1 /* 2 * Copyright 2004 The WebRTC Project Authors. All rights reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include <stdint.h> 12 13 #if defined(WEBRTC_POSIX) 14 #include <sys/time.h> 15 #if defined(WEBRTC_MAC) 16 #include <mach/mach_time.h> 17 #endif 18 #endif 19 20 #if defined(WEBRTC_WIN) 21 // clang-format off 22 // clang formatting would put <windows.h> last, 23 // which leads to compilation failure. 24 #include <windows.h> 25 #include <mmsystem.h> 26 #include <sys/timeb.h> 27 // clang-format on 28 #endif 29 30 #include "rtc_base/checks.h" 31 #include "rtc_base/numerics/safe_conversions.h" 32 #include "rtc_base/time_utils.h" 33 34 namespace rtc { 35 36 ClockInterface* g_clock = nullptr; 37 SetClockForTesting(ClockInterface * clock)38 ClockInterface* SetClockForTesting(ClockInterface* clock) { 39 ClockInterface* prev = g_clock; 40 g_clock = clock; 41 return prev; 42 } 43 GetClockForTesting()44 ClockInterface* GetClockForTesting() { 45 return g_clock; 46 } 47 48 #if defined(WINUWP) 49 50 namespace { 51 52 class TimeHelper final { 53 public: 54 TimeHelper(const TimeHelper&) = delete; 55 56 // Resets the clock based upon an NTP server. This routine must be called 57 // prior to the main system start-up to ensure all clocks are based upon 58 // an NTP server time if NTP synchronization is required. No critical 59 // section is used thus this method must be called prior to any clock 60 // routines being used. SyncWithNtp(int64_t ntp_server_time_ms)61 static void SyncWithNtp(int64_t ntp_server_time_ms) { 62 auto& singleton = Singleton(); 63 TIME_ZONE_INFORMATION time_zone; 64 GetTimeZoneInformation(&time_zone); 65 int64_t time_zone_bias_ns = 66 rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000; 67 singleton.app_start_time_ns_ = 68 (ntp_server_time_ms - kNTPTimeToUnixTimeEpochOffset) * 1000000 - 69 time_zone_bias_ns; 70 singleton.UpdateReferenceTime(); 71 } 72 73 // Returns the number of nanoseconds that have passed since unix epoch. TicksNs()74 static int64_t TicksNs() { 75 auto& singleton = Singleton(); 76 int64_t result = 0; 77 LARGE_INTEGER qpcnt; 78 QueryPerformanceCounter(&qpcnt); 79 result = rtc::dchecked_cast<int64_t>( 80 (rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 / 81 rtc::dchecked_cast<uint64_t>(singleton.os_ticks_per_second_)) * 82 10000); 83 result = singleton.app_start_time_ns_ + result - 84 singleton.time_since_os_start_ns_; 85 return result; 86 } 87 88 private: TimeHelper()89 TimeHelper() { 90 TIME_ZONE_INFORMATION time_zone; 91 GetTimeZoneInformation(&time_zone); 92 int64_t time_zone_bias_ns = 93 rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000; 94 FILETIME ft; 95 // This will give us system file in UTC format. 96 GetSystemTimeAsFileTime(&ft); 97 LARGE_INTEGER li; 98 li.HighPart = ft.dwHighDateTime; 99 li.LowPart = ft.dwLowDateTime; 100 101 app_start_time_ns_ = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) * 100 - 102 time_zone_bias_ns; 103 104 UpdateReferenceTime(); 105 } 106 Singleton()107 static TimeHelper& Singleton() { 108 static TimeHelper singleton; 109 return singleton; 110 } 111 UpdateReferenceTime()112 void UpdateReferenceTime() { 113 LARGE_INTEGER qpfreq; 114 QueryPerformanceFrequency(&qpfreq); 115 os_ticks_per_second_ = rtc::dchecked_cast<int64_t>(qpfreq.QuadPart); 116 117 LARGE_INTEGER qpcnt; 118 QueryPerformanceCounter(&qpcnt); 119 time_since_os_start_ns_ = rtc::dchecked_cast<int64_t>( 120 (rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 / 121 rtc::dchecked_cast<uint64_t>(os_ticks_per_second_)) * 122 10000); 123 } 124 125 private: 126 static constexpr uint64_t kFileTimeToUnixTimeEpochOffset = 127 116444736000000000ULL; 128 static constexpr uint64_t kNTPTimeToUnixTimeEpochOffset = 2208988800000L; 129 130 // The number of nanoseconds since unix system epoch 131 int64_t app_start_time_ns_; 132 // The number of nanoseconds since the OS started 133 int64_t time_since_os_start_ns_; 134 // The OS calculated ticks per second 135 int64_t os_ticks_per_second_; 136 }; 137 138 } // namespace 139 SyncWithNtp(int64_t time_from_ntp_server_ms)140 void SyncWithNtp(int64_t time_from_ntp_server_ms) { 141 TimeHelper::SyncWithNtp(time_from_ntp_server_ms); 142 } 143 144 #endif // defined(WINUWP) 145 SystemTimeNanos()146 int64_t SystemTimeNanos() { 147 int64_t ticks; 148 #if defined(WEBRTC_MAC) 149 static mach_timebase_info_data_t timebase; 150 if (timebase.denom == 0) { 151 // Get the timebase if this is the first time we run. 152 // Recommended by Apple's QA1398. 153 if (mach_timebase_info(&timebase) != KERN_SUCCESS) { 154 RTC_NOTREACHED(); 155 } 156 } 157 // Use timebase to convert absolute time tick units into nanoseconds. 158 const auto mul = [](uint64_t a, uint32_t b) -> int64_t { 159 RTC_DCHECK_NE(b, 0); 160 RTC_DCHECK_LE(a, std::numeric_limits<int64_t>::max() / b) 161 << "The multiplication " << a << " * " << b << " overflows"; 162 return rtc::dchecked_cast<int64_t>(a * b); 163 }; 164 ticks = mul(mach_absolute_time(), timebase.numer) / timebase.denom; 165 #elif defined(WEBRTC_POSIX) 166 struct timespec ts; 167 // TODO(deadbeef): Do we need to handle the case when CLOCK_MONOTONIC is not 168 // supported? 169 clock_gettime(CLOCK_MONOTONIC, &ts); 170 ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) + 171 static_cast<int64_t>(ts.tv_nsec); 172 #elif defined(WINUWP) 173 ticks = TimeHelper::TicksNs(); 174 #elif defined(WEBRTC_WIN) 175 static volatile LONG last_timegettime = 0; 176 static volatile int64_t num_wrap_timegettime = 0; 177 volatile LONG* last_timegettime_ptr = &last_timegettime; 178 DWORD now = timeGetTime(); 179 // Atomically update the last gotten time 180 DWORD old = InterlockedExchange(last_timegettime_ptr, now); 181 if (now < old) { 182 // If now is earlier than old, there may have been a race between threads. 183 // 0x0fffffff ~3.1 days, the code will not take that long to execute 184 // so it must have been a wrap around. 185 if (old > 0xf0000000 && now < 0x0fffffff) { 186 num_wrap_timegettime++; 187 } 188 } 189 ticks = now + (num_wrap_timegettime << 32); 190 // TODO(deadbeef): Calculate with nanosecond precision. Otherwise, we're 191 // just wasting a multiply and divide when doing Time() on Windows. 192 ticks = ticks * kNumNanosecsPerMillisec; 193 #else 194 #error Unsupported platform. 195 #endif 196 return ticks; 197 } 198 SystemTimeMillis()199 int64_t SystemTimeMillis() { 200 return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec); 201 } 202 TimeNanos()203 int64_t TimeNanos() { 204 if (g_clock) { 205 return g_clock->TimeNanos(); 206 } 207 return SystemTimeNanos(); 208 } 209 Time32()210 uint32_t Time32() { 211 return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec); 212 } 213 TimeMillis()214 int64_t TimeMillis() { 215 return TimeNanos() / kNumNanosecsPerMillisec; 216 } 217 TimeMicros()218 int64_t TimeMicros() { 219 return