make_pair(a + b, a + b < a); }
470        bool no_overflow(unsigned a, unsigned b)
471        { return !full_add(a, b).second; }
472
473Should compile to:
474
475__Z11no_overflowjj:
476        add r4,r3,r4
477        subfc r3,r3,r4
478        li r3,0
479        adde r3,r3,r3
480        blr
481
482(or better) not:
483
484__Z11no_overflowjj:
485        add r2, r4, r3
486        cmplw cr7, r2, r3
487        mfcr r2
488        rlwinm r2, r2, 29, 31, 31
489        xori r3, r2, 1
490        blr
491
492//===---------------------------------------------------------------------===//
493
494We compile some FP comparisons into an mfcr with two rlwinms and an or.  For
495example:
496#include <math.h>
497int test(double x, double y) { return islessequal(x, y);}
498int test2(double x, double y) {  return islessgreater(x, y);}
499int test3(double x, double y) {  return !islessequal(x, y);}
500
501Compiles into (all three are similar, but the bits differ):
502
503_test:
504	fcmpu cr7, f1, f2
505	mfcr r2
506	rlwinm r3, r2, 29, 31, 31
507	rlwinm r2, r2, 31, 31, 31
508	or r3, r2, r3
509	blr
510
511GCC compiles this into:
512
513 _test:
514	fcmpu cr7,f1,f2
515	cror 30,28,30
516	mfcr r3
517	rlwinm r3,r3,31,1
518	blr
519
520which is more efficient and can use mfocr.  See PR642 for some more context.
521
522//===---------------------------------------------------------------------===//
523
524void foo(float *data, float d) {
525   long i;
526   for (i = 0; i < 8000; i++)
527      data[i] = d;
528}
529void foo2(float *data, float d) {
530   long i;
531   data--;
532   for (i = 0; i < 8000; i++) {
533      data[1] = d;
534      data++;
535   }
536}
537
538These compile to:
539
540_foo:
541	li r2, 0
542LBB1_1:	; bb
543	addi r4, r2, 4
544	stfsx f1, r3, r2
545	cmplwi cr0, r4, 32000
546	mr r2, r4
547	bne cr0, LBB1_1	; bb
548	blr
549_foo2:
550	li r2, 0
551LBB2_1:	; bb
552	addi r4, r2, 4
553	stfsx f1, r3, r2
554	cmplwi cr0, r4, 32000
555	mr r2, r4
556	bne cr0, LBB2_1	; bb
557	blr
558
559The 'mr' could be eliminated to folding the add into the cmp better.
560
561//===---------------------------------------------------------------------===//
562Codegen for the following (low-probability) case deteriorated considerably
563when the correctness fixes for unordered comparisons went in (PR 642, 58871).
564It should be possible to recover the code quality described in the comments.
565
566; RUN: llvm-as < %s | llc -march=ppc32  | grep or | count 3
567; This should produce one 'or' or 'cror' instruction per function.
568
569; RUN: llvm-as < %s | llc -march=ppc32  | grep mfcr | count 3
570; PR2964
571
572define i32 @test(double %x, double %y) nounwind  {
573entry:
574	%tmp3 = fcmp ole double %x, %y		; <i1> [#uses=1]
575	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
576	ret i32 %tmp345
577}
578
579define i32 @test2(double %x, double %y) nounwind  {
580entry:
581	%tmp3 = fcmp one double %x, %y		; <i1> [#uses=1]
582	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
583	ret i32 %tmp345
584}
585
586define i32 @test3(double %x, double %y) nounwind  {
587entry:
588	%tmp3 = fcmp ugt double %x, %y		; <i1> [#uses=1]
589	%tmp34 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
590	ret i32 %tmp34
591}
592
593//===---------------------------------------------------------------------===//
594for the following code:
595
596void foo (float *__restrict__ a, int *__restrict__ b, int n) {
597      a[n] = b[n]  * 2.321;
598}
599
600we load b[n] to GPR, then move it VSX register and convert it float. We should
601use vsx scalar integer load instructions to avoid direct moves
602
603//===----------------------------------------------------------------------===//
604; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg
605
606; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and
607; should not be generated except with -enable-finite-only-fp-math or the like).
608; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to
609; recognize a more elaborate tree than a simple SETxx.
610
611define double @test_FNEG_sel(double %A, double %B, double %C) {
612        %D = fsub double -0.000000e+00, %A               ; <double> [#uses=1]
613        %Cond = fcmp ugt double %D, -0.000000e+00               ; <i1> [#uses=1]
614        %E = select i1 %Cond, double %B, double %C              ; <double> [#uses=1]
615        ret double %E
616}
617
618//===----------------------------------------------------------------------===//
619The save/restore sequence for CR in prolog/epilog is terrible:
620- Each CR subreg is saved individually, rather than doing one save as a unit.
621- On Darwin, the save is done after the decrement of SP, which means the offset
622from SP of the save slot can be too big for a store instruction, which means we
623need an additional register (currently hacked in 96015+96020; the solution there
624is correct, but poor).
625- On SVR4 the same thing can happen, and I don't think saving before the SP
626decrement is safe on that target, as there is no red zone.  This is currently
627broken AFAIK, although it's not a target I can exercise.
628The following demonstrates the problem:
629extern void bar(char *p);
630void foo() {
631  char x[100000];
632  bar(x);
633  __asm__("" ::: "cr2");
634}
635
636//===-------------------------------------------------------------------------===
637Naming convention for instruction formats is very haphazard.
638We have agreed on a naming scheme as follows:
639
640<INST_form>{_<OP_type><OP_len>}+
641
642Where:
643INST_form is the instruction format (X-form, etc.)
644OP_type is the operand type - one of OPC (opcode), RD (register destination),
645                              RS (register source),
646                              RDp (destination register pair),
647                              RSp (source register pair), IM (immediate),
648                              XO (extended opcode)
649OP_len is the length of the operand in bits
650
651VSX register operands would be of length 6 (split across two fields),
652condition register fields of length 3.
653We would not need denote reserved fields in names of instruction formats.
654
655//===----------------------------------------------------------------------===//
656
657Instruction fusion was introduced in ISA 2.06 and more opportunities added in
658ISA 2.07.  LLVM needs to add infrastructure to recognize fusion opportunities
659and force instruction pairs to be scheduled together.
660
661

README_ALTIVEC.txt

1//===- README_ALTIVEC.txt - Notes for improving Altivec code gen ----------===//
2
3Implement PPCInstrInfo::isLoadFromStackSlot/isStoreToStackSlot for vector
4registers, to generate better spill code.
