1 /*
2 * Copyright (C) 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // Utility functions for VtsKernelEncryptionTest.
18
19 #include <LzmaLib.h>
20 #include <android-base/properties.h>
21 #include <android-base/unique_fd.h>
22 #include <errno.h>
23 #include <ext4_utils/ext4.h>
24 #include <ext4_utils/ext4_sb.h>
25 #include <ext4_utils/ext4_utils.h>
26 #include <gtest/gtest.h>
27 #include <libdm/dm.h>
28 #include <linux/magic.h>
29 #include <mntent.h>
30 #include <openssl/cmac.h>
31 #include <unistd.h>
32
33 #include "Keymaster.h"
34 #include "vts_kernel_encryption.h"
35
36 using namespace android::dm;
37
38 namespace android {
39 namespace kernel {
40
41 // Offset in bytes to the filesystem superblock, relative to the beginning of
42 // the block device
43 constexpr int kExt4SuperBlockOffset = 1024;
44 constexpr int kF2fsSuperBlockOffset = 1024;
45
46 // For F2FS: the offsets in bytes to the filesystem magic number and filesystem
47 // UUID, relative to the beginning of the block device
48 constexpr int kF2fsMagicOffset = kF2fsSuperBlockOffset;
49 constexpr int kF2fsUuidOffset = kF2fsSuperBlockOffset + 108;
50
51 // hw-wrapped key size in bytes
52 constexpr int kHwWrappedKeySize = 32;
53
Errno()54 std::string Errno() { return std::string(": ") + strerror(errno); }
55
56 // Recursively deletes the file or directory at |path|, if it exists.
DeleteRecursively(const std::string & path)57 void DeleteRecursively(const std::string &path) {
58 if (unlink(path.c_str()) == 0 || errno == ENOENT) return;
59 ASSERT_EQ(EISDIR, errno) << "Failed to unlink " << path << Errno();
60
61 std::unique_ptr<DIR, int (*)(DIR *)> dirp(opendir(path.c_str()), closedir);
62 // If the directory was assigned an encryption policy that the kernel lacks
63 // crypto API support for, then opening it will fail, and it will be empty.
64 // So, we have to allow opening the directory to fail.
65 if (dirp != nullptr) {
66 struct dirent *entry;
67 while ((entry = readdir(dirp.get())) != nullptr) {
68 std::string filename(entry->d_name);
69 if (filename != "." && filename != "..")
70 DeleteRecursively(path + "/" + filename);
71 }
72 }
73 ASSERT_EQ(0, rmdir(path.c_str()))
74 << "Failed to remove directory " << path << Errno();
75 }
76
77 // Generates some "random" bytes. Not secure; this is for testing only.
RandomBytesForTesting(std::vector<uint8_t> & bytes)78 void RandomBytesForTesting(std::vector<uint8_t> &bytes) {
79 for (size_t i = 0; i < bytes.size(); i++) {
80 bytes[i] = rand();
81 }
82 }
83
84 // Generates a "random" key. Not secure; this is for testing only.
GenerateTestKey(size_t size)85 std::vector<uint8_t> GenerateTestKey(size_t size) {
86 std::vector<uint8_t> key(size);
87 RandomBytesForTesting(key);
88 return key;
89 }
90
BytesToHex(const std::vector<uint8_t> & bytes)91 std::string BytesToHex(const std::vector<uint8_t> &bytes) {
92 std::ostringstream o;
93 for (uint8_t b : bytes) {
94 o << std::hex << std::setw(2) << std::setfill('0') << (int)b;
95 }
96 return o.str();
97 }
98
GetFirstApiLevel(int * first_api_level)99 bool GetFirstApiLevel(int *first_api_level) {
100 *first_api_level =
101 android::base::GetIntProperty("ro.product.first_api_level", 0);
102 if (*first_api_level == 0) {
103 ADD_FAILURE() << "ro.product.first_api_level is unset";
104 return false;
105 }
106 GTEST_LOG_(INFO) << "ro.product.first_api_level = " << *first_api_level;
107 return true;
108 }
109
110 // Gets the block device and type of the filesystem mounted on |mountpoint|.
