1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 #include <string.h>
24 #include "ir.h"
25 #include "util/half_float.h"
26 #include "compiler/glsl_types.h"
27 #include "glsl_parser_extras.h"
28 
29 
ir_rvalue(enum ir_node_type t)30 ir_rvalue::ir_rvalue(enum ir_node_type t)
31    : ir_instruction(t)
32 {
33    this->type = glsl_type::error_type;
34 }
35 
is_zero() const36 bool ir_rvalue::is_zero() const
37 {
38    return false;
39 }
40 
is_one() const41 bool ir_rvalue::is_one() const
42 {
43    return false;
44 }
45 
is_negative_one() const46 bool ir_rvalue::is_negative_one() const
47 {
48    return false;
49 }
50 
51 /**
52  * Modify the swizzle make to move one component to another
53  *
54  * \param m    IR swizzle to be modified
55  * \param from Component in the RHS that is to be swizzled
56  * \param to   Desired swizzle location of \c from
57  */
58 static void
update_rhs_swizzle(ir_swizzle_mask & m,unsigned from,unsigned to)59 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
60 {
61    switch (to) {
62    case 0: m.x = from; break;
63    case 1: m.y = from; break;
64    case 2: m.z = from; break;
65    case 3: m.w = from; break;
66    default: assert(!"Should not get here.");
67    }
68 }
69 
70 void
set_lhs(ir_rvalue * lhs)71 ir_assignment::set_lhs(ir_rvalue *lhs)
72 {
73    void *mem_ctx = this;
74    bool swizzled = false;
75 
76    while (lhs != NULL) {
77       ir_swizzle *swiz = lhs->as_swizzle();
78 
79       if (swiz == NULL)
80 	 break;
81 
82       unsigned write_mask = 0;
83       ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
84 
85       for (unsigned i = 0; i < swiz->mask.num_components; i++) {
86 	 unsigned c = 0;
87 
88 	 switch (i) {
89 	 case 0: c = swiz->mask.x; break;
90 	 case 1: c = swiz->mask.y; break;
91 	 case 2: c = swiz->mask.z; break;
92 	 case 3: c = swiz->mask.w; break;
93 	 default: assert(!"Should not get here.");
94 	 }
95 
96 	 write_mask |= (((this->write_mask >> i) & 1) << c);
97 	 update_rhs_swizzle(rhs_swiz, i, c);
98          rhs_swiz.num_components = swiz->val->type->vector_elements;
99       }
100 
101       this->write_mask = write_mask;
102       lhs = swiz->val;
103 
104       this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
105       swizzled = true;
106    }
107 
108    if (swizzled) {
109       /* Now, RHS channels line up with the LHS writemask.  Collapse it
110        * to just the channels that will be written.
111        */
112       ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
113       int rhs_chan = 0;
114       for (int i = 0; i < 4; i++) {
115 	 if (write_mask & (1 << i))
116 	    update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
117       }
118       rhs_swiz.num_components = rhs_chan;
119       this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
120    }
121 
122    assert((lhs == NULL) || lhs->as_dereference());
123 
124    this->lhs = (ir_dereference *) lhs;
125 }
126 
127 ir_variable *
whole_variable_written()128 ir_assignment::whole_variable_written()
129 {
130    ir_variable *v = this->lhs->whole_variable_referenced();
131 
132    if (v == NULL)
133       return NULL;
134 
135    if (v->type->is_scalar())
136       return v;
137 
138    if (v->type->is_vector()) {
139       const unsigned mask = (1U << v->type->vector_elements) - 1;
140 
141       if (mask != this->write_mask)
142 	 return NULL;
143    }
144 
145    /* Either all the vector components are assigned or the variable is some
146     * composite type (and the whole thing is assigned.
147     */
148    return v;
149 }
150 
ir_assignment(ir_dereference * lhs,ir_rvalue * rhs,ir_rvalue * condition,unsigned write_mask)151 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
152 			     ir_rvalue *condition, unsigned write_mask)
153    : ir_instruction(ir_type_assignment)
154 {
155    this->condition = condition;
156    this->rhs = rhs;
157    this->lhs = lhs;
158    this->write_mask = write_mask;
159 
160    if (lhs->type->is_scalar() || lhs->type->is_vector()) {
161       int lhs_components = 0;
162       for (int i = 0; i < 4; i++) {
163 	 if (write_mask & (1 << i))
164 	    lhs_components++;
165       }
166 
167       assert(lhs_components == this->rhs->type->vector_elements);
168    }
169 }
170 
ir_assignment(ir_rvalue * lhs,ir_rvalue * rhs,ir_rvalue * condition)171 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
172 			     ir_rvalue *condition)
173    : ir_instruction(ir_type_assignment)
174 {
175    this->condition = condition;
176    this->rhs = rhs;
177 
178    /* If the RHS is a vector type, assume that all components of the vector
179     * type are being written to the LHS.  The write mask comes from the RHS
180     * because we can have a case where the LHS is a vec4 and the RHS is a
181     * vec3.  In that case, the assignment is:
182     *
183     *     (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
184     */
185    if (rhs->type->is_vector())
186       this->write_mask = (1U << rhs->type->vector_elements) - 1;
187    else if (rhs->type->is_scalar())
188       this->write_mask = 1;
189    else
190       this->write_mask = 0;
191 
192    this->set_lhs(lhs);
193 }
194 
ir_expression(int op,const struct glsl_type * type,ir_rvalue * op0,ir_rvalue * op1,ir_rvalue * op2,ir_rvalue * op3)195 ir_expression::ir_expression(int op, const struct glsl_type *type,
196 			     ir_rvalue *op0, ir_rvalue *op1,
197 			     ir_rvalue *op2, ir_rvalue *op3)
198    : ir_rvalue(ir_type_expression)
199 {
200    this->type = type;
201    this->operation = ir_expression_operation(op);
202    this->operands[0] = op0;
203    this->operands[1] = op1;
204    this->operands[2] = op2;
205    this->operands[3] = op3;
206    init_num_operands();
207 
208 #ifndef NDEBUG
209    for (unsigned i = num_operands; i < 4; i++) {
210       assert(this->operands[i] == NULL);
211    }
212 
213    for (unsigned i = 0; i < num_operands; i++) {
214       assert(this->operands[i] != NULL);
215    }
216 #endif
217 }
218 
ir_expression(int op,ir_rvalue * op0)219 ir_expression::ir_expression(int op, ir_rvalue *op0)
220    : ir_rvalue(ir_type_expression)
221 {
222    this->operation = ir_expression_operation(op);
223    this->operands[0] = op0;
224    this->operands[1] = NULL;
225    this->operands[2] = NULL;
226    this->operands[3] = NULL;
227 
228    assert(op <= ir_last_unop);
229    init_num_operands();
230    assert(num_operands == 1);
231    assert(this->operands[0]);
232 
233    switch (this->operation) {
234    case ir_unop_bit_not:
235    case ir_unop_logic_not:
236    case ir_unop_neg:
237    case ir_unop_abs:
238    case ir_unop_sign:
239    case ir_unop_rcp:
240    case ir_unop_rsq:
241    case ir_unop_sqrt:
242    case ir_unop_exp:
243    case ir_unop_log:
244    case ir_unop_exp2:
245    case ir_unop_log2:
246    case ir_unop_trunc:
247    case ir_unop_ceil:
248    case ir_unop_floor:
249    case ir_unop_fract:
250    case ir_unop_round_even:
251    case ir_unop_sin:
252    case ir_unop_cos:
253    case ir_unop_dFdx:
254    case ir_unop_dFdx_coarse:
255    case ir_unop_dFdx_fine:
256    case ir_unop_dFdy:
257    case ir_unop_dFdy_coarse:
258    case ir_unop_dFdy_fine:
259    case ir_unop_bitfield_reverse:
260    case ir_unop_interpolate_at_centroid:
261    case ir_unop_clz:
262    case ir_unop_saturate:
263    case ir_unop_atan:
264       this->type = op0->type;
265       break;
266 
267    case ir_unop_f2i:
268    case ir_unop_b2i:
269    case ir_unop_u2i:
270    case ir_unop_d2i:
271    case ir_unop_bitcast_f2i:
272    case ir_unop_bit_count:
273    case ir_unop_find_msb:
274    case ir_unop_find_lsb:
275    case ir_unop_subroutine_to_int:
276    case ir_unop_i642i:
277    case ir_unop_u642i:
278       this->type = glsl_type::get_instance(GLSL_TYPE_INT,
279 					   op0->type->vector_elements, 1);
280       break;
281 
282    case ir_unop_b2f:
283    case ir_unop_i2f:
284    case ir_unop_u2f:
285    case ir_unop_d2f:
286    case ir_unop_f162f:
287    case ir_unop_bitcast_i2f:
288    case ir_unop_bitcast_u2f:
289    case ir_unop_i642f:
290    case ir_unop_u642f:
291       this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
292 					   op0->type->vector_elements, 1);
293       break;
294 
295    case ir_unop_f2f16:
296    case ir_unop_f2fmp:
297    case ir_unop_b2f16:
298       this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16,
299 					   op0->type->vector_elements, 1);
300       break;
301 
302    case ir_unop_i2imp:
303       this->type = glsl_type::get_instance(GLSL_TYPE_INT16,
304 					   op0->type->vector_elements, 1);
305       break;
306 
307    case ir_unop_i2i:
308       if (op0->type->base_type == GLSL_TYPE_INT) {
309          this->type = glsl_type::get_instance(GLSL_TYPE_INT16,
310                                               op0->type->vector_elements, 1);
311       } else {
312          assert(op0->type->base_type == GLSL_TYPE_INT16);
313          this->type = glsl_type::get_instance(GLSL_TYPE_INT,
314                                               op0->type->vector_elements, 1);
315       }
316       break;
317 
318    case ir_unop_u2u:
319       if (op0->type->base_type == GLSL_TYPE_UINT) {
320          this->type = glsl_type::get_instance(GLSL_TYPE_UINT16,
321                                               op0->type->vector_elements, 1);
322       } else {
323          assert(op0->type->base_type == GLSL_TYPE_UINT16);
324          this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
325                                               op0->type->vector_elements, 1);
326       }
327       break;
328 
329    case ir_unop_u2ump:
330       this->type = glsl_type::get_instance(GLSL_TYPE_UINT16,
331 					   op0->type->vector_elements, 1);
332       break;
333 
334    case ir_unop_f2b:
335    case ir_unop_i2b:
336    case ir_unop_d2b:
337    case ir_unop_f162b:
338    case ir_unop_i642b:
339       this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
340 					   op0->type->vector_elements, 1);
341       break;
342 
343    case ir_unop_f2d:
344    case ir_unop_i2d:
345    case ir_unop_u2d:
346    case ir_unop_i642d:
347    case ir_unop_u642d:
348       this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
349 					   op0->type->vector_elements, 1);
350       break;
351 
352    case ir_unop_i2u:
353    case ir_unop_f2u:
354    case ir_unop_d2u:
355    case ir_unop_bitcast_f2u:
356    case ir_unop_i642u:
357    case ir_unop_u642u:
358       this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
359 					   op0->type->vector_elements, 1);
360       break;
361 
362    case ir_unop_i2i64:
363    case ir_unop_u2i64:
364    case ir_unop_b2i64:
365    case ir_unop_f2i64:
366    case ir_unop_d2i64:
367    case ir_unop_u642i64:
368       this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
369 					   op0->type->vector_elements, 1);
370       break;
371 
372    case ir_unop_i2u64:
373    case ir_unop_u2u64:
374    case ir_unop_f2u64:
375    case ir_unop_d2u64:
376    case ir_unop_i642u64:
377       this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
378 					   op0->type->vector_elements, 1);
379       break;
380 
381    case ir_unop_unpack_double_2x32:
382    case ir_unop_unpack_uint_2x32:
383       this->type = glsl_type::uvec2_type;
384       break;
385 
386    case ir_unop_unpack_int_2x32:
387       this->type = glsl_type::ivec2_type;
388       break;
389 
390    case ir_unop_pack_snorm_2x16:
391    case ir_unop_pack_snorm_4x8:
392    case ir_unop_pack_unorm_2x16:
393    case ir_unop_pack_unorm_4x8:
394    case ir_unop_pack_half_2x16:
395       this->type = glsl_type::uint_type;
396       break;
397 
398    case ir_unop_pack_double_2x32:
399       this->type = glsl_type::double_type;
400       break;
401 
402    case ir_unop_pack_int_2x32:
403       this->type = glsl_type::int64_t_type;
404       break;
405 
406    case ir_unop_pack_uint_2x32:
407       this->type = glsl_type::uint64_t_type;
408       break;
409 
410    case ir_unop_unpack_snorm_2x16:
411    case ir_unop_unpack_unorm_2x16:
412    case ir_unop_unpack_half_2x16:
413       this->type = glsl_type::vec2_type;
414       break;
415 
416    case ir_unop_unpack_snorm_4x8:
417    case ir_unop_unpack_unorm_4x8:
418       this->type = glsl_type::vec4_type;
419       break;
420 
421    case ir_unop_unpack_sampler_2x32:
422    case ir_unop_unpack_image_2x32:
423       this->type = glsl_type::uvec2_type;
424       break;
425 
426    case ir_unop_pack_sampler_2x32:
427    case ir_unop_pack_image_2x32:
428       this->type = op0->type;
429       break;
430 
431    case ir_unop_frexp_sig:
432       this->type = op0->type;
433       break;
434    case ir_unop_frexp_exp:
435       this->type = glsl_type::get_instance(GLSL_TYPE_INT,
436 					   op0->type->vector_elements, 1);
437       break;
438 
439    case ir_unop_get_buffer_size:
440    case ir_unop_ssbo_unsized_array_length:
441       this->type = glsl_type::int_type;
442       break;
443 
444    case ir_unop_bitcast_i642d:
445    case ir_unop_bitcast_u642d:
446       this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
447                                            op0->type->vector_elements, 1);
448       break;
449 
450    case ir_unop_bitcast_d2i64:
451       this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
452                                            op0->type->vector_elements, 1);
453       break;
454    case ir_unop_bitcast_d2u64:
455       this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
456                                            op0->type->vector_elements, 1);
457       break;
458 
459    default:
460       assert(!"not reached: missing automatic type setup for ir_expression");
461       this->type = op0->type;
462       break;
463    }
464 }
465 
ir_expression(int op,ir_rvalue * op0,ir_rvalue * op1)466 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
467    : ir_rvalue(ir_type_expression)
468 {
469    this->operation = ir_expression_operation(op);
470    this->operands[0] = op0;
471    this->operands[1] = op1;
472    this->operands[2] = NULL;
473    this->operands[3] = NULL;
474 
475    assert(op > ir_last_unop);
476    init_num_operands();
477    assert(num_operands == 2);
478    for (unsigned i = 0; i < num_operands; i++) {
479       assert(this->operands[i] != NULL);
480    }
481 
482    switch (this->operation) {
483    case ir_binop_all_equal:
484    case ir_binop_any_nequal:
485       this->type = glsl_type::bool_type;
486       break;
487 
488    case ir_binop_add:
489    case ir_binop_sub:
490    case ir_binop_min:
491    case ir_binop_max:
492    case ir_binop_pow:
493    case ir_binop_mul:
494    case ir_binop_div:
495    case ir_binop_mod:
496    case ir_binop_atan2:
497       if (op0->type->is_scalar()) {
498 	 this->type = op1->type;
499       } else if (op1->type->is_scalar()) {
500 	 this->type = op0->type;
501       } else {
502          if (this->operation == ir_binop_mul) {
503             this->type = glsl_type::get_mul_type(op0->type, op1->type);
504          } else {
505             assert(op0->type == op1->type);
506             this->type = op0->type;
507          }
508       }
509       break;
510 
511    case ir_binop_logic_and:
512    case ir_binop_logic_xor:
513    case ir_binop_logic_or:
514    case ir_binop_bit_and:
515    case ir_binop_bit_xor:
516    case ir_binop_bit_or:
517        assert(!op0->type->is_matrix());
518        assert(!op1->type->is_matrix());
519       if (op0->type->is_scalar()) {
520          this->type = op1->type;
521       } else if (op1->type->is_scalar()) {
522          this->type = op0->type;
523       } else {
524           assert(op0->type->vector_elements == op1->type->vector_elements);
525           this->type = op0->type;
526       }
527       break;
528 
529    case ir_binop_equal:
530    case ir_binop_nequal:
531    case ir_binop_gequal:
532    case ir_binop_less:
533       assert(op0->type == op1->type);
534       this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
535 					   op0->type->vector_elements, 1);
536       break;
537 
538    case ir_binop_dot:
539       this->type = op0->type->get_base_type();
540       break;
541 
542    case ir_binop_imul_high:
543    case ir_binop_mul_32x16:
544    case ir_binop_carry:
545    case ir_binop_borrow:
546    case ir_binop_lshift:
547    case ir_binop_rshift:
548    case ir_binop_ldexp:
549    case ir_binop_interpolate_at_offset:
550    case ir_binop_interpolate_at_sample:
551       this->type = op0->type;
552       break;
553 
554    case ir_binop_add_sat:
555    case ir_binop_sub_sat:
556    case ir_binop_avg:
557    case ir_binop_avg_round:
558       assert(op0->type == op1->type);
559       this->type = op0->type;
560       break;
561 
562    case ir_binop_abs_sub: {
563       enum glsl_base_type base;
564 
565       assert(op0->type == op1->type);
566 
567       switch (op0->type->base_type) {
568       case GLSL_TYPE_UINT:
569       case GLSL_TYPE_INT:
570          base = GLSL_TYPE_UINT;
571          break;
572       case GLSL_TYPE_UINT8:
573       case GLSL_TYPE_INT8:
574          base = GLSL_TYPE_UINT8;
575          break;
576       case GLSL_TYPE_UINT16:
577       case GLSL_TYPE_INT16:
578          base = GLSL_TYPE_UINT16;
579          break;
580       case GLSL_TYPE_UINT64:
581       case GLSL_TYPE_INT64:
582          base = GLSL_TYPE_UINT64;
583          break;
584       default:
585          unreachable(!"Invalid base type.");
586       }
587 
588       this->type = glsl_type::get_instance(base, op0->type->vector_elements, 1);
589       break;
590    }
591 
592    case ir_binop_vector_extract:
593       this->type = op0->type->get_scalar_type();
594       break;
595 
596    default:
597       assert(!"not reached: missing automatic type setup for ir_expression");
598       this->type = glsl_type::float_type;
599    }
600 }
601 
ir_expression(int op,ir_rvalue * op0,ir_rvalue * op1,ir_rvalue * op2)602 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
603                              ir_rvalue *op2)
604    : ir_rvalue(ir_type_expression)
605 {
606    this->operation = ir_expression_operation(op);
607    this->operands[0] = op0;
608    this->operands[1] = op1;
609    this->operands[2] = op2;
610    this->operands[3] = NULL;
611 
612    assert(op > ir_last_binop && op <= ir_last_triop);
613    init_num_operands();
614    assert(num_operands == 3);
615    for (unsigned i = 0; i < num_operands; i++) {
616       assert(this->operands[i] != NULL);
617    }
618 
619    switch (this->operation) {
620    case ir_triop_fma:
621    case ir_triop_lrp:
622    case ir_triop_bitfield_extract:
623    case ir_triop_vector_insert:
624       this->type = op0->type;
625       break;
626 
627    case ir_triop_csel:
628       this->type = op1->type;
629       break;
630 
631    default:
632       assert(!"not reached: missing automatic type setup for ir_expression");
633       this->type = glsl_type::float_type;
634    }
635 }
636 
637 /**
638  * This is only here for ir_reader to used for testing purposes. Please use
639  * the precomputed num_operands field if you need the number of operands.
640  */
641 unsigned
get_num_operands(ir_expression_operation op)642 ir_expression::get_num_operands(ir_expression_operation op)
643 {
644    assert(op <= ir_last_opcode);
645 
646    if (op <= ir_last_unop)
647       return 1;
648 
649    if (op <= ir_last_binop)
650       return 2;
651 
652    if (op <= ir_last_triop)
653       return 3;
654 
655    if (op <= ir_last_quadop)
656       return 4;
657 
658    unreachable("Could not calculate number of operands");
659 }
660 
661 #include "ir_expression_operation_strings.h"
662 
663 const char*
depth_layout_string(ir_depth_layout layout)664 depth_layout_string(ir_depth_layout layout)
665 {
666    switch(layout) {
667    case ir_depth_layout_none:      return "";
668    case ir_depth_layout_any:       return "depth_any";
669    case ir_depth_layout_greater:   return "depth_greater";
670    case ir_depth_layout_less:      return "depth_less";
671    case ir_depth_layout_unchanged: return "depth_unchanged";
672 
673    default:
674       assert(0);
675       return "";
676    }
677 }
678 
679 ir_expression_operation
get_operator(const char * str)680 ir_expression::get_operator(const char *str)
681 {
682    for (int op = 0; op <= int(ir_last_opcode); op++) {
683       if (strcmp(str, ir_expression_operation_strings[op]) == 0)
684 	 return (ir_expression_operation) op;
685    }
686    return (ir_expression_operation) -1;
687 }
688 
689 ir_variable *
variable_referenced() const690 ir_expression::variable_referenced() const
691 {
692    switch (operation) {
693       case ir_binop_vector_extract:
694       case ir_triop_vector_insert:
695          /* We get these for things like a[0] where a is a vector type. In these
696           * cases we want variable_referenced() to return the actual vector
697           * variable this is wrapping.