5
6//===----------------------------------------------------------------------===//
7
8The first should be a single lvx from the constant pool, the second should be
9a xor/stvx:
10
11void foo(void) {
12  int x[8] __attribute__((aligned(128))) = { 1, 1, 1, 17, 1, 1, 1, 1 };
13  bar (x);
14}
15
16#include <string.h>
17void foo(void) {
18  int x[8] __attribute__((aligned(128)));
19  memset (x, 0, sizeof (x));
20  bar (x);
21}
22
23//===----------------------------------------------------------------------===//
24
25Altivec: Codegen'ing MUL with vector FMADD should add -0.0, not 0.0:
26http://gcc.gnu.org/bugzilla/show_bug.cgi?id=8763
27
28When -ffast-math is on, we can use 0.0.
29
30//===----------------------------------------------------------------------===//
31
32  Consider this:
33  v4f32 Vector;
34  v4f32 Vector2 = { Vector.X, Vector.X, Vector.X, Vector.X };
35
36Since we know that "Vector" is 16-byte aligned and we know the element offset
37of ".X", we should change the load into a lve*x instruction, instead of doing
38a load/store/lve*x sequence.
39
40//===----------------------------------------------------------------------===//
41
42For functions that use altivec AND have calls, we are VRSAVE'ing all call
43clobbered regs.
44
45//===----------------------------------------------------------------------===//
46
47Implement passing vectors by value into calls and receiving them as arguments.
48
49//===----------------------------------------------------------------------===//
50
51GCC apparently tries to codegen { C1, C2, Variable, C3 } as a constant pool load
52of C1/C2/C3, then a load and vperm of Variable.
53
54//===----------------------------------------------------------------------===//
55
56We need a way to teach tblgen that some operands of an intrinsic are required to
57be constants.  The verifier should enforce this constraint.
58
59//===----------------------------------------------------------------------===//
60
61We currently codegen SCALAR_TO_VECTOR as a store of the scalar to a 16-byte
62aligned stack slot, followed by a load/vperm.  We should probably just store it
63to a scalar stack slot, then use lvsl/vperm to load it.  If the value is already
64in memory this is a big win.
65
66//===----------------------------------------------------------------------===//
67
68extract_vector_elt of an arbitrary constant vector can be done with the
69following instructions:
70
71vTemp = vec_splat(v0,2);    // 2 is the element the src is in.
72vec_ste(&destloc,0,vTemp);
73
74We can do an arbitrary non-constant value by using lvsr/perm/ste.
75
76//===----------------------------------------------------------------------===//
77
78If we want to tie instruction selection into the scheduler, we can do some
79constant formation with different instructions.  For example, we can generate
80"vsplti -1" with "vcmpequw R,R" and 1,1,1,1 with "vsubcuw R,R", and 0,0,0,0 with
81"vsplti 0" or "vxor", each of which use different execution units, thus could
82help scheduling.
83
84This is probably only reasonable for a post-pass scheduler.
85
86//===----------------------------------------------------------------------===//
87
88For this function:
89
90void test(vector float *A, vector float *B) {
91  vector float C = (vector float)vec_cmpeq(*A, *B);
92  if (!vec_any_eq(*A, *B))
93    *B = (vector float){0,0,0,0};
94  *A = C;
95}
96
97we get the following basic block:
98
99	...
100        lvx v2, 0, r4
101        lvx v3, 0, r3
102        vcmpeqfp v4, v3, v2
103        vcmpeqfp. v2, v3, v2
104        bne cr6, LBB1_2 ; cond_next
105
106The vcmpeqfp/vcmpeqfp. instructions currently cannot be merged when the
107vcmpeqfp. result is used by a branch.  This can be improved.
108
109//===----------------------------------------------------------------------===//
110
111The code generated for this is truly aweful:
112
113vector float test(float a, float b) {
114 return (vector float){ 0.0, a, 0.0, 0.0};
115}
116
117LCPI1_0:                                        ;  float
118        .space  4
119        .text
120        .globl  _test
121        .align  4
122_test:
123        mfspr r2, 256
124        oris r3, r2, 4096
125        mtspr 256, r3
126        lis r3, ha16(LCPI1_0)
127        addi r4, r1, -32
128        stfs f1, -16(r1)
129        addi r5, r1, -16
130        lfs f0, lo16(LCPI1_0)(r3)
131        stfs f0, -32(r1)
132        lvx v2, 0, r4
133        lvx v3, 0, r5
134        vmrghw v3, v3, v2
135        vspltw v2, v2, 0
136        vmrghw v2, v2, v3
137        mtspr 256, r2
138        blr
139
140//===----------------------------------------------------------------------===//
141
142int foo(vector float *x, vector float *y) {
143        if (vec_all_eq(*x,*y)) return 3245;
144        else return 12;
145}
146
147A predicate compare being used in a select_cc should have the same peephole
148applied to it as a predicate compare used by a br_cc.  There should be no
149mfcr here:
150
151_foo:
152        mfspr r2, 256
153        oris r5, r2, 12288
154        mtspr 256, r5
155        li r5, 12
156        li r6, 3245
157        lvx v2, 0, r4
158        lvx v3, 0, r3
159        vcmpeqfp. v2, v3, v2
160        mfcr r3, 2
161        rlwinm r3, r3, 25, 31, 31
162        cmpwi cr0, r3, 0
163        bne cr0, LBB1_2 ; entry
164LBB1_1: ; entry
165        mr r6, r5
166LBB1_2: ; entry
167        mr r3, r6
168        mtspr 256, r2
169        blr
170
171//===----------------------------------------------------------------------===//
172
173CodeGen/PowerPC/vec_constants.ll has an and operation that should be
174codegen'd to andc.  The issue is that the 'all ones' build vector is
175SelectNodeTo'd a VSPLTISB instruction node before the and/xor is selected
176which prevents the vnot pattern from matching.
177
178
179//===----------------------------------------------------------------------===//
180
181An alternative to the store/store/load approach for illegal insert element
182lowering would be:
183
1841. store element to any ol' slot
1852. lvx the slot
1863. lvsl 0; splat index; vcmpeq to generate a select mask
1874. lvsl slot + x; vperm to rotate result into correct slot
1885. vsel result together.
