1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkDashPathPriv.h"
9 #include "SkPathMeasure.h"
10 #include "SkPointPriv.h"
11 #include "SkStrokeRec.h"
12
13 #include <utility>
14
is_even(int x)15 static inline int is_even(int x) {
16 return !(x & 1);
17 }
18
find_first_interval(const SkScalar intervals[],SkScalar phase,int32_t * index,int count)19 static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
20 int32_t* index, int count) {
21 for (int i = 0; i < count; ++i) {
22 SkScalar gap = intervals[i];
23 if (phase > gap || (phase == gap && gap)) {
24 phase -= gap;
25 } else {
26 *index = i;
27 return gap - phase;
28 }
29 }
30 // If we get here, phase "appears" to be larger than our length. This
31 // shouldn't happen with perfect precision, but we can accumulate errors
32 // during the initial length computation (rounding can make our sum be too
33 // big or too small. In that event, we just have to eat the error here.
34 *index = 0;
35 return intervals[0];
36 }
37
CalcDashParameters(SkScalar phase,const SkScalar intervals[],int32_t count,SkScalar * initialDashLength,int32_t * initialDashIndex,SkScalar * intervalLength,SkScalar * adjustedPhase)38 void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
39 SkScalar* initialDashLength, int32_t* initialDashIndex,
40 SkScalar* intervalLength, SkScalar* adjustedPhase) {
41 SkScalar len = 0;
42 for (int i = 0; i < count; i++) {
43 len += intervals[i];
44 }
45 *intervalLength = len;
46 // Adjust phase to be between 0 and len, "flipping" phase if negative.
47 // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
48 if (adjustedPhase) {
49 if (phase < 0) {
50 phase = -phase;
51 if (phase > len) {
52 phase = SkScalarMod(phase, len);
53 }
54 phase = len - phase;
55
56 // Due to finite precision, it's possible that phase == len,
57 // even after the subtract (if len >>> phase), so fix that here.
58 // This fixes http://crbug.com/124652 .
59 SkASSERT(phase <= len);
60 if (phase == len) {
61 phase = 0;
62 }
63 } else if (phase >= len) {
64 phase = SkScalarMod(phase, len);
65 }
66 *adjustedPhase = phase;
67 }
68 SkASSERT(phase >= 0 && phase < len);
69
70 *initialDashLength = find_first_interval(intervals, phase,
71 initialDashIndex, count);
72
73 SkASSERT(*initialDashLength >= 0);
74 SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
75 }
76
outset_for_stroke(SkRect * rect,const SkStrokeRec & rec)77 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
78 SkScalar radius = SkScalarHalf(rec.getWidth());
79 if (0 == radius) {
80 radius = SK_Scalar1; // hairlines
81 }
82 if (SkPaint::kMiter_Join == rec.getJoin()) {
83 radius *= rec.getMiter();
84 }
85 rect->outset(radius, radius);
86 }
87
88 // If line is zero-length, bump out the end by a tiny amount
89 // to draw endcaps. The bump factor is sized so that
90 // SkPoint::Distance() computes a non-zero length.
91 // Offsets SK_ScalarNearlyZero or smaller create empty paths when Iter measures length.
92 // Large values are scaled by SK_ScalarNearlyZero so significant bits change.
adjust_zero_length_line(SkPoint pts[2])93 static void adjust_zero_length_line(SkPoint pts[2]) {
94 SkASSERT(pts[0] == pts[1]);
95 pts[1].fX += SkTMax(1.001f, pts[1].fX) * SK_ScalarNearlyZero;
96 }
97
clip_line(SkPoint pts[2],const SkRect & bounds,SkScalar intervalLength,SkScalar priorPhase)98 static bool clip_line(SkPoint pts[2], const SkRect& bounds, SkScalar intervalLength,
99 SkScalar priorPhase) {
100 SkVector dxy = pts[1] - pts[0];
101
102 // only horizontal or vertical lines
103 if (dxy.fX && dxy.fY) {
104 return false;
105 }
106 int xyOffset = SkToBool(dxy.fY); // 0 to adjust horizontal, 1 to adjust vertical
107
108 SkScalar minXY = (&pts[0].fX)[xyOffset];
109 SkScalar maxXY = (&pts[1].fX)[xyOffset];
110 bool swapped = maxXY < minXY;
111 if (swapped) {
112 using std::swap;
113 swap(minXY, maxXY);
114 }
115
116 SkASSERT(minXY <= maxXY);
117 SkScalar leftTop = (&bounds.fLeft)[xyOffset];
118 SkScalar rightBottom = (&bounds.fRight)[xyOffset];
119 if (maxXY < leftTop || minXY > rightBottom) {
120 return false;
121 }
122
123 // Now we actually perform the chop, removing the excess to the left/top and
124 // right/bottom of the bounds (keeping our new line "in phase" with the dash,
125 // hence the (mod intervalLength).