698           */
699          return operands[0]->variable_referenced();
700       default:
701          return ir_rvalue::variable_referenced();
702    }
703 }
704 
ir_constant()705 ir_constant::ir_constant()
706    : ir_rvalue(ir_type_constant)
707 {
708    this->const_elements = NULL;
709 }
710 
ir_constant(const struct glsl_type * type,const ir_constant_data * data)711 ir_constant::ir_constant(const struct glsl_type *type,
712 			 const ir_constant_data *data)
713    : ir_rvalue(ir_type_constant)
714 {
715    this->const_elements = NULL;
716 
717    assert((type->base_type >= GLSL_TYPE_UINT)
718 	  && (type->base_type <= GLSL_TYPE_IMAGE));
719 
720    this->type = type;
721    memcpy(& this->value, data, sizeof(this->value));
722 }
723 
ir_constant(float16_t f16,unsigned vector_elements)724 ir_constant::ir_constant(float16_t f16, unsigned vector_elements)
725    : ir_rvalue(ir_type_constant)
726 {
727    this->const_elements = NULL;
728    assert(vector_elements <= 4);
729    this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16, vector_elements, 1);
730    for (unsigned i = 0; i < vector_elements; i++) {
731       this->value.f16[i] = f16.bits;
732    }
733    for (unsigned i = vector_elements; i < 16; i++)  {
734       this->value.f[i] = 0;
735    }
736 }
737 
ir_constant(float f,unsigned vector_elements)738 ir_constant::ir_constant(float f, unsigned vector_elements)
739    : ir_rvalue(ir_type_constant)
740 {
741    this->const_elements = NULL;
742    assert(vector_elements <= 4);
743    this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1);
744    for (unsigned i = 0; i < vector_elements; i++) {
745       this->value.f[i] = f;
746    }
747    for (unsigned i = vector_elements; i < 16; i++)  {
748       this->value.f[i] = 0;
749    }
750 }
751 
ir_constant(double d,unsigned vector_elements)752 ir_constant::ir_constant(double d, unsigned vector_elements)
753    : ir_rvalue(ir_type_constant)
754 {
755    this->const_elements = NULL;
756    assert(vector_elements <= 4);
757    this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1);
758    for (unsigned i = 0; i < vector_elements; i++) {
759       this->value.d[i] = d;
760    }
761    for (unsigned i = vector_elements; i < 16; i++)  {
762       this->value.d[i] = 0.0;
763    }
764 }
765 
ir_constant(int16_t i16,unsigned vector_elements)766 ir_constant::ir_constant(int16_t i16, unsigned vector_elements)
767    : ir_rvalue(ir_type_constant)
768 {
769    this->const_elements = NULL;
770    assert(vector_elements <= 4);
771    this->type = glsl_type::get_instance(GLSL_TYPE_INT16, vector_elements, 1);
772    for (unsigned i = 0; i < vector_elements; i++) {
773       this->value.i16[i] = i16;
774    }
775    for (unsigned i = vector_elements; i < 16; i++) {
776       this->value.i16[i] = 0;
777    }
778 }
779 
ir_constant(uint16_t u16,unsigned vector_elements)780 ir_constant::ir_constant(uint16_t u16, unsigned vector_elements)
781    : ir_rvalue(ir_type_constant)
782 {
783    this->const_elements = NULL;
784    assert(vector_elements <= 4);
785    this->type = glsl_type::get_instance(GLSL_TYPE_UINT16, vector_elements, 1);
786    for (unsigned i = 0; i < vector_elements; i++) {
787       this->value.u16[i] = u16;
788    }
789    for (unsigned i = vector_elements; i < 16; i++) {
790       this->value.u16[i] = 0;
791    }
792 }
793 
ir_constant(unsigned int u,unsigned vector_elements)794 ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
795    : ir_rvalue(ir_type_constant)
796 {
797    this->const_elements = NULL;
798    assert(vector_elements <= 4);
799    this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1);
800    for (unsigned i = 0; i < vector_elements; i++) {
801       this->value.u[i] = u;
802    }
803    for (unsigned i = vector_elements; i < 16; i++) {
804       this->value.u[i] = 0;
805    }
806 }
807 
ir_constant(int integer,unsigned vector_elements)808 ir_constant::ir_constant(int integer, unsigned vector_elements)
809    : ir_rvalue(ir_type_constant)
810 {
811    this->const_elements = NULL;
812    assert(vector_elements <= 4);
813    this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1);
814    for (unsigned i = 0; i < vector_elements; i++) {
815       this->value.i[i] = integer;
816    }
817    for (unsigned i = vector_elements; i < 16; i++) {
818       this->value.i[i] = 0;
819    }
820 }
821 
ir_constant(uint64_t u64,unsigned vector_elements)822 ir_constant::ir_constant(uint64_t u64, unsigned vector_elements)
823    : ir_rvalue(ir_type_constant)
824 {
825    this->const_elements = NULL;
826    assert(vector_elements <= 4);
827    this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, vector_elements, 1);
828    for (unsigned i = 0; i < vector_elements; i++) {
829       this->value.u64[i] = u64;
830    }
831    for (unsigned i = vector_elements; i < 16; i++) {
832       this->value.u64[i] = 0;
833    }
834 }
835 
ir_constant(int64_t int64,unsigned vector_elements)836 ir_constant::ir_constant(int64_t int64, unsigned vector_elements)
837    : ir_rvalue(ir_type_constant)
838 {
839    this->const_elements = NULL;
840    assert(vector_elements <= 4);
841    this->type = glsl_type::get_instance(GLSL_TYPE_INT64, vector_elements, 1);
842    for (unsigned i = 0; i < vector_elements; i++) {
843       this->value.i64[i] = int64;
844    }
845    for (unsigned i = vector_elements; i < 16; i++) {
846       this->value.i64[i] = 0;
847    }
848 }
849 
ir_constant(bool b,unsigned vector_elements)850 ir_constant::ir_constant(bool b, unsigned vector_elements)
851    : ir_rvalue(ir_type_constant)
852 {
853    this->const_elements = NULL;
854    assert(vector_elements <= 4);
855    this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1);
856    for (unsigned i = 0; i < vector_elements; i++) {
857       this->value.b[i] = b;
858    }
859    for (unsigned i = vector_elements; i < 16; i++) {
860       this->value.b[i] = false;
861    }
862 }
863 
ir_constant(const ir_constant * c,unsigned i)864 ir_constant::ir_constant(const ir_constant *c, unsigned i)
865    : ir_rvalue(ir_type_constant)
866 {
867    this->const_elements = NULL;
868    this->type = c->type->get_base_type();
869 
870    /* Section 5.11 (Out-of-Bounds Accesses) of the GLSL 4.60 spec says:
871     *
872     *    In the subsections described above for array, vector, matrix and
873     *    structure accesses, any out-of-bounds access produced undefined
874     *    behavior....Out-of-bounds reads return undefined values, which
875     *    include values from other variables of the active program or zero.
876     *
877     * GL_KHR_robustness and GL_ARB_robustness encourage us to return zero.
878     */
879    if (i >= c->type->vector_elements) {
880       this->value = { { 0 } };
881       return;
882    }
883 
884    switch (this->type->base_type) {
885    case GLSL_TYPE_UINT16:  this->value.u16[0] = c->value.u16[i]; break;
886    case GLSL_TYPE_INT16:  this->value.i16[0] = c->value.i16[i]; break;
887    case GLSL_TYPE_UINT:  this->value.u[0] = c->value.u[i]; break;
888    case GLSL_TYPE_INT:   this->value.i[0] = c->value.i[i]; break;
889    case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
890    case GLSL_TYPE_FLOAT16: this->value.f16[0] = c->value.f16[i]; break;
891    case GLSL_TYPE_BOOL:  this->value.b[0] = c->value.b[i]; break;
892    case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
893    default:              assert(!"Should not get here."); break;
894    }
895 }
896 
ir_constant(const struct glsl_type * type,exec_list * value_list)897 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
898    : ir_rvalue(ir_type_constant)
899 {
900    this->const_elements = NULL;
901    this->type = type;
902 
903    assert(type->is_scalar() || type->is_vector() || type->is_matrix()
904 	  || type->is_struct() || type->is_array());
905 
906    /* If the constant is a record, the types of each of the entries in
907     * value_list must be a 1-for-1 match with the structure components.  Each
908     * entry must also be a constant.  Just move the nodes from the value_list
909     * to the list in the ir_constant.
910     */
911    if (type->is_array() || type->is_struct()) {
912       this->const_elements = ralloc_array(this, ir_constant *, type->length);
913       unsigned i = 0;
914       foreach_in_list(ir_constant, value, value_list) {
915 	 assert(value->as_constant() != NULL);
916 
917 	 this->const_elements[i++] = value;
918       }
919       return;
920    }
921 
922    for (unsigned i = 0; i < 16; i++) {
923       this->value.u[i] = 0;
924    }
925 
926    ir_constant *value = (ir_constant *) (value_list->get_head_raw());
927 
928    /* Constructors with exactly one scalar argument are special for vectors
929     * and matrices.  For vectors, the scalar value is replicated to fill all
930     * the components.  For matrices, the scalar fills the components of the
931     * diagonal while the rest is filled with 0.