111 // This block device is the one on which the filesystem is directly located. In
112 // the case of device-mapper that means something like /dev/mapper/dm-5, not the
113 // underlying device like /dev/block/by-name/userdata.
GetFsBlockDeviceAndType(const std::string & mountpoint,std::string * fs_blk_device,std::string * fs_type)114 static bool GetFsBlockDeviceAndType(const std::string &mountpoint,
115 std::string *fs_blk_device,
116 std::string *fs_type) {
117 std::unique_ptr<FILE, int (*)(FILE *)> mnts(setmntent("/proc/mounts", "re"),
118 endmntent);
119 if (!mnts) {
120 ADD_FAILURE() << "Failed to open /proc/mounts" << Errno();
121 return false;
122 }
123 struct mntent *mnt;
124 while ((mnt = getmntent(mnts.get())) != nullptr) {
125 if (mnt->mnt_dir == mountpoint) {
126 *fs_blk_device = mnt->mnt_fsname;
127 *fs_type = mnt->mnt_type;
128 return true;
129 }
130 }
131 ADD_FAILURE() << "No /proc/mounts entry found for " << mountpoint;
132 return false;
133 }
134
135 // Gets the UUID of the filesystem of type |fs_type| that's located on
136 // |fs_blk_device|.
137 //
138 // Unfortunately there's no kernel API to get the UUID; instead we have to read
139 // it from the filesystem superblock.
GetFilesystemUuid(const std::string & fs_blk_device,const std::string & fs_type,FilesystemUuid * fs_uuid)140 static bool GetFilesystemUuid(const std::string &fs_blk_device,
141 const std::string &fs_type,
142 FilesystemUuid *fs_uuid) {
143 android::base::unique_fd fd(
144 open(fs_blk_device.c_str(), O_RDONLY | O_CLOEXEC));
145 if (fd < 0) {
146 ADD_FAILURE() << "Failed to open fs block device " << fs_blk_device
147 << Errno();
148 return false;
149 }
150
151 if (fs_type == "ext4") {
152 struct ext4_super_block sb;
153
154 if (pread(fd, &sb, sizeof(sb), kExt4SuperBlockOffset) != sizeof(sb)) {
155 ADD_FAILURE() << "Error reading ext4 superblock from " << fs_blk_device
156 << Errno();
157 return false;
158 }
159 if (sb.s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
160 ADD_FAILURE() << "Failed to find ext4 superblock on " << fs_blk_device;
161 return false;
162 }
163 static_assert(sizeof(sb.s_uuid) == kFilesystemUuidSize);
164 memcpy(fs_uuid->bytes, sb.s_uuid, kFilesystemUuidSize);
165 } else if (fs_type == "f2fs") {
166 // Android doesn't have an f2fs equivalent of libext4_utils, so we have to
167 // hard-code the offset to the magic number and UUID.
168
169 __le32 magic;
170 if (pread(fd, &magic, sizeof(magic), kF2fsMagicOffset) != sizeof(magic)) {
171 ADD_FAILURE() << "Error reading f2fs superblock from " << fs_blk_device
172 << Errno();
173 return false;
174 }
175 if (magic != cpu_to_le32(F2FS_SUPER_MAGIC)) {
176 ADD_FAILURE() << "Failed to find f2fs superblock on " << fs_blk_device;
177 return false;
178 }
179 if (pread(fd, fs_uuid->bytes, kFilesystemUuidSize, kF2fsUuidOffset) !=
180 kFilesystemUuidSize) {
181 ADD_FAILURE() << "Failed to read f2fs filesystem UUID from "
182 << fs_blk_device << Errno();
183 return false;
184 }
185 } else {
186 ADD_FAILURE() << "Unknown filesystem type " << fs_type;
187 return false;
188 }
189 return true;
190 }
191
192 // Gets the raw block device of the filesystem that is mounted from
193 // |fs_blk_device|. By "raw block device" we mean a block device from which we
194 // can read the encrypted file contents and filesystem metadata. When metadata
195 // encryption is disabled, this is simply |fs_blk_device|. When metadata
196 // encryption is enabled, then |fs_blk_device| is a dm-default-key device and
197 // the "raw block device" is the parent of this dm-default-key device.
