/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_arm64.h" #include "aarch64/assembler-aarch64.h" #include "aarch64/registers-aarch64.h" #include "arch/arm64/asm_support_arm64.h" #include "arch/arm64/instruction_set_features_arm64.h" #include "arch/arm64/jni_frame_arm64.h" #include "art_method-inl.h" #include "base/bit_utils.h" #include "base/bit_utils_iterator.h" #include "class_root-inl.h" #include "class_table.h" #include "code_generator_utils.h" #include "compiled_method.h" #include "entrypoints/quick/quick_entrypoints.h" #include "entrypoints/quick/quick_entrypoints_enum.h" #include "gc/accounting/card_table.h" #include "gc/space/image_space.h" #include "heap_poisoning.h" #include "interpreter/mterp/nterp.h" #include "intrinsics.h" #include "intrinsics_arm64.h" #include "linker/linker_patch.h" #include "lock_word.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/var_handle.h" #include "offsets.h" #include "optimizing/common_arm64.h" #include "thread.h" #include "utils/arm64/assembler_arm64.h" #include "utils/assembler.h" #include "utils/stack_checks.h" using namespace vixl::aarch64; // NOLINT(build/namespaces) using vixl::ExactAssemblyScope; using vixl::CodeBufferCheckScope; using vixl::EmissionCheckScope; #ifdef __ #error "ARM64 Codegen VIXL macro-assembler macro already defined." #endif namespace art { template class GcRoot; namespace arm64 { using helpers::ARM64EncodableConstantOrRegister; using helpers::ArtVixlRegCodeCoherentForRegSet; using helpers::CPURegisterFrom; using helpers::DRegisterFrom; using helpers::FPRegisterFrom; using helpers::HeapOperand; using helpers::HeapOperandFrom; using helpers::InputCPURegisterOrZeroRegAt; using helpers::InputFPRegisterAt; using helpers::InputOperandAt; using helpers::InputRegisterAt; using helpers::Int64FromLocation; using helpers::IsConstantZeroBitPattern; using helpers::LocationFrom; using helpers::OperandFromMemOperand; using helpers::OutputCPURegister; using helpers::OutputFPRegister; using helpers::OutputRegister; using helpers::RegisterFrom; using helpers::StackOperandFrom; using helpers::VIXLRegCodeFromART; using helpers::WRegisterFrom; using helpers::XRegisterFrom; // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump // table version generates 7 instructions and num_entries literals. Compare/jump sequence will // generates less code/data with a small num_entries. static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; // Reference load (except object array loads) is using LDR Wt, [Xn, #offset] which can handle // offset < 16KiB. For offsets >= 16KiB, the load shall be emitted as two or more instructions. // For the Baker read barrier implementation using link-time generated thunks we need to split // the offset explicitly. constexpr uint32_t kReferenceLoadMinFarOffset = 16 * KB; inline Condition ARM64Condition(IfCondition cond) { switch (cond) { case kCondEQ: return eq; case kCondNE: return ne; case kCondLT: return lt; case kCondLE: return le; case kCondGT: return gt; case kCondGE: return ge; case kCondB: return lo; case kCondBE: return ls; case kCondA: return hi; case kCondAE: return hs; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) { // The ARM64 condition codes can express all the necessary branches, see the // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual. // There is no dex instruction or HIR that would need the missing conditions // "equal or unordered" or "not equal". switch (cond) { case kCondEQ: return eq; case kCondNE: return ne /* unordered */; case kCondLT: return gt_bias ? cc : lt /* unordered */; case kCondLE: return gt_bias ? ls : le /* unordered */; case kCondGT: return gt_bias ? hi /* unordered */ : gt; case kCondGE: return gt_bias ? cs /* unordered */ : ge; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } Location ARM64ReturnLocation(DataType::Type return_type) { // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`, // but we use the exact registers for clarity. if (return_type == DataType::Type::kFloat32) { return LocationFrom(s0); } else if (return_type == DataType::Type::kFloat64) { return LocationFrom(d0); } else if (return_type == DataType::Type::kInt64) { return LocationFrom(x0); } else if (return_type == DataType::Type::kVoid) { return Location::NoLocation(); } else { return LocationFrom(w0); } } Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) { return ARM64ReturnLocation(return_type); } static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() { InvokeRuntimeCallingConvention calling_convention; RegisterSet caller_saves = RegisterSet::Empty(); caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference), DataType::Type::kReference).GetCode()); return caller_saves; } // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast(codegen)->GetVIXLAssembler()-> // NOLINT #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value() void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true); for (uint32_t i : LowToHighBits(core_spills)) { // If the register holds an object, update the stack mask. if (locations->RegisterContainsObject(i)) { locations->SetStackBit(stack_offset / kVRegSize); } DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); saved_core_stack_offsets_[i] = stack_offset; stack_offset += kXRegSizeInBytes; } const size_t fp_reg_size = codegen->GetSlowPathFPWidth(); const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false); for (uint32_t i : LowToHighBits(fp_spills)) { DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); saved_fpu_stack_offsets_[i] = stack_offset; stack_offset += fp_reg_size; } InstructionCodeGeneratorARM64* visitor = down_cast(codegen)->GetInstructionCodeGeneratorArm64(); visitor->SaveLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath()); } void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { InstructionCodeGeneratorARM64* visitor = down_cast(codegen)->GetInstructionCodeGeneratorArm64(); visitor->RestoreLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath()); } class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 { public: explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); CodeGeneratorARM64* arm64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves(locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), DataType::Type::kInt32, locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), DataType::Type::kInt32); QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() ? kQuickThrowStringBounds : kQuickThrowArrayBounds; arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); CheckEntrypointTypes(); } bool IsFatal() const override { return true; } const char* GetDescription() const override { return "BoundsCheckSlowPathARM64"; } private: DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64); }; class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 { public: explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARM64* arm64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } bool IsFatal() const override { return true; } const char* GetDescription() const override { return "DivZeroCheckSlowPathARM64"; } private: DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64); }; class LoadClassSlowPathARM64 : public SlowPathCodeARM64 { public: LoadClassSlowPathARM64(HLoadClass* cls, HInstruction* at) : SlowPathCodeARM64(at), cls_(cls) { DCHECK(at->IsLoadClass() || at->IsClinitCheck()); DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); } void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); Location out = locations->Out(); const uint32_t dex_pc = instruction_->GetDexPc(); bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath(); bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck(); CodeGeneratorARM64* arm64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; if (must_resolve_type) { DCHECK(IsSameDexFile(cls_->GetDexFile(), arm64_codegen->GetGraph()->GetDexFile())); dex::TypeIndex type_index = cls_->GetTypeIndex(); __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_); if (cls_->NeedsAccessCheck()) { CheckEntrypointTypes(); arm64_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this); } else { CheckEntrypointTypes(); arm64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this); } // If we also must_do_clinit, the resolved type is now in the correct register. } else { DCHECK(must_do_clinit); Location source = instruction_->IsLoadClass() ? out : locations->InAt(0); arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)), source, cls_->GetType()); } if (must_do_clinit) { arm64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this); CheckEntrypointTypes(); } // Move the class to the desired location. if (out.IsValid()) { DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); DataType::Type type = instruction_->GetType(); arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type); } RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } const char* GetDescription() const override { return "LoadClassSlowPathARM64"; } private: // The class this slow path will load. HLoadClass* const cls_; DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64); }; class LoadStringSlowPathARM64 : public SlowPathCodeARM64 { public: explicit LoadStringSlowPathARM64(HLoadString* instruction) : SlowPathCodeARM64(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorARM64* arm64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_); arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); DataType::Type type = instruction_->GetType(); arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type); RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } const char* GetDescription() const override { return "LoadStringSlowPathARM64"; } private: DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64); }; class NullCheckSlowPathARM64 : public SlowPathCodeARM64 { public: explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {} void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARM64* arm64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } arm64_codegen->InvokeRuntime(kQuickThrowNullPointer, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } bool IsFatal() const override { return true; } const char* GetDescription() const override { return "NullCheckSlowPathARM64"; } private: DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64); }; class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 { public: SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor) : SlowPathCodeARM64(instruction), successor_(successor) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); CodeGeneratorARM64* arm64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // Only saves live vector regs for SIMD. arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); RestoreLiveRegisters(codegen, locations); // Only restores live vector regs for SIMD. if (successor_ == nullptr) { __ B(GetReturnLabel()); } else { __ B(arm64_codegen->GetLabelOf(successor_)); } } vixl::aarch64::Label* GetReturnLabel() { DCHECK(successor_ == nullptr); return &return_label_; } HBasicBlock* GetSuccessor() const { return successor_; } const char* GetDescription() const override { return "SuspendCheckSlowPathARM64"; } private: // If not null, the block to branch to after the suspend check. HBasicBlock* const successor_; // If `successor_` is null, the label to branch to after the suspend check. vixl::aarch64::Label return_label_; DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64); }; class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 { public: TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal) : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); DCHECK(instruction_->IsCheckCast() || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorARM64* arm64_codegen = down_cast(codegen); uint32_t dex_pc = instruction_->GetDexPc(); __ Bind(GetEntryLabel()); if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) { SaveLiveRegisters(codegen, locations); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves(locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), DataType::Type::kReference, locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), DataType::Type::kReference); if (instruction_->IsInstanceOf()) { arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this); CheckEntrypointTypes(); DataType::Type ret_type = instruction_->GetType(); Location ret_loc = calling_convention.GetReturnLocation(ret_type); arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type); } else { DCHECK(instruction_->IsCheckCast()); arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this); CheckEntrypointTypes(); } if (!is_fatal_) { RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } } const char* GetDescription() const override { return "TypeCheckSlowPathARM64"; } bool IsFatal() const override { return is_fatal_; } private: const bool is_fatal_; DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64); }; class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 { public: explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction) : SlowPathCodeARM64(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARM64* arm64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); LocationSummary* locations = instruction_->GetLocations(); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; __ Mov(calling_convention.GetRegisterAt(0), static_cast(instruction_->AsDeoptimize()->GetDeoptimizationKind())); arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } const char* GetDescription() const override { return "DeoptimizationSlowPathARM64"; } private: DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64); }; class ArraySetSlowPathARM64 : public SlowPathCodeARM64 { public: explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); parallel_move.AddMove( locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), DataType::Type::kReference, nullptr); parallel_move.AddMove( locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), DataType::Type::kInt32, nullptr); parallel_move.AddMove( locations->InAt(2), LocationFrom(calling_convention.GetRegisterAt(2)), DataType::Type::kReference, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); CodeGeneratorARM64* arm64_codegen = down_cast(codegen); arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } const char* GetDescription() const override { return "ArraySetSlowPathARM64"; } private: DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64); }; void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) { uint32_t num_entries = switch_instr_->GetNumEntries(); DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold); // We are about to use the assembler to place literals directly. Make sure we have enough // underlying code buffer and we have generated the jump table with right size. EmissionCheckScope scope(codegen->GetVIXLAssembler(), num_entries * sizeof(int32_t), CodeBufferCheckScope::kExactSize); __ Bind(&table_start_); const ArenaVector& successors = switch_instr_->GetBlock()->GetSuccessors(); for (uint32_t i = 0; i < num_entries; i++) { vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]); DCHECK(target_label->IsBound()); ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation(); DCHECK_GT(jump_offset, std::numeric_limits::min()); DCHECK_LE(jump_offset, std::numeric_limits::max()); Literal literal(jump_offset); __ place(&literal); } } // Slow path generating a read barrier for a heap reference. class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 { public: ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) : SlowPathCodeARM64(instruction), out_(out), ref_(ref), obj_(obj), offset_(offset), index_(index) { DCHECK(kEmitCompilerReadBarrier); // If `obj` is equal to `out` or `ref`, it means the initial object // has been overwritten by (or after) the heap object reference load // to be instrumented, e.g.: // // __ Ldr(out, HeapOperand(out, class_offset); // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); // // In that case, we have lost the information about the original // object, and the emitted read barrier cannot work properly. DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; } void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARM64* arm64_codegen = down_cast(codegen); LocationSummary* locations = instruction_->GetLocations(); DataType::Type type = DataType::Type::kReference; DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); DCHECK(instruction_->IsInstanceFieldGet() || instruction_->IsPredicatedInstanceFieldGet() || instruction_->IsStaticFieldGet() || instruction_->IsArrayGet() || instruction_->IsInstanceOf() || instruction_->IsCheckCast() || (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier for heap reference slow path: " << instruction_->DebugName(); // The read barrier instrumentation of object ArrayGet // instructions does not support the HIntermediateAddress // instruction. DCHECK(!(instruction_->IsArrayGet() && instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // We may have to change the index's value, but as `index_` is a // constant member (like other "inputs" of this slow path), // introduce a copy of it, `index`. Location index = index_; if (index_.IsValid()) { // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. if (instruction_->IsArrayGet()) { // Compute the actual memory offset and store it in `index`. Register index_reg = RegisterFrom(index_, DataType::Type::kInt32); DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg())); if (codegen->IsCoreCalleeSaveRegister(index_.reg())) { // We are about to change the value of `index_reg` (see the // calls to vixl::MacroAssembler::Lsl and // vixl::MacroAssembler::Mov below), but it has // not been saved by the previous call to // art::SlowPathCode::SaveLiveRegisters, as it is a // callee-save register -- // art::SlowPathCode::SaveLiveRegisters does not consider // callee-save registers, as it has been designed with the // assumption that callee-save registers are supposed to be // handled by the called function. So, as a callee-save // register, `index_reg` _would_ eventually be saved onto // the stack, but it would be too late: we would have // changed its value earlier. Therefore, we manually save // it here into another freely available register, // `free_reg`, chosen of course among the caller-save // registers (as a callee-save `free_reg` register would // exhibit the same problem). // // Note we could have requested a temporary register from // the register allocator instead; but we prefer not to, as // this is a slow path, and we know we can find a // caller-save register that is available. Register free_reg = FindAvailableCallerSaveRegister(codegen); __ Mov(free_reg.W(), index_reg); index_reg = free_reg; index = LocationFrom(index_reg); } else { // The initial register stored in `index_` has already been // saved in the call to art::SlowPathCode::SaveLiveRegisters // (as it is not a callee-save register), so we can freely // use it. } // Shifting the index value contained in `index_reg` by the scale // factor (2) cannot overflow in practice, as the runtime is // unable to allocate object arrays with a size larger than // 2^26 - 1 (that is, 2^28 - 4 bytes). __ Lsl(index_reg, index_reg, DataType::SizeShift(type)); static_assert( sizeof(mirror::HeapReference) == sizeof(int32_t), "art::mirror::HeapReference and int32_t have different sizes."); __ Add(index_reg, index_reg, Operand(offset_)); } else { // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile/VarHandleGet // intrinsics, `index_` is not shifted by a scale factor of 2 // (as in the case of ArrayGet), as it is actually an offset // to an object field within an object. DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); Intrinsics intrinsic = instruction_->AsInvoke()->GetIntrinsic(); DCHECK(intrinsic == Intrinsics::kUnsafeGetObject || intrinsic == Intrinsics::kUnsafeGetObjectVolatile || intrinsic == Intrinsics::kUnsafeCASObject || mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == mirror::VarHandle::AccessModeTemplate::kGet || mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == mirror::VarHandle::AccessModeTemplate::kCompareAndSet || mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == mirror::VarHandle::AccessModeTemplate::kCompareAndExchange || mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == mirror::VarHandle::AccessModeTemplate::kGetAndUpdate) << instruction_->AsInvoke()->GetIntrinsic(); DCHECK_EQ(offset_, 0u); DCHECK(index_.IsRegister()); } } // We're moving two or three locations to locations that could // overlap, so we need a parallel move resolver. InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); parallel_move.AddMove(ref_, LocationFrom(calling_convention.GetRegisterAt(0)), type, nullptr); parallel_move.AddMove(obj_, LocationFrom(calling_convention.GetRegisterAt(1)), type, nullptr); if (index.IsValid()) { parallel_move.AddMove(index, LocationFrom(calling_convention.GetRegisterAt(2)), DataType::Type::kInt32, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); } else { codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_); } arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes< kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARM64"; } private: Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { size_t ref = static_cast(XRegisterFrom(ref_).GetCode()); size_t obj = static_cast(XRegisterFrom(obj_).GetCode()); for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { return Register(VIXLRegCodeFromART(i), kXRegSize); } } // We shall never fail to find a free caller-save register, as // there are more than two core caller-save registers on ARM64 // (meaning it is possible to find one which is different from // `ref` and `obj`). DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); LOG(FATAL) << "Could not find a free register"; UNREACHABLE(); } const Location out_; const Location ref_; const Location obj_; const uint32_t offset_; // An additional location containing an index to an array. // Only used for HArrayGet and the UnsafeGetObject & // UnsafeGetObjectVolatile intrinsics. const Location index_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64); }; // Slow path generating a read barrier for a GC root. class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 { public: ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root) : SlowPathCodeARM64(instruction), out_(out), root_(root) { DCHECK(kEmitCompilerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); DataType::Type type = DataType::Type::kReference; DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString() || (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier for GC root slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; CodeGeneratorARM64* arm64_codegen = down_cast(codegen); // The argument of the ReadBarrierForRootSlow is not a managed // reference (`mirror::Object*`), but a `GcRoot*`; // thus we need a 64-bit move here, and we cannot use // // arm64_codegen->MoveLocation( // LocationFrom(calling_convention.GetRegisterAt(0)), // root_, // type); // // which would emit a 32-bit move, as `type` is a (32-bit wide) // reference type (`DataType::Type::kReference`). __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_)); arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes*>(); arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARM64"; } private: const Location out_; const Location root_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64); }; #undef __ Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) { Location next_location; if (type == DataType::Type::kVoid) { LOG(FATAL) << "Unreachable type " << type; } if (DataType::IsFloatingPointType(type) && (float_index_ < calling_convention.GetNumberOfFpuRegisters())) { next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++)); } else if (!DataType::IsFloatingPointType(type) && (gp_index_ < calling_convention.GetNumberOfRegisters())) { next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++)); } else { size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) : Location::StackSlot(stack_offset); } // Space on the stack is reserved for all arguments. stack_index_ += DataType::Is64BitType(type) ? 