189
190//===----------------------------------------------------------------------===//
191
192Should codegen branches on vec_any/vec_all to avoid mfcr.  Two examples:
193
194#include <altivec.h>
195 int f(vector float a, vector float b)
196 {
197  int aa = 0;
198  if (vec_all_ge(a, b))
199    aa |= 0x1;
200  if (vec_any_ge(a,b))
201    aa |= 0x2;
202  return aa;
203}
204
205vector float f(vector float a, vector float b) {
206  if (vec_any_eq(a, b))
207    return a;
208  else
209    return b;
210}
211
212//===----------------------------------------------------------------------===//
213
214We should do a little better with eliminating dead stores.
215The stores to the stack are dead since %a and %b are not needed
216
217; Function Attrs: nounwind
218define <16 x i8> @test_vpmsumb() #0 {
219  entry:
220  %a = alloca <16 x i8>, align 16
221  %b = alloca <16 x i8>, align 16
222  store <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8, i8 9, i8 10, i8 11, i8 12, i8 13, i8 14, i8 15, i8 16>, <16 x i8>* %a, align 16
223  store <16 x i8> <i8 113, i8 114, i8 115, i8 116, i8 117, i8 118, i8 119, i8 120, i8 121, i8 122, i8 123, i8 124, i8 125, i8 126, i8 127, i8 112>, <16 x i8>* %b, align 16
224  %0 = load <16 x i8>* %a, align 16
225  %1 = load <16 x i8>* %b, align 16
226  %2 = call <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8> %0, <16 x i8> %1)
227  ret <16 x i8> %2
228}
229
230
231; Function Attrs: nounwind readnone
232declare <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8>, <16 x i8>) #1
233
234
235Produces the following code with -mtriple=powerpc64-unknown-linux-gnu:
236# BB#0:                                 # %entry
237    addis 3, 2, .LCPI0_0@toc@ha
238    addis 4, 2, .LCPI0_1@toc@ha
239    addi 3, 3, .LCPI0_0@toc@l
240    addi 4, 4, .LCPI0_1@toc@l
241    lxvw4x 0, 0, 3
242    addi 3, 1, -16
243    lxvw4x 35, 0, 4
244    stxvw4x 0, 0, 3
245    ori 2, 2, 0
246    lxvw4x 34, 0, 3
247    addi 3, 1, -32
248    stxvw4x 35, 0, 3
249    vpmsumb 2, 2, 3
250    blr
251    .long   0
252    .quad   0
253
254The two stxvw4x instructions are not needed.
255With -mtriple=powerpc64le-unknown-linux-gnu, the associated permutes
256are present too.
257
258//===----------------------------------------------------------------------===//
259
260The following example is found in test/CodeGen/PowerPC/vec_add_sub_doubleword.ll:
261
262define <2 x i64> @increment_by_val(<2 x i64> %x, i64 %val) nounwind {
263       %tmpvec = insertelement <2 x i64> <i64 0, i64 0>, i64 %val, i32 0
264       %tmpvec2 = insertelement <2 x i64> %tmpvec, i64 %val, i32 1
265       %result = add <2 x i64> %x, %tmpvec2
266       ret <2 x i64> %result
267
268This will generate the following instruction sequence:
269        std 5, -8(1)
270        std 5, -16(1)
271        addi 3, 1, -16
272        ori 2, 2, 0
273        lxvd2x 35, 0, 3
274        vaddudm 2, 2, 3
275        blr
276
277This will almost certainly cause a load-hit-store hazard.
278Since val is a value parameter, it should not need to be saved onto
279the stack, unless it's being done set up the vector register. Instead,
280it would be better to splat the value into a vector register, and then
281remove the (dead) stores to the stack.
282
283//===----------------------------------------------------------------------===//
284
285At the moment we always generate a lxsdx in preference to lfd, or stxsdx in
286preference to stfd.  When we have a reg-immediate addressing mode, this is a
287poor choice, since we have to load the address into an index register.  This
288should be fixed for P7/P8.
289
290//===----------------------------------------------------------------------===//
291
292Right now, ShuffleKind 0 is supported only on BE, and ShuffleKind 2 only on LE.
293However, we could actually support both kinds on either endianness, if we check
294for the appropriate shufflevector pattern for each case ...  this would cause
295some additional shufflevectors to be recognized and implemented via the
296"swapped" form.
297
298//===----------------------------------------------------------------------===//
299
300There is a utility program called PerfectShuffle that generates a table of the
301shortest instruction sequence for implementing a shufflevector operation on
302PowerPC.  However, this was designed for big-endian code generation.  We could
303modify this program to create a little endian version of the table.  The table
304is used in PPCISelLowering.cpp, PPCTargetLowering::LOWERVECTOR_SHUFFLE().
305
306//===----------------------------------------------------------------------===//
307
308Opportunies to use instructions from PPCInstrVSX.td during code gen
309  - Conversion instructions (Sections 7.6.1.5 and 7.6.1.6 of ISA 2.07)
310  - Scalar comparisons (xscmpodp and xscmpudp)
311  - Min and max (xsmaxdp, xsmindp, xvmaxdp, xvmindp, xvmaxsp, xvminsp)
312
313Related to this: we currently do not generate the lxvw4x instruction for either
314v4f32 or v4i32, probably because adding a dag pattern to the recognizer requires
315a single target type.  This should probably be addressed in the PPCISelDAGToDAG logic.
316
317//===----------------------------------------------------------------------===//
318
319Currently EXTRACT_VECTOR_ELT and INSERT_VECTOR_ELT are type-legal only
320for v2f64 with VSX available.  We should create custom lowering
321support for the other vector types.  Without this support, we generate
322sequences with load-hit-store hazards.
323
324v4f32 can be supported with VSX by shifting the correct element into
325big-endian lane 0, using xscvspdpn to produce a double-precision
326representation of the single-precision value in big-endian
327double-precision lane 0, and reinterpreting lane 0 as an FPR or
328vector-scalar register.
329
330v2i64 can be supported with VSX and P8Vector in the same manner as
331v2f64, followed by a direct move to a GPR.
332
333v4i32 can be supported with VSX and P8Vector by shifting the correct
334element into big-endian lane 1, using a direct move to a GPR, and
335sign-extending the 32-bit result to 64 bits.
336
337v8i16 can be supported with VSX and P8Vector by shifting the correct
338element into big-endian lane 3, using a direct move to a GPR, and
339sign-extending the 16-bit result to 64 bits.
340
341v16i8 can be supported with VSX and P8Vector by shifting the correct
342element into big-endian lane 7, using a direct move to a GPR, and
343sign-extending the 8-bit result to 64 bits.
344

README_P9.txt

1//===- README_P9.txt - Notes for improving Power9 code gen ----------------===//
2
3TODO: Instructions Need Implement Instrinstics or Map to LLVM IR
4
5Altivec:
6- Vector Compare Not Equal (Zero):
7  vcmpneb(.) vcmpneh(.) vcmpnew(.)