198 //
199 // We don't just use the block device listed in the fstab, because (a) it can be
200 // a logical partition name which needs extra code to map to a block device, and
201 // (b) due to block-level checkpointing, there can be a dm-bow device between
202 // the fstab partition and dm-default-key. dm-bow can remap sectors, but for
203 // encryption testing we don't want any sector remapping. So the correct block
204 // device to read ciphertext from is the one directly underneath dm-default-key.
GetRawBlockDevice(const std::string & fs_blk_device,std::string * raw_blk_device)205 static bool GetRawBlockDevice(const std::string &fs_blk_device,
206 std::string *raw_blk_device) {
207 DeviceMapper &dm = DeviceMapper::Instance();
208
209 if (!dm.IsDmBlockDevice(fs_blk_device)) {
210 GTEST_LOG_(INFO)
211 << fs_blk_device
212 << " is not a device-mapper device; metadata encryption is disabled";
213 *raw_blk_device = fs_blk_device;
214 return true;
215 }
216 const std::optional<std::string> name =
217 dm.GetDmDeviceNameByPath(fs_blk_device);
218 if (!name) {
219 ADD_FAILURE() << "Failed to get name of device-mapper device "
220 << fs_blk_device;
221 return false;
222 }
223
224 std::vector<DeviceMapper::TargetInfo> table;
225 if (!dm.GetTableInfo(*name, &table)) {
226 ADD_FAILURE() << "Failed to get table of device-mapper device " << *name;
227 return false;
228 }
229 if (table.size() != 1) {
230 GTEST_LOG_(INFO) << fs_blk_device
231 << " has multiple device-mapper targets; assuming "
232 "metadata encryption is disabled";
233 *raw_blk_device = fs_blk_device;
234 return true;
235 }
236 const std::string target_type = dm.GetTargetType(table[0].spec);
237 if (target_type != "default-key") {
238 GTEST_LOG_(INFO) << fs_blk_device << " is a dm-" << target_type
239 << " device, not dm-default-key; assuming metadata "
240 "encryption is disabled";
241 *raw_blk_device = fs_blk_device;
242 return true;
243 }
244 std::optional<std::string> parent =
245 dm.GetParentBlockDeviceByPath(fs_blk_device);
246 if (!parent) {
247 ADD_FAILURE() << "Failed to get parent of dm-default-key device " << *name;
248 return false;
249 }
250 *raw_blk_device = *parent;
251 return true;
252 }
253
254 // Gets information about the filesystem mounted on |mountpoint|.
GetFilesystemInfo(const std::string & mountpoint,FilesystemInfo * info)255 bool GetFilesystemInfo(const std::string &mountpoint, FilesystemInfo *info) {
256 if (!GetFsBlockDeviceAndType(mountpoint, &info->fs_blk_device, &info->type))
257 return false;
258
259 if (!GetFilesystemUuid(info->fs_blk_device, info->type, &info->uuid))
260 return false;
261
262 if (!GetRawBlockDevice(info->fs_blk_device, &info->raw_blk_device))
263 return false;
264
265 GTEST_LOG_(INFO) << info->fs_blk_device << " is mounted on " << mountpoint
266 << " with type " << info->type << "; UUID is "
267 << BytesToHex(info->uuid.bytes) << ", raw block device is "
268 << info->raw_blk_device;
269 return true;
270 }
271
272 // Returns true if the given data seems to be random.
273 //
274 // Check compressibility rather than byte frequencies. Compressibility is a
275 // stronger test since it also detects repetitions.
276 //
277 // To check compressibility, use LZMA rather than DEFLATE/zlib/gzip because LZMA
278 // compression is stronger and supports a much larger dictionary. DEFLATE is
279 // limited to a 32 KiB dictionary. So, data repeating after 32 KiB (or more)
280 // would not be detected with DEFLATE. But LZMA can detect it.
VerifyDataRandomness(const std::vector<uint8_t> & bytes)281 bool VerifyDataRandomness(const std::vector<uint8_t> &bytes) {
282 // To avoid flakiness, allow the data to be compressed a tiny bit by chance.