2 : 1; return next_location; } Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const { return LocationFrom(kArtMethodRegister); } Location CriticalNativeCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) { DCHECK_NE(type, DataType::Type::kReference); Location location = Location::NoLocation(); if (DataType::IsFloatingPointType(type)) { if (fpr_index_ < kParameterFPRegistersLength) { location = LocationFrom(kParameterFPRegisters[fpr_index_]); ++fpr_index_; } } else { // Native ABI uses the same registers as managed, except that the method register x0 // is a normal argument. if (gpr_index_ < 1u + kParameterCoreRegistersLength) { location = LocationFrom(gpr_index_ == 0u ? x0 : kParameterCoreRegisters[gpr_index_ - 1u]); ++gpr_index_; } } if (location.IsInvalid()) { if (DataType::Is64BitType(type)) { location = Location::DoubleStackSlot(stack_offset_); } else { location = Location::StackSlot(stack_offset_); } stack_offset_ += kFramePointerSize; if (for_register_allocation_) { location = Location::Any(); } } return location; } Location CriticalNativeCallingConventionVisitorARM64::GetReturnLocation(DataType::Type type) const { // We perform conversion to the managed ABI return register after the call if needed. InvokeDexCallingConventionVisitorARM64 dex_calling_convention; return dex_calling_convention.GetReturnLocation(type); } Location CriticalNativeCallingConventionVisitorARM64::GetMethodLocation() const { // Pass the method in the hidden argument x15. return Location::RegisterLocation(x15.GetCode()); } CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph, const CompilerOptions& compiler_options, OptimizingCompilerStats* stats) : CodeGenerator(graph, kNumberOfAllocatableRegisters, kNumberOfAllocatableFPRegisters, kNumberOfAllocatableRegisterPairs, callee_saved_core_registers.GetList(), callee_saved_fp_registers.GetList(), compiler_options, stats), block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), location_builder_neon_(graph, this), instruction_visitor_neon_(graph, this), location_builder_sve_(graph, this), instruction_visitor_sve_(graph, this), move_resolver_(graph->GetAllocator(), this), assembler_(graph->GetAllocator(), compiler_options.GetInstructionSetFeatures()->AsArm64InstructionSetFeatures()), boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), uint32_literals_(std::less(), graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), uint64_literals_(std::less(), graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), jit_string_patches_(StringReferenceValueComparator(), graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), jit_class_patches_(TypeReferenceValueComparator(), graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), jit_baker_read_barrier_slow_paths_(std::less(), graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) { // Save the link register (containing the return address) to mimic Quick. AddAllocatedRegister(LocationFrom(lr)); bool use_sve = ShouldUseSVE(); if (use_sve) { location_builder_ = &location_builder_sve_; instruction_visitor_ = &instruction_visitor_sve_; } else { location_builder_ = &location_builder_neon_; instruction_visitor_ = &instruction_visitor_neon_; } } bool CodeGeneratorARM64::ShouldUseSVE() const { return GetInstructionSetFeatures().HasSVE(); } size_t CodeGeneratorARM64::GetSIMDRegisterWidth() const { return SupportsPredicatedSIMD() ? GetInstructionSetFeatures().GetSVEVectorLength() / kBitsPerByte : vixl::aarch64::kQRegSizeInBytes; } #define __ GetVIXLAssembler()-> void CodeGeneratorARM64::EmitJumpTables() { for (auto&& jump_table : jump_tables_) { jump_table->EmitTable(this); } } void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) { EmitJumpTables(); // Emit JIT baker read barrier slow paths. DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty()); for (auto& entry : jit_baker_read_barrier_slow_paths_) { uint32_t encoded_data = entry.first; vixl::aarch64::Label* slow_path_entry = &entry.second.label; __ Bind(slow_path_entry); CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr); } // Ensure we emit the literal pool. __ FinalizeCode(); CodeGenerator::Finalize(allocator); // Verify Baker read barrier linker patches. if (kIsDebugBuild) { ArrayRef code = allocator->GetMemory(); for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) { DCHECK(info.label.IsBound()); uint32_t literal_offset = info.label.GetLocation(); DCHECK_ALIGNED(literal_offset, 4u); auto GetInsn = [&code](uint32_t offset) { DCHECK_ALIGNED(offset, 4u); return (static_cast(code[offset + 0]) << 0) + (static_cast(code[offset + 1]) << 8) + (static_cast(code[offset + 2]) << 16)+ (static_cast(code[offset + 3]) << 24); }; const uint32_t encoded_data = info.custom_data; BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); // Check that the next instruction matches the expected LDR. switch (kind) { case BakerReadBarrierKind::kField: case BakerReadBarrierKind::kAcquire: { DCHECK_GE(code.size() - literal_offset, 8u); uint32_t next_insn = GetInsn(literal_offset + 4u); CheckValidReg(next_insn & 0x1fu); // Check destination register. const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); if (kind == BakerReadBarrierKind::kField) { // LDR (immediate) with correct base_reg. CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5)); } else { DCHECK(kind == BakerReadBarrierKind::kAcquire); // LDAR with correct base_reg. CHECK_EQ(next_insn & 0xffffffe0u, 0x88dffc00u | (base_reg << 5)); } break; } case BakerReadBarrierKind::kArray: { DCHECK_GE(code.size() - literal_offset, 8u); uint32_t next_insn = GetInsn(literal_offset + 4u); // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL), // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2]. CheckValidReg(next_insn & 0x1fu); // Check destination register. const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5)); CheckValidReg((next_insn >> 16) & 0x1f); // Check index register break; } case BakerReadBarrierKind::kGcRoot: { DCHECK_GE(literal_offset, 4u); uint32_t prev_insn = GetInsn(literal_offset - 4u); const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); // Usually LDR (immediate) with correct root_reg but // we may have a "MOV marked, old_value" for intrinsic CAS. if ((prev_insn & 0xffe0ffff) != (0x2a0003e0 | root_reg)) { // MOV? CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg); // LDR? } break; } default: LOG(FATAL) << "Unexpected kind: " << static_cast(kind); UNREACHABLE(); } } } } void ParallelMoveResolverARM64::PrepareForEmitNativeCode() { // Note: There are 6 kinds of moves: // 1. constant -> GPR/FPR (non-cycle) // 2. constant -> stack (non-cycle) // 3. GPR/FPR -> GPR/FPR // 4. GPR/FPR -> stack // 5. stack -> GPR/FPR // 6. stack -> stack (non-cycle) // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5 // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the // dependency. vixl_temps_.Open(GetVIXLAssembler()); } void ParallelMoveResolverARM64::FinishEmitNativeCode() { vixl_temps_.Close(); } Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) { DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot || kind == Location::kSIMDStackSlot); kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot) ? Location::kFpuRegister : Location::kRegister; Location scratch = GetScratchLocation(kind); if (!scratch.Equals(Location::NoLocation())) { return scratch; } // Allocate from VIXL temp registers. if (kind == Location::kRegister) { scratch = LocationFrom(vixl_temps_.AcquireX()); } else { DCHECK_EQ(kind, Location::kFpuRegister); scratch = codegen_->GetGraph()->HasSIMD() ? codegen_->GetInstructionCodeGeneratorArm64()->AllocateSIMDScratchLocation(&vixl_temps_) : LocationFrom(vixl_temps_.AcquireD()); } AddScratchLocation(scratch); return scratch; } void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) { if (loc.IsRegister()) { vixl_temps_.Release(XRegisterFrom(loc)); } else { DCHECK(loc.IsFpuRegister()); if (codegen_->GetGraph()->HasSIMD()) { codegen_->GetInstructionCodeGeneratorArm64()->FreeSIMDScratchLocation(loc, &vixl_temps_); } else { vixl_temps_.Release(DRegisterFrom(loc)); } } RemoveScratchLocation(loc); } void ParallelMoveResolverARM64::EmitMove(size_t index) { MoveOperands* move = moves_[index]; codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid); } void CodeGeneratorARM64::MaybeIncrementHotness(bool is_frame_entry) { MacroAssembler* masm = GetVIXLAssembler(); if (GetCompilerOptions().CountHotnessInCompiledCode()) { UseScratchRegisterScope temps(masm); Register counter = temps.AcquireX(); Register method = is_frame_entry ? kArtMethodRegister : temps.AcquireX(); if (!is_frame_entry) { __ Ldr(method, MemOperand(sp, 0)); } __ Ldrh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value())); __ Add(counter, counter, 1); // Subtract one if the counter would overflow. __ Sub(counter, counter, Operand(counter, LSR, 16)); __ Strh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value())); } if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) { ScopedProfilingInfoUse spiu( Runtime::Current()->GetJit(), GetGraph()->GetArtMethod(), Thread::Current()); ProfilingInfo* info = spiu.GetProfilingInfo(); if (info != nullptr) { uint64_t address = reinterpret_cast64(info); vixl::aarch64::Label done; UseScratchRegisterScope temps(masm); Register temp = temps.AcquireX(); Register counter = temps.AcquireW(); __ Mov(temp, address); __ Ldrh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value())); __ Add(counter, counter, 1); __ And(counter, counter, interpreter::kTieredHotnessMask); __ Strh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value())); __ Cbnz(counter, &done); if (is_frame_entry) { if (HasEmptyFrame()) { // The entrypoint expects the method at the bottom of the stack. We // claim stack space necessary for alignment. IncreaseFrame(kStackAlignment); __ Stp(kArtMethodRegister, lr, MemOperand(sp, 0)); } else if (!RequiresCurrentMethod()) { __ Str(kArtMethodRegister, MemOperand(sp, 0)); } } else { CHECK(RequiresCurrentMethod()); } uint32_t entrypoint_offset = GetThreadOffset(kQuickCompileOptimized).Int32Value(); __ Ldr(lr, MemOperand(tr, entrypoint_offset)); // Note: we don't record the call here (and therefore don't generate a stack // map), as the entrypoint should never be suspended. __ Blr(lr); if (HasEmptyFrame()) { CHECK(is_frame_entry); __ Ldr(lr, MemOperand(sp, 8)); DecreaseFrame(kStackAlignment); } __ Bind(&done); } } } void CodeGeneratorARM64::GenerateFrameEntry() { MacroAssembler* masm = GetVIXLAssembler(); __ Bind(&frame_entry_label_); bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod(); if (do_overflow_check) { UseScratchRegisterScope temps(masm); Register temp = temps.AcquireX(); DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); __ Sub(temp, sp, static_cast(GetStackOverflowReservedBytes(InstructionSet::kArm64))); { // Ensure that between load and RecordPcInfo there are no pools emitted. ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); __ ldr(wzr, MemOperand(temp, 0)); RecordPcInfo(nullptr, 0); } } if (!HasEmptyFrame()) { // Stack layout: // sp[frame_size - 8] : lr. // ... : other preserved core registers. // ... : other preserved fp registers. // ... : reserved frame space. // sp[0] : current method. int32_t frame_size = dchecked_integral_cast(GetFrameSize()); uint32_t core_spills_offset = frame_size - GetCoreSpillSize(); CPURegList preserved_core_registers = GetFramePreservedCoreRegisters(); DCHECK(!preserved_core_registers.IsEmpty()); uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize(); CPURegList preserved_fp_registers = GetFramePreservedFPRegisters(); // Save the current method if we need it, or if using STP reduces code // size. Note that we do not do this in HCurrentMethod, as the // instruction might have been removed in the SSA graph. CPURegister lowest_spill; if (core_spills_offset == kXRegSizeInBytes) { // If there is no gap between the method and the lowest core spill, use // aligned STP pre-index to store both. Max difference is 512. We do // that to reduce code size even if we do not have to save the method. DCHECK_LE(frame_size, 512); // 32 core registers are only 256 bytes. lowest_spill = preserved_core_registers.PopLowestIndex(); __ Stp(kArtMethodRegister, lowest_spill, MemOperand(sp, -frame_size, PreIndex)); } else if (RequiresCurrentMethod()) { __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex)); } else { __ Claim(frame_size); } GetAssembler()->cfi().AdjustCFAOffset(frame_size); if (lowest_spill.IsValid()) { GetAssembler()->cfi().RelOffset(DWARFReg(lowest_spill), core_spills_offset); core_spills_offset += kXRegSizeInBytes; } GetAssembler()->SpillRegisters(preserved_core_registers, core_spills_offset); GetAssembler()->SpillRegisters(preserved_fp_registers, fp_spills_offset); if (GetGraph()->HasShouldDeoptimizeFlag()) { // Initialize should_deoptimize flag to 0. Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize); __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag())); } } MaybeIncrementHotness(/* is_frame_entry= */ true); MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } void CodeGeneratorARM64::GenerateFrameExit() { GetAssembler()->cfi().RememberState(); if (!HasEmptyFrame()) { int32_t frame_size = dchecked_integral_cast(GetFrameSize()); uint32_t core_spills_offset = frame_size - GetCoreSpillSize(); CPURegList preserved_core_registers = GetFramePreservedCoreRegisters(); DCHECK(!preserved_core_registers.IsEmpty()); uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize(); CPURegList preserved_fp_registers = GetFramePreservedFPRegisters(); CPURegister lowest_spill; if (core_spills_offset == kXRegSizeInBytes) { // If there is no gap between the method and the lowest core spill, use // aligned LDP pre-index to pop both. Max difference is 504. We do // that to reduce code size even though the loaded method is unused. DCHECK_LE(frame_size, 504); // 32 core registers are only 256 bytes. lowest_spill = preserved_core_registers.PopLowestIndex(); core_spills_offset += kXRegSizeInBytes; } GetAssembler()->UnspillRegisters(preserved_fp_registers, fp_spills_offset); GetAssembler()->UnspillRegisters(preserved_core_registers, core_spills_offset); if (lowest_spill.IsValid()) { __ Ldp(xzr, lowest_spill, MemOperand(sp, frame_size, PostIndex)); GetAssembler()->cfi().Restore(DWARFReg(lowest_spill)); } else { __ Drop(frame_size); } GetAssembler()->cfi().AdjustCFAOffset(-frame_size); } __ Ret(); GetAssembler()->cfi().RestoreState(); GetAssembler()->cfi().DefCFAOffset(GetFrameSize()); } CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const { DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0)); return CPURegList(CPURegister::kRegister, kXRegSize, core_spill_mask_); } CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const { DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_, GetNumberOfFloatingPointRegisters())); return CPURegList(CPURegister::kVRegister, kDRegSize, fpu_spill_mask_); } void CodeGeneratorARM64::Bind(HBasicBlock* block) { __ Bind(GetLabelOf(block)); } void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) { DCHECK(location.IsRegister()); __ Mov(RegisterFrom(location, DataType::Type::kInt32), value); } void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) { if (location.IsRegister()) { locations->AddTemp(location); } else { UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; } } void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) { UseScratchRegisterScope temps(GetVIXLAssembler()); Register card = temps.AcquireX(); Register temp = temps.AcquireW(); // Index within the CardTable - 32bit. vixl::aarch64::Label done; if (value_can_be_null) { __ Cbz(value, &done); } // Load the address of the card table into `card`. __ Ldr(card, MemOperand(tr, Thread::CardTableOffset().Int32Value())); // Calculate the offset (in the card table) of the card corresponding to // `object`. __ Lsr(temp, object, gc::accounting::CardTable::kCardShift); // Write the `art::gc::accounting::CardTable::kCardDirty` value into the // `object`'s card. // // Register `card` contains the address of the card table. Note that the card // table's base is biased during its creation so that it always starts at an // address whose least-significant byte is equal to `kCardDirty` (see // art::gc::accounting::CardTable::Create). Therefore the STRB instruction // below writes the `kCardDirty` (byte) value into the `object`'s card // (located at `card + object >> kCardShift`). // // This dual use of the value in register `card` (1. to calculate the location // of the card to mark; and 2. to load the `kCardDirty` value) saves a load // (no need to explicitly load `kCardDirty` as an immediate value). __ Strb(card, MemOperand(card, temp.X())); if (value_can_be_null) { __ Bind(&done); } } void CodeGeneratorARM64::SetupBlockedRegisters() const { // Blocked core registers: // lr : Runtime reserved. // tr : Runtime reserved. // mr : Runtime reserved. // ip1 : VIXL core temp. // ip0 : VIXL core temp. // x18 : Platform register. // // Blocked fp registers: // d31 : VIXL fp temp. CPURegList reserved_core_registers = vixl_reserved_core_registers; reserved_core_registers.Combine(runtime_reserved_core_registers); while (!reserved_core_registers.IsEmpty()) { blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true; } blocked_core_registers_[X18] = true; CPURegList reserved_fp_registers = vixl_reserved_fp_registers; while (!reserved_fp_registers.IsEmpty()) { blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true; } if (GetGraph()->IsDebuggable()) { // Stubs do not save callee-save floating point registers. If the graph // is debuggable, we need to deal with these registers differently. For // now, just block them. CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers; while (!reserved_fp_registers_debuggable.IsEmpty()) { blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true; } } } size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); __ Str(reg, MemOperand(sp, stack_index)); return kArm64WordSize; } size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); __ Ldr(reg, MemOperand(sp, stack_index)); return kArm64WordSize; } size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED, uint32_t reg_id ATTRIBUTE_UNUSED) { LOG(FATAL) << "FP registers shouldn't be saved/restored individually, " << "use SaveRestoreLiveRegistersHelper"; UNREACHABLE(); } size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED, uint32_t reg_id ATTRIBUTE_UNUSED) { LOG(FATAL) << "FP registers shouldn't be saved/restored individually, " << "use SaveRestoreLiveRegistersHelper"; UNREACHABLE(); } void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const { stream << XRegister(reg); } void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const { stream << DRegister(reg); } const Arm64InstructionSetFeatures& CodeGeneratorARM64::GetInstructionSetFeatures() const { return *GetCompilerOptions().GetInstructionSetFeatures()->AsArm64InstructionSetFeatures(); } void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) { if (constant->IsIntConstant()) { __ Mov(Register(destination), constant->AsIntConstant()->GetValue()); } else if (constant->IsLongConstant()) { __ Mov(Register(destination), constant->AsLongConstant()->GetValue()); } else if (constant->IsNullConstant()) { __ Mov(Register(destination), 0); } else if (constant->IsFloatConstant()) { __ Fmov(VRegister(destination), constant->AsFloatConstant()->GetValue()); } else { DCHECK(constant->IsDoubleConstant()); __ Fmov(VRegister(destination), constant->AsDoubleConstant()->GetValue()); } } static bool CoherentConstantAndType(Location constant, DataType::Type type) { DCHECK(constant.IsConstant()); HConstant* cst = constant.GetConstant(); return (cst->IsIntConstant() && type == DataType::Type::kInt32) || // Null is mapped to a core W register, which we associate with kPrimInt. (cst->IsNullConstant() && type == DataType::Type::kInt32) || (cst->IsLongConstant() && type == DataType::Type::kInt64) || (cst->IsFloatConstant() && type == DataType::Type::kFloat32) || (cst->IsDoubleConstant() && type == DataType::Type::kFloat64); } // Allocate a scratch register from the VIXL pool, querying first // the floating-point register pool, and then the core register // pool. This is essentially a reimplementation of // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize // using a different allocation strategy. static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm, vixl::aarch64::UseScratchRegisterScope* temps, int size_in_bits) { return masm->GetScratchVRegisterList()->IsEmpty() ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits)) : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits)); } void CodeGeneratorARM64::MoveLocation(Location destination, Location source, DataType::Type dst_type) { if (source.Equals(destination)) { return; } // A valid move can always be inferred from the destination and source // locations. When moving from and to a register, the argument type can be // used to generate 32bit instead of 64bit moves. In debug mode we also // checks the coherency of the locations and the type. bool unspecified_type = (dst_type == DataType::Type::kVoid); if (destination.IsRegister() || destination.IsFpuRegister()) { if (unspecified_type) { HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr; if (source.IsStackSlot() || (src_cst != nullptr && (src_cst->IsIntConstant() || src_cst->IsFloatConstant() || src_cst->IsNullConstant()))) { // For stack slots and 32bit constants, a 64bit type is appropriate. dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32; } else { // If the source is a double stack slot or a 64bit constant, a 64bit // type is appropriate. Else the source is a register, and since the // type has not been specified, we chose a 64bit type to force a 64bit // move. dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64; } } DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) || (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type))); CPURegister dst = CPURegisterFrom(destination, dst_type); if (source.IsStackSlot() || source.IsDoubleStackSlot()) { DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot()); __ Ldr(dst, StackOperandFrom(source)); } else if (source.IsSIMDStackSlot()) { GetInstructionCodeGeneratorArm64()->LoadSIMDRegFromStack(destination, source); } else if (source.IsConstant()) { DCHECK(CoherentConstantAndType(source, dst_type)); MoveConstant(dst, source.GetConstant()); } else if (source.IsRegister()) { if (destination.IsRegister()) { __ Mov(Register(dst), RegisterFrom(source, dst_type)); } else { DCHECK(destination.IsFpuRegister()); DataType::Type source_type = DataType::Is64BitType(dst_type) ? DataType::Type::kInt64 : DataType::Type::kInt32; __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type)); } } else { DCHECK(source.IsFpuRegister()); if (destination.IsRegister()) { DataType::Type source_type = DataType::Is64BitType(dst_type) ? DataType::Type::kFloat64 : DataType::Type::kFloat32; __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type)); } else { DCHECK(destination.IsFpuRegister()); if (GetGraph()->HasSIMD()) { GetInstructionCodeGeneratorArm64()->MoveSIMDRegToSIMDReg(destination, source); } else { __ Fmov(VRegister(dst), FPRegisterFrom(source, dst_type)); } } } } else if (destination.IsSIMDStackSlot()) { GetInstructionCodeGeneratorArm64()->MoveToSIMDStackSlot(destination, source); } else { // The destination is not a register. It must be a stack slot. DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot()); if (source.IsRegister() || source.IsFpuRegister()) { if (unspecified_type) { if (source.IsRegister()) { dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64; } else { dst_type = destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64; } } DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) && (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type))); __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination)); } else if (source.IsConstant()) { DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type)) << source << " " << dst_type; UseScratchRegisterScope temps(GetVIXLAssembler()); HConstant* src_cst = source.GetConstant(); CPURegister temp; if (src_cst->IsZeroBitPattern()) { temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant()) ? Register(xzr) : Register(wzr); } else { if (src_cst->IsIntConstant()) { temp = temps.AcquireW(); } else if (src_cst->IsLongConstant()) { temp = temps.AcquireX(); } else if (src_cst->IsFloatConstant()) { temp = temps.AcquireS(); } else { DCHECK(src_cst->IsDoubleConstant()); temp = temps.AcquireD(); } MoveConstant(temp, src_cst); } __ Str(temp, StackOperandFrom(destination)); } else { DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot()); DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot()); UseScratchRegisterScope temps(GetVIXLAssembler()); // Use any scratch register (a core or a floating-point one) // from VIXL scratch register pools as a temporary. // // We used to only use the FP scratch register pool, but in some // rare cases the only register from this pool (D31) would // already be used (e.g. within a ParallelMove instruction, when // a move is blocked by a another move requiring a scratch FP // register, which would reserve D31). To prevent this issue, we // ask for a scratch register of any type (core or FP). // // Also, we start by asking for a FP scratch register first, as the // demand of scratch core registers is higher. This is why we // use AcquireFPOrCoreCPURegisterOfSize instead of // UseScratchRegisterScope::AcquireCPURegisterOfSize, which // allocates core scratch registers first. CPURegister temp = AcquireFPOrCoreCPURegisterOfSize( GetVIXLAssembler(), &temps, (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize)); __ Ldr(temp, StackOperandFrom(source)); __ Str(temp, StackOperandFrom(destination)); } } } void CodeGeneratorARM64::Load(DataType::Type type, CPURegister dst, const MemOperand& src) { switch (type) { case DataType::Type::kBool: case DataType::Type::kUint8: __ Ldrb(Register(dst), src); break; case DataType::Type::kInt8: __ Ldrsb(Register(dst), src); break; case DataType::Type::kUint16: __ Ldrh(Register(dst), src); break; case DataType::Type::kInt16: __ Ldrsh(Register(dst), src); break; case DataType::Type::kInt32: case DataType::Type::kReference: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); __ Ldr(dst, src); break; case DataType::Type::kUint32: case DataType::Type::kUint64: case DataType::Type::kVoid: LOG(FATAL) << "Unreachable type " << type; } } void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction, DataType::Type type, CPURegister dst, const MemOperand& src, bool needs_null_check) { MacroAssembler* masm = GetVIXLAssembler(); UseScratchRegisterScope temps(masm); Register temp_base = temps.AcquireX(); DCHECK(!src.IsPreIndex()); DCHECK(!src.IsPostIndex()); // TODO(vixl): Let the MacroAssembler handle MemOperand. __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src)); { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. MemOperand base = MemOperand(temp_base); switch (type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: { ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); __ ldarb(Register(dst), base); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } } if (type == DataType::Type::kInt8) { __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte); } break; case DataType::Type::kUint16: case DataType::Type::kInt16: { ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); __ ldarh(Register(dst), base); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } } if (type == DataType::Type::kInt16) { __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte); } break; case DataType::Type::kInt32: case DataType::Type::kReference: case DataType::Type::kInt64: DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); { ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); __ ldar(Register(dst), base); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } } break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: { DCHECK(dst.IsFPRegister()); DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); { ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); __ ldar(temp, base); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } } __ Fmov(VRegister(dst), temp); break; } case DataType::Type::kUint32: case DataType::Type::kUint64: case DataType::Type::kVoid: LOG(FATAL) << "Unreachable type " << type; } } } void CodeGeneratorARM64::Store(DataType::Type type, CPURegister src, const MemOperand& dst) { switch (type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: __ Strb(Register(src), dst); break; case DataType::Type::kUint16: case DataType::Type::kInt16: __ Strh(Register(src), dst); break; case DataType::Type::kInt32: case DataType::Type::kReference: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); __ Str(src, dst); break; case DataType::Type::kUint32: case DataType::Type::kUint64: case DataType::Type::kVoid: LOG(FATAL) << "Unreachable type " << type; } } void CodeGeneratorARM64::StoreRelease(HInstruction* instruction, DataType::Type type, CPURegister src, const MemOperand& dst, bool needs_null_check) { MacroAssembler* masm = GetVIXLAssembler(); UseScratchRegisterScope temps(GetVIXLAssembler()); Register temp_base = temps.AcquireX(); DCHECK(!dst.IsPreIndex()); DCHECK(!dst.IsPostIndex()); // TODO(vixl): Let the MacroAssembler handle this. Operand op = OperandFromMemOperand(dst); __ Add(temp_base, dst.GetBaseRegister(), op); MemOperand base = MemOperand(temp_base); // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. switch (type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: { ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); __ stlrb(Register(src), base); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } } break; case DataType::Type::kUint16: case DataType::Type::kInt16: { ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); __ stlrh(Register(src), base); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } } break; case DataType::Type::kInt32: case DataType::Type::kReference: case DataType::Type::kInt64: DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); { ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); __ stlr(Register(src), base); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } } break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: { DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); Register temp_src; if (src.IsZero()) { // The zero register is used to avoid synthesizing zero constants. temp_src = Register(src); } else { DCHECK(src.IsFPRegister()); temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); __ Fmov(temp_src, VRegister(src)); } { ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); __ stlr(temp_src, base); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } } break; } case DataType::Type::kUint32: case DataType::Type::kUint64: case DataType::Type::kVoid: LOG(FATAL) << "Unreachable type " << type; } } void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path) { ValidateInvokeRuntime(entrypoint, instruction, slow_path); ThreadOffset64 entrypoint_offset = GetThreadOffset(entrypoint); // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the // entire oat file. This adds an extra branch and we do not want to slow down the main path. // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative. if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) { __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value())); // Ensure the pc position is recorded immediately after the `blr` instruction. ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); __ blr(lr); if (EntrypointRequiresStackMap(entrypoint)) { RecordPcInfo(instruction, dex_pc, slow_path); } } else { // Ensure the pc position is recorded immediately after the `bl` instruction. ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); EmitEntrypointThunkCall(entrypoint_offset); if (EntrypointRequiresStackMap(entrypoint)) { RecordPcInfo(instruction, dex_pc, slow_path); } } } void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, HInstruction* instruction, SlowPathCode* slow_path) { ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); __ Ldr(lr, MemOperand(tr, entry_point_offset)); __ Blr(lr); } void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path, Register class_reg) { UseScratchRegisterScope temps(GetVIXLAssembler()); Register temp = temps.AcquireW(); constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf(); const size_t status_byte_offset = mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte); constexpr uint32_t shifted_visibly_initialized_value = enum_cast(ClassStatus::kVisiblyInitialized) << (status_lsb_position % kBitsPerByte); // CMP (immediate) is limited to imm12 or imm12<<12, so we would need to materialize // the constant 0xf0000000 for comparison with the full 32-bit field. To reduce the code // size, load only the high byte of the field and compare with 0xf0. // Note: The same code size could be achieved with LDR+MNV(asr #24)+CBNZ but benchmarks // show that this pattern is slower (tested on little cores). __ Ldrb(temp, HeapOperand(class_reg, status_byte_offset)); __ Cmp(temp, shifted_visibly_initialized_value); __ B(lo, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void InstructionCodeGeneratorARM64::GenerateBitstringTypeCheckCompare( HTypeCheckInstruction* check, vixl::aarch64::Register temp) { uint32_t path_to_root = check->GetBitstringPathToRoot(); uint32_t mask = check->GetBitstringMask(); DCHECK(IsPowerOfTwo(mask + 1)); size_t mask_bits = WhichPowerOf2(mask + 1); if (mask_bits == 16u) { // Load only the bitstring part of the status word. __ Ldrh(temp, HeapOperand(temp, mirror::Class::StatusOffset())); } else { // /* uint32_t */ temp = temp->status_ __ Ldr(temp, HeapOperand(temp, mirror::Class::StatusOffset())); // Extract the bitstring bits. __ Ubfx(temp, temp, 0, mask_bits); } // Compare the bitstring bits to `path_to_root`. __ Cmp(temp, path_to_root); } void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) { BarrierType type = BarrierAll; switch (kind) { case MemBarrierKind::kAnyAny: case MemBarrierKind::kAnyStore: { type = BarrierAll; break; } case MemBarrierKind::kLoadAny: { type = BarrierReads; break; } case MemBarrierKind::kStoreStore: { type = BarrierWrites; break; } default: LOG(FATAL) << "Unexpected memory barrier " << kind; } __ Dmb(InnerShareable, type); } void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction, HBasicBlock* successor) { SuspendCheckSlowPathARM64* slow_path = down_cast(instruction->GetSlowPath()); if (slow_path == nullptr) { slow_path = new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor); instruction->SetSlowPath(slow_path); codegen_->AddSlowPath(slow_path); if (successor != nullptr) { DCHECK(successor->IsLoopHeader()); } } else { DCHECK_EQ(slow_path->GetSuccessor(), successor); } UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); Register temp = temps.AcquireW(); __ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset().SizeValue())); if (successor == nullptr) { __ Cbnz(temp, slow_path->GetEntryLabel()); __ Bind(slow_path->GetReturnLabel()); } else { __ Cbz(temp, codegen_->GetLabelOf(successor)); __ B(slow_path->GetEntryLabel()); // slow_path will return to GetLabelOf(successor). } } InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph, CodeGeneratorARM64* codegen) : InstructionCodeGenerator(graph, codegen), assembler_(codegen->GetAssembler()), codegen_(codegen) {} void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) { DCHECK_EQ(instr->InputCount(), 2U); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); DataType::Type type = instr->GetResultType(); switch (type) { case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type; } } void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet() || instruction->IsPredicatedInstanceFieldGet()); bool is_predicated = instruction->IsPredicatedInstanceFieldGet(); bool object_field_get_with_read_barrier = kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, object_field_get_with_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. // We need a temporary register for the read barrier load in // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier() // only if the field is volatile or the offset is too big. if (field_info.IsVolatile() || field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) { locations->AddTemp(FixedTempLocation()); } } // Input for object receiver. locations->SetInAt(is_predicated ? 1 : 0, Location::RequiresRegister()); if (DataType::IsFloatingPointType(instruction->GetType())) { if (is_predicated) { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); } else { locations->SetOut(Location::RequiresFpuRegister()); } } else { if (is_predicated) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } else { // The output overlaps for an object field get when read barriers // are enabled: we do not want the load to overwrite the object's // location, as we need it to emit the read barrier. locations->SetOut(Location::RequiresRegister(), object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); } } } void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet() || instruction->IsPredicatedInstanceFieldGet()); bool is_predicated = instruction->IsPredicatedInstanceFieldGet(); LocationSummary* locations = instruction->GetLocations(); uint32_t receiver_input = is_predicated ? 1 : 0; Location base_loc = locations->InAt(receiver_input); Location out = locations->Out(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType())); DataType::Type load_type = instruction->GetType(); MemOperand field = HeapOperand(InputRegisterAt(instruction, receiver_input), field_info.GetFieldOffset()); if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && load_type == DataType::Type::kReference) { // Object FieldGet with Baker's read barrier case. // /* HeapReference */ out = *(base + offset) Register base = RegisterFrom(base_loc, DataType::Type::kReference); Location maybe_temp = (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation(); // Note that potential implicit null checks are handled in this // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call. codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, base, offset, maybe_temp, /* needs_null_check= */ true, field_info.IsVolatile()); } else { // General case. if (field_info.IsVolatile()) { // Note that a potential implicit null check is handled in this // CodeGeneratorARM64::LoadAcquire call. // NB: LoadAcquire will record the pc info if needed. codegen_->LoadAcquire(instruction, load_type, OutputCPURegister(instruction), field, /* needs_null_check= */ true); } else { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); codegen_->Load(load_type, OutputCPURegister(instruction), field); codegen_->MaybeRecordImplicitNullCheck(instruction); } if (load_type == DataType::Type::kReference) { // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); } } } void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); if (IsConstantZeroBitPattern(instruction->InputAt(1))) { locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); } else if (DataType::IsFloatingPointType(instruction->InputAt(1)->GetType())) { locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::RequiresRegister()); } } void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info, bool value_can_be_null) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); bool is_predicated = instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->GetIsPredicatedSet(); Register obj = InputRegisterAt(instruction, 0); CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1); CPURegister source = value; Offset offset = field_info.GetFieldOffset(); DataType::Type field_type = field_info.GetFieldType(); std::optional pred_is_null; if (is_predicated) { pred_is_null.emplace(); __ Cbz(obj, &*pred_is_null); } { // We use a block to end the scratch scope before the write barrier, thus // freeing the temporary registers so they can be used in `MarkGCCard`. UseScratchRegisterScope temps(GetVIXLAssembler()); if (kPoisonHeapReferences && field_type == DataType::Type::kReference) { DCHECK(value.IsW()); Register temp = temps.AcquireW(); __ Mov(temp, value.W()); GetAssembler()->PoisonHeapReference(temp.W()); source = temp; } if (field_info.IsVolatile()) { codegen_->StoreRelease( instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check= */ true); } else { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); codegen_->Store(field_type, source, HeapOperand(obj, offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); } } if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { codegen_->MarkGCCard(obj, Register(value), value_can_be_null); } if (is_predicated) { __ Bind(&*pred_is_null); } } void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) { DataType::Type type = instr->GetType(); switch (type) { case DataType::Type::kInt32: case DataType::Type::kInt64: { Register dst = OutputRegister(instr); Register lhs = InputRegisterAt(instr, 0); Operand rhs = InputOperandAt(instr, 1); if (instr->IsAdd()) { __ Add(dst, lhs, rhs); } else if (instr->IsAnd()) { __ And(dst, lhs, rhs); } else if (instr->IsOr()) { __ Orr(dst, lhs, rhs); } else if (instr->IsSub()) { __ Sub(dst, lhs, rhs); } else if (instr->IsRor()) { if (rhs.IsImmediate()) { uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1); __ Ror(dst, lhs, shift); } else { // Ensure shift distance is in the same size register as the result. If // we are rotating a long and the shift comes in a w register originally, // we don't need to sxtw for use as an x since the shift distances are // all & reg_bits - 1. __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type)); } } else if (instr->IsMin() || instr->IsMax()) { __ Cmp(lhs, rhs); __ Csel(dst, lhs, rhs, instr->IsMin() ? lt : gt); } else { DCHECK(instr->IsXor()); __ Eor(dst, lhs, rhs); } break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: { VRegister dst = OutputFPRegister(instr); VRegister lhs = InputFPRegisterAt(instr, 0); VRegister rhs = InputFPRegisterAt(instr, 1); if (instr->IsAdd()) { __ Fadd(dst, lhs, rhs); } else if (instr->IsSub()) { __ Fsub(dst, lhs, rhs); } else if (instr->IsMin()) { __ Fmin(dst, lhs, rhs); } else if (instr->IsMax()) { __ Fmax(dst, lhs, rhs); } else { LOG(FATAL) << "Unexpected floating-point binary operation"; } break; } default: LOG(FATAL) << "Unexpected binary operation type " << type; } } void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) { DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); DataType::Type type = instr->GetResultType(); switch (type) { case DataType::Type::kInt32: case DataType::Type::kInt64: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected shift type " << type; } } void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) { DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); DataType::Type type = instr->GetType(); switch (type) { case DataType::Type::kInt32: case DataType::Type::kInt64: { Register dst = OutputRegister(instr); Register lhs = InputRegisterAt(instr, 0); Operand rhs = InputOperandAt(instr, 1); if (rhs.IsImmediate()) { uint32_t shift_value = rhs.GetImmediate() & (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance); if (instr->IsShl()) { __ Lsl(dst, lhs, shift_value); } else if (instr->IsShr()) { __ Asr(dst, lhs, shift_value); } else { __ Lsr(dst, lhs, shift_value); } } else { Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W(); if (instr->IsShl()) { __ Lsl(dst, lhs, rhs_reg); } else if (instr->IsShr()) { __ Asr(dst, lhs, rhs_reg); } else { __ Lsr(dst, lhs, rhs_reg); } } break; } default: LOG(FATAL) << "Unexpected shift operation type " << type; } } void LocationsBuilderARM64::VisitAdd(HAdd* instruction) { HandleBinaryOp(instruction); } void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) { HandleBinaryOp(instruction); } void LocationsBuilderARM64::VisitAnd(HAnd* instruction) { HandleBinaryOp(instruction); } void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) { HandleBinaryOp(instruction); } void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType(); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); locations->SetInAt(0, Location::RequiresRegister()); // There is no immediate variant of negated bitwise instructions in AArch64. locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { Register dst = OutputRegister(instr); Register lhs = InputRegisterAt(instr, 0); Register rhs = InputRegisterAt(instr, 1); switch (instr->GetOpKind()) { case HInstruction::kAnd: __ Bic(dst, lhs, rhs); break; case HInstruction::kOr: __ Orn(dst, lhs, rhs); break; case HInstruction::kXor: __ Eon(dst, lhs, rhs); break; default: LOG(FATAL) << "Unreachable"; } } void LocationsBuilderARM64::VisitDataProcWithShifterOp( HDataProcWithShifterOp* instruction) { DCHECK(instruction->GetType() == DataType::Type::kInt32 || instruction->GetType() == DataType::Type::kInt64); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); if (instruction->GetInstrKind() == HInstruction::kNeg) { locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant())); } else { locations->SetInAt(0, Location::RequiresRegister()); } locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp( HDataProcWithShifterOp* instruction) { DataType::Type type = instruction->GetType(); HInstruction::InstructionKind kind = instruction->GetInstrKind(); DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); Register out = OutputRegister(instruction); Register left; if (kind != HInstruction::kNeg) { left = InputRegisterAt(instruction, 0); } // If this `HDataProcWithShifterOp` was created by merging a type conversion as the // shifter operand operation, the IR generating `right_reg` (input to the type // conversion) can have a different type from the current instruction's type, // so we manually indicate the type. Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type); Operand right_operand(0); HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind(); if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) { right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind)); } else { right_operand = Operand(right_reg, helpers::ShiftFromOpKind(op_kind), instruction->GetShiftAmount()); } // Logical binary operations do not support extension operations in the // operand. Note that VIXL would still manage if it was passed by generating // the extension as a separate instruction. // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`. DCHECK(!right_operand.IsExtendedRegister() || (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor && kind != HInstruction::kNeg)); switch (kind) { case HInstruction::kAdd: __ Add(out, left, right_operand); break; case HInstruction::kAnd: __ And(out, left, right_operand); break; case HInstruction::kNeg: DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero()); __ Neg(out, right_operand); break; case HInstruction::kOr: __ Orr(out, left, right_operand); break; case HInstruction::kSub: __ Sub(out, left, right_operand); break; case HInstruction::kXor: __ Eor(out, left, right_operand); break; default: LOG(FATAL) << "Unexpected operation kind: " << kind; UNREACHABLE(); } } void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) { __ Add(OutputRegister(instruction), InputRegisterAt(instruction, 0), Operand(InputOperandAt(instruction, 1))); } void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); HIntConstant* shift = instruction->GetShift()->AsIntConstant(); locations->SetInAt(0, Location::RequiresRegister()); // For byte case we don't need to shift the index variable so we can encode the data offset into // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist // data offset constant generation out of the loop and reduce the critical path length in the // loop. locations->SetInAt(1, shift->GetValue() == 0 ? Location::ConstantLocation(instruction->GetOffset()->AsIntConstant()) : Location::RequiresRegister()); locations->SetInAt(2, Location::ConstantLocation(shift)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex( HIntermediateAddressIndex* instruction) { Register index_reg = InputRegisterAt(instruction, 0); uint32_t shift = Int64FromLocation(instruction->GetLocations()->InAt(2)); uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue(); if (shift == 0) { __ Add(OutputRegister(instruction), index_reg, offset); } else { Register offset_reg = InputRegisterAt(instruction, 1); __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift)); } } void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall); HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); if (instr->GetOpKind() == HInstruction::kSub && accumulator->IsConstant() && accumulator->AsConstant()->IsArithmeticZero()) { // Don't allocate register for Mneg instruction. } else { locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex, Location::RequiresRegister()); } locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister()); locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { Register res = OutputRegister(instr); Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex); Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex); // Avoid emitting code that could trigger Cortex A53's erratum 835769. // This fixup should be carried out for all multiply-accumulate instructions: // madd, msub, smaddl, smsubl, umaddl and umsubl. if (instr->GetType() == DataType::Type::kInt64 && codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) { MacroAssembler* masm = down_cast(codegen_)->GetVIXLAssembler(); vixl::aarch64::Instruction* prev = masm->GetCursorAddress() - kInstructionSize; if (prev->IsLoadOrStore()) { // Make sure we emit only exactly one nop. ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); __ nop(); } } if (instr->GetOpKind() == HInstruction::kAdd) { Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); __ Madd(res, mul_left, mul_right, accumulator); } else { DCHECK(instr->GetOpKind() == HInstruction::kSub); HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) { __ Mneg(res, mul_left, mul_right); } else { Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); __ Msub(res, mul_left, mul_right, accumulator); } } } void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) { bool object_array_get_with_read_barrier = kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, object_array_get_with_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. if (instruction->GetIndex()->IsConstant()) { // Array loads with constant index are treated as field loads. // We need a temporary register for the read barrier load in // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier() // only if the offset is too big. uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction); uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue(); offset += index << DataType::SizeShift(DataType::Type::kReference); if (offset >= kReferenceLoadMinFarOffset) { locations->AddTemp(FixedTempLocation()); } } else if (!instruction->GetArray()->IsIntermediateAddress()) { // We need a non-scratch temporary for the array data pointer in // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier() for the case with no // intermediate address. locations->AddTemp(Location::RequiresRegister()); } } locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (DataType::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } else { // The output overlaps in the case of an object array get with // read barriers enabled: we do not want the move to overwrite the // array's location, as we need it to emit the read barrier. locations->SetOut( Location::RequiresRegister(), object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); } } void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) { DataType::Type type = instruction->GetType(); Register obj = InputRegisterAt(instruction, 0); LocationSummary* locations = instruction->GetLocations(); Location index = locations->InAt(1); Location out = locations->Out(); uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction); const bool maybe_compressed_char_at = mirror::kUseStringCompression && instruction->IsStringCharAt(); MacroAssembler* masm = GetVIXLAssembler(); UseScratchRegisterScope temps(masm); // The non-Baker read barrier instrumentation of object ArrayGet instructions // does not support the HIntermediateAddress instruction. DCHECK(!