8  vcmpnezb(.) vcmpnezh(.) vcmpnezw(.)
9  . Same as other VCMP*, use VCMP/VCMPo form (support intrinsic)
10
11- Vector Extract Unsigned: vextractub vextractuh vextractuw vextractd
12  . Don't use llvm extractelement because they have different semantics
13  . Use instrinstics:
14    (set v2i64:$vD, (int_ppc_altivec_vextractub v16i8:$vA, imm:$UIMM))
15    (set v2i64:$vD, (int_ppc_altivec_vextractuh v8i16:$vA, imm:$UIMM))
16    (set v2i64:$vD, (int_ppc_altivec_vextractuw v4i32:$vA, imm:$UIMM))
17    (set v2i64:$vD, (int_ppc_altivec_vextractd  v2i64:$vA, imm:$UIMM))
18
19- Vector Extract Unsigned Byte Left/Right-Indexed:
20  vextublx vextubrx vextuhlx vextuhrx vextuwlx vextuwrx
21  . Use instrinstics:
22    // Left-Indexed
23    (set i64:$rD, (int_ppc_altivec_vextublx i64:$rA, v16i8:$vB))
24    (set i64:$rD, (int_ppc_altivec_vextuhlx i64:$rA, v8i16:$vB))
25    (set i64:$rD, (int_ppc_altivec_vextuwlx i64:$rA, v4i32:$vB))
26
27    // Right-Indexed
28    (set i64:$rD, (int_ppc_altivec_vextubrx i64:$rA, v16i8:$vB))
29    (set i64:$rD, (int_ppc_altivec_vextuhrx i64:$rA, v8i16:$vB))
30    (set i64:$rD, (int_ppc_altivec_vextuwrx i64:$rA, v4i32:$vB))
31
32- Vector Insert Element Instructions: vinsertb vinsertd vinserth vinsertw
33    (set v16i8:$vD, (int_ppc_altivec_vinsertb v16i8:$vA, imm:$UIMM))
34    (set v8i16:$vD, (int_ppc_altivec_vinsertd v8i16:$vA, imm:$UIMM))
35    (set v4i32:$vD, (int_ppc_altivec_vinserth v4i32:$vA, imm:$UIMM))
36    (set v2i64:$vD, (int_ppc_altivec_vinsertw v2i64:$vA, imm:$UIMM))
37
38- Vector Count Leading/Trailing Zero LSB. Result is placed into GPR[rD]:
39  vclzlsbb vctzlsbb
40  . Use intrinsic:
41    (set i64:$rD, (int_ppc_altivec_vclzlsbb v16i8:$vB))
42    (set i64:$rD, (int_ppc_altivec_vctzlsbb v16i8:$vB))
43
44- Vector Count Trailing Zeros: vctzb vctzh vctzw vctzd
45  . Map to llvm cttz
46    (set v16i8:$vD, (cttz v16i8:$vB))     // vctzb
47    (set v8i16:$vD, (cttz v8i16:$vB))     // vctzh
48    (set v4i32:$vD, (cttz v4i32:$vB))     // vctzw
49    (set v2i64:$vD, (cttz v2i64:$vB))     // vctzd
50
51- Vector Extend Sign: vextsb2w vextsh2w vextsb2d vextsh2d vextsw2d
52  . vextsb2w:
53    (set v4i32:$vD, (sext v4i8:$vB))
54
55    // PowerISA_V3.0:
56    do i = 0 to 3
57       VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].byte[3])
58    end
59
60  . vextsh2w:
61    (set v4i32:$vD, (sext v4i16:$vB))
62
63    // PowerISA_V3.0:
64    do i = 0 to 3
65       VR[VRT].word[i] ← EXTS32(VR[VRB].word[i].hword[1])
66    end
67
68  . vextsb2d
69    (set v2i64:$vD, (sext v2i8:$vB))
70
71    // PowerISA_V3.0:
72    do i = 0 to 1
73       VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].byte[7])
74    end
75
76  . vextsh2d
77    (set v2i64:$vD, (sext v2i16:$vB))
78
79    // PowerISA_V3.0:
80    do i = 0 to 1
81       VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].hword[3])
82    end
83
84  . vextsw2d
85    (set v2i64:$vD, (sext v2i32:$vB))
86
87    // PowerISA_V3.0:
88    do i = 0 to 1
89       VR[VRT].dword[i] ← EXTS64(VR[VRB].dword[i].word[1])
90    end
91
92- Vector Integer Negate: vnegw vnegd
93  . Map to llvm ineg
94    (set v4i32:$rT, (ineg v4i32:$rA))       // vnegw
95    (set v2i64:$rT, (ineg v2i64:$rA))       // vnegd
96
97- Vector Parity Byte: vprtybw vprtybd vprtybq
98  . Use intrinsic:
99    (set v4i32:$rD, (int_ppc_altivec_vprtybw v4i32:$vB))
100    (set v2i64:$rD, (int_ppc_altivec_vprtybd v2i64:$vB))
101    (set v1i128:$rD, (int_ppc_altivec_vprtybq v1i128:$vB))
102
103- Vector (Bit) Permute (Right-indexed):
104  . vbpermd: Same as "vbpermq", use VX1_Int_Ty2:
105    VX1_Int_Ty2<1484, "vbpermd", int_ppc_altivec_vbpermd, v2i64, v2i64>;
106
107  . vpermr: use VA1a_Int_Ty3
108    VA1a_Int_Ty3<59, "vpermr", int_ppc_altivec_vpermr, v16i8, v16i8, v16i8>;
109
110- Vector Rotate Left Mask/Mask-Insert: vrlwnm vrlwmi vrldnm vrldmi
111  . Use intrinsic:
112    VX1_Int_Ty<389, "vrlwnm", int_ppc_altivec_vrlwnm, v4i32>;
113    VX1_Int_Ty<133, "vrlwmi", int_ppc_altivec_vrlwmi, v4i32>;
114    VX1_Int_Ty<453, "vrldnm", int_ppc_altivec_vrldnm, v2i64>;
115    VX1_Int_Ty<197, "vrldmi", int_ppc_altivec_vrldmi, v2i64>;
116
117- Vector Shift Left/Right: vslv vsrv
118  . Use intrinsic, don't map to llvm shl and lshr, because they have different
119    semantics, e.g. vslv:
120
121      do i = 0 to 15
122         sh ← VR[VRB].byte[i].bit[5:7]
123         VR[VRT].byte[i] ← src.byte[i:i+1].bit[sh:sh+7]
124      end
125
126    VR[VRT].byte[i] is composed of 2 bytes from src.byte[i:i+1]
127
128  . VX1_Int_Ty<1860, "vslv", int_ppc_altivec_vslv, v16i8>;
129    VX1_Int_Ty<1796, "vsrv", int_ppc_altivec_vsrv, v16i8>;
130
131- Vector Multiply-by-10 (& Write Carry) Unsigned Quadword:
132  vmul10uq vmul10cuq
133  . Use intrinsic:
134    VX1_Int_Ty<513, "vmul10uq",   int_ppc_altivec_vmul10uq,  v1i128>;
135    VX1_Int_Ty<  1, "vmul10cuq",  int_ppc_altivec_vmul10cuq, v1i128>;
136
137- Vector Multiply-by-10 Extended (& Write Carry) Unsigned Quadword:
138  vmul10euq vmul10ecuq
139  . Use intrinsic:
140    VX1_Int_Ty<577, "vmul10euq",  int_ppc_altivec_vmul10euq, v1i128>;
141    VX1_Int_Ty< 65, "vmul10ecuq", int_ppc_altivec_vmul10ecuq, v1i128>;
142
143- Decimal Convert From/to National/Zoned/Signed-QWord:
144  bcdcfn. bcdcfz. bcdctn. bcdctz. bcdcfsq. bcdctsq.