283 // There is at most a 2^-32 chance that random data can be compressed to be 4
284 // bytes shorter. In practice it's even lower due to compression overhead.
285 size_t destLen = bytes.size() - std::min<size_t>(4, bytes.size());
286 std::vector<uint8_t> dest(destLen);
287 uint8_t outProps[LZMA_PROPS_SIZE];
288 size_t outPropsSize = LZMA_PROPS_SIZE;
289 int ret;
290
291 ret = LzmaCompress(dest.data(), &destLen, bytes.data(), bytes.size(),
292 outProps, &outPropsSize,
293 6, // compression level (0 <= level <= 9)
294 bytes.size(), // dictionary size
295 -1, -1, -1, -1, // lc, lp, bp, fb (-1 selects the default)
296 1); // number of threads
297
298 if (ret == SZ_ERROR_OUTPUT_EOF) return true; // incompressible
299
300 if (ret == SZ_OK) {
301 ADD_FAILURE() << "Data is not random! Compressed " << bytes.size()
302 << " to " << destLen << " bytes";
303 } else {
304 ADD_FAILURE() << "LZMA compression error: ret=" << ret;
305 }
306 return false;
307 }
308
TryPrepareHwWrappedKey(Keymaster & keymaster,const std::string & master_key_string,std::string * exported_key_string,bool rollback_resistance)309 static bool TryPrepareHwWrappedKey(Keymaster &keymaster,
310 const std::string &master_key_string,
311 std::string *exported_key_string,
312 bool rollback_resistance) {
313 // This key is used to drive a CMAC-based KDF
314 auto paramBuilder =
315 km::AuthorizationSetBuilder().AesEncryptionKey(kHwWrappedKeySize * 8);
316 if (rollback_resistance) {
317 paramBuilder.Authorization(km::TAG_ROLLBACK_RESISTANCE);
318 }
319 paramBuilder.Authorization(km::TAG_STORAGE_KEY);
320
321 std::string wrapped_key_blob;
322 if (keymaster.importKey(paramBuilder, master_key_string, &wrapped_key_blob) &&
323 keymaster.exportKey(wrapped_key_blob, exported_key_string)) {
324 return true;
325 }
326 // It's fine for Keymaster not to support hardware-wrapped keys, but
327 // if generateKey works, importKey must too.
328 if (keymaster.generateKey(paramBuilder, &wrapped_key_blob) &&
329 keymaster.exportKey(wrapped_key_blob, exported_key_string)) {
330 ADD_FAILURE() << "generateKey succeeded but importKey failed";
331 }
332 return false;
333 }
334
CreateHwWrappedKey(std::vector<uint8_t> * master_key,std::vector<uint8_t> * exported_key)335 bool CreateHwWrappedKey(std::vector<uint8_t> *master_key,
336 std::vector<uint8_t> *exported_key) {
337 *master_key = GenerateTestKey(kHwWrappedKeySize);
338
339 Keymaster keymaster;
340 if (!keymaster) {
341 ADD_FAILURE() << "Unable to find keymaster";
342 return false;
343 }
344 std::string master_key_string(master_key->begin(), master_key->end());
345 std::string exported_key_string;
346 // Make two attempts to create a key, first with and then without
347 // rollback resistance.