932     */
933    if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
934       if (type->is_matrix()) {
935 	 /* Matrix - fill diagonal (rest is already set to 0) */
936          for (unsigned i = 0; i < type->matrix_columns; i++) {
937             switch (type->base_type) {
938             case GLSL_TYPE_FLOAT:
939                this->value.f[i * type->vector_elements + i] =
940                   value->value.f[0];
941                break;
942             case GLSL_TYPE_DOUBLE:
943                this->value.d[i * type->vector_elements + i] =
944                   value->value.d[0];
945                break;
946             case GLSL_TYPE_FLOAT16:
947                this->value.f16[i * type->vector_elements + i] =
948                   value->value.f16[0];
949                break;
950             default:
951                assert(!"unexpected matrix base type");
952             }
953          }
954       } else {
955 	 /* Vector or scalar - fill all components */
956 	 switch (type->base_type) {
957          case GLSL_TYPE_UINT16:
958 	 case GLSL_TYPE_INT16:
959 	    for (unsigned i = 0; i < type->components(); i++)
960 	       this->value.u16[i] = value->value.u16[0];
961 	    break;
962 	 case GLSL_TYPE_UINT:
963 	 case GLSL_TYPE_INT:
964 	    for (unsigned i = 0; i < type->components(); i++)
965 	       this->value.u[i] = value->value.u[0];
966 	    break;
967 	 case GLSL_TYPE_FLOAT:
968 	    for (unsigned i = 0; i < type->components(); i++)
969 	       this->value.f[i] = value->value.f[0];
970 	    break;
971 	 case GLSL_TYPE_FLOAT16:
972 	    for (unsigned i = 0; i < type->components(); i++)
973 	       this->value.f16[i] = value->value.f16[0];
974 	    break;
975 	 case GLSL_TYPE_DOUBLE:
976 	    for (unsigned i = 0; i < type->components(); i++)
977 	       this->value.d[i] = value->value.d[0];
978 	    break;
979 	 case GLSL_TYPE_UINT64:
980 	 case GLSL_TYPE_INT64:
981 	    for (unsigned i = 0; i < type->components(); i++)
982 	       this->value.u64[i] = value->value.u64[0];
983 	    break;
984 	 case GLSL_TYPE_BOOL:
985 	    for (unsigned i = 0; i < type->components(); i++)
986 	       this->value.b[i] = value->value.b[0];
987 	    break;
988 	 case GLSL_TYPE_SAMPLER:
989 	 case GLSL_TYPE_IMAGE:
990 	    this->value.u64[0] = value->value.u64[0];
991 	    break;
992 	 default:
993 	    assert(!"Should not get here.");
994 	    break;
995 	 }
996       }
997       return;
998    }
999 
1000    if (type->is_matrix() && value->type->is_matrix()) {
1001       assert(value->next->is_tail_sentinel());
1002 
1003       /* From section 5.4.2 of the GLSL 1.20 spec:
1004        * "If a matrix is constructed from a matrix, then each component
1005        *  (column i, row j) in the result that has a corresponding component
1006        *  (column i, row j) in the argument will be initialized from there."
1007        */
1008       unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
1009       unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
1010       for (unsigned i = 0; i < cols; i++) {
1011 	 for (unsigned j = 0; j < rows; j++) {
1012 	    const unsigned src = i * value->type->vector_elements + j;
1013 	    const unsigned dst = i * type->vector_elements + j;
1014 	    this->value.f[dst] = value->value.f[src];
1015 	 }
1016       }
1017 
1018       /* "All other components will be initialized to the identity matrix." */
1019       for (unsigned i = cols; i < type->matrix_columns; i++)
1020 	 this->value.f[i * type->vector_elements + i] = 1.0;
1021 
1022       return;
1023    }
1024 
1025    /* Use each component from each entry in the value_list to initialize one
1026     * component of the constant being constructed.
1027     */
1028    unsigned i = 0;
1029    for (;;) {
1030       assert(value->as_constant() != NULL);
1031       assert(!value->is_tail_sentinel());
1032 
1033       for (unsigned j = 0; j < value->type->components(); j++) {
1034 	 switch (type->base_type) {
1035          case GLSL_TYPE_UINT16:
1036 	    this->value.u16[i] = value->get_uint16_component(j);
1037 	    break;
1038 	 case GLSL_TYPE_INT16:
1039 	    this->value.i16[i] = value->get_int16_component(j);
1040 	    break;
1041 	 case GLSL_TYPE_UINT:
1042 	    this->value.u[i] = value->get_uint_component(j);
1043 	    break;
1044 	 case GLSL_TYPE_INT:
1045 	    this->value.i[i] = value->get_int_component(j);
1046 	    break;
1047 	 case GLSL_TYPE_FLOAT:
1048 	    this->value.f[i] = value->get_float_component(j);
1049 	    break;
1050 	 case GLSL_TYPE_FLOAT16:
1051 	    this->value.f16[i] = value->get_float16_component(j);
1052 	    break;
1053 	 case GLSL_TYPE_BOOL:
1054 	    this->value.b[i] = value->get_bool_component(j);
1055 	    break;
1056 	 case GLSL_TYPE_DOUBLE:
1057 	    this->value.d[i] = value->get_double_component(j);
1058 	    break;
1059          case GLSL_TYPE_UINT64:
1060 	    this->value.u64[i] = value->get_uint64_component(j);
1061 	    break;
1062 	 case GLSL_TYPE_INT64:
1063 	    this->value.i64[i] = value->get_int64_component(j);
1064 	    break;
1065 	 default:
1066 	    /* FINISHME: What to do?  Exceptions are not the answer.
1067 	     */
1068 	    break;
1069 	 }
1070 
1071 	 i++;
1072 	 if (i >= type->components())
1073 	    break;
1074       }
1075 
1076       if (i >= type->components())
1077 	 break; /* avoid downcasting a list sentinel */
1078       value = (ir_constant *) value->next;
1079    }
1080 }
1081 
1082 ir_constant *
zero(void * mem_ctx,const glsl_type * type)1083 ir_constant::zero(void *mem_ctx, const glsl_type *type)
1084 {
1085    assert(type->is_scalar() || type->is_vector() || type->is_matrix()
1086 	  || type->is_struct() || type->is_array());
1087 
1088    ir_constant *c = new(mem_ctx) ir_constant;
1089    c->type = type;
1090    memset(&c->value, 0, sizeof(c->value));
1091 
1092    if (type->is_array()) {
1093       c->const_elements = ralloc_array(c, ir_constant *, type->length);
1094 
1095       for (unsigned i = 0; i < type->length; i++)
1096 	 c->const_elements[i] = ir_constant::zero(c, type->fields.array);
1097    }
1098 
1099    if (type->is_struct()) {
1100       c->const_elements = ralloc_array(c, ir_constant *, type->length);
1101 
1102       for (unsigned i = 0; i < type->length; i++) {
1103          c->const_elements[i] =
1104             ir_constant::zero(mem_ctx, type->fields.structure[i].type);
1105       }
1106    }
1107 
1108    return c;
1109 }
1110 
1111 bool
get_bool_component(unsigned i) const1112 ir_constant::get_bool_component(unsigned i) const
1113 {
1114    switch (this->type->base_type) {
1115    case GLSL_TYPE_UINT16:return this->value.u16[i] != 0;
1116    case GLSL_TYPE_INT16: return this->value.i16[i] != 0;
1117    case GLSL_TYPE_UINT:  return this->value.u[i] != 0;
1118    case GLSL_TYPE_INT:   return this->value.i[i] != 0;
1119    case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
1120    case GLSL_TYPE_FLOAT16: return ((int)_mesa_half_to_float(this->value.f16[i])) != 0;
1121    case GLSL_TYPE_BOOL:  return this->value.b[i];
1122    case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
1123    case GLSL_TYPE_SAMPLER:
1124    case GLSL_TYPE_IMAGE:
1125    case GLSL_TYPE_UINT64: return this->value.u64[i] != 0;
1126    case GLSL_TYPE_INT64:  return this->value.i64[i] != 0;
1127    default:              assert(!"Should not get here."); break;
1128    }
1129 
1130    /* Must return something to make the compiler happy.  This is clearly an
1131     * error case.
1132     */
1133    return false;
1134 }
1135 
1136 float
get_float_component(unsigned i) const1137 ir_constant::get_float_component(unsigned i) const
1138 {
1139    switch (this->type->base_type) {
1140    case GLSL_TYPE_UINT16:return (float) this->value.u16[i];
1141    case GLSL_TYPE_INT16: return (float) this->value.i16[i];
1142    case GLSL_TYPE_UINT:  return (float) this->value.u[i];
1143    case GLSL_TYPE_INT:   return (float) this->value.i[i];
1144    case GLSL_TYPE_FLOAT: return this->value.f[i];
1145    case GLSL_TYPE_FLOAT16: return _mesa_half_to_float(this->value.f16[i]);
1146    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1.0f : 0.0f;
1147    case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
1148    case GLSL_TYPE_SAMPLER:
1149    case GLSL_TYPE_IMAGE:
1150    case GLSL_TYPE_UINT64: return (float) this->value.u64[i];
1151    case GLSL_TYPE_INT64:  return (float) this->value.i64[i];
1152    default:              assert(!"Should not get here."); break;
1153    }
1154 
1155    /* Must return something to make the compiler happy.  This is clearly an
1156     * error case.
1157     */
1158    return 0.0;
1159 }
1160 
1161 uint16_t
get_float16_component(unsigned i) const1162 ir_constant::get_float16_component(unsigned i) const
1163 {
1164    if (this->type->base_type == GLSL_TYPE_FLOAT16)
1165       return this->value.f16[i];
1166    else
1167       return _mesa_float_to_half(get_float_component(i));
1168 }
1169 
1170 double
get_double_component(unsigned i) const1171 ir_constant::get_double_component(unsigned i) const
1172 {
1173    switch (this->type->base_type) {
1174    case GLSL_TYPE_UINT16:return (double) this->value.u16[i];
1175    case GLSL_TYPE_INT16: return (double) this->value.i16[i];
1176    case GLSL_TYPE_UINT:  return (double) this->value.u[i];
1177    case GLSL_TYPE_INT:   return (double) this->value.i[i];
1178    case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
1179    case GLSL_TYPE_FLOAT16: return (double) _mesa_half_to_float(this->value.f16[i]);
1180    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1.0 : 0.0;
1181    case GLSL_TYPE_DOUBLE: return this->value.d[i];
1182    case GLSL_TYPE_SAMPLER:
1183    case GLSL_TYPE_IMAGE:
1184    case GLSL_TYPE_UINT64: return (double) this->value.u64[i];
1185    case GLSL_TYPE_INT64:  return (double) this->value.i64[i];
1186    default:              assert(!"Should not get here."); break;
1187    }
1188 
1189    /* Must return something to make the compiler happy.  This is clearly an
1190     * error case.
1191     */
1192    return 0.0;
1193 }
1194 
1195 int16_t
get_int16_component(unsigned i) const1196 ir_constant::get_int16_component(unsigned i) const
1197 {
1198    switch (this->type->base_type) {
1199    case GLSL_TYPE_UINT16:return this->value.u16[i];
1200    case GLSL_TYPE_INT16: return this->value.i16[i];
1201    case GLSL_TYPE_UINT:  return this->value.u[i];
1202    case GLSL_TYPE_INT:   return this->value.i[i];
1203    case GLSL_TYPE_FLOAT: return (int16_t) this->value.f[i];
1204    case GLSL_TYPE_FLOAT16: return (int16_t) _mesa_half_to_float(this->value.f16[i]);
1205    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1206    case GLSL_TYPE_DOUBLE: return (int16_t) this->value.d[i];
1207    case GLSL_TYPE_SAMPLER:
1208    case GLSL_TYPE_IMAGE:
1209    case GLSL_TYPE_UINT64: return (int16_t) this->value.u64[i];
1210    case GLSL_TYPE_INT64:  return (int16_t) this->value.i64[i];
1211    default:              assert(!"Should not get here."); break;
1212    }
1213 
1214    /* Must return something to make the compiler happy.  This is clearly an
1215     * error case.