145  . Use instrinstics:
146    (set v1i128:$vD, (int_ppc_altivec_bcdcfno  v1i128:$vB, i1:$PS))
147    (set v1i128:$vD, (int_ppc_altivec_bcdcfzo  v1i128:$vB, i1:$PS))
148    (set v1i128:$vD, (int_ppc_altivec_bcdctno  v1i128:$vB))
149    (set v1i128:$vD, (int_ppc_altivec_bcdctzo  v1i128:$vB, i1:$PS))
150    (set v1i128:$vD, (int_ppc_altivec_bcdcfsqo v1i128:$vB, i1:$PS))
151    (set v1i128:$vD, (int_ppc_altivec_bcdctsqo v1i128:$vB))
152
153- Decimal Copy-Sign/Set-Sign: bcdcpsgn. bcdsetsgn.
154  . Use instrinstics:
155    (set v1i128:$vD, (int_ppc_altivec_bcdcpsgno v1i128:$vA, v1i128:$vB))
156    (set v1i128:$vD, (int_ppc_altivec_bcdsetsgno v1i128:$vB, i1:$PS))
157
158- Decimal Shift/Unsigned-Shift/Shift-and-Round: bcds. bcdus. bcdsr.
159  . Use instrinstics:
160    (set v1i128:$vD, (int_ppc_altivec_bcdso  v1i128:$vA, v1i128:$vB, i1:$PS))
161    (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
162    (set v1i128:$vD, (int_ppc_altivec_bcdsro v1i128:$vA, v1i128:$vB, i1:$PS))
163
164  . Note! Their VA is accessed only 1 byte, i.e. VA.byte[7]
165
166- Decimal (Unsigned) Truncate: bcdtrunc. bcdutrunc.
167  . Use instrinstics:
168    (set v1i128:$vD, (int_ppc_altivec_bcdso  v1i128:$vA, v1i128:$vB, i1:$PS))
169    (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
170
171  . Note! Their VA is accessed only 2 byte, i.e. VA.hword[3] (VA.bit[48:63])
172
173VSX:
174- QP Copy Sign: xscpsgnqp
175  . Similar to xscpsgndp
176  . (set f128:$vT, (fcopysign f128:$vB, f128:$vA)
177
178- QP Absolute/Negative-Absolute/Negate: xsabsqp xsnabsqp xsnegqp
179  . Similar to xsabsdp/xsnabsdp/xsnegdp
180  . (set f128:$vT, (fabs f128:$vB))             // xsabsqp
181    (set f128:$vT, (fneg (fabs f128:$vB)))      // xsnabsqp
182    (set f128:$vT, (fneg f128:$vB))             // xsnegqp
183
184- QP Add/Divide/Multiply/Subtract/Square-Root:
185  xsaddqp xsdivqp xsmulqp xssubqp xssqrtqp
186  . Similar to xsadddp
187  . isCommutable = 1
188    (set f128:$vT, (fadd f128:$vA, f128:$vB))   // xsaddqp
189    (set f128:$vT, (fmul f128:$vA, f128:$vB))   // xsmulqp
190
191  . isCommutable = 0
192    (set f128:$vT, (fdiv f128:$vA, f128:$vB))   // xsdivqp
193    (set f128:$vT, (fsub f128:$vA, f128:$vB))   // xssubqp
194    (set f128:$vT, (fsqrt f128:$vB)))           // xssqrtqp
195
196- Round to Odd of QP Add/Divide/Multiply/Subtract/Square-Root:
197  xsaddqpo xsdivqpo xsmulqpo xssubqpo xssqrtqpo
198  . Similar to xsrsqrtedp??
199      def XSRSQRTEDP : XX2Form<60, 74,
200                               (outs vsfrc:$XT), (ins vsfrc:$XB),
201                               "xsrsqrtedp $XT, $XB", IIC_VecFP,
202                               [(set f64:$XT, (PPCfrsqrte f64:$XB))]>;
203
204  . Define DAG Node in PPCInstrInfo.td:
205    def PPCfaddrto: SDNode<"PPCISD::FADDRTO", SDTFPBinOp, []>;
206    def PPCfdivrto: SDNode<"PPCISD::FDIVRTO", SDTFPBinOp, []>;
207    def PPCfmulrto: SDNode<"PPCISD::FMULRTO", SDTFPBinOp, []>;
208    def PPCfsubrto: SDNode<"PPCISD::FSUBRTO", SDTFPBinOp, []>;
209    def PPCfsqrtrto: SDNode<"PPCISD::FSQRTRTO", SDTFPUnaryOp, []>;
210
211    DAG patterns of each instruction (PPCInstrVSX.td):
212    . isCommutable = 1
213      (set f128:$vT, (PPCfaddrto f128:$vA, f128:$vB))   // xsaddqpo
214      (set f128:$vT, (PPCfmulrto f128:$vA, f128:$vB))   // xsmulqpo
215
216    . isCommutable = 0
217      (set f128:$vT, (PPCfdivrto f128:$vA, f128:$vB))   // xsdivqpo
218      (set f128:$vT, (PPCfsubrto f128:$vA, f128:$vB))   // xssubqpo
219      (set f128:$vT, (PPCfsqrtrto f128:$vB))            // xssqrtqpo
220
221- QP (Negative) Multiply-{Add/Subtract}: xsmaddqp xsmsubqp xsnmaddqp xsnmsubqp
222  . Ref: xsmaddadp/xsmsubadp/xsnmaddadp/xsnmsubadp
223
224  . isCommutable = 1
225    // xsmaddqp
226    [(set f128:$vT, (fma f128:$vA, f128:$vB, f128:$vTi))]>,
227    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
228    AltVSXFMARel;
229
230    // xsmsubqp
231    [(set f128:$vT, (fma f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
232    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
233    AltVSXFMARel;
234
235    // xsnmaddqp
236    [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, f128:$vTi)))]>,
237    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
238    AltVSXFMARel;
239
240    // xsnmsubqp
241    [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
242    RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
243    AltVSXFMARel;
244
245- Round to Odd of QP (Negative) Multiply-{Add/Subtract}:
246  xsmaddqpo xsmsubqpo xsnmaddqpo xsnmsubqpo
247  . Similar to xsrsqrtedp??