348 if (TryPrepareHwWrappedKey(keymaster, master_key_string, &exported_key_string,
349 true) ||
350 TryPrepareHwWrappedKey(keymaster, master_key_string, &exported_key_string,
351 false)) {
352 exported_key->assign(exported_key_string.begin(),
353 exported_key_string.end());
354 return true;
355 }
356 GTEST_LOG_(INFO) << "Skipping test because device doesn't support "
357 "hardware-wrapped keys";
358 return false;
359 }
360
PushBigEndian32(uint32_t val,std::vector<uint8_t> * vec)361 static void PushBigEndian32(uint32_t val, std::vector<uint8_t> *vec) {
362 for (int i = 24; i >= 0; i -= 8) {
363 vec->push_back((val >> i) & 0xFF);
364 }
365 }
366
GetFixedInputString(uint32_t counter,const std::vector<uint8_t> & label,const std::vector<uint8_t> & context,uint32_t derived_key_len,std::vector<uint8_t> * fixed_input_string)367 static void GetFixedInputString(uint32_t counter,
368 const std::vector<uint8_t> &label,
369 const std::vector<uint8_t> &context,
370 uint32_t derived_key_len,
371 std::vector<uint8_t> *fixed_input_string) {
372 PushBigEndian32(counter, fixed_input_string);
373 fixed_input_string->insert(fixed_input_string->end(), label.begin(),
374 label.end());
375 fixed_input_string->push_back(0);
376 fixed_input_string->insert(fixed_input_string->end(), context.begin(),
377 context.end());
378 PushBigEndian32(derived_key_len, fixed_input_string);
379 }
380
AesCmacKdfHelper(const std::vector<uint8_t> & key,const std::vector<uint8_t> & label,const std::vector<uint8_t> & context,uint32_t output_key_size,std::vector<uint8_t> * output_data)381 static bool AesCmacKdfHelper(const std::vector<uint8_t> &key,
382 const std::vector<uint8_t> &label,
383 const std::vector<uint8_t> &context,
384 uint32_t output_key_size,
385 std::vector<uint8_t> *output_data) {
386 output_data->resize(output_key_size);
387 for (size_t count = 0; count < (output_key_size / kAesBlockSize); count++) {
388 std::vector<uint8_t> fixed_input_string;
389 GetFixedInputString(count + 1, label, context, (output_key_size * 8),
390 &fixed_input_string);
391 if (!AES_CMAC(output_data->data() + (kAesBlockSize * count), key.data(),
392 key.size(), fixed_input_string.data(),
393 fixed_input_string.size())) {
394 ADD_FAILURE()
395 << "AES_CMAC failed while deriving subkey from HW wrapped key";
396 return false;
397 }
398 }
399 return true;
400 }
401
DeriveHwWrappedEncryptionKey(const std::vector<uint8_t> & master_key,std::vector<uint8_t> * enc_key)402 bool DeriveHwWrappedEncryptionKey(const std::vector<uint8_t> &master_key,
403 std::vector<uint8_t> *enc_key) {
404 std::vector<uint8_t> label{0x00, 0x00, 0x40, 0x00, 0x00, 0x00,
405 0x00, 0x00, 0x00, 0x00, 0x20};
406 // Context in fixed input string comprises of software provided context,
407 // padding to eight bytes (if required) and the key policy.
408 std::vector<uint8_t> context = {
409 'i', 'n', 'l', 'i', 'n', 'e', ' ', 'e',
410 'n', 'c', 'r', 'y', 'p', 't', 'i', 'o',
411 'n', ' ', 'k', 'e', 'y', 0x0, 0x0, 0x0,
412 0x00, 0x00, 0x00, 0x02, 0x43, 0x00, 0x82, 0x50,
413 0x0, 0x0, 0x0, 0x0};
414
415 return AesCmacKdfHelper(master_key, label, context, kAes256XtsKeySize,
416 enc_key);
417 }
418
DeriveHwWrappedRawSecret(const std::vector<uint8_t> & master_key,std::vector<uint8_t> * secret)419 bool DeriveHwWrappedRawSecret(const std::vector<uint8_t> &master_key,
420 std::vector<uint8_t> *secret) {
421 std::vector<uint8_t> label{0x00, 0x00, 0x40, 0x00, 0x00, 0x00,
422 0x00, 0x00, 0x00, 0x00, 0x20};
423 // Context in fixed input string comprises of software provided context,
424 // padding to eight bytes (if required) and the key policy.
425 std::vector<uint8_t> context = {'r', 'a', 'w', ' ', 's', 'e', 'c',
426 'r', 'e', 't', 0x0, 0x0, 0x0, 0x0,
427 0x0, 0x0, 0x00, 0x00, 0x00, 0x02, 0x17,
428 0x00, 0x80, 0x50, 0x0, 0x0, 0x0, 0x0};
429
430 return AesCmacKdfHelper(master_key, label, context, kAes256KeySize, secret);
431 }
432
433 } // namespace kernel
434 } // namespace android
435