126
127 if (minXY < leftTop) {
128 minXY = leftTop - SkScalarMod(leftTop - minXY, intervalLength);
129 if (!swapped) {
130 minXY -= priorPhase; // for rectangles, adjust by prior phase
131 }
132 }
133 if (maxXY > rightBottom) {
134 maxXY = rightBottom + SkScalarMod(maxXY - rightBottom, intervalLength);
135 if (swapped) {
136 maxXY += priorPhase; // for rectangles, adjust by prior phase
137 }
138 }
139
140 SkASSERT(maxXY >= minXY);
141 if (swapped) {
142 using std::swap;
143 swap(minXY, maxXY);
144 }
145 (&pts[0].fX)[xyOffset] = minXY;
146 (&pts[1].fX)[xyOffset] = maxXY;
147
148 if (minXY == maxXY) {
149 adjust_zero_length_line(pts);
150 }
151 return true;
152 }
153
contains_inclusive(const SkRect & rect,const SkPoint & pt)154 static bool contains_inclusive(const SkRect& rect, const SkPoint& pt) {
155 return rect.fLeft <= pt.fX && pt.fX <= rect.fRight &&
156 rect.fTop <= pt.fY && pt.fY <= rect.fBottom;
157 }
158
159 // Returns true is b is between a and c, that is: a <= b <= c, or a >= b >= c.
160 // Can perform this test with one branch by observing that, relative to b,
161 // the condition is true only if one side is positive and one side is negative.
162 // If the numbers are very small, the optimization may return the wrong result
163 // because the multiply may generate a zero where the simple compare does not.
164 // For this reason the assert does not fire when all three numbers are near zero.
between(SkScalar a,SkScalar b,SkScalar c)165 static bool between(SkScalar a, SkScalar b, SkScalar c) {
166 SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0)
167 || (SkScalarNearlyZero(a) && SkScalarNearlyZero(b) && SkScalarNearlyZero(c)));
168 return (a - b) * (c - b) <= 0;
169 }
170
171 // Only handles lines for now. If returns true, dstPath is the new (smaller)
172 // path. If returns false, then dstPath parameter is ignored.
cull_path(const SkPath & srcPath,const SkStrokeRec & rec,const SkRect * cullRect,SkScalar intervalLength,SkPath * dstPath)173 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
174 const SkRect* cullRect, SkScalar intervalLength,
175 SkPath* dstPath) {
176 SkPoint pts[4];
177 if (nullptr == cullRect) {
178 if (srcPath.isLine(pts) && pts[0] == pts[1]) {
179 adjust_zero_length_line(pts);
180 } else {
181 return false;
182 }
183 } else {
184 SkRect bounds;
185 bool isLine = srcPath.isLine(pts);
186 bool isRect = !isLine && srcPath.isRect(nullptr);
187 if (!isLine && !isRect) {
188 return false;
189 }
190 bounds = *cullRect;
191 outset_for_stroke(&bounds, rec);
192 if (isRect) {
193 // break rect into four lines, and call each one separately
194 SkPath::Iter iter(srcPath, false);
195 SkAssertResult(SkPath::kMove_Verb == iter.next(pts));
196 SkScalar priorLength = 0;
197 while (SkPath::kLine_Verb == iter.next(pts)) {
198 SkVector v = pts[1] - pts[0];
199 // if line is entirely outside clip rect, skip it
200 if (v.fX ? between(bounds.fTop, pts[0].fY, bounds.fBottom) :
201 between(bounds.fLeft, pts[0].fX, bounds.fRight)) {
202 bool skipMoveTo = contains_inclusive(bounds, pts[0]);
203 if (clip_line(pts, bounds, intervalLength,
204 SkScalarMod(priorLength, intervalLength))) {
205 if (0 == priorLength || !skipMoveTo) {
206 dstPath->moveTo(pts[0]);
207 }
208 dstPath->lineTo(pts[1]);
209 }
210 }
211 // keep track of all prior lengths to set phase of next line
212 priorLength += SkScalarAbs(v.fX ? v.fX : v.fY);
213 }
214 return !dstPath->isEmpty();
215 }
216 SkASSERT(isLine);
217 if (!clip_line(pts, bounds, intervalLength, 0)) {
218 return false;
219 }
220 }
221 dstPath->moveTo(pts[0]);
222 dstPath->lineTo(pts[1]);
223 return true;
224 }
225
226 class SpecialLineRec {
227 public:
init(const SkPath & src,SkPath * dst,SkStrokeRec * rec,int intervalCount,SkScalar intervalLength)228 bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