248
249  . Define DAG Node in PPCInstrInfo.td:
250    def PPCfmarto: SDNode<"PPCISD::FMARTO", SDTFPTernaryOp, []>;
251
252    It looks like we only need to define "PPCfmarto" for these instructions,
253    because according to PowerISA_V3.0, these instructions perform RTO on
254    fma's result:
255        xsmaddqp(o)
256        v      ← bfp_MULTIPLY_ADD(src1, src3, src2)
257        rnd    ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
258        result ← bfp_CONVERT_TO_BFP128(rnd)
259
260        xsmsubqp(o)
261        v      ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
262        rnd    ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
263        result ← bfp_CONVERT_TO_BFP128(rnd)
264
265        xsnmaddqp(o)
266        v      ← bfp_MULTIPLY_ADD(src1,src3,src2)
267        rnd    ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
268        result ← bfp_CONVERT_TO_BFP128(rnd)
269
270        xsnmsubqp(o)
271        v      ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
272        rnd    ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
273        result ← bfp_CONVERT_TO_BFP128(rnd)
274
275    DAG patterns of each instruction (PPCInstrVSX.td):
276    . isCommutable = 1
277      // xsmaddqpo
278      [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, f128:$vTi))]>,
279      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
280      AltVSXFMARel;
281
282      // xsmsubqpo
283      [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
284      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
285      AltVSXFMARel;
286
287      // xsnmaddqpo
288      [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, f128:$vTi)))]>,
289      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
290      AltVSXFMARel;
291
292      // xsnmsubqpo
293      [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
294      RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
295      AltVSXFMARel;
296
297- QP Compare Ordered/Unordered: xscmpoqp xscmpuqp
298  . ref: XSCMPUDP
299      def XSCMPUDP : XX3Form_1<60, 35,
300                               (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
301                               "xscmpudp $crD, $XA, $XB", IIC_FPCompare, []>;
302
303  . No SDAG, intrinsic, builtin are required??
304    Or llvm fcmp order/unorder compare??
305
306- DP/QP Compare Exponents: xscmpexpdp xscmpexpqp
307  . No SDAG, intrinsic, builtin are required?
308
309- DP Compare ==, >=, >, !=: xscmpeqdp xscmpgedp xscmpgtdp xscmpnedp
310  . I checked existing instruction "XSCMPUDP". They are different in target
311    register. "XSCMPUDP" write to CR field, xscmp*dp write to VSX register
312
313  . Use instrinsic:
314    (set i128:$XT, (int_ppc_vsx_xscmpeqdp f64:$XA, f64:$XB))
315    (set i128:$XT, (int_ppc_vsx_xscmpgedp f64:$XA, f64:$XB))
316    (set i128:$XT, (int_ppc_vsx_xscmpgtdp f64:$XA, f64:$XB))
317    (set i128:$XT, (int_ppc_vsx_xscmpnedp f64:$XA, f64:$XB))
318
319- Vector Compare Not Equal: xvcmpnedp xvcmpnedp. xvcmpnesp xvcmpnesp.
320  . Similar to xvcmpeqdp:
321      defm XVCMPEQDP : XX3Form_Rcr<60, 99,
322                                 "xvcmpeqdp", "$XT, $XA, $XB", IIC_VecFPCompare,
323                                 int_ppc_vsx_xvcmpeqdp, v2i64, v2f64>;
324
325  . So we should use "XX3Form_Rcr" to implement instrinsic
326
327- Convert DP -> QP: xscvdpqp
328  . Similar to XSCVDPSP:
329      def XSCVDPSP : XX2Form<60, 265,
330                          (outs vsfrc:$XT), (ins vsfrc:$XB),
331                          "xscvdpsp $XT, $XB", IIC_VecFP, []>;
332  . So, No SDAG, intrinsic, builtin are required??
333
334- Round & Convert QP -> DP (dword[1] is set to zero): xscvqpdp xscvqpdpo
335  . Similar to XSCVDPSP
336  . No SDAG, intrinsic, builtin are required??
337
338- Truncate & Convert QP -> (Un)Signed (D)Word (dword[1] is set to zero):
339  xscvqpsdz xscvqpswz xscvqpudz xscvqpuwz
340  . According to PowerISA_V3.0, these are similar to "XSCVDPSXDS", "XSCVDPSXWS",
341    "XSCVDPUXDS", "XSCVDPUXWS"
342
343  . DAG patterns:
344    (set f128:$XT, (PPCfctidz f128:$XB))    // xscvqpsdz
345    (set f128:$XT, (PPCfctiwz f128:$XB))    // xscvqpswz
346    (set f128:$XT, (PPCfctiduz f128:$XB))   // xscvqpudz
347    (set f128:$XT, (PPCfctiwuz f128:$XB))   // xscvqpuwz
348
349- Convert (Un)Signed DWord -> QP: xscvsdqp xscvudqp
350  . Similar to XSCVSXDSP
351  . (set f128:$XT, (PPCfcfids f64:$XB))     // xscvsdqp
352    (set f128:$XT, (PPCfcfidus f64:$XB))    // xscvudqp
353
354- (Round &) Convert DP <-> HP: xscvdphp xscvhpdp
355  . Similar to XSCVDPSP
356  . No SDAG, intrinsic, builtin are required??