TimeNanos() / kNumNanosecsPerMicrosec; 220 } 221 TimeAfter(int64_t elapsed)222 int64_t TimeAfter(int64_t elapsed) { 223 RTC_DCHECK_GE(elapsed, 0); 224 return TimeMillis() + elapsed; 225 } 226 TimeDiff32(uint32_t later,uint32_t earlier)227 int32_t TimeDiff32(uint32_t later, uint32_t earlier) { 228 return later - earlier; 229 } 230 TimeDiff(int64_t later,int64_t earlier)231 int64_t TimeDiff(int64_t later, int64_t earlier) { 232 return later - earlier; 233 } 234 TimestampWrapAroundHandler()235 TimestampWrapAroundHandler::TimestampWrapAroundHandler() 236 : last_ts_(0), num_wrap_(-1) {} 237 Unwrap(uint32_t ts)238 int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) { 239 if (num_wrap_ == -1) { 240 last_ts_ = ts; 241 num_wrap_ = 0; 242 return ts; 243 } 244 245 if (ts < last_ts_) { 246 if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff) 247 ++num_wrap_; 248 } else if ((ts - last_ts_) > 0xf0000000) { 249 // Backwards wrap. Unwrap with last wrap count and don't update last_ts_. 250 return ts + (num_wrap_ - 1) * (int64_t{1} << 32); 251 } 252 253 last_ts_ = ts; 254 return ts + (num_wrap_ << 32); 255 } 256 TmToSeconds(const tm & tm)257 int64_t TmToSeconds(const tm& tm) { 258 static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; 259 static short int cumul_mdays[12] = {0, 31, 59, 90, 120, 151, 260 181, 212, 243, 273, 304, 334}; 261 int year = tm.tm_year + 1900; 262 int month = tm.tm_mon; 263 int day = tm.tm_mday - 1; // Make 0-based like the rest. 264 int hour = tm.tm_hour; 265 int min = tm.tm_min; 266 int sec = tm.tm_sec; 267 268 bool expiry_in_leap_year = 269 (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); 270 271 if (year < 1970) 272 return -1; 273 if (month < 0 || month > 11) 274 return -1; 275 if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1)) 276 return -1; 277 if (hour < 0 || hour > 23) 278 return -1; 279 if (min < 0 || min > 59) 280 return -1; 281 if (sec < 0 || sec > 59) 282 return -1; 283 284 day += cumul_mdays[month]; 285 286 // Add number of leap days between 1970 and the expiration year, inclusive. 287 day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) + 288 (year / 400 - 1970 / 400)); 289 290 // We will have added one day too much above if expiration is during a leap 291 // year, and expiration is in January or February. 292 if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based. 293 day -= 1; 294 295 // Combine all variables into seconds from 1970-01-01 00:00 (except |month| 296 // which was accumulated into |day| above). 297 return (((static_cast<int64_t>(year - 1970) * 365 + day) * 24 + hour) * 60 + 298 min) * 299 60 + 300 sec; 301 } 302 TimeUTCMicros()303 int64_t TimeUTCMicros() { 304 if (g_clock) { 305 return g_clock->TimeNanos() / kNumNanosecsPerMicrosec; 306 } 307 #if defined(WEBRTC_POSIX) 308 struct timeval time; 309 gettimeofday(&time, nullptr); 310 // Convert from second (1.0) and microsecond (1e-6). 311 return (static_cast<int64_t>(time.tv_sec) * rtc::kNumMicrosecsPerSec + 312 time.tv_usec); 313 314 #elif defined(WEBRTC_WIN) 315 struct _timeb time; 316 _ftime(&time); 317 // Convert from second (1.0) and milliseconds (1e-3). 318 return (static_cast<int64_t>(time.time) * rtc::kNumMicrosecsPerSec + 319 static_cast<int64_t>(time.millitm) * rtc::kNumMicrosecsPerMillisec); 320 #endif 321 } 322 TimeUTCMillis()323 int64_t TimeUTCMillis() { 324 return TimeUTCMicros() / kNumMicrosecsPerMillisec; 325 } 326 327 } // namespace rtc 328