((type == DataType::Type::kReference) && instruction->GetArray()->IsIntermediateAddress() && kEmitCompilerReadBarrier && !kUseBakerReadBarrier)); if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // Object ArrayGet with Baker's read barrier case. // Note that a potential implicit null check is handled in the // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call. DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0))); if (index.IsConstant()) { DCHECK(!instruction->GetArray()->IsIntermediateAddress()); // Array load with a constant index can be treated as a field load. offset += Int64FromLocation(index) << DataType::SizeShift(type); Location maybe_temp = (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation(); codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, out, obj.W(), offset, maybe_temp, /* needs_null_check= */ false, /* use_load_acquire= */ false); } else { codegen_->GenerateArrayLoadWithBakerReadBarrier( instruction, out, obj.W(), offset, index, /* needs_null_check= */ false); } } else { // General case. MemOperand source = HeapOperand(obj); Register length; if (maybe_compressed_char_at) { uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); length = temps.AcquireW(); { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); if (instruction->GetArray()->IsIntermediateAddress()) { DCHECK_LT(count_offset, offset); int64_t adjusted_offset = static_cast(count_offset) - static_cast(offset); // Note that `adjusted_offset` is negative, so this will be a LDUR. __ Ldr(length, MemOperand(obj.X(), adjusted_offset)); } else { __ Ldr(length, HeapOperand(obj, count_offset)); } codegen_->MaybeRecordImplicitNullCheck(instruction); } } if (index.IsConstant()) { if (maybe_compressed_char_at) { vixl::aarch64::Label uncompressed_load, done; static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ Tbnz(length.W(), 0, &uncompressed_load); __ Ldrb(Register(OutputCPURegister(instruction)), HeapOperand(obj, offset + Int64FromLocation(index))); __ B(&done); __ Bind(&uncompressed_load); __ Ldrh(Register(OutputCPURegister(instruction)), HeapOperand(obj, offset + (Int64FromLocation(index) << 1))); __ Bind(&done); } else { offset += Int64FromLocation(index) << DataType::SizeShift(type); source = HeapOperand(obj, offset); } } else { Register temp = temps.AcquireSameSizeAs(obj); if (instruction->GetArray()->IsIntermediateAddress()) { // We do not need to compute the intermediate address from the array: the // input instruction has done it already. See the comment in // `TryExtractArrayAccessAddress()`. if (kIsDebugBuild) { HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset); } temp = obj; } else { __ Add(temp, obj, offset); } if (maybe_compressed_char_at) { vixl::aarch64::Label uncompressed_load, done; static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ Tbnz(length.W(), 0, &uncompressed_load); __ Ldrb(Register(OutputCPURegister(instruction)), HeapOperand(temp, XRegisterFrom(index), LSL, 0)); __ B(&done); __ Bind(&uncompressed_load); __ Ldrh(Register(OutputCPURegister(instruction)), HeapOperand(temp, XRegisterFrom(index), LSL, 1)); __ Bind(&done); } else { source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type)); } } if (!maybe_compressed_char_at) { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); codegen_->Load(type, OutputCPURegister(instruction), source); codegen_->MaybeRecordImplicitNullCheck(instruction); } if (type == DataType::Type::kReference) { static_assert( sizeof(mirror::HeapReference) == sizeof(int32_t), "art::mirror::HeapReference and int32_t have different sizes."); Location obj_loc = locations->InAt(0); if (index.IsConstant()) { codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset); } else { codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index); } } } } void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) { uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); vixl::aarch64::Register out = OutputRegister(instruction); { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); } // Mask out compression flag from String's array length. if (mirror::kUseStringCompression && instruction->IsStringLength()) { __ Lsr(out.W(), out.W(), 1u); } } void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) { DataType::Type value_type = instruction->GetComponentType(); bool needs_type_check = instruction->NeedsTypeCheck(); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (IsConstantZeroBitPattern(instruction->InputAt(2))) { locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); } else if (DataType::IsFloatingPointType(value_type)) { locations->SetInAt(2, Location::RequiresFpuRegister()); } else { locations->SetInAt(2, Location::RequiresRegister()); } } void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) { DataType::Type value_type = instruction->GetComponentType(); LocationSummary* locations = instruction->GetLocations(); bool needs_type_check = instruction->NeedsTypeCheck(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); Register array = InputRegisterAt(instruction, 0); CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2); CPURegister source = value; Location index = locations->InAt(1); size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value(); MemOperand destination = HeapOperand(array); MacroAssembler* masm = GetVIXLAssembler(); if (!needs_write_barrier) { DCHECK(!needs_type_check); if (index.IsConstant()) { offset += Int64FromLocation(index) << DataType::SizeShift(value_type); destination = HeapOperand(array, offset); } else { UseScratchRegisterScope temps(masm); Register temp = temps.AcquireSameSizeAs(array); if (instruction->GetArray()->IsIntermediateAddress()) { // We do not need to compute the intermediate address from the array: the // input instruction has done it already. See the comment in // `TryExtractArrayAccessAddress()`. if (kIsDebugBuild) { HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); DCHECK(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset); } temp = array; } else { __ Add(temp, array, offset); } destination = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(value_type)); } { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); codegen_->Store(value_type, value, destination); codegen_->MaybeRecordImplicitNullCheck(instruction); } } else { DCHECK(!instruction->GetArray()->IsIntermediateAddress()); bool can_value_be_null = instruction->GetValueCanBeNull(); vixl::aarch64::Label do_store; if (can_value_be_null) { __ Cbz(Register(value), &do_store); } SlowPathCodeARM64* slow_path = nullptr; if (needs_type_check) { slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction); codegen_->AddSlowPath(slow_path); const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); UseScratchRegisterScope temps(masm); Register temp = temps.AcquireSameSizeAs(array); Register temp2 = temps.AcquireSameSizeAs(array); // Note that when Baker read barriers are enabled, the type // checks are performed without read barriers. This is fine, // even in the case where a class object is in the from-space // after the flip, as a comparison involving such a type would // not produce a false positive; it may of course produce a // false negative, in which case we would take the ArraySet // slow path. // /* HeapReference */ temp = array->klass_ { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); __ Ldr(temp, HeapOperand(array, class_offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); } GetAssembler()->MaybeUnpoisonHeapReference(temp); // /* HeapReference */ temp = temp->component_type_ __ Ldr(temp, HeapOperand(temp, component_offset)); // /* HeapReference */ temp2 = value->klass_ __ Ldr(temp2, HeapOperand(Register(value), class_offset)); // If heap poisoning is enabled, no need to unpoison `temp` // nor `temp2`, as we are comparing two poisoned references. __ Cmp(temp, temp2); if (instruction->StaticTypeOfArrayIsObjectArray()) { vixl::aarch64::Label do_put; __ B(eq, &do_put); // If heap poisoning is enabled, the `temp` reference has // not been unpoisoned yet; unpoison it now. GetAssembler()->MaybeUnpoisonHeapReference(temp); // /* HeapReference */ temp = temp->super_class_ __ Ldr(temp, HeapOperand(temp, super_offset)); // If heap poisoning is enabled, no need to unpoison // `temp`, as we are comparing against null below. __ Cbnz(temp, slow_path->GetEntryLabel()); __ Bind(&do_put); } else { __ B(ne, slow_path->GetEntryLabel()); } } codegen_->MarkGCCard(array, value.W(), /* value_can_be_null= */ false); if (can_value_be_null) { DCHECK(do_store.IsLinked()); __ Bind(&do_store); } UseScratchRegisterScope temps(masm); if (kPoisonHeapReferences) { Register temp_source = temps.AcquireSameSizeAs(array); DCHECK(value.IsW()); __ Mov(temp_source, value.W()); GetAssembler()->PoisonHeapReference(temp_source); source = temp_source; } if (index.IsConstant()) { offset += Int64FromLocation(index) << DataType::SizeShift(value_type); destination = HeapOperand(array, offset); } else { Register temp_base = temps.AcquireSameSizeAs(array); __ Add(temp_base, array, offset); destination = HeapOperand(temp_base, XRegisterFrom(index), LSL, DataType::SizeShift(value_type)); } { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); __ Str(source, destination); if (can_value_be_null || !needs_type_check) { codegen_->MaybeRecordImplicitNullCheck(instruction); } } if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } } void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) { RegisterSet caller_saves = RegisterSet::Empty(); InvokeRuntimeCallingConvention calling_convention; caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode())); LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); // If both index and length are constant, we can check the bounds statically and // generate code accordingly. We want to make sure we generate constant locations // in that case, regardless of whether they are encodable in the comparison or not. HInstruction* index = instruction->InputAt(0); HInstruction* length = instruction->InputAt(1); bool both_const = index->IsConstant() && length->IsConstant(); locations->SetInAt(0, both_const ? Location::ConstantLocation(index->AsConstant()) : ARM64EncodableConstantOrRegister(index, instruction)); locations->SetInAt(1, both_const ? Location::ConstantLocation(length->AsConstant()) : ARM64EncodableConstantOrRegister(length, instruction)); } void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) { LocationSummary* locations = instruction->GetLocations(); Location index_loc = locations->InAt(0); Location length_loc = locations->InAt(1); int cmp_first_input = 0; int cmp_second_input = 1; Condition cond = hs; if (index_loc.IsConstant()) { int64_t index = Int64FromLocation(index_loc); if (length_loc.IsConstant()) { int64_t length = Int64FromLocation(length_loc); if (index < 0 || index >= length) { BoundsCheckSlowPathARM64* slow_path = new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction); codegen_->AddSlowPath(slow_path); __ B(slow_path->GetEntryLabel()); } else { // BCE will remove the bounds check if we are guaranteed to pass. // However, some optimization after BCE may have generated this, and we should not // generate a bounds check if it is a valid range. } return; } // Only the index is constant: change the order of the operands and commute the condition // so we can use an immediate constant for the index (only the second input to a cmp // instruction can be an immediate). cmp_first_input = 1; cmp_second_input = 0; cond = ls; } BoundsCheckSlowPathARM64* slow_path = new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction); __ Cmp(InputRegisterAt(instruction, cmp_first_input), InputOperandAt(instruction, cmp_second_input)); codegen_->AddSlowPath(slow_path); __ B(slow_path->GetEntryLabel(), cond); } void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath); locations->SetInAt(0, Location::RequiresRegister()); if (check->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } // Rely on the type initialization to save everything we need. locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); } void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) { // We assume the class is not null. SlowPathCodeARM64* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(check->GetLoadClass(), check); codegen_->AddSlowPath(slow_path); GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0)); } static bool IsFloatingPointZeroConstant(HInstruction* inst) { return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero())) || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero())); } void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) { VRegister lhs_reg = InputFPRegisterAt(instruction, 0); Location rhs_loc = instruction->GetLocations()->InAt(1); if (rhs_loc.IsConstant()) { // 0.0 is the only immediate that can be encoded directly in // an FCMP instruction. // // Both the JLS (section 15.20.1) and the JVMS (section 6.5) // specify that in a floating-point comparison, positive zero // and negative zero are considered equal, so we can use the // literal 0.0 for both cases here. // // Note however that some methods (Float.equal, Float.compare, // Float.compareTo, Double.equal, Double.compare, // Double.compareTo, Math.max, Math.min, StrictMath.max, // StrictMath.min) consider 0.0 to be (strictly) greater than // -0.0. So if we ever translate calls to these methods into a // HCompare instruction, we must handle the -0.0 case with // care here. DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant())); __ Fcmp(lhs_reg, 0.0); } else { __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1)); } } void LocationsBuilderARM64::VisitCompare(HCompare* compare) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall); DataType::Type in_type = compare->InputAt(0)->GetType(); switch (in_type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, IsFloatingPointZeroConstant(compare->InputAt(1)) ? Location::ConstantLocation(compare->InputAt(1)->AsConstant()) : Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); break; } default: LOG(FATAL) << "Unexpected type for compare operation " << in_type; } } void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) { DataType::Type in_type = compare->InputAt(0)->GetType(); // 0 if: left == right // 1 if: left > right // -1 if: left < right switch (in_type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: { Register result = OutputRegister(compare); Register left = InputRegisterAt(compare, 0); Operand right = InputOperandAt(compare, 1); __ Cmp(left, right); __ Cset(result, ne); // result == +1 if NE or 0 otherwise __ Cneg(result, result, lt); // result == -1 if LT or unchanged otherwise break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: { Register result = OutputRegister(compare); GenerateFcmp(compare); __ Cset(result, ne); __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias())); break; } default: LOG(FATAL) << "Unimplemented compare type " << in_type; } } void LocationsBuilderARM64::HandleCondition(HCondition* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, IsFloatingPointZeroConstant(instruction->InputAt(1)) ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant()) : Location::RequiresFpuRegister()); } else { // Integer cases. locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction)); } if (!instruction->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) { if (instruction->IsEmittedAtUseSite()) { return; } LocationSummary* locations = instruction->GetLocations(); Register res = RegisterFrom(locations->Out(), instruction->GetType()); IfCondition if_cond = instruction->GetCondition(); if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) { GenerateFcmp(instruction); __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias())); } else { // Integer cases. Register lhs = InputRegisterAt(instruction, 0); Operand rhs = InputOperandAt(instruction, 1); __ Cmp(lhs, rhs); __ Cset(res, ARM64Condition(if_cond)); } } #define FOR_EACH_CONDITION_INSTRUCTION(M) \ M(Equal) \ M(NotEqual) \ M(LessThan) \ M(LessThanOrEqual) \ M(GreaterThan) \ M(GreaterThanOrEqual) \ M(Below) \ M(BelowOrEqual) \ M(Above) \ M(AboveOrEqual) #define DEFINE_CONDITION_VISITORS(Name) \ void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \ void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS) #undef DEFINE_CONDITION_VISITORS #undef FOR_EACH_CONDITION_INSTRUCTION void InstructionCodeGeneratorARM64::GenerateIntDivForPower2Denom(HDiv* instruction) { int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); uint64_t abs_imm = static_cast(AbsOrMin(imm)); DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm; Register out = OutputRegister(instruction); Register dividend = InputRegisterAt(instruction, 0); Register final_dividend; if (HasNonNegativeOrMinIntInputAt(instruction, 0)) { // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends. // NOTE: The generated code for HDiv correctly works for the INT32_MIN/INT64_MIN dividends: // imm == 2 // add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001 // asr out, out(0x80000001), #1 => out = 0xc0000000 // This is the same as 'asr out, 0x80000000, #1' // // imm > 2 // add temp, dividend(0x80000000), imm - 1 => temp = 0b10..01..1, where the number // of the rightmost 1s is ctz_imm. // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true) // csel out, temp(0b10..01..1), dividend(0x80000000), lt => out = 0b10..01..1 // asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the // leftmost 1s is ctz_imm + 1. // This is the same as 'asr out, dividend(0x80000000), #ctz_imm'. // // imm == INT32_MIN // add tmp, dividend(0x80000000), #0x7fffffff => tmp = -1 // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true) // csel out, temp(-1), dividend(0x80000000), lt => out = -1 // neg out, out(-1), asr #31 => out = 1 // This is the same as 'neg out, dividend(0x80000000), asr #31'. final_dividend = dividend; } else { if (abs_imm == 2) { int bits = DataType::Size(instruction->GetResultType()) * kBitsPerByte; __ Add(out, dividend, Operand(dividend, LSR, bits - 1)); } else { UseScratchRegisterScope temps(GetVIXLAssembler()); Register temp = temps.AcquireSameSizeAs(out); __ Add(temp, dividend, abs_imm - 1); __ Cmp(dividend, 0); __ Csel(out, temp, dividend, lt); } final_dividend = out; } int ctz_imm = CTZ(abs_imm); if (imm > 0) { __ Asr(out, final_dividend, ctz_imm); } else { __ Neg(out, Operand(final_dividend, ASR, ctz_imm)); } } // Return true if the magic number was modified by subtracting 2^32(Int32 div) or 2^64(Int64 div). // So dividend needs to be added. static inline bool NeedToAddDividend(int64_t magic_number, int64_t divisor) { return divisor > 0 && magic_number < 0; } // Return true if the magic number was modified by adding 2^32(Int32 div) or 2^64(Int64 div). // So dividend needs to be subtracted. static inline bool NeedToSubDividend(int64_t magic_number, int64_t divisor) { return divisor < 0 && magic_number > 0; } // Generate code which increments the value in register 'in' by 1 if the value is negative. // It is done with 'add out, in, in, lsr #31 or #63'. // If the value is a result of an operation setting the N flag, CINC MI can be used // instead of ADD. 'use_cond_inc' controls this. void InstructionCodeGeneratorARM64::GenerateIncrementNegativeByOne( Register out, Register in, bool use_cond_inc) { if (use_cond_inc) { __ Cinc(out, in, mi); } else { __ Add(out, in, Operand(in, LSR, in.GetSizeInBits() - 1)); } } // Helper to generate code producing the result of HRem with a constant divisor. void InstructionCodeGeneratorARM64::GenerateResultRemWithAnyConstant( Register out, Register dividend, Register quotient, int64_t divisor, UseScratchRegisterScope* temps_scope) { Register temp_imm = temps_scope->AcquireSameSizeAs(out); __ Mov(temp_imm, divisor); __ Msub(out, quotient, temp_imm, dividend); } // Helper to generate code for HDiv/HRem instructions when a dividend is non-negative and // a divisor is a positive constant, not power of 2. void InstructionCodeGeneratorARM64::GenerateInt64UnsignedDivRemWithAnyPositiveConstant( HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); DCHECK(instruction->GetResultType() == DataType::Type::kInt64); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); DCHECK(second.IsConstant()); Register out = OutputRegister(instruction); Register dividend = InputRegisterAt(instruction, 0); int64_t imm = Int64FromConstant(second.GetConstant()); DCHECK_GT(imm, 0); int64_t magic; int shift; CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift); UseScratchRegisterScope temps(GetVIXLAssembler()); Register temp = temps.AcquireSameSizeAs(out); auto generate_unsigned_div_code = [this, magic, shift](Register out, Register dividend, Register temp) { // temp = get_high(dividend * magic) __ Mov(temp, magic); if (magic > 0 && shift == 0) { __ Smulh(out, dividend, temp); } else { __ Smulh(temp, dividend, temp); if (magic < 0) { // The negative magic means that the multiplier m is greater than INT64_MAX. // In such a case shift is never 0. See the proof in // InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant. __ Add(temp, temp, dividend); } DCHECK_NE(shift, 0); __ Lsr(out, temp, shift); } }; if (instruction->IsDiv()) { generate_unsigned_div_code(out, dividend, temp); } else { generate_unsigned_div_code(temp, dividend, temp); GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); } } // Helper to generate code for HDiv/HRem instructions for any dividend and a constant divisor // (not power of 2). void InstructionCodeGeneratorARM64::GenerateInt64DivRemWithAnyConstant( HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); DCHECK(instruction->GetResultType() == DataType::Type::kInt64); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); DCHECK(second.IsConstant()); Register out = OutputRegister(instruction); Register dividend = InputRegisterAt(instruction, 0); int64_t imm = Int64FromConstant(second.GetConstant()); int64_t magic; int shift; CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift); UseScratchRegisterScope temps(GetVIXLAssembler()); Register temp = temps.AcquireSameSizeAs(out); // temp = get_high(dividend * magic) __ Mov(temp, magic); __ Smulh(temp, dividend, temp); // The multiplication result might need some corrections to be finalized. // The last correction is to increment by 1, if the result is negative. // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'. // Such ADD usually has latency 2, e.g. on Cortex-A55. // However if one of the corrections is ADD or SUB, the sign can be detected // with ADDS/SUBS. They set the N flag if the result is negative. // This allows to use CINC MI which has latency 1. bool use_cond_inc = false; // Some combinations of magic_number and the divisor require to correct the result. // Check whether the correction is needed. if (NeedToAddDividend(magic, imm)) { __ Adds(temp, temp, dividend); use_cond_inc = true; } else if (NeedToSubDividend(magic, imm)) { __ Subs(temp, temp, dividend); use_cond_inc = true; } if (shift != 0) { __ Asr(temp, temp, shift); } if (instruction->IsRem()) { GenerateIncrementNegativeByOne(temp, temp, use_cond_inc); GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); } else { GenerateIncrementNegativeByOne(out, temp, use_cond_inc); } } void InstructionCodeGeneratorARM64::GenerateInt32DivRemWithAnyConstant( HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); DCHECK(instruction->GetResultType() == DataType::Type::kInt32); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); DCHECK(second.IsConstant()); Register out = OutputRegister(instruction); Register dividend = InputRegisterAt(instruction, 0); int64_t imm = Int64FromConstant(second.GetConstant()); int64_t magic; int shift; CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift); UseScratchRegisterScope temps(GetVIXLAssembler()); Register temp = temps.AcquireSameSizeAs(out); // temp = get_high(dividend * magic) __ Mov(temp, magic); __ Smull(temp.X(), dividend, temp); // The multiplication result might need some corrections to be finalized. // The last correction is to increment by 1, if the result is negative. // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'. // Such ADD usually has latency 2, e.g. on Cortex-A55. // However if one of the corrections is ADD or SUB, the sign can be detected // with ADDS/SUBS. They set the N flag if the result is negative. // This allows to use CINC MI which has latency 1. bool use_cond_inc = false; // ADD/SUB correction is performed in the high 32 bits // as high 32 bits are ignored because type are kInt32. if (NeedToAddDividend(magic, imm)) { __ Adds(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32)); use_cond_inc = true; } else if (NeedToSubDividend(magic, imm)) { __ Subs(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32)); use_cond_inc = true; } // Extract the result from the high 32 bits and apply the final right shift. DCHECK_LT(shift, 32); if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) { // No need to adjust the result for a non-negative dividend and a positive divisor. if (instruction->IsDiv()) { __ Lsr(out.X(), temp.X(), 32 + shift); } else { __ Lsr(temp.X(), temp.X(), 32 + shift); GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); } } else { __ Asr(temp.X(), temp.X(), 32 + shift); if (instruction->IsRem()) { GenerateIncrementNegativeByOne(temp, temp, use_cond_inc); GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); } else { GenerateIncrementNegativeByOne(out, temp, use_cond_inc); } } } void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction, int64_t divisor) { DCHECK(instruction->IsDiv() || instruction->IsRem()); if (instruction->GetResultType() == DataType::Type::kInt64) { if (divisor > 0 && HasNonNegativeInputAt(instruction, 0)) { GenerateInt64UnsignedDivRemWithAnyPositiveConstant(instruction); } else { GenerateInt64DivRemWithAnyConstant(instruction); } } else { GenerateInt32DivRemWithAnyConstant(instruction); } } void InstructionCodeGeneratorARM64::GenerateIntDivForConstDenom(HDiv *instruction) { int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); if (imm == 0) { // Do not generate anything. DivZeroCheck would prevent any code to be executed. return; } if (IsPowerOfTwo(AbsOrMin(imm))) { GenerateIntDivForPower2Denom(instruction); } else { // Cases imm == -1 or imm == 1 are handled by InstructionSimplifier. DCHECK(imm < -2 || imm > 2) << imm; GenerateDivRemWithAnyConstant(instruction, imm); } } void InstructionCodeGeneratorARM64::GenerateIntDiv(HDiv *instruction) { DCHECK(DataType::IsIntOrLongType(instruction->GetResultType())) << instruction->GetResultType(); if (instruction->GetLocations()->InAt(1).IsConstant()) { GenerateIntDivForConstDenom(instruction); } else { Register out = OutputRegister(instruction); Register dividend = InputRegisterAt(instruction, 0); Register divisor = InputRegisterAt(instruction, 1); __ Sdiv(out, dividend, divisor); } } void LocationsBuilderARM64::VisitDiv(HDiv* div) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall); switch (div->GetResultType()) { case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) { DataType::Type type = div->GetResultType(); switch (type) { case DataType::Type::kInt32: case DataType::Type::kInt64: GenerateIntDiv(div); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1)); break; default: LOG(FATAL) << "Unexpected div type " << type; } } void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); } void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { SlowPathCodeARM64* slow_path = new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction); codegen_->AddSlowPath(slow_path); Location value = instruction->GetLocations()->InAt(0); DataType::Type type = instruction->GetType(); if (!DataType::IsIntegralType(type)) { LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck."; UNREACHABLE(); } if (value.IsConstant()) { int64_t divisor = Int64FromLocation(value); if (divisor == 0) { __ B(slow_path->GetEntryLabel()); } else { // A division by a non-null constant is valid. We don't need to perform // any check, so simply fall through. } } else { __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel()); } } void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM64::VisitDoubleConstant( HDoubleConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM64::VisitExit(HExit* exit) { exit->SetLocations(nullptr); } void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { } void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) { if (successor->IsExitBlock()) { DCHECK(got->GetPrevious()->AlwaysThrows()); return; // no code needed } HBasicBlock* block = got->GetBlock(); HInstruction* previous = got->GetPrevious(); HLoopInformation* info = block->GetLoopInformation(); if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false); GenerateSuspendCheck(info->GetSuspendCheck(), successor); return; } if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } if (!codegen_->GoesToNextBlock(block, successor)) { __ B(codegen_->GetLabelOf(successor)); } } void LocationsBuilderARM64::VisitGoto(HGoto* got) { got->SetLocations(nullptr); } void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) { HandleGoto(got, got->GetSuccessor()); } void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) { try_boundary->SetLocations(nullptr); } void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) { HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); if (!successor->IsExitBlock()) { HandleGoto(try_boundary, successor); } } void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction, size_t condition_input_index, vixl::aarch64::Label* true_target, vixl::aarch64::Label* false_target) { HInstruction* cond = instruction->InputAt(condition_input_index); if (true_target == nullptr && false_target == nullptr) { // Nothing to do. The code always falls through. return; } else if (cond->IsIntConstant()) { // Constant condition, statically compared against "true" (integer value 1). if (cond->AsIntConstant()->IsTrue()) { if (true_target != nullptr) { __ B(true_target); } } else { DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); if (false_target != nullptr) { __ B(false_target); } } return; } // The following code generates these patterns: // (1) true_target == nullptr && false_target != nullptr // - opposite condition true => branch to false_target // (2) true_target != nullptr && false_target == nullptr // - condition true => branch to true_target // (3) true_target != nullptr && false_target != nullptr // - condition true => branch to true_target // - branch to false_target if (IsBooleanValueOrMaterializedCondition(cond)) { // The condition instruction has been materialized, compare the output to 0. Location cond_val = instruction->GetLocations()->InAt(condition_input_index); DCHECK(cond_val.IsRegister()); if (true_target == nullptr) { __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target); } else { __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target); } } else { // The condition instruction has not been materialized, use its inputs as // the comparison and its condition as the branch condition. HCondition* condition = cond->AsCondition(); DataType::Type type = condition->InputAt(0)->GetType(); if (DataType::IsFloatingPointType(type)) { GenerateFcmp(condition); if (true_target == nullptr) { IfCondition opposite_condition = condition->GetOppositeCondition(); __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target); } else { __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target); } } else { // Integer cases. Register lhs = InputRegisterAt(condition, 0); Operand rhs = InputOperandAt(condition, 1); Condition arm64_cond; vixl::aarch64::Label* non_fallthrough_target; if (true_target == nullptr) { arm64_cond = ARM64Condition(condition->GetOppositeCondition()); non_fallthrough_target = false_target; } else { arm64_cond = ARM64Condition(condition->GetCondition()); non_fallthrough_target = true_target; } if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) && rhs.IsImmediate() && (rhs.GetImmediate() == 0)) { switch (arm64_cond) { case eq: __ Cbz(lhs, non_fallthrough_target); break; case ne: __ Cbnz(lhs, non_fallthrough_target); break; case lt: // Test the sign bit and branch accordingly. __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); break; case ge: // Test the sign bit and branch accordingly. __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); break; default: // Without the `static_cast` the compiler throws an error for // `-Werror=sign-promo`. LOG(FATAL) << "Unexpected condition: " << static_cast(arm64_cond); } } else { __ Cmp(lhs, rhs); __ B(arm64_cond, non_fallthrough_target); } } } // If neither branch falls through (case 3), the conditional branch to `true_target` // was already emitted (case 2) and we need to emit a jump to `false_target`. if (true_target != nullptr && false_target != nullptr) { __ B(false_target); } } void LocationsBuilderARM64::VisitIf(HIf* if_instr) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr); if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { locations->SetInAt(0, Location::RequiresRegister()); } } void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) { HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor); if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) { true_target = nullptr; } vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor); if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) { false_target = nullptr; } GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target); } void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); InvokeRuntimeCallingConvention calling_convention; RegisterSet caller_saves = RegisterSet::Empty(); caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); locations->SetCustomSlowPathCallerSaves(caller_saves); if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { locations->SetInAt(0, Location::RequiresRegister()); } } void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) { SlowPathCodeARM64* slow_path = deopt_slow_paths_.NewSlowPath(deoptimize); GenerateTestAndBranch(deoptimize, /* condition_input_index= */ 0, slow_path->GetEntryLabel(), /* false_target= */ nullptr); } void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(flag, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { __ Ldr(OutputRegister(flag), MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag())); } static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) { return condition->IsCondition() && DataType::IsFloatingPointType(condition->InputAt(0)->GetType()); } static inline Condition GetConditionForSelect(HCondition* condition) { IfCondition cond = condition->AsCondition()->GetCondition(); return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias()) : ARM64Condition(cond); } void LocationsBuilderARM64::VisitSelect(HSelect* select) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select); if (DataType::IsFloatingPointType(select->GetType())) { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } else { HConstant* cst_true_value = select->GetTrueValue()->AsConstant(); HConstant* cst_false_value = select->GetFalseValue()->AsConstant(); bool is_true_value_constant = cst_true_value != nullptr; bool is_false_value_constant = cst_false_value != nullptr; // Ask VIXL whether we should synthesize constants in registers. // We give an arbitrary register to VIXL when dealing with non-constant inputs. Operand true_op = is_true_value_constant ? Operand(Int64FromConstant(cst_true_value)) : Operand(x1); Operand false_op = is_false_value_constant ? Operand(Int64FromConstant(cst_false_value)) : Operand(x2); bool true_value_in_register = false; bool false_value_in_register = false; MacroAssembler::GetCselSynthesisInformation( x0, true_op, false_op, &true_value_in_register, &false_value_in_register); true_value_in_register |= !is_true_value_constant; false_value_in_register |= !is_false_value_constant; locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister() : Location::ConstantLocation(cst_true_value)); locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister() : Location::ConstantLocation(cst_false_value)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { locations->SetInAt(2, Location::RequiresRegister()); } } void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) { HInstruction* cond = select->GetCondition(); Condition csel_cond; if (IsBooleanValueOrMaterializedCondition(cond)) { if (cond->IsCondition() && cond->GetNext() == select) { // Use the condition flags set by the previous instruction. csel_cond = GetConditionForSelect(cond->AsCondition()); } else { __ Cmp(InputRegisterAt(select, 2), 0); csel_cond = ne; } } else if (IsConditionOnFloatingPointValues(cond)) { GenerateFcmp(cond); csel_cond = GetConditionForSelect(cond->AsCondition()); } else { __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1)); csel_cond = GetConditionForSelect(cond->AsCondition()); } if (DataType::IsFloatingPointType(select->GetType())) { __ Fcsel(OutputFPRegister(select), InputFPRegisterAt(select, 1), InputFPRegisterAt(select, 0), csel_cond); } else { __ Csel(OutputRegister(select), InputOperandAt(select, 1), InputOperandAt(select, 0), csel_cond); } } void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) { new (GetGraph()->GetAllocator()) LocationSummary(info); } void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) { // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. } void CodeGeneratorARM64::IncreaseFrame(size_t adjustment) { __ Claim(adjustment); GetAssembler()->cfi().AdjustCFAOffset(adjustment); } void CodeGeneratorARM64::DecreaseFrame(size_t adjustment) { __ Drop(adjustment); GetAssembler()->cfi().AdjustCFAOffset(-adjustment); } void CodeGeneratorARM64::GenerateNop() { __ Nop(); } void LocationsBuilderARM64::VisitPredicatedInstanceFieldGet( HPredicatedInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARM64::VisitPredicatedInstanceFieldGet( HPredicatedInstanceFieldGet* instruction) { vixl::aarch64::Label finish; __ Cbz(InputRegisterAt(instruction, 1), &finish); HandleFieldGet(instruction, instruction->GetFieldInfo()); __ Bind(&finish); } void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction); } void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); } // Temp is used for read barrier. static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { if (kEmitCompilerReadBarrier && (kUseBakerReadBarrier || type_check_kind == TypeCheckKind::kAbstractClassCheck || type_check_kind == TypeCheckKind::kClassHierarchyCheck || type_check_kind == TypeCheckKind::kArrayObjectCheck)) { return 1; } return 0; } // Interface case has 3 temps, one for holding the number of interfaces, one for the current // interface pointer, one for loading the current interface. // The other checks have one temp for loading the object's class. static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { if (type_check_kind == TypeCheckKind::kInterfaceCheck) { return 3; } return 1 + NumberOfInstanceOfTemps(type_check_kind); } void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) { LocationSummary::CallKind call_kind = LocationSummary::kNoCall; TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); bool baker_read_barrier_slow_path = false; switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kAbstractClassCheck: case TypeCheckKind::kClassHierarchyCheck: case TypeCheckKind::kArrayObjectCheck: { bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction); call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier; break; } case TypeCheckKind::kArrayCheck: case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: call_kind = LocationSummary::kCallOnSlowPath; break; case TypeCheckKind::kBitstringCheck: break; } LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); if (baker_read_barrier_slow_path) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::RequiresRegister()); if (type_check_kind == TypeCheckKind::kBitstringCheck) { locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); } else { locations->SetInAt(1, Location::RequiresRegister()); } // The "out" register is used as a temporary, so it overlaps with the inputs. // Note that TypeCheckSlowPathARM64 uses this register too. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); // Add temps if necessary for read barriers. locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); } void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); Register obj = InputRegisterAt(instruction, 0); Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck) ? Register() : InputRegisterAt(instruction, 1); Location out_loc = locations->Out(); Register out = OutputRegister(instruction); const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); DCHECK_LE(num_temps, 1u); Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); vixl::aarch64::Label done, zero; SlowPathCodeARM64* slow_path = nullptr; // Return 0 if `obj` is null. // Avoid null check if we know `obj` is not null. if (instruction->MustDoNullCheck()) { __ Cbz(obj, &zero); } switch (type_check_kind) { case TypeCheckKind::kExactCheck: { ReadBarrierOption read_barrier_option = CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); __ Cmp(out, cls); __ Cset(out, eq); if (zero.IsLinked()) { __ B(&done); } break; } case TypeCheckKind::kAbstractClassCheck: { ReadBarrierOption read_barrier_option = CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); // If the class is abstract, we eagerly fetch the super class of the // object to avoid doing a comparison we know will fail. vixl::aarch64::Label loop, success; __ Bind(&loop); // /* HeapReference */ out = out->super_class_ GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc, read_barrier_option); // If `out` is null, we use it for the result, and jump to `done`. __ Cbz(out, &done); __ Cmp(out, cls); __ B(ne, &loop); __ Mov(out, 1); if (zero.IsLinked()) { __ B(&done); } break; } case TypeCheckKind::kClassHierarchyCheck: { ReadBarrierOption read_barrier_option = CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); // Walk over the class hierarchy to find a match. vixl::aarch64::Label loop, success; __ Bind(&loop); __ Cmp(out, cls); __ B(eq, &success); // /* HeapReference */ out = out->super_class_ GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc, read_barrier_option); __ Cbnz(out, &loop); // If `out` is null, we use it for the result, and jump to `done`. __ B(&done); __ Bind(&success); __ Mov(out, 1); if (zero.IsLinked()) { __ B(&done); } break; } case TypeCheckKind::kArrayObjectCheck: { ReadBarrierOption read_barrier_option = CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); // Do an exact check. vixl::aarch64::Label exact_check; __ Cmp(out, cls); __ B(eq, &exact_check); // Otherwise, we need to check that the object's class is a non-primitive array. // /* HeapReference */ out = out->component_type_ GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc, read_barrier_option); // If `out` is null, we use it for the result, and jump to `done`. __ Cbz(out, &done); __ Ldrh(out, HeapOperand(out, primitive_offset)); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ Cbnz(out, &zero); __ Bind(&exact_check); __ Mov(out, 1); __ B(&done); break; } case TypeCheckKind::kArrayCheck: { // No read barrier since the slow path will retry upon failure. // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kWithoutReadBarrier); __ Cmp(out, cls); DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( instruction, /* is_fatal= */ false); codegen_->AddSlowPath(slow_path); __ B(ne, slow_path->GetEntryLabel()); __ Mov(out, 1); if (zero.IsLinked()) { __ B(&done); } break; } case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: { // Note that we indeed only call on slow path, but we always go // into the slow path for the unresolved and interface check // cases. // // We cannot directly call the InstanceofNonTrivial runtime // entry point without resorting to a type checking slow path // here (i.e. by calling InvokeRuntime directly), as it would // require to assign fixed registers for the inputs of this // HInstanceOf instruction (following the runtime calling // convention), which might be cluttered by the potential first // read barrier emission at the beginning of this method. // // TODO: Introduce a new runtime entry point taking the object // to test (instead of its class) as argument, and let it deal // with the read barrier issues. This will let us refactor this // case of the `switch` code as it was previously (with a direct // call to the runtime not using a type checking slow path). // This should also be beneficial for the other cases above. DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( instruction, /* is_fatal= */ false); codegen_->AddSlowPath(slow_path); __ B(slow_path->GetEntryLabel()); if (zero.IsLinked()) { __ B(&done); } break; } case TypeCheckKind::kBitstringCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kWithoutReadBarrier); GenerateBitstringTypeCheckCompare(instruction, out); __ Cset(out, eq); if (zero.IsLinked()) { __ B(&done); } break; } } if (zero.IsLinked()) { __ Bind(&zero); __ Mov(out, 0); } if (done.IsLinked()) { __ Bind(&done); } if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); locations->SetInAt(0, Location::RequiresRegister()); if (type_check_kind == TypeCheckKind::kBitstringCheck) { locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); } else { locations->SetInAt(1, Location::RequiresRegister()); } // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathARM64. locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); } void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); Register obj = InputRegisterAt(instruction, 0); Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck) ? Register() : InputRegisterAt(instruction, 1); const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); DCHECK_GE(num_temps, 1u); DCHECK_LE(num_temps, 3u); Location temp_loc = locations->GetTemp(0); Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation(); Register temp = WRegisterFrom(temp_loc); const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); const uint32_t object_array_data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction); SlowPathCodeARM64* type_check_slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( instruction, is_type_check_slow_path_fatal); codegen_->AddSlowPath(type_check_slow_path); vixl::aarch64::Label done; // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ Cbz(obj, &done); } switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kArrayCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); __ Cmp(temp, cls); // Jump to slow path for throwing the exception or doing a // more involved array check. __ B(ne, type_check_slow_path->GetEntryLabel()); break; } case TypeCheckKind::kAbstractClassCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the class is abstract, we eagerly fetch the super class of the // object to avoid doing a comparison we know will fail. vixl::aarch64::Label loop; __ Bind(&loop); // /* HeapReference */ temp = temp->super_class_ GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the class reference currently in `temp` is null, jump to the slow path to throw the // exception. __ Cbz(temp, type_check_slow_path->GetEntryLabel()); // Otherwise, compare classes. __ Cmp(temp, cls); __ B(ne, &loop); break; } case TypeCheckKind::kClassHierarchyCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // Walk over the class hierarchy to find a match. vixl::aarch64::Label loop; __ Bind(&loop); __ Cmp(temp, cls); __ B(eq, &done); // /* HeapReference */ temp = temp->super_class_ GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the class reference currently in `temp` is not null, jump // back at the beginning of the loop. __ Cbnz(temp, &loop); // Otherwise, jump to the slow path to throw the exception. __ B(type_check_slow_path->GetEntryLabel()); break; } case TypeCheckKind::kArrayObjectCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // Do an exact check. __ Cmp(temp, cls); __ B(eq, &done); // Otherwise, we need to check that the object's class is a non-primitive array. // /* HeapReference */ temp = temp->component_type_ GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the component type is null, jump to the slow path to throw the exception. __ Cbz(temp, type_check_slow_path->GetEntryLabel()); // Otherwise, the object is indeed an array. Further check that this component type is not a // primitive type. __ Ldrh(temp, HeapOperand(temp, primitive_offset)); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ Cbnz(temp, type_check_slow_path->GetEntryLabel()); break; } case TypeCheckKind::kUnresolvedCheck: // We always go into the type check slow path for the unresolved check cases. // // We cannot directly call the CheckCast runtime entry point // without resorting to a type checking slow path here (i.e. by // calling InvokeRuntime directly), as it would require to // assign fixed registers for the inputs of this HInstanceOf // instruction (following the runtime calling convention), which // might be cluttered by the potential first read barrier // emission at the beginning of this method. __ B(type_check_slow_path->GetEntryLabel()); break; case TypeCheckKind::kInterfaceCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // /* HeapReference */ temp = temp->iftable_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, temp_loc, iftable_offset, maybe_temp2_loc, kWithoutReadBarrier); // Iftable is never null. __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset)); // Loop through the iftable and check if any class matches. vixl::aarch64::Label start_loop; __ Bind(&start_loop); __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel()); __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset)); GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc)); // Go to next interface. __ Add(temp, temp, 2 * kHeapReferenceSize); __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2); // Compare the classes and continue the loop if they do not match. __ Cmp(cls, WRegisterFrom(maybe_temp3_loc)); __ B(ne, &start_loop); break; } case TypeCheckKind::kBitstringCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); GenerateBitstringTypeCheckCompare(instruction, temp); __ B(ne, type_check_slow_path->GetEntryLabel()); break; } } __ Bind(&done); __ Bind(type_check_slow_path->GetExitLabel()); } void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { // The trampoline uses the same calling convention as dex calling conventions, // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain // the method_idx. HandleInvoke(invoke); } void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) { InvokeDexCallingConventionVisitorARM64 calling_convention_visitor; CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); } void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) { HandleInvoke(invoke); if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) { // We cannot request ip1 as it's blocked by the register allocator. invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any()); } } void CodeGeneratorARM64::MaybeGenerateInlineCacheCheck(HInstruction* instruction, Register klass) { DCHECK_EQ(klass.GetCode(), 0u); // We know the destination of an intrinsic, so no need to record inline // caches. if (!instruction->GetLocations()->Intrinsified() && GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) { DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke()); ScopedProfilingInfoUse spiu( Runtime::Current()->GetJit(), GetGraph()->GetArtMethod(), Thread::Current()); ProfilingInfo* info = spiu.GetProfilingInfo(); if (info != nullptr) { InlineCache* cache = info->GetInlineCache(instruction->GetDexPc()); uint64_t address = reinterpret_cast64(cache); vixl::aarch64::Label done; __ Mov(x8, address); __ Ldr(x9, MemOperand(x8, InlineCache::ClassesOffset().Int32Value())); // Fast path for a monomorphic cache. __ Cmp(klass, x9); __ B(eq, &done); InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc()); __ Bind(&done); } } } void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) { // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. LocationSummary* locations = invoke->GetLocations(); Register temp = XRegisterFrom(locations->GetTemp(0)); Location receiver = locations->InAt(0); Offset class_offset = mirror::Object::ClassOffset(); Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. if (receiver.IsStackSlot()) { __ Ldr(temp.W(), StackOperandFrom(receiver)); { EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); // /* HeapReference */ temp = temp->klass_ __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset)); codegen_->MaybeRecordImplicitNullCheck(invoke); } } else { EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); // /* HeapReference */ temp = receiver->klass_ __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset)); codegen_->MaybeRecordImplicitNullCheck(invoke); } // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // However this is not required in practice, as this is an // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); // If we're compiling baseline, update the inline cache. codegen_->MaybeGenerateInlineCacheCheck(invoke, temp); // The register ip1 is required to be used for the hidden argument in // art_quick_imt_conflict_trampoline, so prevent VIXL from using it. MacroAssembler* masm = GetVIXLAssembler(); UseScratchRegisterScope scratch_scope(masm); scratch_scope.Exclude(ip1); if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) { Location interface_method = locations->InAt(invoke->GetNumberOfArguments() - 1); if (interface_method.IsStackSlot()) { __ Ldr(ip1, StackOperandFrom(interface_method)); } else { __ Mov(ip1, XRegisterFrom(interface_method)); } // If the load kind is through a runtime call, we will pass the method we // fetch the IMT, which will either be a no-op if we don't hit the conflict // stub, or will make us always go through the trampoline when there is a // conflict. } else if (invoke->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) { codegen_->LoadMethod( invoke->GetHiddenArgumentLoadKind(), Location::RegisterLocation(ip1.GetCode()), invoke); } __ Ldr(temp, MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value())); uint32_t method_offset = static_cast(ImTable::OffsetOfElement( invoke->GetImtIndex(), kArm64PointerSize)); // temp = temp->GetImtEntryAt(method_offset); __ Ldr(temp, MemOperand(temp, method_offset)); if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) { // We pass the method from the IMT in case of a conflict. This will ensure // we go into the runtime to resolve the actual method. __ Mov(ip1, temp); } // lr = temp->GetEntryPoint(); __ Ldr(lr, MemOperand(temp, entry_point.Int32Value())); { // Ensure the pc position is recorded immediately after the `blr` instruction. ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); // lr(); __ blr(lr); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_); if (intrinsic.TryDispatch(invoke)) { return; } if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) { CriticalNativeCallingConventionVisitorARM64 calling_convention_visitor( /*for_register_allocation=*/ true); CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); } else { HandleInvoke(invoke); } } static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) { if (invoke->GetLocations()->Intrinsified()) { IntrinsicCodeGeneratorARM64 intrinsic(codegen); intrinsic.Dispatch(invoke); return true; } return false; } HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch( const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, ArtMethod* method ATTRIBUTE_UNUSED) { // On ARM64 we support all dispatch types. return desired_dispatch_info; } void CodeGeneratorARM64::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) { switch (load_kind) { case MethodLoadKind::kBootImageLinkTimePcRelative: { DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); // Add ADRP with its PC-relative method patch. vixl::aarch64::Label* adrp_label = NewBootImageMethodPatch(invoke->GetResolvedMethodReference()); EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); // Add ADD with its PC-relative method patch. vixl::aarch64::Label* add_label = NewBootImageMethodPatch(invoke->GetResolvedMethodReference(), adrp_label); EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp)); break; } case MethodLoadKind::kBootImageRelRo: { // Add ADRP with its PC-relative .data.bimg.rel.ro patch. uint32_t boot_image_offset = GetBootImageOffset(invoke); vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_offset); EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); // Add LDR with its PC-relative .data.bimg.rel.ro patch. vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_offset, adrp_label); // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load. EmitLdrOffsetPlaceholder(ldr_label, WRegisterFrom(temp), XRegisterFrom(temp)); break; } case MethodLoadKind::kBssEntry: { // Add ADRP with its PC-relative .bss entry patch. vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(invoke->GetMethodReference()); EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); // Add LDR with its PC-relative .bss entry patch. vixl::aarch64::Label* ldr_label = NewMethodBssEntryPatch(invoke->GetMethodReference(), adrp_label); // All aligned loads are implicitly atomic consume operations on ARM64. EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp)); break; } case MethodLoadKind::kJitDirectAddress: { // Load method address from literal pool. __ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(reinterpret_cast(invoke->GetResolvedMethod()))); break; } case MethodLoadKind::kRuntimeCall: { // Test situation, don't do anything. break; } default: { LOG(FATAL) << "Load kind should have already been handled " << load_kind; UNREACHABLE(); } } } void CodeGeneratorARM64::GenerateStaticOrDirectCall( HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention. Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. switch (invoke->GetMethodLoadKind()) { case MethodLoadKind::kStringInit: { uint32_t offset = GetThreadOffset(invoke->GetStringInitEntryPoint()).Int32Value(); // temp = thread->string_init_entrypoint __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset)); break; } case MethodLoadKind::kRecursive: { callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex()); break; } case MethodLoadKind::kRuntimeCall: { GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); return; // No code pointer retrieval; the runtime performs the call directly. } case MethodLoadKind::kBootImageLinkTimePcRelative: DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) { // Do not materialize the method pointer, load directly the entrypoint. // Add ADRP with its PC-relative JNI entrypoint patch. vixl::aarch64::Label* adrp_label = NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference()); EmitAdrpPlaceholder(adrp_label, lr); // Add the LDR with its PC-relative method patch. vixl::aarch64::Label* add_label = NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference(), adrp_label); EmitLdrOffsetPlaceholder(add_label, lr, lr); break; } FALLTHROUGH_INTENDED; default: { LoadMethod(invoke->GetMethodLoadKind(), temp, invoke); break; } } auto call_lr = [&]() { // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); // lr() __ blr(lr); RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); }; switch (invoke->GetCodePtrLocation()) { case CodePtrLocation::kCallSelf: { // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); __ bl(&frame_entry_label_); RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); } break; case CodePtrLocation::kCallCriticalNative: { size_t out_frame_size = PrepareCriticalNativeCall(invoke); if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) { call_lr(); } else { // LR = callee_method->ptr_sized_fields_.data_; // EntryPointFromJni MemberOffset offset = ArtMethod::EntryPointFromJniOffset(kArm64PointerSize); __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value())); // lr() call_lr(); } // Zero-/sign-extend the result when needed due to native and managed ABI mismatch. switch (invoke->GetType()) { case DataType::Type::kBool: __ Ubfx(w0, w0, 0, 8); break; case DataType::Type::kInt8: __ Sbfx(w0, w0, 0, 8); break; case DataType::Type::kUint16: __ Ubfx(w0, w0, 0, 16); break; case DataType::Type::kInt16: __ Sbfx(w0, w0, 0, 16); break; case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: case DataType::Type::kVoid: break; default: DCHECK(false) << invoke->GetType(); break; } if (out_frame_size != 0u) { DecreaseFrame(out_frame_size); } break; } case CodePtrLocation::kCallArtMethod: { // LR = callee_method->ptr_sized_fields_.entry_point_from_quick_compiled_code_; MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value())); // lr() call_lr(); break; } } DCHECK(!IsLeafMethod()); } void CodeGeneratorARM64::GenerateVirtualCall( HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) { // Use the calling convention instead of the location of the receiver, as // intrinsics may have put the receiver in a different register. In the intrinsics // slow path, the arguments have been moved to the right place, so here we are // guaranteed that the receiver is the first register of the calling convention. InvokeDexCallingConvention calling_convention; Register receiver = calling_convention.GetRegisterAt(0); Register temp = XRegisterFrom(temp_in); size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( invoke->GetVTableIndex(), kArm64PointerSize).SizeValue(); Offset class_offset = mirror::Object::ClassOffset(); Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); DCHECK(receiver.IsRegister()); { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); // /* HeapReference */ temp = receiver->klass_ __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset)); MaybeRecordImplicitNullCheck(invoke); } // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); // If we're compiling baseline, update the inline cache. MaybeGenerateInlineCacheCheck(invoke, temp); // temp = temp->GetMethodAt(method_offset); __ Ldr(temp, MemOperand(temp, method_offset)); // lr = temp->GetEntryPoint(); __ Ldr(lr, MemOperand(temp, entry_point.SizeValue())); { // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); // lr(); __ blr(lr); RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); } } void CodeGeneratorARM64::MoveFromReturnRegister(Location trg, DataType::Type type) { if (!trg.IsValid()) { DCHECK(type == DataType::Type::kVoid); return; } DCHECK_NE(type, DataType::Type::kVoid); if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) { Register trg_reg = RegisterFrom(trg, type); Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type); __ Mov(trg_reg, res_reg, kDiscardForSameWReg); } else { VRegister trg_reg = FPRegisterFrom(trg, type); VRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type); __ Fmov(trg_reg, res_reg); } } void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { if (TryGenerateIntrinsicCode(invoke, codegen_)) { codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); return; } codegen_->GenerateInvokePolymorphicCall(invoke); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } void LocationsBuilderARM64::VisitInvokeCustom(HInvokeCustom* invoke) { HandleInvoke(invoke); } void InstructionCodeGeneratorARM64::VisitInvokeCustom(HInvokeCustom* invoke) { codegen_->GenerateInvokeCustomCall(invoke); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageIntrinsicPatch( uint32_t intrinsic_data, vixl::aarch64::Label* adrp_label) { return NewPcRelativePatch( /* dex_file= */ nullptr, intrinsic_data, adrp_label, &boot_image_other_patches_); } vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageRelRoPatch( uint32_t boot_image_offset, vixl::aarch64::Label* adrp_label) { return NewPcRelativePatch( /* dex_file= */ nullptr, boot_image_offset, adrp_label, &boot_image_other_patches_); } vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch( MethodReference target_method, vixl::aarch64::Label* adrp_label) { return NewPcRelativePatch( target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_); } vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch( MethodReference target_method, vixl::aarch64::Label* adrp_label) { return NewPcRelativePatch( target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_); } vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch( const DexFile& dex_file, dex::TypeIndex type_index, vixl::aarch64::Label* adrp_label) { return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_); } vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch( HLoadClass* load_class, vixl::aarch64::Label* adrp_label) { const DexFile& dex_file = load_class->GetDexFile(); dex::TypeIndex type_index = load_class->GetTypeIndex(); ArenaDeque* patches = nullptr; switch (load_class->GetLoadKind()) { case HLoadClass::LoadKind::kBssEntry: patches = &type_bss_entry_patches_; break; case HLoadClass::LoadKind::kBssEntryPublic: patches = &public_type_bss_entry_patches_; break; case HLoadClass::LoadKind::kBssEntryPackage: patches = &package_type_bss_entry_patches_; break; default: LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind(); UNREACHABLE(); } return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, patches); } vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch( const DexFile& dex_file, dex::StringIndex string_index, vixl::aarch64::Label* adrp_label) { return NewPcRelativePatch( &dex_file, string_index.index_, adrp_label, &boot_image_string_patches_); } vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch( const DexFile& dex_file, dex::StringIndex string_index, vixl::aarch64::Label* adrp_label) { return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_); } vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageJniEntrypointPatch( MethodReference target_method, vixl::aarch64::Label* adrp_label) { return NewPcRelativePatch( target_method.dex_file, target_method.index, adrp_label, &boot_image_jni_entrypoint_patches_); } void CodeGeneratorARM64::EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset) { DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope. DCHECK(!GetCompilerOptions().IsJitCompiler()); call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value()); vixl::aarch64::Label* bl_label = &call_entrypoint_patches_.back().label; __ bind(bl_label); __ bl(static_cast(0)); // Placeholder, patched at link-time. } void CodeGeneratorARM64::EmitBakerReadBarrierCbnz(uint32_t custom_data) { DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope. if (GetCompilerOptions().IsJitCompiler()) { auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data); vixl::aarch64::Label* slow_path_entry = &it->second.label; __ cbnz(mr, slow_path_entry); } else { baker_read_barrier_patches_.emplace_back(custom_data); vixl::aarch64::Label* cbnz_label = &baker_read_barrier_patches_.back().label; __ bind(cbnz_label); __ cbnz(mr, static_cast(0)); // Placeholder, patched at link-time. } } vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch( const DexFile* dex_file, uint32_t offset_or_index, vixl::aarch64::Label* adrp_label, ArenaDeque* patches) { // Add a patch entry and return the label. patches->emplace_back(dex_file, offset_or_index); PcRelativePatchInfo* info = &patches->back(); vixl::aarch64::Label* label = &info->label; // If adrp_label is null, this is the ADRP patch and needs to point to its own label. info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label; return label; } vixl::aarch64::Literal* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral( uint64_t address) { return DeduplicateUint32Literal(dchecked_integral_cast(address)); } vixl::aarch64::Literal* CodeGeneratorARM64::DeduplicateJitStringLiteral( const DexFile& dex_file, dex::StringIndex string_index, Handle handle) { ReserveJitStringRoot(StringReference(&dex_file, string_index), handle); return jit_string_patches_.GetOrCreate( StringReference(&dex_file, string_index), [this]() { return __ CreateLiteralDestroyedWithPool(/* value= */ 0u); }); } vixl::aarch64::Literal* CodeGeneratorARM64::DeduplicateJitClassLiteral( const DexFile& dex_file, dex::TypeIndex type_index, Handle handle) { ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle); return jit_class_patches_.GetOrCreate( TypeReference(&dex_file, type_index), [this]() { return __ CreateLiteralDestroyedWithPool(/* value= */ 0u); }); } void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label, vixl::aarch64::Register reg) { DCHECK(reg.IsX()); SingleEmissionCheckScope guard(GetVIXLAssembler()); __ Bind(fixup_label); __ adrp(reg, /* offset placeholder */ static_cast(0)); } void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label, vixl::aarch64::Register out, vixl::aarch64::Register base) { DCHECK(out.IsX()); DCHECK(base.IsX()); SingleEmissionCheckScope guard(GetVIXLAssembler()); __ Bind(fixup_label); __ add(out, base, Operand(/* offset placeholder */ 0)); } void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label, vixl::aarch64::Register out, vixl::aarch64::Register base) { DCHECK(base.IsX()); SingleEmissionCheckScope guard(GetVIXLAssembler()); __ Bind(fixup_label); __ ldr(out, MemOperand(base, /* offset placeholder */ 0)); } void CodeGeneratorARM64::LoadBootImageAddress(vixl::aarch64::Register reg, uint32_t boot_image_reference) { if (GetCompilerOptions().IsBootImage()) { // Add ADRP with its PC-relative type patch. vixl::aarch64::Label* adrp_label = NewBootImageIntrinsicPatch(boot_image_reference); EmitAdrpPlaceholder(adrp_label, reg.X()); // Add ADD with its PC-relative type patch. vixl::aarch64::Label* add_label = NewBootImageIntrinsicPatch(boot_image_reference, adrp_label); EmitAddPlaceholder(add_label, reg.X(), reg.X()); } else if (GetCompilerOptions().GetCompilePic()) { // Add ADRP with its PC-relative .data.bimg.rel.ro patch. vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_reference); EmitAdrpPlaceholder(adrp_label, reg.X()); // Add LDR with its PC-relative .data.bimg.rel.ro patch. vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_reference, adrp_label); EmitLdrOffsetPlaceholder(ldr_label, reg.W(), reg.X()); } else { DCHECK(GetCompilerOptions().IsJitCompiler()); gc::Heap* heap = Runtime::Current()->GetHeap(); DCHECK(!heap->GetBootImageSpaces().empty()); const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference; __ Ldr(reg.W(), DeduplicateBootImageAddressLiteral(reinterpret_cast(address))); } } void CodeGeneratorARM64::LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg, TypeReference target_type) { // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative. DCHECK(GetCompilerOptions().IsBootImage()); // Add ADRP with its PC-relative type patch. vixl::aarch64::Label* adrp_label = NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex()); EmitAdrpPlaceholder(adrp_label, reg.X()); // Add ADD with its PC-relative type patch. vixl::aarch64::Label* add_label = NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex(), adrp_label); EmitAddPlaceholder(add_label, reg.X(), reg.X()); } void CodeGeneratorARM64::LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg, HInvoke* invoke) { DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone); if (GetCompilerOptions().IsBootImage()) { MethodReference target_method = invoke->GetResolvedMethodReference(); dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_; LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx)); } else { uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke); LoadBootImageAddress(reg, boot_image_offset); } } void CodeGeneratorARM64::LoadClassRootForIntrinsic(vixl::aarch64::Register reg, ClassRoot class_root) { if (GetCompilerOptions().IsBootImage()) { ScopedObjectAccess soa(Thread::Current()); ObjPtr klass = GetClassRoot(class_root); TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex()); LoadTypeForBootImageIntrinsic(reg, target_type); } else { uint32_t boot_image_offset = GetBootImageOffset(class_root); LoadBootImageAddress(reg, boot_image_offset); } } template inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches( const ArenaDeque& infos, ArenaVector* linker_patches) { for (const PcRelativePatchInfo& info : infos) { linker_patches->push_back(Factory(info.label.GetLocation(), info.target_dex_file, info.pc_insn_label->GetLocation(), info.offset_or_index)); } } template linker::LinkerPatch NoDexFileAdapter(size_t literal_offset, const DexFile* target_dex_file, uint32_t pc_insn_offset, uint32_t boot_image_offset) { DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null. return Factory(literal_offset, pc_insn_offset, boot_image_offset); } void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector* linker_patches) { DCHECK(linker_patches->empty()); size_t size = boot_image_method_patches_.size() + method_bss_entry_patches_.size() + boot_image_type_patches_.size() + type_bss_entry_patches_.size() + public_type_bss_entry_patches_.size() + package_type_bss_entry_patches_.size() + boot_image_string_patches_.size() + string_bss_entry_patches_.size() + boot_image_jni_entrypoint_patches_.size() + boot_image_other_patches_.size() + call_entrypoint_patches_.size() + baker_read_barrier_patches_.size(); linker_patches->reserve(size); if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) { EmitPcRelativeLinkerPatches( boot_image_method_patches_, linker_patches); EmitPcRelativeLinkerPatches( boot_image_type_patches_, linker_patches); EmitPcRelativeLinkerPatches( boot_image_string_patches_, linker_patches); } else { DCHECK(boot_image_method_patches_.empty()); DCHECK(boot_image_type_patches_.empty()); DCHECK(boot_image_string_patches_.empty()); } if (GetCompilerOptions().IsBootImage()) { EmitPcRelativeLinkerPatches>( boot_image_other_patches_, linker_patches); } else { EmitPcRelativeLinkerPatches>( boot_image_other_patches_, linker_patches); } EmitPcRelativeLinkerPatches( method_bss_entry_patches_, linker_patches); EmitPcRelativeLinkerPatches( type_bss_entry_patches_, linker_patches); EmitPcRelativeLinkerPatches( public_type_bss_entry_patches_, linker_patches); EmitPcRelativeLinkerPatches( package_type_bss_entry_patches_, linker_patches); EmitPcRelativeLinkerPatches( string_bss_entry_patches_, linker_patches); EmitPcRelativeLinkerPatches( boot_image_jni_entrypoint_patches_, linker_patches); for (const PatchInfo& info : call_entrypoint_patches_) { DCHECK(info.target_dex_file == nullptr); linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch( info.label.GetLocation(), info.offset_or_index)); } for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) { linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch( info.label.GetLocation(), info.custom_data)); } DCHECK_EQ(size, linker_patches->size()); } bool CodeGeneratorARM64::NeedsThunkCode(const linker::LinkerPatch& patch) const { return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint || patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch || patch.GetType() == linker::LinkerPatch::Type::kCallRelative; } void CodeGeneratorARM64::EmitThunkCode(const linker::LinkerPatch& patch, /*out*/ ArenaVector* code, /*out*/ std::string* debug_name) { Arm64Assembler assembler(GetGraph()->GetAllocator()); switch (patch.GetType()) { case linker::LinkerPatch::Type::kCallRelative: { // The thunk just uses the entry point in the ArtMethod. This works even for calls // to the generic JNI and interpreter trampolines. Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset( kArm64PointerSize).Int32Value()); assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0)); if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { *debug_name = "MethodCallThunk"; } break; } case linker::LinkerPatch::Type::kCallEntrypoint: { Offset offset(patch.EntrypointOffset()); assembler.JumpTo(ManagedRegister(arm64::TR), offset, ManagedRegister(arm64::IP0)); if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { *debug_name = "EntrypointCallThunk_" + std::to_string(offset.Uint32Value()); } break; } case linker::LinkerPatch::Type::kBakerReadBarrierBranch: { DCHECK_EQ(patch.GetBakerCustomValue2(), 0u); CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name); break; } default: LOG(FATAL) << "Unexpected patch type " << patch.GetType(); UNREACHABLE(); } // Ensure we emit the literal pool if any. assembler.FinalizeCode(); code->resize(assembler.CodeSize()); MemoryRegion code_region(code->data(), code->size()); assembler.FinalizeInstructions(code_region); } vixl::aarch64::Literal* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value) { return uint32_literals_.GetOrCreate( value, [this, value]() { return __ CreateLiteralDestroyedWithPool(value); }); } vixl::aarch64::Literal* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) { return uint64_literals_.GetOrCreate( value, [this, value]() { return __ CreateLiteralDestroyedWithPool(value); }); } void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); if (TryGenerateIntrinsicCode(invoke, codegen_)) { codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); return; } LocationSummary* locations = invoke->GetLocations(); codegen_->GenerateStaticOrDirectCall( invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { if (TryGenerateIntrinsicCode(invoke, codegen_)) { codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); return; } { // Ensure that between the BLR (emitted by GenerateVirtualCall) and RecordPcInfo there // are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes); codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); DCHECK(!codegen_->IsLeafMethod()); } codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind( HLoadClass::LoadKind desired_class_load_kind) { switch (desired_class_load_kind) { case HLoadClass::LoadKind::kInvalid: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); case HLoadClass::LoadKind::kReferrersClass: break; case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: case HLoadClass::LoadKind::kBootImageRelRo: case HLoadClass::LoadKind::kBssEntry: case HLoadClass::LoadKind::kBssEntryPublic: case HLoadClass::LoadKind::kBssEntryPackage: DCHECK(!GetCompilerOptions().IsJitCompiler()); break; case HLoadClass::LoadKind::kJitBootImageAddress: case HLoadClass::LoadKind::kJitTableAddress: DCHECK(GetCompilerOptions().IsJitCompiler()); break; case HLoadClass::LoadKind::kRuntimeCall: break; } return desired_class_load_kind; } void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) { HLoadClass::LoadKind load_kind = cls->GetLoadKind(); if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { InvokeRuntimeCallingConvention calling_convention; CodeGenerator::CreateLoadClassRuntimeCallLocationSummary( cls, LocationFrom(calling_convention.GetRegisterAt(0)), LocationFrom(vixl::aarch64::x0)); DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0)); return; } DCHECK_EQ(cls->NeedsAccessCheck(), load_kind == HLoadClass::LoadKind::kBssEntryPublic || load_kind == HLoadClass::LoadKind::kBssEntryPackage); const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind); if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } if (load_kind == HLoadClass::LoadKind::kReferrersClass) { locations->SetInAt(0, Location::RequiresRegister()); } locations->SetOut(Location::RequiresRegister()); if (cls->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) { if (!kUseReadBarrier || kUseBakerReadBarrier) { // Rely on the type resolution or initialization and marking to save everything we need. locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); } else { // For non-Baker read barrier we have a temp-clobbering call. } } } // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not // move. void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { HLoadClass::LoadKind load_kind = cls->GetLoadKind(); if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { codegen_->GenerateLoadClassRuntimeCall(cls); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); return; } DCHECK_EQ(cls->NeedsAccessCheck(), load_kind == HLoadClass::LoadKind::kBssEntryPublic || load_kind == HLoadClass::LoadKind::kBssEntryPackage); Location out_loc = cls->GetLocations()->Out(); Register out = OutputRegister(cls); const ReadBarrierOption read_barrier_option = cls->IsInBootImage() ? kWithoutReadBarrier : kCompilerReadBarrierOption; bool generate_null_check = false; switch (load_kind) { case HLoadClass::LoadKind::kReferrersClass: { DCHECK(!cls->CanCallRuntime()); DCHECK(!cls->MustGenerateClinitCheck()); // /* GcRoot */ out = current_method->declaring_class_ Register current_method = InputRegisterAt(cls, 0); codegen_->GenerateGcRootFieldLoad(cls, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value(), /* fixup_label= */ nullptr, read_barrier_option); break; } case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { DCHECK(codegen_->GetCompilerOptions().IsBootImage() || codegen_->GetCompilerOptions().IsBootImageExtension()); DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); // Add ADRP with its PC-relative type patch. const DexFile& dex_file = cls->GetDexFile(); dex::TypeIndex type_index = cls->GetTypeIndex(); vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index); codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); // Add ADD with its PC-relative type patch. vixl::aarch64::Label* add_label = codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label); codegen_->EmitAddPlaceholder(add_label, out.X(), out.X()); break; } case HLoadClass::LoadKind::kBootImageRelRo: { DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(cls); // Add ADRP with its PC-relative .data.bimg.rel.ro patch. vixl::aarch64::Label* adrp_label = codegen_->NewBootImageRelRoPatch(boot_image_offset); codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); // Add LDR with its PC-relative .data.bimg.rel.ro patch. vixl::aarch64::Label* ldr_label = codegen_->NewBootImageRelRoPatch(boot_image_offset, adrp_label); codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X()); break; } case HLoadClass::LoadKind::kBssEntry: case HLoadClass::LoadKind::kBssEntryPublic: case HLoadClass::LoadKind::kBssEntryPackage: { // Add ADRP with its PC-relative Class .bss entry patch. vixl::aarch64::Register temp = XRegisterFrom(out_loc); vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(cls); codegen_->EmitAdrpPlaceholder(adrp_label, temp); // Add LDR with its PC-relative Class .bss entry patch. vixl::aarch64::Label* ldr_label = codegen_->NewBssEntryTypePatch(cls, adrp_label); // /* GcRoot */ out = *(base_address + offset) /* PC-relative */ // All aligned loads are implicitly atomic consume operations on ARM64. codegen_->GenerateGcRootFieldLoad(cls, out_loc, temp, /* offset placeholder */ 0u, ldr_label, read_barrier_option); generate_null_check = true; break; } case HLoadClass::LoadKind::kJitBootImageAddress: { DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); uint32_t address = reinterpret_cast32(cls->GetClass().Get()); DCHECK_NE(address, 0u); __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address)); break; } case HLoadClass::LoadKind::kJitTableAddress: { __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(), cls->GetTypeIndex(), cls->GetClass())); codegen_->GenerateGcRootFieldLoad(cls, out_loc, out.X(), /* offset= */ 0, /* fixup_label= */ nullptr, read_barrier_option); break; } case HLoadClass::LoadKind::kRuntimeCall: case HLoadClass::LoadKind::kInvalid: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } bool do_clinit = cls->MustGenerateClinitCheck(); if (generate_null_check || do_clinit) { DCHECK(cls->CanCallRuntime()); SlowPathCodeARM64* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(cls, cls); codegen_->AddSlowPath(slow_path); if (generate_null_check) { __ Cbz(out, slow_path->GetEntryLabel()); } if (cls->MustGenerateClinitCheck()) { GenerateClassInitializationCheck(slow_path, out); } else { __ Bind(slow_path->GetExitLabel()); } codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } } void LocationsBuilderARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) { InvokeRuntimeCallingConvention calling_convention; Location location = LocationFrom(calling_convention.GetRegisterAt(0)); CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location); } void InstructionCodeGeneratorARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) { codegen_->GenerateLoadMethodHandleRuntimeCall(load); } void LocationsBuilderARM64::VisitLoadMethodType(HLoadMethodType* load) { InvokeRuntimeCallingConvention calling_convention; Location location = LocationFrom(calling_convention.GetRegisterAt(0)); CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location); } void InstructionCodeGeneratorARM64::VisitLoadMethodType(HLoadMethodType* load) { codegen_->GenerateLoadMethodTypeRuntimeCall(load); } static MemOperand GetExceptionTlsAddress() { return MemOperand(tr, Thread::ExceptionOffset().Int32Value()); } void LocationsBuilderARM64::VisitLoadException(HLoadException* load) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) { __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress()); } void LocationsBuilderARM64::VisitClearException(HClearException* clear) { new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall); } void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { __ Str(wzr, GetExceptionTlsAddress()); } HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind( HLoadString::LoadKind desired_string_load_kind) { switch (desired_string_load_kind) { case HLoadString::LoadKind::kBootImageLinkTimePcRelative: case HLoadString::LoadKind::kBootImageRelRo: case HLoadString::LoadKind::kBssEntry: DCHECK(!GetCompilerOptions().IsJitCompiler()); break; case HLoadString::LoadKind::kJitBootImageAddress: case HLoadString::LoadKind::kJitTableAddress: DCHECK(GetCompilerOptions().IsJitCompiler()); break; case HLoadString::LoadKind::kRuntimeCall: break; } return desired_string_load_kind; } void LocationsBuilderARM64::VisitLoadString(HLoadString* load) { LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind); if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) { InvokeRuntimeCallingConvention calling_convention; locations->SetOut(calling_convention.GetReturnLocation(load->GetType())); } else { locations->SetOut(Location::RequiresRegister()); if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) { if (!kUseReadBarrier || kUseBakerReadBarrier) { // Rely on the pResolveString and marking to save everything we need. locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); } else { // For non-Baker read barrier we have a temp-clobbering call. } } } } // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not // move. void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { Register out = OutputRegister(load); Location out_loc = load->GetLocations()->Out(); switch (load->GetLoadKind()) { case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { DCHECK(codegen_->GetCompilerOptions().IsBootImage() || codegen_->GetCompilerOptions().IsBootImageExtension()); // Add ADRP with its PC-relative String patch. const DexFile& dex_file = load->GetDexFile(); const dex::StringIndex string_index = load->GetStringIndex(); vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index); codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); // Add ADD with its PC-relative String patch. vixl::aarch64::Label* add_label = codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label); codegen_->EmitAddPlaceholder(add_label, out.X(), out.X()); return; } case HLoadString::LoadKind::kBootImageRelRo: { DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); // Add ADRP with its PC-relative .data.bimg.rel.ro patch. uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(load); vixl::aarch64::Label* adrp_label = codegen_->NewBootImageRelRoPatch(boot_image_offset); codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); // Add LDR with its PC-relative .data.bimg.rel.ro patch. vixl::aarch64::Label* ldr_label = codegen_->NewBootImageRelRoPatch(boot_image_offset, adrp_label); codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X()); return; } case HLoadString::LoadKind::kBssEntry: { // Add ADRP with its PC-relative String .bss entry patch. const DexFile& dex_file = load->GetDexFile(); const dex::StringIndex string_index = load->GetStringIndex(); Register temp = XRegisterFrom(out_loc); vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index); codegen_->EmitAdrpPlaceholder(adrp_label, temp); // Add LDR with its PC-relative String .bss entry patch. vixl::aarch64::Label* ldr_label = codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label); // /* GcRoot */ out = *(base_address + offset) /* PC-relative */ // All aligned loads are implicitly atomic consume operations on ARM64. codegen_->GenerateGcRootFieldLoad(load, out_loc, temp, /* offset placeholder */ 0u, ldr_label, kCompilerReadBarrierOption); SlowPathCodeARM64* slow_path = new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load); codegen_->AddSlowPath(slow_path); __ Cbz(out.X(), slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); return; } case HLoadString::LoadKind::kJitBootImageAddress: { uint32_t address = reinterpret_cast32(load->GetString().Get()); DCHECK_NE(address, 0u); __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address)); return; } case HLoadString::LoadKind::kJitTableAddress: { __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(), load->GetStringIndex(), load->GetString())); codegen_->GenerateGcRootFieldLoad(load, out_loc, out.X(), /* offset= */ 0, /* fixup_label= */ nullptr, kCompilerReadBarrierOption); return; } default: break; } // TODO: Re-add the compiler code to do string dex cache lookup again. InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode()); __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_); codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); CheckEntrypointTypes(); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) { codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, instruction, instruction->GetDexPc()); if (instruction->IsEnter()) { CheckEntrypointTypes(); } else { CheckEntrypointTypes(); } codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } void LocationsBuilderARM64::VisitMul(HMul* mul) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall); switch (mul->GetResultType()) { case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) { switch (mul->GetResultType()) { case DataType::Type::kInt32: case DataType::Type::kInt64: __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1)); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1)); break; default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void LocationsBuilderARM64::VisitNeg(HNeg* neg) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall); switch (neg->GetResultType()) { case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) { switch (neg->GetResultType()) { case DataType::Type::kInt32: case DataType::Type::kInt64: __ Neg(OutputRegister(neg), InputOperandAt(neg, 0)); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0)); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetOut(LocationFrom(x0)); locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); } void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) { // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference. QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction); codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); CheckEntrypointTypes(); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); } void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) { codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); CheckEntrypointTypes(); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } void LocationsBuilderARM64::VisitNot(HNot* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) { switch (instruction->GetResultType()) { case DataType::Type::kInt32: case DataType::Type::kInt64: __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0)); break; default: LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType(); } } void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) { __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1)); } void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) { LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); locations->SetInAt(0, Location::RequiresRegister()); } void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) { if (CanMoveNullCheckToUser(instruction)) { return; } { // Ensure that between load and RecordPcInfo there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); Location obj = instruction->GetLocations()->InAt(0); __ Ldr(wzr, HeapOperandFrom(obj, Offset(0))); RecordPcInfo(instruction, instruction->GetDexPc()); } } void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) { SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction); AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location obj = locations->InAt(0); __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel()); } void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) { codegen_->GenerateNullCheck(instruction); } void LocationsBuilderARM64::VisitOr(HOr* instruction) { HandleBinaryOp(instruction); } void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) { HandleBinaryOp(instruction); } void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) { if (instruction->GetNext()->IsSuspendCheck() && instruction->GetBlock()->GetLoopInformation() != nullptr) { HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck(); // The back edge will generate the suspend check. codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction); } codegen_->GetMoveResolver()->EmitNativeCode(instruction); } void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); if (location.IsStackSlot()) { location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } else if (location.IsDoubleStackSlot()) { location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } locations->SetOut(location); } void InstructionCodeGeneratorARM64::VisitParameterValue( HParameterValue* instruction ATTRIBUTE_UNUSED) { // Nothing to do, the parameter is already at its location. } void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetOut(LocationFrom(kArtMethodRegister)); } void InstructionCodeGeneratorARM64::VisitCurrentMethod( HCurrentMethod* instruction ATTRIBUTE_UNUSED) { // Nothing to do, the method is already at its location. } void LocationsBuilderARM64::VisitPhi(HPhi* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { locations->SetInAt(i, Location::Any()); } locations->SetOut(Location::Any()); } void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { LOG(FATAL) << "Unreachable"; } void LocationsBuilderARM64::VisitRem(HRem* rem) { DataType::Type type = rem->GetResultType(); LocationSummary::CallKind call_kind = DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind); switch (type) { case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1))); locations->SetOut(calling_convention.GetReturnLocation(type)); break; } default: LOG(FATAL) << "Unexpected rem type " << type; } } void InstructionCodeGeneratorARM64::GenerateIntRemForPower2Denom(HRem *instruction) { int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); uint64_t abs_imm = static_cast(AbsOrMin(imm)); DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm; Register out = OutputRegister(instruction); Register dividend = InputRegisterAt(instruction, 0); if (HasNonNegativeOrMinIntInputAt(instruction, 0)) { // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends. // NOTE: The generated code for HRem correctly works for the INT32_MIN/INT64_MIN dividends. // INT*_MIN % imm must be 0 for any imm of power 2. 'and' works only with bits // 0..30 (Int32 case)/0..62 (Int64 case) of a dividend. For INT32_MIN/INT64_MIN they are zeros. // So 'and' always produces zero. __ And(out, dividend, abs_imm - 1); } else { if (abs_imm == 2) { __ Cmp(dividend, 0); __ And(out, dividend, 1); __ Csneg(out, out, out, ge); } else { UseScratchRegisterScope temps(GetVIXLAssembler()); Register temp = temps.AcquireSameSizeAs(out); __ Negs(temp, dividend); __ And(out, dividend, abs_imm - 1); __ And(temp, temp, abs_imm - 1); __ Csneg(out, out, temp, mi); } } } void InstructionCodeGeneratorARM64::GenerateIntRemForConstDenom(HRem *instruction) { int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); if (imm == 0) { // Do not generate anything. // DivZeroCheck would prevent any code to be executed. return; } if (IsPowerOfTwo(AbsOrMin(imm))) { // Cases imm == -1 or imm == 1 are handled in constant folding by // InstructionWithAbsorbingInputSimplifier. // If the cases have survided till code generation they are handled in // GenerateIntRemForPower2Denom becauses -1 and 1 are the power of 2 (2^0). // The correct code is generated for them, just more instructions. GenerateIntRemForPower2Denom(instruction); } else { DCHECK(imm < -2 || imm > 2) << imm; GenerateDivRemWithAnyConstant(instruction, imm); } } void InstructionCodeGeneratorARM64::GenerateIntRem(HRem* instruction) { DCHECK(DataType::IsIntOrLongType(instruction->GetResultType())) << instruction->GetResultType(); if (instruction->GetLocations()->InAt(1).IsConstant()) { GenerateIntRemForConstDenom(instruction); } else { Register out = OutputRegister(instruction); Register dividend = InputRegisterAt(instruction, 0); Register divisor = InputRegisterAt(instruction, 1); UseScratchRegisterScope temps(GetVIXLAssembler()); Register temp = temps.AcquireSameSizeAs(out); __ Sdiv(temp, dividend, divisor); __ Msub(out, temp, divisor, dividend); } } void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) { DataType::Type type = rem->GetResultType(); switch (type) { case DataType::Type::kInt32: case DataType::Type::kInt64: { GenerateIntRem(rem); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: { QuickEntrypointEnum entrypoint = (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod; codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc()); if (type == DataType::Type::kFloat32) { CheckEntrypointTypes(); } else { CheckEntrypointTypes(); } break; } default: LOG(FATAL) << "Unexpected rem type " << type; UNREACHABLE(); } } void LocationsBuilderARM64::VisitMin(HMin* min) { HandleBinaryOp(min); } void InstructionCodeGeneratorARM64::VisitMin(HMin* min) { HandleBinaryOp(min); } void LocationsBuilderARM64::VisitMax(HMax* max) { HandleBinaryOp(max); } void InstructionCodeGeneratorARM64::VisitMax(HMax* max) { HandleBinaryOp(max); } void LocationsBuilderARM64::VisitAbs(HAbs* abs) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs); switch (abs->GetResultType()) { case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType(); } } void InstructionCodeGeneratorARM64::VisitAbs(HAbs* abs) { switch (abs->GetResultType()) { case DataType::Type::kInt32: case DataType::Type::kInt64: { Register in_reg = InputRegisterAt(abs, 0); Register out_reg = OutputRegister(abs); __ Cmp(in_reg, Operand(0)); __ Cneg(out_reg, in_reg, lt); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: { VRegister in_reg = InputFPRegisterAt(abs, 0); VRegister out_reg = OutputFPRegister(abs); __ Fabs(out_reg, in_reg); break; } default: LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType(); } } void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) { constructor_fence->SetLocations(nullptr); } void InstructionCodeGeneratorARM64::VisitConstructorFence( HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); } void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { memory_barrier->SetLocations(nullptr); } void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); } void LocationsBuilderARM64::VisitReturn(HReturn* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); DataType::Type return_type = instruction->InputAt(0)->GetType(); locations->SetInAt(0, ARM64ReturnLocation(return_type)); } void InstructionCodeGeneratorARM64::VisitReturn(HReturn* ret) { if (GetGraph()->IsCompilingOsr()) { // To simplify callers of an OSR method, we put the return value in both // floating point and core register. switch (ret->InputAt(0)->GetType()) { case DataType::Type::kFloat32: __ Fmov(w0, s0); break; case DataType::Type::kFloat64: __ Fmov(x0, d0); break; default: break; } } codegen_->GenerateFrameExit(); } void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) { instruction->SetLocations(nullptr); } void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) { codegen_->GenerateFrameExit(); } void LocationsBuilderARM64::VisitRor(HRor* ror) { HandleBinaryOp(ror); } void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) { HandleBinaryOp(ror); } void LocationsBuilderARM64::VisitShl(HShl* shl) { HandleShift(shl); } void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) { HandleShift(shl); } void LocationsBuilderARM64::VisitShr(HShr* shr) { HandleShift(shr); } void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) { HandleShift(shr); } void LocationsBuilderARM64::VisitSub(HSub* instruction) { HandleBinaryOp(instruction); } void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) { HandleBinaryOp(instruction); } void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction); } void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); } void LocationsBuilderARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(x0)); } void InstructionCodeGeneratorARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { __ Mov(w0, instruction->GetFormat()->GetValue()); codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc()); } void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet( HUnresolvedInstanceFieldGet* instruction) { FieldAccessCallingConventionARM64 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet( HUnresolvedInstanceFieldGet* instruction) { FieldAccessCallingConventionARM64 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet( HUnresolvedInstanceFieldSet* instruction) { FieldAccessCallingConventionARM64 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet( HUnresolvedInstanceFieldSet* instruction) { FieldAccessCallingConventionARM64 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet( HUnresolvedStaticFieldGet* instruction) { FieldAccessCallingConventionARM64 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet( HUnresolvedStaticFieldGet* instruction) { FieldAccessCallingConventionARM64 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet( HUnresolvedStaticFieldSet* instruction) { FieldAccessCallingConventionARM64 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet( HUnresolvedStaticFieldSet* instruction) { FieldAccessCallingConventionARM64 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, LocationSummary::kCallOnSlowPath); // In suspend check slow path, usually there are no caller-save registers at all. // If SIMD instructions are present, however, we force spilling all live SIMD // registers in full width (since the runtime only saves/restores lower part). locations->SetCustomSlowPathCallerSaves( GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty()); } void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) { HBasicBlock* block = instruction->GetBlock(); if (block->GetLoopInformation() != nullptr) { DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); // The back edge will generate the suspend check. return; } if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { // The goto will generate the suspend check. return; } GenerateSuspendCheck(instruction, nullptr); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } void LocationsBuilderARM64::VisitThrow(HThrow* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) { codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); CheckEntrypointTypes(); } void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall); DataType::Type input_type = conversion->GetInputType(); DataType::Type result_type = conversion->GetResultType(); DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) << input_type << " -> " << result_type; if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) || (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) { LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } if (DataType::IsFloatingPointType(input_type)) { locations->SetInAt(0, Location::RequiresFpuRegister()); } else { locations->SetInAt(0, Location::RequiresRegister()); } if (DataType::IsFloatingPointType(result_type)) { locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } else { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) { DataType::Type result_type = conversion->GetResultType(); DataType::Type input_type = conversion->GetInputType(); DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) << input_type << " -> " << result_type; if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) { int result_size = DataType::Size(result_type); int input_size = DataType::Size(input_type); int min_size = std::min(result_size, input_size); Register output = OutputRegister(conversion); Register source = InputRegisterAt(conversion, 0); if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) { // 'int' values are used directly as W registers, discarding the top // bits, so we don't need to sign-extend and can just perform a move. // We do not pass the `kDiscardForSameWReg` argument to force clearing the // top 32 bits of the target register. We theoretically could leave those // bits unchanged, but we would have to make sure that no code uses a // 32bit input value as a 64bit value assuming that the top 32 bits are // zero. __ Mov(output.W(), source.W()); } else if (DataType::IsUnsignedType(result_type) || (DataType::IsUnsignedType(input_type) && input_size < result_size)) { __ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte); } else { __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte); } } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) { __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0)); } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) { CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64); __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0)); } else if (DataType::IsFloatingPointType(result_type) && DataType::IsFloatingPointType(input_type)) { __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0)); } else { LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type << " to " << result_type; } } void LocationsBuilderARM64::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void LocationsBuilderARM64::VisitXor(HXor* instruction) { HandleBinaryOp(instruction); } void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) { HandleBinaryOp(instruction); } void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { // Nothing to do, this should be removed during prepare for register allocator. LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { // Nothing to do, this should be removed during prepare for register allocator. LOG(FATAL) << "Unreachable"; } // Simple implementation of packed switch - generate cascaded compare/jumps. void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); } void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { int32_t lower_bound = switch_instr->GetStartValue(); uint32_t num_entries = switch_instr->GetNumEntries(); Register value_reg = InputRegisterAt(switch_instr, 0); HBasicBlock* default_block = switch_instr->GetDefaultBlock(); // Roughly set 16 as max average assemblies generated per HIR in a graph. static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * kInstructionSize; // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to // make sure we don't emit it if the target may run out of range. // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR // ranges and emit the tables only as required. static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction; if (num_entries <= kPackedSwitchCompareJumpThreshold || // Current instruction id is an upper bound of the number of HIRs in the graph. GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) { // Create a series of compare/jumps. UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); Register temp = temps.AcquireW(); __ Subs(temp, value_reg, Operand(lower_bound)); const ArenaVector& successors = switch_instr->GetBlock()->GetSuccessors(); // Jump to successors[0] if value == lower_bound. __ B(eq, codegen_->GetLabelOf(successors[0])); int32_t last_index = 0; for (; num_entries - last_index > 2; last_index += 2) { __ Subs(temp, temp, Operand(2)); // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. __ B(lo, codegen_->GetLabelOf(successors[last_index + 1])); // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. __ B(eq, codegen_->GetLabelOf(successors[last_index + 2])); } if (num_entries - last_index == 2) { // The last missing case_value. __ Cmp(temp, Operand(1)); __ B(eq, codegen_->GetLabelOf(successors[last_index + 1])); } // And the default for any other value. if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { __ B(codegen_->GetLabelOf(default_block)); } } else { JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr); UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); // Below instructions should use at most one blocked register. Since there are two blocked // registers, we are free to block one. Register temp_w = temps.AcquireW(); Register index; // Remove the bias. if (lower_bound != 0) { index = temp_w; __ Sub(index, value_reg, Operand(lower_bound)); } else { index = value_reg; } // Jump to default block if index is out of the range. __ Cmp(index, Operand(num_entries)); __ B(hs, codegen_->GetLabelOf(default_block)); // In current VIXL implementation, it won't require any blocked registers to encode the // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the // register pressure. Register table_base = temps.AcquireX(); // Load jump offset from the table. __ Adr(table_base, jump_table->GetTableStartLabel()); Register jump_offset = temp_w; __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2)); // Jump to target block by branching to table_base(pc related) + offset. Register target_address = table_base; __ Add(target_address, table_base, Operand(jump_offset, SXTW)); __ Br(target_address); } } void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister( HInstruction* instruction, Location out, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option) { DataType::Type type = DataType::Type::kReference; Register out_reg = RegisterFrom(out, type); if (read_barrier_option == kWithReadBarrier) { CHECK(kEmitCompilerReadBarrier); if (kUseBakerReadBarrier) { // Load with fast path based Baker's read barrier. // /* HeapReference */ out = *(out + offset) codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, out, out_reg, offset, maybe_temp, /* needs_null_check= */ false, /* use_load_acquire= */ false); } else { // Load with slow path based read barrier. // Save the value of `out` into `maybe_temp` before overwriting it // in the following move operation, as we will need it for the // read barrier below. Register temp_reg = RegisterFrom(maybe_temp, type); __ Mov(temp_reg, out_reg); // /* HeapReference */ out = *(out + offset) __ Ldr(out_reg, HeapOperand(out_reg, offset)); codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); } } else { // Plain load with no read barrier. // /* HeapReference */ out = *(out + offset) __ Ldr(out_reg, HeapOperand(out_reg, offset)); GetAssembler()->MaybeUnpoisonHeapReference(out_reg); } } void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters( HInstruction* instruction, Location out, Location obj, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option) { DataType::Type type = DataType::Type::kReference; Register out_reg = RegisterFrom(out, type); Register obj_reg = RegisterFrom(obj, type); if (read_barrier_option == kWithReadBarrier) { CHECK(kEmitCompilerReadBarrier); if (kUseBakerReadBarrier) { // Load with fast path based Baker's read barrier. // /* HeapReference */ out = *(obj + offset) codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check= */ false, /* use_load_acquire= */ false); } else { // Load with slow path based read barrier. // /* HeapReference */ out = *(obj + offset) __ Ldr(out_reg, HeapOperand(obj_reg, offset)); codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); } } else { // Plain load with no read barrier. // /* HeapReference */ out = *(obj + offset) __ Ldr(out_reg, HeapOperand(obj_reg, offset)); GetAssembler()->MaybeUnpoisonHeapReference(out_reg); } } void CodeGeneratorARM64::GenerateGcRootFieldLoad( HInstruction* instruction, Location root, Register obj, uint32_t offset, vixl::aarch64::Label* fixup_label, ReadBarrierOption read_barrier_option) { DCHECK(fixup_label == nullptr || offset == 0u); Register root_reg = RegisterFrom(root, DataType::Type::kReference); if (read_barrier_option == kWithReadBarrier) { DCHECK(kEmitCompilerReadBarrier); if (kUseBakerReadBarrier) { // Fast path implementation of art::ReadBarrier::BarrierForRoot when // Baker's read barrier are used. // Query `art::Thread::Current()->GetIsGcMarking()` (stored in // the Marking Register) to decide whether we need to enter // the slow path to mark the GC root. // // We use shared thunks for the slow path; shared within the method // for JIT, across methods for AOT. That thunk checks the reference // and jumps to the entrypoint if needed. // // lr = &return_address; // GcRoot root = *(obj+offset); // Original reference load. // if (mr) { // Thread::Current()->GetIsGcMarking() // goto gc_root_thunk(lr) // } // return_address: UseScratchRegisterScope temps(GetVIXLAssembler()); DCHECK(temps.IsAvailable(ip0)); DCHECK(temps.IsAvailable(ip1)); temps.Exclude(ip0, ip1); uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode()); ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize); vixl::aarch64::Label return_address; __ adr(lr, &return_address); if (fixup_label != nullptr) { __ bind(fixup_label); } static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8, "GC root LDR must be 2 instructions (8B) before the return address label."); __ ldr(root_reg, MemOperand(obj.X(), offset)); EmitBakerReadBarrierCbnz(custom_data); __ bind(&return_address); } else { // GC root loaded through a slow path for read barriers other // than Baker's. // /* GcRoot* */ root = obj + offset if (fixup_label == nullptr) { __ Add(root_reg.X(), obj.X(), offset); } else { EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X()); } // /* mirror::Object* */ root = root->Read() GenerateReadBarrierForRootSlow(instruction, root, root); } } else { // Plain GC root load with no read barrier. // /* GcRoot */ root = *(obj + offset) if (fixup_label == nullptr) { __ Ldr(root_reg, MemOperand(obj, offset)); } else { EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X()); } // Note that GC roots are not affected by heap poisoning, thus we // do not have to unpoison `root_reg` here. } MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); } void CodeGeneratorARM64::GenerateIntrinsicCasMoveWithBakerReadBarrier( vixl::aarch64::Register marked_old_value, vixl::aarch64::Register old_value) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR. uint32_t custom_data = EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode()); ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize); vixl::aarch64::Label return_address; __ adr(lr, &return_address); static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8, "GC root LDR must be 2 instructions (8B) before the return address label."); __ mov(marked_old_value, old_value); EmitBakerReadBarrierCbnz(custom_data); __ bind(&return_address); } void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, vixl::aarch64::Register obj, const vixl::aarch64::MemOperand& src, bool needs_null_check, bool use_load_acquire) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the // Marking Register) to decide whether we need to enter the slow // path to mark the reference. Then, in the slow path, check the // gray bit in the lock word of the reference's holder (`obj`) to // decide whether to mark `ref` or not. // // We use shared thunks for the slow path; shared within the method // for JIT, across methods for AOT. That thunk checks the holder // and jumps to the entrypoint if needed. If the holder is not gray, // it creates a fake dependency and returns to the LDR instruction. // // lr = &gray_return_address; // if (mr) { // Thread::Current()->GetIsGcMarking() // goto field_thunk(lr) // } // not_gray_return_address: // // Original reference load. If the offset is too large to fit // // into LDR, we use an adjusted base register here. // HeapReference reference = *(obj+offset); // gray_return_address: DCHECK(src.GetAddrMode() == vixl::aarch64::Offset); DCHECK_ALIGNED(src.GetOffset(), sizeof(mirror::HeapReference)); UseScratchRegisterScope temps(GetVIXLAssembler()); DCHECK(temps.IsAvailable(ip0)); DCHECK(temps.IsAvailable(ip1)); temps.Exclude(ip0, ip1); uint32_t custom_data = use_load_acquire ? EncodeBakerReadBarrierAcquireData(src.GetBaseRegister().GetCode(), obj.GetCode()) : EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode()); { ExactAssemblyScope guard(GetVIXLAssembler(), (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize); vixl::aarch64::Label return_address; __ adr(lr, &return_address); EmitBakerReadBarrierCbnz(custom_data); static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), "Field LDR must be 1 instruction (4B) before the return address label; " " 2 instructions (8B) for heap poisoning."); Register ref_reg = RegisterFrom(ref, DataType::Type::kReference); if (use_load_acquire) { DCHECK_EQ(src.GetOffset(), 0); __ ldar(ref_reg, src); } else { __ ldr(ref_reg, src); } if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses // macro instructions disallowed in ExactAssemblyScope. if (kPoisonHeapReferences) { __ neg(ref_reg, Operand(ref_reg)); } __ bind(&return_address); } MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1)); } void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t offset, Location maybe_temp, bool needs_null_check, bool use_load_acquire) { DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference)); Register base = obj; if (use_load_acquire) { DCHECK(maybe_temp.IsRegister()); base = WRegisterFrom(maybe_temp); __ Add(base, obj, offset); offset = 0u; } else if (offset >= kReferenceLoadMinFarOffset) { DCHECK(maybe_temp.IsRegister()); base = WRegisterFrom(maybe_temp); static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2."); __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u))); offset &= (kReferenceLoadMinFarOffset - 1u); } MemOperand src(base.X(), offset); GenerateFieldLoadWithBakerReadBarrier( instruction, ref, obj, src, needs_null_check, use_load_acquire); } void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction, Location ref, Register obj, uint32_t data_offset, Location index, bool needs_null_check) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); static_assert( sizeof(mirror::HeapReference) == sizeof(int32_t), "art::mirror::HeapReference and int32_t have different sizes."); size_t scale_factor = DataType::SizeShift(DataType::Type::kReference); // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the // Marking Register) to decide whether we need to enter the slow // path to mark the reference. Then, in the slow path, check the // gray bit in the lock word of the reference's holder (`obj`) to // decide whether to mark `ref` or not. // // We use shared thunks for the slow path; shared within the method // for JIT, across methods for AOT. That thunk checks the holder // and jumps to the entrypoint if needed. If the holder is not gray, // it creates a fake dependency and returns to the LDR instruction. // // lr = &gray_return_address; // if (mr) { // Thread::Current()->GetIsGcMarking() // goto array_thunk(lr) // } // not_gray_return_address: // // Original reference load. If the offset is too large to fit // // into LDR, we use an adjusted base register here. // HeapReference reference = data[index]; // gray_return_address: DCHECK(index.IsValid()); Register index_reg = RegisterFrom(index, DataType::Type::kInt32); Register ref_reg = RegisterFrom(ref, DataType::Type::kReference); UseScratchRegisterScope temps(GetVIXLAssembler()); DCHECK(temps.IsAvailable(ip0)); DCHECK(temps.IsAvailable(ip1)); temps.Exclude(ip0, ip1); Register temp; if (instruction->GetArray()->IsIntermediateAddress()) { // We do not need to compute the intermediate address from the array: the // input instruction has done it already. See the comment in // `TryExtractArrayAccessAddress()`. if (kIsDebugBuild) { HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset); } temp = obj; } else { temp = WRegisterFrom(instruction->GetLocations()->GetTemp(0)); __ Add(temp.X(), obj.X(), Operand(data_offset)); } uint32_t custom_data = EncodeBakerReadBarrierArrayData(temp.GetCode()); { ExactAssemblyScope guard(GetVIXLAssembler(), (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize); vixl::aarch64::Label return_address; __ adr(lr, &return_address); EmitBakerReadBarrierCbnz(custom_data); static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), "Array LDR must be 1 instruction (4B) before the return address label; " " 2 instructions (8B) for heap poisoning."); __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor)); DCHECK(!needs_null_check); // The thunk cannot handle the null check. // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses // macro instructions disallowed in ExactAssemblyScope. if (kPoisonHeapReferences) { __ neg(ref_reg, Operand(ref_reg)); } __ bind(&return_address); } MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1)); } void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) { // The following condition is a compile-time one, so it does not have a run-time cost. if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) { // The following condition is a run-time one; it is executed after the // previous compile-time test, to avoid penalizing non-debug builds. if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) { UseScratchRegisterScope temps(GetVIXLAssembler()); Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW(); GetAssembler()->GenerateMarkingRegisterCheck(temp, code); } } } SlowPathCodeARM64* CodeGeneratorARM64::AddReadBarrierSlowPath(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index); AddSlowPath(slow_path); return slow_path; } void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { DCHECK(kEmitCompilerReadBarrier); // Insert a slow path based read barrier *after* the reference load. // // If heap poisoning is enabled, the unpoisoning of the loaded // reference will be carried out by the runtime within the slow // path. // // Note that `ref` currently does not get unpoisoned (when heap // poisoning is enabled), which is alright as the `ref` argument is // not used by the artReadBarrierSlow entry point. // // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. SlowPathCodeARM64* slow_path = AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index); __ B(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { if (kEmitCompilerReadBarrier) { // Baker's read barriers shall be handled by the fast path // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier). DCHECK(!kUseBakerReadBarrier); // If heap poisoning is enabled, unpoisoning will be taken care of // by the runtime within the slow path. GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); } else if (kPoisonHeapReferences) { GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out)); } } void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root) { DCHECK(kEmitCompilerReadBarrier); // Insert a slow path based read barrier *after* the GC root load. // // Note that GC roots are not affected by heap poisoning, so we do // not need to do anything special for this here. SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root); AddSlowPath(slow_path); __ B(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) { LocationSummary* locations = instruction->GetLocations(); if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( instruction->GetIndex(), kArm64PointerSize).SizeValue(); __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)), method_offset)); } else { uint32_t method_offset = static_cast(ImTable::OffsetOfElement( instruction->GetIndex(), kArm64PointerSize)); __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)), mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value())); __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->Out()), method_offset)); } } static void PatchJitRootUse(uint8_t* code, const uint8_t* roots_data, vixl::aarch64::Literal* literal, uint64_t index_in_table) { uint32_t literal_offset = literal->GetOffset(); uintptr_t address = reinterpret_cast(roots_data) + index_in_table * sizeof(GcRoot); uint8_t* data = code + literal_offset; reinterpret_cast(data)[0] = dchecked_integral_cast(address); } void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { for (const auto& entry : jit_string_patches_) { const StringReference& string_reference = entry.first; vixl::aarch64::Literal* table_entry_literal = entry.second; uint64_t index_in_table = GetJitStringRootIndex(string_reference); PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); } for (const auto& entry : jit_class_patches_) { const TypeReference& type_reference = entry.first; vixl::aarch64::Literal* table_entry_literal = entry.second; uint64_t index_in_table = GetJitClassRootIndex(type_reference); PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); } } MemOperand InstructionCodeGeneratorARM64::VecNEONAddress( HVecMemoryOperation* instruction, UseScratchRegisterScope* temps_scope, size_t size, bool is_string_char_at, /*out*/ Register* scratch) { LocationSummary* locations = instruction->GetLocations(); Register base = InputRegisterAt(instruction, 0); if (instruction->InputAt(1)->IsIntermediateAddressIndex()) { DCHECK(!is_string_char_at); return MemOperand(base.X(), InputRegisterAt(instruction, 1).X()); } Location index = locations->InAt(1); uint32_t offset = is_string_char_at ? mirror::String::ValueOffset().Uint32Value() : mirror::Array::DataOffset(size).Uint32Value(); size_t shift = ComponentSizeShiftWidth(size); // HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet. DCHECK(!instruction->InputAt(0)->IsIntermediateAddress()); if (index.IsConstant()) { offset += Int64FromLocation(index) << shift; return HeapOperand(base, offset); } else { *scratch = temps_scope->AcquireSameSizeAs(base); __ Add(*scratch, base, Operand(WRegisterFrom(index), LSL, shift)); return HeapOperand(*scratch, offset); } } SVEMemOperand InstructionCodeGeneratorARM64::VecSVEAddress( HVecMemoryOperation* instruction, UseScratchRegisterScope* temps_scope, size_t size, bool is_string_char_at, /*out*/ Register* scratch) { LocationSummary* locations = instruction->GetLocations(); Register base = InputRegisterAt(instruction, 0); Location index = locations->InAt(1); // TODO: Support intermediate address sharing for SVE accesses. DCHECK(!instruction->InputAt(1)->IsIntermediateAddressIndex()); DCHECK(!instruction->InputAt(0)->IsIntermediateAddress()); DCHECK(!index.IsConstant()); uint32_t offset = is_string_char_at ? mirror::String::ValueOffset().Uint32Value() : mirror::Array::DataOffset(size).Uint32Value(); size_t shift = ComponentSizeShiftWidth(size); *scratch = temps_scope->AcquireSameSizeAs(base); __ Add(*scratch, base, offset); return SVEMemOperand(scratch->X(), XRegisterFrom(index), LSL, shift); } #undef __ #undef QUICK_ENTRY_POINT #define __ assembler.GetVIXLAssembler()-> static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler, vixl::aarch64::Register base_reg, vixl::aarch64::MemOperand& lock_word, vixl::aarch64::Label* slow_path, vixl::aarch64::Label* throw_npe = nullptr) { // Load the lock word containing the rb_state. __ Ldr(ip0.W(), lock_word); // Given the numeric representation, it's enough to check the low bit of the rb_state. static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path); static_assert( BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET, "Field and array LDR offsets must be the same to reuse the same code."); // To throw NPE, we return to the fast path; the artificial dependence below does not matter. if (throw_npe != nullptr) { __ Bind(throw_npe); } // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning). static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), "Field LDR must be 1 instruction (4B) before the return address label; " " 2 instructions (8B) for heap poisoning."); __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); // Introduce a dependency on the lock_word including rb_state, // to prevent load-load reordering, and without using // a memory barrier (which would be more expensive). __ Add(base_reg, base_reg, Operand(ip0, LSR, 32)); __ Br(lr); // And return back to the function. // Note: The fake dependency is unnecessary for the slow path. } // Load the read barrier introspection entrypoint in register `entrypoint`. static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler, vixl::aarch64::Register entrypoint) { // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection. DCHECK_EQ(ip0.GetCode(), 16u); const int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset(ip0.GetCode()); __ Ldr(entrypoint, MemOperand(tr, entry_point_offset)); } void CodeGeneratorARM64::CompileBakerReadBarrierThunk(Arm64Assembler& assembler, uint32_t encoded_data, /*out*/ std::string* debug_name) { BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); switch (kind) { case BakerReadBarrierKind::kField: case BakerReadBarrierKind::kAcquire: { Register base_reg = vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data)); CheckValidReg(base_reg.GetCode()); Register holder_reg = vixl::aarch64::XRegister(BakerReadBarrierSecondRegField::Decode(encoded_data)); CheckValidReg(holder_reg.GetCode()); UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); temps.Exclude(ip0, ip1); // In the case of a field load (with relaxed semantic), if `base_reg` differs from // `holder_reg`, the offset was too large and we must have emitted (during the construction // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do // not necessarily do that check before going to the thunk. // // In the case of a field load with load-acquire semantics (where `base_reg` always differs // from `holder_reg`), we also need an explicit null check when implicit null checks are // allowed, as we do not emit one before going to the thunk. vixl::aarch64::Label throw_npe_label; vixl::aarch64::Label* throw_npe = nullptr; if (GetCompilerOptions().GetImplicitNullChecks() && (holder_reg.Is(base_reg) || (kind == BakerReadBarrierKind::kAcquire))) { throw_npe = &throw_npe_label; __ Cbz(holder_reg.W(), throw_npe); } // Check if the holder is gray and, if not, add fake dependency to the base register // and return to the LDR instruction to load the reference. Otherwise, use introspection // to load the reference and call the entrypoint that performs further checks on the // reference and marks it if needed. vixl::aarch64::Label slow_path; MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value()); EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, throw_npe); __ Bind(&slow_path); if (kind == BakerReadBarrierKind::kField) { MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); __ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset. LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); __ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset. __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference. } else { DCHECK(kind == BakerReadBarrierKind::kAcquire); DCHECK(!base_reg.Is(holder_reg)); LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); __ Ldar(ip0.W(), MemOperand(base_reg)); } // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference. __ Br(ip1); // Jump to the entrypoint. break; } case BakerReadBarrierKind::kArray: { Register base_reg = vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data)); CheckValidReg(base_reg.GetCode()); DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); temps.Exclude(ip0, ip1); vixl::aarch64::Label slow_path; int32_t data_offset = mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value(); MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset); DCHECK_LT(lock_word.GetOffset(), 0); EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path); __ Bind(&slow_path); MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET); __ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset. LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); __ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set). __ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create // a switch case target based on the index register. __ Mov(ip0, base_reg); // Move the base register to ip0. __ Br(ip1); // Jump to the entrypoint's array switch case. break; } case BakerReadBarrierKind::kGcRoot: { // Check if the reference needs to be marked and if so (i.e. not null, not marked yet // and it does not have a forwarding address), call the correct introspection entrypoint; // otherwise return the reference (or the extracted forwarding address). // There is no gray bit check for GC roots. Register root_reg = vixl::aarch64::WRegister(BakerReadBarrierFirstRegField::Decode(encoded_data)); CheckValidReg(root_reg.GetCode()); DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); temps.Exclude(ip0, ip1); vixl::aarch64::Label return_label, not_marked, forwarding_address; __ Cbz(root_reg, &return_label); MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value()); __ Ldr(ip0.W(), lock_word); __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked); __ Bind(&return_label); __ Br(lr); __ Bind(¬_marked); __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1)); __ B(&forwarding_address, mi); LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to // art_quick_read_barrier_mark_introspection_gc_roots. __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET)); __ Mov(ip0.W(), root_reg); __ Br(ip1); __ Bind(&forwarding_address); __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift); __ Br(lr); break; } default: LOG(FATAL) << "Unexpected kind: " << static_cast(kind); UNREACHABLE(); } // For JIT, the slow path is considered part of the compiled method, // so JIT should pass null as `debug_name`. DCHECK(!GetCompilerOptions().IsJitCompiler() || debug_name == nullptr); if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { std::ostringstream oss; oss << "BakerReadBarrierThunk"; switch (kind) { case BakerReadBarrierKind::kField: oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data) << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data); break; case BakerReadBarrierKind::kAcquire: oss << "Acquire_r" << BakerReadBarrierFirstRegField::Decode(encoded_data) << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data); break; case BakerReadBarrierKind::kArray: oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); break; case BakerReadBarrierKind::kGcRoot: oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); break; } *debug_name = oss.str(); } } #undef __ } // namespace arm64 } // namespace art