1216     */
1217    return 0;
1218 }
1219 
1220 uint16_t
get_uint16_component(unsigned i) const1221 ir_constant::get_uint16_component(unsigned i) const
1222 {
1223    switch (this->type->base_type) {
1224    case GLSL_TYPE_UINT16:return this->value.u16[i];
1225    case GLSL_TYPE_INT16: return this->value.i16[i];
1226    case GLSL_TYPE_UINT:  return this->value.u[i];
1227    case GLSL_TYPE_INT:   return this->value.i[i];
1228    case GLSL_TYPE_FLOAT: return (uint16_t) this->value.f[i];
1229    case GLSL_TYPE_FLOAT16: return (uint16_t) _mesa_half_to_float(this->value.f16[i]);
1230    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1231    case GLSL_TYPE_DOUBLE: return (uint16_t) this->value.d[i];
1232    case GLSL_TYPE_SAMPLER:
1233    case GLSL_TYPE_IMAGE:
1234    case GLSL_TYPE_UINT64: return (uint16_t) this->value.u64[i];
1235    case GLSL_TYPE_INT64:  return (uint16_t) this->value.i64[i];
1236    default:              assert(!"Should not get here."); break;
1237    }
1238 
1239    /* Must return something to make the compiler happy.  This is clearly an
1240     * error case.
1241     */
1242    return 0;
1243 }
1244 
1245 int
get_int_component(unsigned i) const1246 ir_constant::get_int_component(unsigned i) const
1247 {
1248    switch (this->type->base_type) {
1249    case GLSL_TYPE_UINT16:return this->value.u16[i];
1250    case GLSL_TYPE_INT16: return this->value.i16[i];
1251    case GLSL_TYPE_UINT:  return this->value.u[i];
1252    case GLSL_TYPE_INT:   return this->value.i[i];
1253    case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
1254    case GLSL_TYPE_FLOAT16: return (int) _mesa_half_to_float(this->value.f16[i]);
1255    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1256    case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
1257    case GLSL_TYPE_SAMPLER:
1258    case GLSL_TYPE_IMAGE:
1259    case GLSL_TYPE_UINT64: return (int) this->value.u64[i];
1260    case GLSL_TYPE_INT64:  return (int) this->value.i64[i];
1261    default:              assert(!"Should not get here."); break;
1262    }
1263 
1264    /* Must return something to make the compiler happy.  This is clearly an
1265     * error case.
1266     */
1267    return 0;
1268 }
1269 
1270 unsigned
get_uint_component(unsigned i) const1271 ir_constant::get_uint_component(unsigned i) const
1272 {
1273    switch (this->type->base_type) {
1274    case GLSL_TYPE_UINT16:return this->value.u16[i];
1275    case GLSL_TYPE_INT16: return this->value.i16[i];
1276    case GLSL_TYPE_UINT:  return this->value.u[i];
1277    case GLSL_TYPE_INT:   return this->value.i[i];
1278    case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
1279    case GLSL_TYPE_FLOAT16: return (unsigned) _mesa_half_to_float(this->value.f16[i]);
1280    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1281    case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
1282    case GLSL_TYPE_SAMPLER:
1283    case GLSL_TYPE_IMAGE:
1284    case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i];
1285    case GLSL_TYPE_INT64:  return (unsigned) this->value.i64[i];
1286    default:              assert(!"Should not get here."); break;
1287    }
1288 
1289    /* Must return something to make the compiler happy.  This is clearly an
1290     * error case.
1291     */
1292    return 0;
1293 }
1294 
1295 int64_t
get_int64_component(unsigned i) const1296 ir_constant::get_int64_component(unsigned i) const
1297 {
1298    switch (this->type->base_type) {
1299    case GLSL_TYPE_UINT16:return this->value.u16[i];
1300    case GLSL_TYPE_INT16: return this->value.i16[i];
1301    case GLSL_TYPE_UINT:  return this->value.u[i];
1302    case GLSL_TYPE_INT:   return this->value.i[i];
1303    case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i];
1304    case GLSL_TYPE_FLOAT16: return (int64_t) _mesa_half_to_float(this->value.f16[i]);
1305    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1306    case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i];
1307    case GLSL_TYPE_SAMPLER:
1308    case GLSL_TYPE_IMAGE:
1309    case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i];
1310    case GLSL_TYPE_INT64:  return this->value.i64[i];
1311    default:              assert(!"Should not get here."); break;
1312    }
1313 
1314    /* Must return something to make the compiler happy.  This is clearly an
1315     * error case.
1316     */
1317    return 0;
1318 }
1319 
1320 uint64_t
get_uint64_component(unsigned i) const1321 ir_constant::get_uint64_component(unsigned i) const
1322 {
1323    switch (this->type->base_type) {
1324    case GLSL_TYPE_UINT16:return this->value.u16[i];
1325    case GLSL_TYPE_INT16: return this->value.i16[i];
1326    case GLSL_TYPE_UINT:  return this->value.u[i];
1327    case GLSL_TYPE_INT:   return this->value.i[i];
1328    case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i];
1329    case GLSL_TYPE_FLOAT16: return (uint64_t) _mesa_half_to_float(this->value.f16[i]);
1330    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1331    case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i];
1332    case GLSL_TYPE_SAMPLER:
1333    case GLSL_TYPE_IMAGE:
1334    case GLSL_TYPE_UINT64: return this->value.u64[i];
1335    case GLSL_TYPE_INT64:  return (uint64_t) this->value.i64[i];
1336    default:              assert(!"Should not get here."); break;
1337    }
1338 
1339    /* Must return something to make the compiler happy.  This is clearly an
1340     * error case.
1341     */
1342    return 0;
1343 }
1344 
1345 ir_constant *
get_array_element(unsigned i) const1346 ir_constant::get_array_element(unsigned i) const
1347 {
1348    assert(this->type->is_array());
1349 
1350    /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
1351     *
1352     *     "Behavior is undefined if a shader subscripts an array with an index
1353     *     less than 0 or greater than or equal to the size the array was
1354     *     declared with."
1355     *
1356     * Most out-of-bounds accesses are removed before things could get this far.
1357     * There are cases where non-constant array index values can get constant
1358     * folded.
1359     */
1360    if (int(i) < 0)
1361       i = 0;
1362    else if (i >= this->type->length)
1363       i = this->type->length - 1;
1364 
1365    return const_elements[i];
1366 }
1367 
1368 ir_constant *
get_record_field(int idx)1369 ir_constant::get_record_field(int idx)
1370 {
1371    assert(this->type->is_struct());
1372    assert(idx >= 0 && (unsigned) idx < this->type->length);
1373 
1374    return const_elements[idx];
1375 }
1376 
1377 void
copy_offset(ir_constant * src,int offset)1378 ir_constant::copy_offset(ir_constant *src, int offset)
1379 {
1380    switch (this->type->base_type) {
1381    case GLSL_TYPE_UINT16:
1382    case GLSL_TYPE_INT16:
1383    case GLSL_TYPE_UINT:
1384    case GLSL_TYPE_INT:
1385    case GLSL_TYPE_FLOAT:
1386    case GLSL_TYPE_FLOAT16:
1387    case GLSL_TYPE_DOUBLE:
1388    case GLSL_TYPE_SAMPLER:
1389    case GLSL_TYPE_IMAGE:
1390    case GLSL_TYPE_UINT64:
1391    case GLSL_TYPE_INT64:
1392    case GLSL_TYPE_BOOL: {
1393       unsigned int size = src->type->components();
1394       assert (size <= this->type->components() - offset);
1395       for (unsigned int i=0; i<size; i++) {
1396 	 switch (this->type->base_type) {
1397          case GLSL_TYPE_UINT16:
1398 	    value.u16[i+offset] = src->get_uint16_component(i);
1399 	    break;
1400 	 case GLSL_TYPE_INT16:
1401 	    value.i16[i+offset] = src->get_int16_component(i);
1402 	    break;
1403 	 case GLSL_TYPE_UINT:
1404 	    value.u[i+offset] = src->get_uint_component(i);
1405 	    break;
1406 	 case GLSL_TYPE_INT:
1407 	    value.i[i+offset] = src->get_int_component(i);
1408 	    break;
1409 	 case GLSL_TYPE_FLOAT:
1410 	    value.f[i+offset] = src->get_float_component(i);
1411 	    break;
1412 	 case GLSL_TYPE_FLOAT16:
1413 	    value.f16[i+offset] = src->get_float16_component(i);
1414 	    break;
1415 	 case GLSL_TYPE_BOOL:
1416 	    value.b[i+offset] = src->get_bool_component(i);
1417 	    break;
1418 	 case GLSL_TYPE_DOUBLE:
1419 	    value.d[i+offset] = src->get_double_component(i);
1420 	    break;
1421 	 case GLSL_TYPE_SAMPLER:
1422 	 case GLSL_TYPE_IMAGE:
1423 	 case GLSL_TYPE_UINT64:
1424 	    value.u64[i+offset] = src->get_uint64_component(i);
1425 	    break;
1426 	 case GLSL_TYPE_INT64:
1427 	    value.i64[i+offset] = src->get_int64_component(i);
1428 	    break;
1429 	 default: // Shut up the compiler
1430 	    break;
1431 	 }
1432       }
1433       break;
1434    }
1435 
1436    case GLSL_TYPE_STRUCT:
1437    case GLSL_TYPE_ARRAY: {
1438       assert (src->type == this->type);
1439       for (unsigned i = 0; i < this->type->length; i++) {
1440 	 this->const_elements[i] = src->const_elements[i]->clone(this, NULL);
1441       }
1442       break;
1443    }
1444 
1445    default:
1446       assert(!"Should not get here.");
1447       break;
1448    }
1449 }
1450 
1451 void
copy_masked_offset(ir_constant * src,int offset,unsigned int mask)1452 ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
1453 {
1454    assert (!type->is_array() && !type->is_struct());
1455 
1456    if (!type->is_vector() && !type->is_matrix()) {
1457       offset = 0;
1458       mask = 1;
1459    }
1460 
1461    int id = 0;
1462    for (int i=0; i<4; i++) {
1463       if (mask & (1 << i)) {
1464 	 switch (this->type->base_type) {
1465          case GLSL_TYPE_UINT16:
1466 	    value.u16[i+offset] = src->get_uint16_component(id++);
1467 	    break;