229 int intervalCount, SkScalar intervalLength) {
230 if (rec->isHairlineStyle() || !src.isLine(fPts)) {
231 return false;
232 }
233
234 // can relax this in the future, if we handle square and round caps
235 if (SkPaint::kButt_Cap != rec->getCap()) {
236 return false;
237 }
238
239 SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
240
241 fTangent = fPts[1] - fPts[0];
242 if (fTangent.isZero()) {
243 return false;
244 }
245
246 fPathLength = pathLength;
247 fTangent.scale(SkScalarInvert(pathLength));
248 SkPointPriv::RotateCCW(fTangent, &fNormal);
249 fNormal.scale(SkScalarHalf(rec->getWidth()));
250
251 // now estimate how many quads will be added to the path
252 // resulting segments = pathLen * intervalCount / intervalLen
253 // resulting points = 4 * segments
254
255 SkScalar ptCount = pathLength * intervalCount / (float)intervalLength;
256 ptCount = SkTMin(ptCount, SkDashPath::kMaxDashCount);
257 int n = SkScalarCeilToInt(ptCount) << 2;
258 dst->incReserve(n);
259
260 // we will take care of the stroking
261 rec->setFillStyle();
262 return true;
263 }
264
addSegment(SkScalar d0,SkScalar d1,SkPath * path) const265 void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
266 SkASSERT(d0 <= fPathLength);
267 // clamp the segment to our length
268 if (d1 > fPathLength) {
269 d1 = fPathLength;
270 }
271
272 SkScalar x0 = fPts[0].fX + fTangent.fX * d0;
273 SkScalar x1 = fPts[0].fX + fTangent.fX * d1;
274 SkScalar y0 = fPts[0].fY + fTangent.fY * d0;
275 SkScalar y1 = fPts[0].fY + fTangent.fY * d1;
276
277 SkPoint pts[4];
278 pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo
279 pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo
280 pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo
281 pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo
282
283 path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
284 }
285
286 private:
287 SkPoint fPts[2];
288 SkVector fTangent;
289 SkVector fNormal;
290 SkScalar fPathLength;
291 };
292
293
InternalFilter(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkScalar aIntervals[],int32_t count,SkScalar initialDashLength,int32_t initialDashIndex,SkScalar intervalLength,StrokeRecApplication strokeRecApplication)294 bool SkDashPath::InternalFilter(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
295 const SkRect* cullRect, const SkScalar aIntervals[],
296 int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
297 SkScalar intervalLength,
298 StrokeRecApplication strokeRecApplication) {
299 // we must always have an even number of intervals
300 SkASSERT(is_even(count));
301
302 // we do nothing if the src wants to be filled
303 SkStrokeRec::Style style = rec->getStyle();
304 if (SkStrokeRec::kFill_Style == style || SkStrokeRec::kStrokeAndFill_Style == style) {
305 return false;
306 }
307
308 const SkScalar* intervals = aIntervals;
309 SkScalar dashCount = 0;
310 int segCount = 0;
311
312 SkPath cullPathStorage;
313 const SkPath* srcPtr = &src;
314 if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
315 // if rect is closed, starts in a dash, and ends in a dash, add the initial join
316 // potentially a better fix is described here: bug.skia.org/7445
317 if (src.isRect(nullptr) && src.isLastContourClosed() && is_even(initialDashIndex)) {
318 SkScalar pathLength = SkPathMeasure(src, false, rec->getResScale()).getLength();
319 SkScalar endPhase = SkScalarMod(pathLength + initialDashLength, intervalLength);
320 int index = 0;
321 while (endPhase > intervals[index]) {
322 endPhase -= intervals[index++];
323 SkASSERT(index <= count);
324 if (index == count) {
325 // We have run out of intervals. endPhase "should" never get to this point,
326 // but it could if the subtracts underflowed. Hence we will pin it as if it
327 // perfectly ran through the intervals.