357
358- Vector HP -> SP: xvcvhpsp xvcvsphp
359  . Similar to XVCVDPSP:
360      def XVCVDPSP : XX2Form<60, 393,
361                          (outs vsrc:$XT), (ins vsrc:$XB),
362                          "xvcvdpsp $XT, $XB", IIC_VecFP, []>;
363  . No SDAG, intrinsic, builtin are required??
364
365- Round to Quad-Precision Integer: xsrqpi xsrqpix
366  . These are combination of "XSRDPI", "XSRDPIC", "XSRDPIM", .., because you
367    need to assign rounding mode in instruction
368  . Provide builtin?
369    (set f128:$vT, (int_ppc_vsx_xsrqpi f128:$vB))
370    (set f128:$vT, (int_ppc_vsx_xsrqpix f128:$vB))
371
372- Round Quad-Precision to Double-Extended Precision (fp80): xsrqpxp
373  . Provide builtin?
374    (set f128:$vT, (int_ppc_vsx_xsrqpxp f128:$vB))
375
376Fixed Point Facility:
377
378- Exploit cmprb and cmpeqb (perhaps for something like
379  isalpha/isdigit/isupper/islower and isspace respectivelly). This can
380  perhaps be done through a builtin.
381
382- Provide testing for cnttz[dw]
383- Insert Exponent DP/QP: xsiexpdp xsiexpqp
384  . Use intrinsic?
385  . xsiexpdp:
386    // Note: rA and rB are the unsigned integer value.
387    (set f128:$XT, (int_ppc_vsx_xsiexpdp i64:$rA, i64:$rB))
388
389  . xsiexpqp:
390    (set f128:$vT, (int_ppc_vsx_xsiexpqp f128:$vA, f64:$vB))
391
392- Extract Exponent/Significand DP/QP: xsxexpdp xsxsigdp xsxexpqp xsxsigqp
393  . Use intrinsic?
394  . (set i64:$rT, (int_ppc_vsx_xsxexpdp f64$XB))    // xsxexpdp
395    (set i64:$rT, (int_ppc_vsx_xsxsigdp f64$XB))    // xsxsigdp
396    (set f128:$vT, (int_ppc_vsx_xsxexpqp f128$vB))  // xsxexpqp
397    (set f128:$vT, (int_ppc_vsx_xsxsigqp f128$vB))  // xsxsigqp
398
399- Vector Insert Word: xxinsertw
400  - Useful for inserting f32/i32 elements into vectors (the element to be
401    inserted needs to be prepared)
402  . Note: llvm has insertelem in "Vector Operations"
403    ; yields <n x <ty>>
404    <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>
405
406    But how to map to it??
407    [(set v1f128:$XT, (insertelement v1f128:$XTi, f128:$XB, i4:$UIMM))]>,
408    RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
409
410  . Or use intrinsic?
411    (set v1f128:$XT, (int_ppc_vsx_xxinsertw v1f128:$XTi, f128:$XB, i4:$UIMM))
412
413- Vector Extract Unsigned Word: xxextractuw
414  - Not useful for extraction of f32 from v4f32 (the current pattern is better -
415    shift->convert)
416  - It is useful for (uint_to_fp (vector_extract v4i32, N))
417  - Unfortunately, it can't be used for (sint_to_fp (vector_extract v4i32, N))
418  . Note: llvm has extractelement in "Vector Operations"
419    ; yields <ty>
420    <result> = extractelement <n x <ty>> <val>, <ty2> <idx>
421
422    How to map to it??
423    [(set f128:$XT, (extractelement v1f128:$XB, i4:$UIMM))]
424
425  . Or use intrinsic?
426    (set f128:$XT, (int_ppc_vsx_xxextractuw v1f128:$XB, i4:$UIMM))
427
428- Vector Insert Exponent DP/SP: xviexpdp xviexpsp
429  . Use intrinsic
430    (set v2f64:$XT, (int_ppc_vsx_xviexpdp v2f64:$XA, v2f64:$XB))
431    (set v4f32:$XT, (int_ppc_vsx_xviexpsp v4f32:$XA, v4f32:$XB))
432
433- Vector Extract Exponent/Significand DP/SP: xvxexpdp xvxexpsp xvxsigdp xvxsigsp
434  . Use intrinsic
435    (set v2f64:$XT, (int_ppc_vsx_xvxexpdp v2f64:$XB))
436    (set v4f32:$XT, (int_ppc_vsx_xvxexpsp v4f32:$XB))
437    (set v2f64:$XT, (int_ppc_vsx_xvxsigdp v2f64:$XB))
438    (set v4f32:$XT, (int_ppc_vsx_xvxsigsp v4f32:$XB))
439
440- Test Data Class SP/DP/QP: xststdcsp xststdcdp xststdcqp
441  . No SDAG, intrinsic, builtin are required?
442    Because it seems that we have no way to map BF field?
443
444    Instruction Form: [PO T XO B XO BX TX]
445    Asm: xststd* BF,XB,DCMX
446
447    BF is an index to CR register field.
448
449- Vector Test Data Class SP/DP: xvtstdcsp xvtstdcdp
450  . Use intrinsic
451    (set v4f32:$XT, (int_ppc_vsx_xvtstdcsp v4f32:$XB, i7:$DCMX))
452    (set v2f64:$XT, (int_ppc_vsx_xvtstdcdp v2f64:$XB, i7:$DCMX))
453
454- Maximum/Minimum Type-C/Type-J DP: xsmaxcdp xsmaxjdp xsmincdp xsminjdp
455  . PowerISA_V3.0:
456    "xsmaxcdp can be used to implement the C/C++/Java conditional operation
457     (x>y)?x:y for single-precision and double-precision arguments."
458
459    Note! c type and j type have different behavior when:
460    1. Either input is NaN
461    2. Both input are +-Infinity, +-Zero
462
463  . dtype map to llvm fmaxnum/fminnum
464    jtype use intrinsic
465
466  . xsmaxcdp xsmincdp
467    (set f64:$XT, (fmaxnum f64:$XA, f64:$XB))
468    (set f64:$XT, (fminnum f64:$XA, f64:$XB))
469
470  . xsmaxjdp xsminjdp
471    (set f64:$XT, (int_ppc_vsx_xsmaxjdp f64:$XA, f64:$XB))
472    (set f64:$XT, (int_ppc_vsx_xsminjdp f64:$XA, f64:$XB))
473
474- Vector Byte-Reverse H/W/D/Q Word: xxbrh xxbrw xxbrd xxbrq
475  . Use intrinsic
476    (set v8i16:$XT, (int_ppc_vsx_xxbrh v8i16:$XB))
477    (set v4i32:$XT, (int_ppc_vsx_xxbrw v4i32:$XB))
478    (set v2i64:$XT, (int_ppc_vsx_xxbrd v2i64:$XB))
479    (set v1i128:$XT, (int_ppc_vsx_xxbrq v1i128:$XB))
480
481- Vector Permute: xxperm xxpermr
482  . I have checked "PPCxxswapd" in PPCInstrVSX.td, but they are different
483  . Use intrinsic
484    (set v16i8:$XT, (int_ppc_vsx_xxperm v16i8:$XA, v16i8:$XB))
485    (set v16i8:$XT, (int_ppc_vsx_xxpermr v16i8:$XA, v16i8:$XB))
486
487- Vector Splat Immediate Byte: xxspltib
488  . Similar to XXSPLTW:
489      def XXSPLTW : XX2Form_2<60, 164,
490                           (outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM),
491                           "xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>;
492
493  . No SDAG, intrinsic, builtin are required?