1468 	 case GLSL_TYPE_INT16:
1469 	    value.i16[i+offset] = src->get_int16_component(id++);
1470 	    break;
1471 	 case GLSL_TYPE_UINT:
1472 	    value.u[i+offset] = src->get_uint_component(id++);
1473 	    break;
1474 	 case GLSL_TYPE_INT:
1475 	    value.i[i+offset] = src->get_int_component(id++);
1476 	    break;
1477 	 case GLSL_TYPE_FLOAT:
1478 	    value.f[i+offset] = src->get_float_component(id++);
1479 	    break;
1480 	 case GLSL_TYPE_FLOAT16:
1481 	    value.f16[i+offset] = src->get_float16_component(id++);
1482 	    break;
1483 	 case GLSL_TYPE_BOOL:
1484 	    value.b[i+offset] = src->get_bool_component(id++);
1485 	    break;
1486 	 case GLSL_TYPE_DOUBLE:
1487 	    value.d[i+offset] = src->get_double_component(id++);
1488 	    break;
1489 	 case GLSL_TYPE_SAMPLER:
1490 	 case GLSL_TYPE_IMAGE:
1491 	 case GLSL_TYPE_UINT64:
1492 	    value.u64[i+offset] = src->get_uint64_component(id++);
1493 	    break;
1494 	 case GLSL_TYPE_INT64:
1495 	    value.i64[i+offset] = src->get_int64_component(id++);
1496 	    break;
1497 	 default:
1498 	    assert(!"Should not get here.");
1499 	    return;
1500 	 }
1501       }
1502    }
1503 }
1504 
1505 bool
has_value(const ir_constant * c) const1506 ir_constant::has_value(const ir_constant *c) const
1507 {
1508    if (this->type != c->type)
1509       return false;
1510 
1511    if (this->type->is_array() || this->type->is_struct()) {
1512       for (unsigned i = 0; i < this->type->length; i++) {
1513 	 if (!this->const_elements[i]->has_value(c->const_elements[i]))
1514 	    return false;
1515       }
1516       return true;
1517    }
1518 
1519    for (unsigned i = 0; i < this->type->components(); i++) {
1520       switch (this->type->base_type) {
1521       case GLSL_TYPE_UINT16:
1522 	 if (this->value.u16[i] != c->value.u16[i])
1523 	    return false;
1524 	 break;
1525       case GLSL_TYPE_INT16:
1526 	 if (this->value.i16[i] != c->value.i16[i])
1527 	    return false;
1528 	 break;
1529       case GLSL_TYPE_UINT:
1530 	 if (this->value.u[i] != c->value.u[i])
1531 	    return false;
1532 	 break;
1533       case GLSL_TYPE_INT:
1534 	 if (this->value.i[i] != c->value.i[i])
1535 	    return false;
1536 	 break;
1537       case GLSL_TYPE_FLOAT:
1538 	 if (this->value.f[i] != c->value.f[i])
1539 	    return false;
1540 	 break;
1541       case GLSL_TYPE_FLOAT16:
1542 	/* Convert to float to make sure NaN and ±0.0 compares correctly */
1543 	 if (_mesa_half_to_float(this->value.f16[i]) !=
1544              _mesa_half_to_float(c->value.f16[i]))
1545 	    return false;
1546 	 break;
1547       case GLSL_TYPE_BOOL:
1548 	 if (this->value.b[i] != c->value.b[i])
1549 	    return false;
1550 	 break;
1551       case GLSL_TYPE_DOUBLE:
1552 	 if (this->value.d[i] != c->value.d[i])
1553 	    return false;
1554 	 break;
1555       case GLSL_TYPE_SAMPLER:
1556       case GLSL_TYPE_IMAGE:
1557       case GLSL_TYPE_UINT64:
1558 	 if (this->value.u64[i] != c->value.u64[i])
1559 	    return false;
1560 	 break;
1561       case GLSL_TYPE_INT64:
1562 	 if (this->value.i64[i] != c->value.i64[i])
1563 	    return false;
1564 	 break;
1565       default:
1566 	 assert(!"Should not get here.");
1567 	 return false;
1568       }
1569    }
1570 
1571    return true;
1572 }
1573 
1574 bool
is_value(float f,int i) const1575 ir_constant::is_value(float f, int i) const
1576 {
1577    if (!this->type->is_scalar() && !this->type->is_vector())
1578       return false;
1579 
1580    /* Only accept boolean values for 0/1. */
1581    if (int(bool(i)) != i && this->type->is_boolean())
1582       return false;
1583 
1584    for (unsigned c = 0; c < this->type->vector_elements; c++) {
1585       switch (this->type->base_type) {
1586       case GLSL_TYPE_FLOAT:
1587 	 if (this->value.f[c] != f)
1588 	    return false;
1589 	 break;
1590       case GLSL_TYPE_FLOAT16:
1591          if (_mesa_half_to_float(this->value.f16[c]) != f)
1592             return false;
1593          break;
1594       case GLSL_TYPE_INT16:
1595 	 if (this->value.i16[c] != int16_t(i))
1596 	    return false;
1597 	 break;
1598       case GLSL_TYPE_UINT16:
1599 	 if (this->value.u16[c] != uint16_t(i))
1600 	    return false;
1601 	 break;
1602       case GLSL_TYPE_INT:
1603 	 if (this->value.i[c] != i)
1604 	    return false;
1605 	 break;
1606       case GLSL_TYPE_UINT:
1607 	 if (this->value.u[c] != unsigned(i))
1608 	    return false;
1609 	 break;
1610       case GLSL_TYPE_BOOL:
1611 	 if (this->value.b[c] != bool(i))
1612 	    return false;
1613 	 break;
1614       case GLSL_TYPE_DOUBLE:
1615 	 if (this->value.d[c] != double(f))
1616 	    return false;
1617 	 break;
1618       case GLSL_TYPE_SAMPLER:
1619       case GLSL_TYPE_IMAGE:
1620       case GLSL_TYPE_UINT64:
1621 	 if (this->value.u64[c] != uint64_t(i))
1622 	    return false;
1623 	 break;
1624       case GLSL_TYPE_INT64:
1625 	 if (this->value.i64[c] != i)
1626 	    return false;
1627 	 break;
1628       default:
1629 	 /* The only other base types are structures, arrays, and samplers.
1630 	  * Samplers cannot be constants, and the others should have been
1631 	  * filtered out above.
1632 	  */
1633 	 assert(!"Should not get here.");
1634 	 return false;
1635       }
1636    }
1637 
1638    return true;
1639 }
1640 
1641 bool
is_zero() const1642 ir_constant::is_zero() const
1643 {
1644    return is_value(0.0, 0);
1645 }
1646 
1647 bool
is_one() const1648 ir_constant::is_one() const
1649 {
1650    return is_value(1.0, 1);
1651 }
1652 
1653 bool
is_negative_one() const1654 ir_constant::is_negative_one() const
1655 {
1656    return is_value(-1.0, -1);
1657 }
1658 
1659 bool
is_uint16_constant() const1660 ir_constant::is_uint16_constant() const
1661 {
1662    if (!type->is_integer_32())
1663       return false;
1664 
1665    return value.u[0] < (1 << 16);
1666 }
1667 
ir_loop()1668 ir_loop::ir_loop()
1669    : ir_instruction(ir_type_loop)
1670 {
1671 }
1672 
1673 
ir_dereference_variable(ir_variable * var)1674 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1675    : ir_dereference(ir_type_dereference_variable)
1676 {
1677    assert(var != NULL);
1678 
1679    this->var = var;
1680    this->type = var->type;
1681 }
1682 
1683 
ir_dereference_array(ir_rvalue * value,ir_rvalue * array_index)1684 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1685 					   ir_rvalue *array_index)
1686    : ir_dereference(ir_type_dereference_array)
1687 {
1688    this->array_index = array_index;
1689    this->set_array(value);
1690 }
1691 
1692 
ir_dereference_array(ir_variable * var,ir_rvalue * array_index)1693 ir_dereference_array::ir_dereference_array(ir_variable *var,
1694 					   ir_rvalue *array_index)
1695    : ir_dereference(ir_type_dereference_array)
1696 {
1697    void *ctx = ralloc_parent(var);
1698 
1699    this->array_index = array_index;
1700    this->set_array(new(ctx) ir_dereference_variable(var));
1701 }
1702 
1703 
1704 void
set_array(ir_rvalue * value)1705 ir_dereference_array::set_array(ir_rvalue *value)
1706 {
1707    assert(value != NULL);
1708 
1709    this->array = value;
1710 
1711    const glsl_type *const vt = this->array->type;
1712 
1713    if (vt->is_array()) {
1714       type = vt->fields.array;
1715    } else if (vt->is_matrix()) {
1716       type = vt->column_type();
1717    } else if (vt->is_vector()) {
1718       type = vt->get_base_type();
1719    }
1720 }
1721 
1722 
ir_dereference_record(ir_rvalue * value,const char * field)1723 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1724 					     const char *field)
1725    : ir_dereference(ir_type_dereference_record)
1726 {
1727    assert(value != NULL);
1728 
1729    this->record = value;
1730    this->type = this->record->type->field_type(field);
1731    this->field_idx = this->record->type->field_index(field);
1732 }
1733 
1734 
ir_dereference_record(ir_variable * var,const char * field)1735 ir_dereference_record::ir_dereference_record(ir_variable *var,
1736 					     const char *field)
1737    : ir_dereference(ir_type_dereference_record)
1738 {
1739    void *ctx = ralloc_parent(var);
1740 
1741    this->record = new(ctx) ir_dereference_variable(var);
1742    this->type = this->record->type->field_type(field);
1743    this->field_idx = this->record->type->field_index(field);
1744 }
1745 
1746 bool
is_lvalue(const struct _mesa_glsl_parse_state * state) const1747 ir_dereference::is_lvalue(const struct _mesa_glsl_parse_state *state) const
1748 {
1749    ir_variable *var = this->variable_referenced();
1750 
1751    /* Every l-value derference chain eventually ends in a variable.
1752     */
1753    if ((var == NULL) || var->data.read_only)
1754       return false;
1755 
1756    /* From section 4.1.7 of the ARB_bindless_texture spec:
1757     *
1758     * "Samplers can be used as l-values, so can be assigned into and used as
1759     *  "out" and "inout" function parameters."
1760     *
1761     * From section 4.1.X of the ARB_bindless_texture spec:
1762     *
1763     * "Images can be used as l-values, so can be assigned into and used as
1764     *  "out" and "inout" function parameters."
1765     */
1766    if ((!state || state->has_bindless()) &&
1767        (this->type->contains_sampler() || this->type->contains_image()))
1768       return true;
1769 
1770    /* From section 4.1.7 of the GLSL 4.40 spec:
1771     *
1772     *   "Opaque variables cannot be treated as l-values; hence cannot
1773     *    be used as out or inout function parameters, nor can they be
1774     *    assigned into."