328 // See crbug.com/875494 (and skbug.com/8274)
329 endPhase = 0;
330 break;
331 }
332 }
333 // if dash ends inside "on", or ends at beginning of "off"
334 if (is_even(index) == (endPhase > 0)) {
335 SkPoint midPoint = src.getPoint(0);
336 // get vector at end of rect
337 int last = src.countPoints() - 1;
338 while (midPoint == src.getPoint(last)) {
339 --last;
340 SkASSERT(last >= 0);
341 }
342 // get vector at start of rect
343 int next = 1;
344 while (midPoint == src.getPoint(next)) {
345 ++next;
346 SkASSERT(next < last);
347 }
348 SkVector v = midPoint - src.getPoint(last);
349 const SkScalar kTinyOffset = SK_ScalarNearlyZero;
350 // scale vector to make start of tiny right angle
351 v *= kTinyOffset;
352 cullPathStorage.moveTo(midPoint - v);
353 cullPathStorage.lineTo(midPoint);
354 v = midPoint - src.getPoint(next);
355 // scale vector to make end of tiny right angle
356 v *= kTinyOffset;
357 cullPathStorage.lineTo(midPoint - v);
358 }
359 }
360 srcPtr = &cullPathStorage;
361 }
362
363 SpecialLineRec lineRec;
364 bool specialLine = (StrokeRecApplication::kAllow == strokeRecApplication) &&
365 lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
366
367 SkPathMeasure meas(*srcPtr, false, rec->getResScale());
368
369 do {
370 bool skipFirstSegment = meas.isClosed();
371 bool addedSegment = false;
372 SkScalar length = meas.getLength();
373 int index = initialDashIndex;
374
375 // Since the path length / dash length ratio may be arbitrarily large, we can exert
376 // significant memory pressure while attempting to build the filtered path. To avoid this,
377 // we simply give up dashing beyond a certain threshold.
378 //
379 // The original bug report (http://crbug.com/165432) is based on a path yielding more than
380 // 90 million dash segments and crashing the memory allocator. A limit of 1 million
381 // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
382 // maximum dash memory overhead at roughly 17MB per path.
383 dashCount += length * (count >> 1) / intervalLength;
384 if (dashCount > kMaxDashCount) {
385 dst->reset();
386 return false;
387 }
388
389 // Using double precision to avoid looping indefinitely due to single precision rounding
390 // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
391 double distance = 0;
392 double dlen = initialDashLength;
393
394 while (distance < length) {
395 SkASSERT(dlen >= 0);
396 addedSegment = false;
397 if (is_even(index) && !skipFirstSegment) {
398 addedSegment = true;
399 ++segCount;
400
401 if (specialLine) {
402 lineRec.addSegment(SkDoubleToScalar(distance),
403 SkDoubleToScalar(distance + dlen),
404 dst);
405 } else {
406 meas.getSegment(SkDoubleToScalar(distance),
407 SkDoubleToScalar(distance + dlen),
408 dst, true);
409 }
410 }
411 distance += dlen;
412
413 // clear this so we only respect it the first time around
414 skipFirstSegment = false;
415
416 // wrap around our intervals array if necessary
417 index += 1;
418 SkASSERT(index <= count);
419 if (index == count) {
420 index = 0;
421 }
422
423 // fetch our next dlen
424 dlen = intervals[index];
425 }
426
427 // extend if we ended on a segment and we need to join up with the (skipped) initial segment
428 if (meas.isClosed() && is_even(initialDashIndex) &&
429 initialDashLength >= 0) {
430 meas.getSegment(0, initialDashLength, dst, !addedSegment);
431 ++segCount;
432 }
433 } while (meas.nextContour());
434
435 if (segCount > 1) {
436 dst->setConvexity(SkPath::kConcave_Convexity);
437 }
438
439 return true;
440 }
441
FilterDashPath(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkPathEffect::DashInfo & info)442 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
443 const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
444 if (!ValidDashPath(info.fPhase, info.fIntervals, info.fCount)) {
445 return false;
446 }
447 SkScalar initialDashLength = 0;
448 int32_t initialDashIndex = 0;
449 SkScalar intervalLength = 0;
450 CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
451 &initialDashLength, &initialDashIndex, &intervalLength);
452 return InternalFilter(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
453 initialDashIndex, intervalLength);
454 }
455
ValidDashPath(SkScalar phase,const SkScalar intervals[],int32_t count)456 bool SkDashPath::ValidDashPath(SkScalar phase, const SkScalar intervals[], int32_t count) {
457 if (count < 2 || !SkIsAlign2(count)) {
458 return false;
459 }
460 SkScalar length = 0;
461 for (int i = 0; i < count; i++) {
462 if (intervals[i] < 0) {
463 return false;
464 }
465 length += intervals[i];
466 }
467 // watch out for values that might make us go out of bounds
468 return length > 0 && SkScalarIsFinite(phase) && SkScalarIsFinite(length);
469 }
470