494
495- Load/Store Vector: lxv stxv
496  . Has likely SDAG match:
497    (set v?:$XT, (load ix16addr:$src))
498    (set v?:$XT, (store ix16addr:$dst))
499
500  . Need define ix16addr in PPCInstrInfo.td
501    ix16addr: 16-byte aligned, see "def memrix16" in PPCInstrInfo.td
502
503- Load/Store Vector Indexed: lxvx stxvx
504  . Has likely SDAG match:
505    (set v?:$XT, (load xoaddr:$src))
506    (set v?:$XT, (store xoaddr:$dst))
507
508- Load/Store DWord: lxsd stxsd
509  . Similar to lxsdx/stxsdx:
510    def LXSDX : XX1Form<31, 588,
511                        (outs vsfrc:$XT), (ins memrr:$src),
512                        "lxsdx $XT, $src", IIC_LdStLFD,
513                        [(set f64:$XT, (load xoaddr:$src))]>;
514
515  . (set f64:$XT, (load ixaddr:$src))
516    (set f64:$XT, (store ixaddr:$dst))
517
518- Load/Store SP, with conversion from/to DP: lxssp stxssp
519  . Similar to lxsspx/stxsspx:
520    def LXSSPX : XX1Form<31, 524, (outs vssrc:$XT), (ins memrr:$src),
521                         "lxsspx $XT, $src", IIC_LdStLFD,
522                         [(set f32:$XT, (load xoaddr:$src))]>;
523
524  . (set f32:$XT, (load ixaddr:$src))
525    (set f32:$XT, (store ixaddr:$dst))
526
527- Load as Integer Byte/Halfword & Zero Indexed: lxsibzx lxsihzx
528  . Similar to lxsiwzx:
529    def LXSIWZX : XX1Form<31, 12, (outs vsfrc:$XT), (ins memrr:$src),
530                          "lxsiwzx $XT, $src", IIC_LdStLFD,
531                          [(set f64:$XT, (PPClfiwzx xoaddr:$src))]>;
532
533  . (set f64:$XT, (PPClfiwzx xoaddr:$src))
534
535- Store as Integer Byte/Halfword Indexed: stxsibx stxsihx
536  . Similar to stxsiwx:
537    def STXSIWX : XX1Form<31, 140, (outs), (ins vsfrc:$XT, memrr:$dst),
538                          "stxsiwx $XT, $dst", IIC_LdStSTFD,
539                          [(PPCstfiwx f64:$XT, xoaddr:$dst)]>;
540
541  . (PPCstfiwx f64:$XT, xoaddr:$dst)
542
543- Load Vector Halfword*8/Byte*16 Indexed: lxvh8x lxvb16x
544  . Similar to lxvd2x/lxvw4x:
545    def LXVD2X : XX1Form<31, 844,
546                         (outs vsrc:$XT), (ins memrr:$src),
547                         "lxvd2x $XT, $src", IIC_LdStLFD,
548                         [(set v2f64:$XT, (int_ppc_vsx_lxvd2x xoaddr:$src))]>;
549
550  . (set v8i16:$XT, (int_ppc_vsx_lxvh8x xoaddr:$src))
551    (set v16i8:$XT, (int_ppc_vsx_lxvb16x xoaddr:$src))
552
553- Store Vector Halfword*8/Byte*16 Indexed: stxvh8x stxvb16x
554  . Similar to stxvd2x/stxvw4x:
555    def STXVD2X : XX1Form<31, 972,
556                         (outs), (ins vsrc:$XT, memrr:$dst),
557                         "stxvd2x $XT, $dst", IIC_LdStSTFD,
558                         [(store v2f64:$XT, xoaddr:$dst)]>;
559
560  . (store v8i16:$XT, xoaddr:$dst)
561    (store v16i8:$XT, xoaddr:$dst)
562
563- Load/Store Vector (Left-justified) with Length: lxvl lxvll stxvl stxvll
564  . Likely needs an intrinsic
565  . (set v?:$XT, (int_ppc_vsx_lxvl xoaddr:$src))
566    (set v?:$XT, (int_ppc_vsx_lxvll xoaddr:$src))
567
568  . (int_ppc_vsx_stxvl xoaddr:$dst))
569    (int_ppc_vsx_stxvll xoaddr:$dst))
570
571- Load Vector Word & Splat Indexed: lxvwsx
572  . Likely needs an intrinsic
573  . (set v?:$XT, (int_ppc_vsx_lxvwsx xoaddr:$src))
574
575Atomic operations (l[dw]at, st[dw]at):
576- Provide custom lowering for common atomic operations to use these
577  instructions with the correct Function Code
578- Ensure the operands are in the correct register (i.e. RT+1, RT+2)
579- Provide builtins since not all FC's necessarily have an existing LLVM
580  atomic operation
581
582Load Doubleword Monitored (ldmx):
583- Investigate whether there are any uses for this. It seems to be related to
584  Garbage Collection so it isn't likely to be all that useful for most
585  languages we deal with.
586
587Move to CR from XER Extended (mcrxrx):
588- Is there a use for this in LLVM?
589
590Fixed Point Facility:
591
592- Copy-Paste Facility: copy copy_first cp_abort paste paste. paste_last
593  . Use instrinstics:
594    (int_ppc_copy_first i32:$rA, i32:$rB)
595    (int_ppc_copy i32:$rA, i32:$rB)
596
597    (int_ppc_paste i32:$rA, i32:$rB)
598    (int_ppc_paste_last i32:$rA, i32:$rB)
599
600    (int_cp_abort)
601
602- Message Synchronize: msgsync
603- SLB*: slbieg slbsync
604- stop
605  . No instrinstics
606