1775     */
1776    if (this->type->contains_opaque())
1777       return false;
1778 
1779    return true;
1780 }
1781 
1782 
1783 static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
1784 
opcode_string()1785 const char *ir_texture::opcode_string()
1786 {
1787    assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
1788    return tex_opcode_strs[op];
1789 }
1790 
1791 ir_texture_opcode
get_opcode(const char * str)1792 ir_texture::get_opcode(const char *str)
1793 {
1794    const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1795    for (int op = 0; op < count; op++) {
1796       if (strcmp(str, tex_opcode_strs[op]) == 0)
1797 	 return (ir_texture_opcode) op;
1798    }
1799    return (ir_texture_opcode) -1;
1800 }
1801 
1802 
1803 void
set_sampler(ir_dereference * sampler,const glsl_type * type)1804 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1805 {
1806    assert(sampler != NULL);
1807    assert(type != NULL);
1808    this->sampler = sampler;
1809    this->type = type;
1810 
1811    if (this->op == ir_txs || this->op == ir_query_levels ||
1812        this->op == ir_texture_samples) {
1813       assert(type->base_type == GLSL_TYPE_INT);
1814    } else if (this->op == ir_lod) {
1815       assert(type->vector_elements == 2);
1816       assert(type->is_float());
1817    } else if (this->op == ir_samples_identical) {
1818       assert(type == glsl_type::bool_type);
1819       assert(sampler->type->is_sampler());
1820       assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
1821    } else {
1822       assert(sampler->type->sampled_type == (int) type->base_type);
1823       if (sampler->type->sampler_shadow)
1824 	 assert(type->vector_elements == 4 || type->vector_elements == 1);
1825       else
1826 	 assert(type->vector_elements == 4);
1827    }
1828 }
1829 
1830 
1831 void
init_mask(const unsigned * comp,unsigned count)1832 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1833 {
1834    assert((count >= 1) && (count <= 4));
1835 
1836    memset(&this->mask, 0, sizeof(this->mask));
1837    this->mask.num_components = count;
1838 
1839    unsigned dup_mask = 0;
1840    switch (count) {
1841    case 4:
1842       assert(comp[3] <= 3);
1843       dup_mask |= (1U << comp[3])
1844 	 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1845       this->mask.w = comp[3];
1846 
1847    case 3:
1848       assert(comp[2] <= 3);
1849       dup_mask |= (1U << comp[2])
1850 	 & ((1U << comp[0]) | (1U << comp[1]));
1851       this->mask.z = comp[2];
1852 
1853    case 2:
1854       assert(comp[1] <= 3);
1855       dup_mask |= (1U << comp[1])
1856 	 & ((1U << comp[0]));
1857       this->mask.y = comp[1];
1858 
1859    case 1:
1860       assert(comp[0] <= 3);
1861       this->mask.x = comp[0];
1862    }
1863 
1864    this->mask.has_duplicates = dup_mask != 0;
1865 
1866    /* Based on the number of elements in the swizzle and the base type
1867     * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1868     * generate the type of the resulting value.
1869     */
1870    type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1871 }
1872 
ir_swizzle(ir_rvalue * val,unsigned x,unsigned y,unsigned z,unsigned w,unsigned count)1873 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1874 		       unsigned w, unsigned count)
1875    : ir_rvalue(ir_type_swizzle), val(val)
1876 {
1877    const unsigned components[4] = { x, y, z, w };
1878    this->init_mask(components, count);
1879 }
1880 
ir_swizzle(ir_rvalue * val,const unsigned * comp,unsigned count)1881 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1882 		       unsigned count)
1883    : ir_rvalue(ir_type_swizzle), val(val)
1884 {
1885    this->init_mask(comp, count);
1886 }
1887 
ir_swizzle(ir_rvalue * val,ir_swizzle_mask mask)1888 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1889    : ir_rvalue(ir_type_swizzle), val(val), mask(mask)
1890 {
1891    this->type = glsl_type::get_instance(val->type->base_type,
1892 					mask.num_components, 1);
1893 }
1894 
1895 #define X 1
1896 #define R 5
1897 #define S 9
1898 #define I 13
1899 
1900 ir_swizzle *
create(ir_rvalue * val,const char * str,unsigned vector_length)1901 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1902 {
1903    void *ctx = ralloc_parent(val);
1904 
1905    /* For each possible swizzle character, this table encodes the value in
1906     * \c idx_map that represents the 0th element of the vector.  For invalid
1907     * swizzle characters (e.g., 'k'), a special value is used that will allow
1908     * detection of errors.
1909     */
1910    static const unsigned char base_idx[26] = {
1911    /* a  b  c  d  e  f  g  h  i  j  k  l  m */
1912       R, R, I, I, I, I, R, I, I, I, I, I, I,
1913    /* n  o  p  q  r  s  t  u  v  w  x  y  z */
1914       I, I, S, S, R, S, S, I, I, X, X, X, X
1915    };
1916 
1917    /* Each valid swizzle character has an entry in the previous table.  This
1918     * table encodes the base index encoded in the previous table plus the actual
1919     * index of the swizzle character.  When processing swizzles, the first
1920     * character in the string is indexed in the previous table.  Each character
1921     * in the string is indexed in this table, and the value found there has the
1922     * value form the first table subtracted.  The result must be on the range
1923     * [0,3].
1924     *
1925     * For example, the string "wzyx" will get X from the first table.  Each of
1926     * the charcaters will get X+3, X+2, X+1, and X+0 from this table.  After
1927     * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1928     *
1929     * The string "wzrg" will get X from the first table.  Each of the characters
1930     * will get X+3, X+2, R+0, and R+1 from this table.  After subtraction, the
1931     * swizzle values are { 3, 2, 4, 5 }.  Since 4 and 5 are outside the range
1932     * [0,3], the error is detected.
1933     */
1934    static const unsigned char idx_map[26] = {
1935    /* a    b    c    d    e    f    g    h    i    j    k    l    m */
1936       R+3, R+2, 0,   0,   0,   0,   R+1, 0,   0,   0,   0,   0,   0,
1937    /* n    o    p    q    r    s    t    u    v    w    x    y    z */
1938       0,   0,   S+2, S+3, R+0, S+0, S+1, 0,   0,   X+3, X+0, X+1, X+2
1939    };
1940 
1941    int swiz_idx[4] = { 0, 0, 0, 0 };
1942    unsigned i;
1943 
1944 
1945    /* Validate the first character in the swizzle string and look up the base
1946     * index value as described above.
1947     */
1948    if ((str[0] < 'a') || (str[0] > 'z'))
1949       return NULL;
1950 
1951    const unsigned base = base_idx[str[0] - 'a'];
1952 
1953 
1954    for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1955       /* Validate the next character, and, as described above, convert it to a
1956        * swizzle index.
1957        */
1958       if ((str[i] < 'a') || (str[i] > 'z'))
1959 	 return NULL;
1960 
1961       swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1962       if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1963 	 return NULL;
1964    }
1965 
1966    if (str[i] != '\0')
1967 	 return NULL;
1968 
1969    return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1970 			      swiz_idx[3], i);
1971 }
1972 
1973 #undef X
1974 #undef R
1975 #undef S
1976 #undef I
1977 
1978 ir_variable *
variable_referenced() const1979 ir_swizzle::variable_referenced() const
1980 {
1981    return this->val->variable_referenced();
1982 }
1983 
1984 
1985 bool ir_variable::temporaries_allocate_names = false;
1986 
1987 const char ir_variable::tmp_name[] = "compiler_temp";
1988 
ir_variable(const struct glsl_type * type,const char * name,ir_variable_mode mode)1989 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1990 			 ir_variable_mode mode)
1991    : ir_instruction(ir_type_variable)
1992 {
1993    this->type = type;
1994 
1995    if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
1996       name = NULL;
1997 
1998    /* The ir_variable clone method may call this constructor with name set to
1999     * tmp_name.
2000     */
2001    assert(name != NULL
2002           || mode == ir_var_temporary
2003           || mode == ir_var_function_in
2004           || mode == ir_var_function_out
2005           || mode == ir_var_function_inout);
2006    assert(name != ir_variable::tmp_name
2007           || mode == ir_var_temporary);
2008    if (mode == ir_var_temporary
2009        && (name == NULL || name == ir_variable::tmp_name)) {
2010       this->name = ir_variable::tmp_name;
2011    } else if (name == NULL ||
2012               strlen(name) < ARRAY_SIZE(this->name_storage)) {
2013       strcpy(this->name_storage, name ? name : "");
2014       this->name = this->name_storage;
2015    } else {
2016       this->name = ralloc_strdup(this, name);
2017    }
2018 
2019    this->u.max_ifc_array_access = NULL;
2020 
2021    this->data.explicit_location = false;
2022    this->data.explicit_index = false;
2023    this->data.explicit_binding = false;
2024    this->data.explicit_component = false;
2025    this->data.has_initializer = false;
2026    this->data.is_implicit_initializer = false;
2027    this->data.is_unmatched_generic_inout = false;
2028    this->data.is_xfb_only = false;
2029    this->data.explicit_xfb_buffer = false;
2030    this->data.explicit_xfb_offset = false;
2031    this->data.explicit_xfb_stride = false;
2032    this->data.location = -1;
2033    this->data.location_frac = 0;
2034    this->data.matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
2035    this->data.from_named_ifc_block = false;
2036    this->data.must_be_shader_input = false;
2037    this->data.index = 0;
2038    this->data.binding = 0;
2039    this->data.warn_extension_index = 0;
2040    this->constant_value = NULL;
2041    this->constant_initializer = NULL;
2042    this->data.depth_layout = ir_depth_layout_none;
2043    this->data.used = false;
2044    this->data.assigned = false;
2045    this->data.always_active_io = false;
2046    this->data.read_only = false;
2047    this->data.centroid = false;
2048    this->data.sample = false;
2049    this->data.patch = false;
2050    this->data.explicit_invariant = false;
2051    this->data.invariant = false;
2052    this->data.precise = false;
2053    this->data.how_declared = ir_var_declared_normally;
2054    this->data.mode = mode;
2055    this->data.interpolation = INTERP_MODE_NONE;
2056    this->data.max_array_access = -1;
2057    this->data.offset = 0;
2058    this->data.precision = GLSL_PRECISION_NONE;
2059    this->data.memory_read_only = false;
2060    this->data.memory_write_only = false;
2061    this->data.memory_coherent = false;
2062    this->data.memory_volatile = false;
2063    this->data.memory_restrict = false;
2064    this->data.from_ssbo_unsized_array = false;
2065    this->data.implicit_sized_array = false;
2066    this->data.fb_fetch_output = false;
2067    this->data.bindless = false;
2068    this->data.bound = false;
2069    this->data.image_format = PIPE_FORMAT_NONE;
2070    this->data._num_state_slots = 0;
2071    this->data.param_index = 0;
2072    this->data.stream = 0;
2073    this->data.xfb_buffer = -1;
2074    this->data.xfb_stride = -1;
2075 
2076    this->interface_type = NULL;
2077 
2078    if (type != NULL) {
2079       if (type->is_interface())
2080          this->init_interface_type(type);
2081       else if (type->without_array()->is_interface())
2082          this->init_interface_type(type->without_array());
2083    }
2084 }
2085 
2086 
2087 const char *
interpolation_string(unsigned interpolation)2088 interpolation_string(unsigned interpolation)
2089 {
2090    switch (interpolation) {
2091    case INTERP_MODE_NONE:          return "no";
2092    case INTERP_MODE_SMOOTH:        return "smooth";
2093    case INTERP_MODE_FLAT:          return "flat";
2094    case INTERP_MODE_NOPERSPECTIVE: return "noperspective";
2095    }
2096 
2097    assert(!"Should not get here.");
2098    return "";
2099 }
2100 
2101 const char *const ir_variable::warn_extension_table[] = {
2102    "",
2103    "GL_ARB_shader_stencil_export",
2104    "GL_AMD_shader_stencil_export",
2105 };
2106 
2107 void
enable_extension_warning(const char * extension)2108 ir_variable::enable_extension_warning(const char *extension)
2109 {
2110    for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
2111       if (strcmp(warn_extension_table[i], extension) == 0) {
2112          this->data.warn_extension_index = i;
2113          return;
2114       }
2115    }
2116 
2117    assert(!"Should not get here.");
2118    this->data.warn_extension_index = 0;
2119 }
2120 
2121 const char *
get_extension_warning() const2122 ir_variable::get_extension_warning() const
2123 {
2124    return this->data.warn_extension_index == 0
2125       ? NULL : warn_extension_table[this->data.warn_extension_index];
2126 }
2127 
ir_function_signature(const glsl_type * return_type,builtin_available_predicate b)2128 ir_function_signature::ir_function_signature(const glsl_type *return_type,
2129                                              builtin_available_predicate b)
2130    : ir_instruction(ir_type_function_signature),
2131      return_type(return_type), is_defined(false),
2132      return_precision(GLSL_PRECISION_NONE),
2133      intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
2134 {
2135    this->origin = NULL;
2136 }
2137 
2138 
2139 bool
is_builtin() const2140 ir_function_signature::is_builtin() const
2141 {
2142    return builtin_avail != NULL;
2143 }
2144 
2145 
2146 bool
is_builtin_available(const _mesa_glsl_parse_state * state) const2147 ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
2148 {
2149    /* We can't call the predicate without a state pointer, so just say that
2150     * the signature is available.  At compile time, we need the filtering,
2151     * but also receive a valid state pointer.  At link time, we're resolving
2152     * imported built-in prototypes to their definitions, which will always
2153     * be an exact match.  So we can skip the filtering.
2154     */
2155    if (state == NULL)
2156       return true;
2157 
2158    assert(builtin_avail != NULL);
2159    return builtin_avail(state);
2160 }
2161 
2162 
2163 static bool
modes_match(unsigned a,unsigned b)2164 modes_match(unsigned a, unsigned b)
2165 {
2166    if (a == b)
2167       return true;
2168 
2169    /* Accept "in" vs. "const in" */
2170    if ((a == ir_var_const_in && b == ir_var_function_in) ||
2171        (b == ir_var_const_in && a == ir_var_function_in))
2172       return true;
2173 
2174    return false;
2175 }
2176 
2177 
2178 const char *
qualifiers_match(exec_list * params)2179 ir_function_signature::qualifiers_match(exec_list *params)
2180 {
2181    /* check that the qualifiers match. */
2182    foreach_two_lists(a_node, &this->parameters, b_node, params) {
2183       ir_variable *a = (ir_variable *) a_node;
2184       ir_variable *b = (ir_variable *) b_node;
2185 
2186       if (a->data.read_only != b->data.read_only ||
2187 	  !modes_match(a->data.mode, b->data.mode) ||
2188 	  a->data.interpolation != b->data.interpolation ||
2189 	  a->data.centroid != b->data.centroid ||
2190           a->data.sample != b->data.sample ||
2191           a->data.patch != b->data.patch ||
2192           a->data.memory_read_only != b->data.memory_read_only ||
2193           a->data.memory_write_only != b->data.memory_write_only ||
2194           a->data.memory_coherent != b->data.memory_coherent ||
2195           a->data.memory_volatile != b->data.memory_volatile ||
2196           a->data.memory_restrict != b->data.memory_restrict) {
2197 
2198 	 /* parameter a's qualifiers don't match */
2199 	 return a->name;
2200       }
2201    }
2202    return NULL;
2203 }
2204 
2205 
2206 void
replace_parameters(exec_list * new_params)2207 ir_function_signature::replace_parameters(exec_list *new_params)
2208 {
2209    /* Destroy all of the previous parameter information.  If the previous
2210     * parameter information comes from the function prototype, it may either
2211     * specify incorrect parameter names or not have names at all.
2212     */
2213    new_params->move_nodes_to(&parameters);
2214 }
2215 
2216 
ir_function(const char * name)2217 ir_function::ir_function(const char *name)
2218    : ir_instruction(ir_type_function)
2219 {
2220    this->subroutine_index = -1;
2221    this->name = ralloc_strdup(this, name);
2222 }
2223 
2224 
2225 bool
has_user_signature()2226 ir_function::has_user_signature()
2227 {
2228    foreach_in_list(ir_function_signature, sig, &this->signatures) {
2229       if (!sig->is_builtin())
2230 	 return true;
2231    }
2232    return false;
2233 }
2234 
2235 
2236 ir_rvalue *
error_value(void * mem_ctx)2237 ir_rvalue::error_value(void *mem_ctx)
2238 {
2239    ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset);
2240 
2241    v->type = glsl_type::error_type;
2242    return v;
2243 }
2244 
2245 
2246 void
visit_exec_list(exec_list * list,ir_visitor * visitor)2247 visit_exec_list(exec_list *list, ir_visitor *visitor)
2248 {
2249    foreach_in_list_safe(ir_instruction, node, list) {
2250       node->accept(visitor);
2251    }
2252 }
2253 
2254 
2255 static void
steal_memory(ir_instruction * ir,void * new_ctx)2256 steal_memory(ir_instruction *ir, void *new_ctx)
2257 {
2258    ir_variable *var = ir->as_variable();
2259    ir_function *fn = ir->as_function();
2260    ir_constant *constant = ir->as_constant();
2261    if (var != NULL && var->constant_value != NULL)
2262       steal_memory(var->constant_value, ir);
2263 
2264    if (var != NULL && var->constant_initializer != NULL)
2265       steal_memory(var->constant_initializer, ir);
2266 
2267    if (fn != NULL && fn->subroutine_types)
2268       ralloc_steal(new_ctx, fn->subroutine_types);
2269 
2270    /* The components of aggregate constants are not visited by the normal
2271     * visitor, so steal their values by hand.
2272     */
2273    if (constant != NULL &&
2274        (constant->type->is_array() || constant->type->is_struct())) {
2275       for (unsigned int i = 0; i < constant->type->length; i++) {
2276          steal_memory(constant->const_elements[i], ir);
2277       }
2278    }
2279 
2280    ralloc_steal(new_ctx, ir);
2281 }
2282 
2283 
2284 void
reparent_ir(exec_list * list,void * mem_ctx)2285 reparent_ir(exec_list *list, void *mem_ctx)
2286 {
2287    foreach_in_list(ir_instruction, node, list) {
2288       visit_tree(node, steal_memory, mem_ctx);
2289    }
2290 }
2291 
2292 
2293 static ir_rvalue *
try_min_one(ir_rvalue * ir)2294 try_min_one(ir_rvalue *ir)
2295 {
2296    ir_expression *expr = ir->as_expression();
2297 
2298    if (!expr || expr->operation != ir_binop_min)
2299       return NULL;
2300 
2301    if (expr->operands[0]->is_one())
2302       return expr->operands[1];
2303 
2304    if (expr->operands[1]->is_one())
2305       return expr->operands[0];
2306 
2307    return NULL;
2308 }
2309 
2310 static ir_rvalue *
try_max_zero(ir_rvalue * ir)2311 try_max_zero(ir_rvalue *ir)
2312 {
2313    ir_expression *expr = ir->as_expression();
2314 
2315    if (!expr || expr->operation != ir_binop_max)
2316       return NULL;
2317 
2318    if (expr->operands[0]->is_zero())
2319       return expr->operands[1];
2320 
2321    if (expr->operands[1]->is_zero())
2322       return expr->operands[0];
2323 
2324    return NULL;
2325 }
2326 
2327 ir_rvalue *
as_rvalue_to_saturate()2328 ir_rvalue::as_rvalue_to_saturate()
2329 {
2330    ir_expression *expr = this->as_expression();
2331 
2332    if (!expr)
2333       return NULL;
2334 
2335    ir_rvalue *max_zero = try_max_zero(expr);
2336    if (max_zero) {
2337       return try_min_one(max_zero);
2338    } else {
2339       ir_rvalue *min_one = try_min_one(expr);
2340       if (min_one) {
2341 	 return try_max_zero(min_one);
2342       }
2343    }
2344 
2345    return NULL;
2346 }
2347 
2348 
2349 unsigned
vertices_per_prim(GLenum prim)2350 vertices_per_prim(GLenum prim)
2351 {
2352    switch (prim) {
2353    case GL_POINTS:
2354       return 1;
2355    case GL_LINES:
2356       return 2;
2357    case GL_TRIANGLES:
2358       return 3;
2359    case GL_LINES_ADJACENCY:
2360       return 4;
2361    case GL_TRIANGLES_ADJACENCY:
2362       return 6;
2363    default:
2364       assert(!"Bad primitive");
2365       return 3;
2366    }
2367 }
2368 
2369 /**
2370  * Generate a string describing the mode of a variable
2371  */
2372 const char *
mode_string(const ir_variable * var)2373 mode_string(const ir_variable *var)
2374 {
2375    switch (var->data.mode) {
2376    case ir_var_auto:
2377       return (var->data.read_only) ? "global constant" : "global variable";
2378 
2379    case ir_var_uniform:
2380       return "uniform";
2381 
2382    case ir_var_shader_storage:
2383       return "buffer";
2384 
2385    case ir_var_shader_in:
2386       return "shader input";
2387 
2388    case ir_var_shader_out:
2389       return "shader output";
2390 
2391    case ir_var_function_in:
2392    case ir_var_const_in:
2393       return "function input";
2394 
2395    case ir_var_function_out:
2396       return "function output";
2397 
2398    case ir_var_function_inout:
2399       return "function inout";
2400 
2401    case ir_var_system_value:
2402       return "shader input";
2403 
2404    case ir_var_temporary:
2405       return "compiler temporary";
2406 
2407    case ir_var_mode_count:
2408       break;
2409    }
2410 
2411    assert(!"Should not get here.");
2412    return "invalid variable";
2413 }
2414