/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_arm_vixl.h" #include "arch/arm/asm_support_arm.h" #include "arch/arm/instruction_set_features_arm.h" #include "arch/arm/jni_frame_arm.h" #include "art_method-inl.h" #include "base/bit_utils.h" #include "base/bit_utils_iterator.h" #include "class_root-inl.h" #include "class_table.h" #include "code_generator_utils.h" #include "common_arm.h" #include "compiled_method.h" #include "entrypoints/quick/quick_entrypoints.h" #include "gc/accounting/card_table.h" #include "gc/space/image_space.h" #include "heap_poisoning.h" #include "interpreter/mterp/nterp.h" #include "intrinsics.h" #include "intrinsics_arm_vixl.h" #include "linker/linker_patch.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/var_handle.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" #include "utils/arm/assembler_arm_vixl.h" #include "utils/arm/managed_register_arm.h" #include "utils/assembler.h" #include "utils/stack_checks.h" namespace art { namespace arm { namespace vixl32 = vixl::aarch32; using namespace vixl32; // NOLINT(build/namespaces) using helpers::DRegisterFrom; using helpers::HighRegisterFrom; using helpers::InputDRegisterAt; using helpers::InputOperandAt; using helpers::InputRegister; using helpers::InputRegisterAt; using helpers::InputSRegisterAt; using helpers::InputVRegister; using helpers::InputVRegisterAt; using helpers::Int32ConstantFrom; using helpers::Int64ConstantFrom; using helpers::LocationFrom; using helpers::LowRegisterFrom; using helpers::LowSRegisterFrom; using helpers::OperandFrom; using helpers::OutputRegister; using helpers::OutputSRegister; using helpers::OutputVRegister; using helpers::RegisterFrom; using helpers::SRegisterFrom; using helpers::Uint64ConstantFrom; using vixl::EmissionCheckScope; using vixl::ExactAssemblyScope; using vixl::CodeBufferCheckScope; using RegisterList = vixl32::RegisterList; static bool ExpectedPairLayout(Location location) { // We expected this for both core and fpu register pairs. return ((location.low() & 1) == 0) && (location.low() + 1 == location.high()); } // Use a local definition to prevent copying mistakes. static constexpr size_t kArmWordSize = static_cast(kArmPointerSize); static constexpr size_t kArmBitsPerWord = kArmWordSize * kBitsPerByte; static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; // Reference load (except object array loads) is using LDR Rt, [Rn, #offset] which can handle // offset < 4KiB. For offsets >= 4KiB, the load shall be emitted as two or more instructions. // For the Baker read barrier implementation using link-time generated thunks we need to split // the offset explicitly. constexpr uint32_t kReferenceLoadMinFarOffset = 4 * KB; // Using a base helps identify when we hit Marking Register check breakpoints. constexpr int kMarkingRegisterCheckBreakCodeBaseCode = 0x10; #ifdef __ #error "ARM Codegen VIXL macro-assembler macro already defined." #endif // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast(codegen)->GetVIXLAssembler()-> // NOLINT #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value() // Marker that code is yet to be, and must, be implemented. #define TODO_VIXL32(level) LOG(level) << __PRETTY_FUNCTION__ << " unimplemented " static inline bool CanEmitNarrowLdr(vixl32::Register rt, vixl32::Register rn, uint32_t offset) { return rt.IsLow() && rn.IsLow() && offset < 32u; } class EmitAdrCode { public: EmitAdrCode(ArmVIXLMacroAssembler* assembler, vixl32::Register rd, vixl32::Label* label) : assembler_(assembler), rd_(rd), label_(label) { DCHECK(!assembler->AllowMacroInstructions()); // In ExactAssemblyScope. adr_location_ = assembler->GetCursorOffset(); assembler->adr(EncodingSize(Wide), rd, label); } ~EmitAdrCode() { DCHECK(label_->IsBound()); // The ADR emitted by the assembler does not set the Thumb mode bit we need. // TODO: Maybe extend VIXL to allow ADR for return address? uint8_t* raw_adr = assembler_->GetBuffer()->GetOffsetAddress(adr_location_); // Expecting ADR encoding T3 with `(offset & 1) == 0`. DCHECK_EQ(raw_adr[1] & 0xfbu, 0xf2u); // Check bits 24-31, except 26. DCHECK_EQ(raw_adr[0] & 0xffu, 0x0fu); // Check bits 16-23. DCHECK_EQ(raw_adr[3] & 0x8fu, rd_.GetCode()); // Check bits 8-11 and 15. DCHECK_EQ(raw_adr[2] & 0x01u, 0x00u); // Check bit 0, i.e. the `offset & 1`. // Add the Thumb mode bit. raw_adr[2] |= 0x01u; } private: ArmVIXLMacroAssembler* const assembler_; vixl32::Register rd_; vixl32::Label* const label_; int32_t adr_location_; }; static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() { InvokeRuntimeCallingConventionARMVIXL calling_convention; RegisterSet caller_saves = RegisterSet::Empty(); caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0))); // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK() // that the the kPrimNot result register is the same as the first argument register. return caller_saves; } // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers, // for each live D registers they treat two corresponding S registers as live ones. // // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build // from a list of contiguous S registers a list of contiguous D registers (processing first/last // S registers corner cases) and save/restore this new list treating them as D registers. // - decreasing code size // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is // restored and then used in regular non SlowPath code as D register. // // For the following example (v means the S register is live): // D names: | D0 | D1 | D2 | D4 | ... // S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ... // Live? | | v | v | v | v | v | v | | ... // // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed // as D registers. // // TODO(VIXL): All this code should be unnecessary once the VIXL AArch32 backend provides helpers // for lists of floating-point registers. static size_t SaveContiguousSRegisterList(size_t first, size_t last, CodeGenerator* codegen, size_t stack_offset) { static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes."); static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes."); DCHECK_LE(first, last); if ((first == last) && (first == 0)) { __ Vstr(vixl32::SRegister(first), MemOperand(sp, stack_offset)); return stack_offset + kSRegSizeInBytes; } if (first % 2 == 1) { __ Vstr(vixl32::SRegister(first++), MemOperand(sp, stack_offset)); stack_offset += kSRegSizeInBytes; } bool save_last = false; if (last % 2 == 0) { save_last = true; --last; } if (first < last) { vixl32::DRegister d_reg = vixl32::DRegister(first / 2); DCHECK_EQ((last - first + 1) % 2, 0u); size_t number_of_d_regs = (last - first + 1) / 2; if (number_of_d_regs == 1) { __ Vstr(d_reg, MemOperand(sp, stack_offset)); } else if (number_of_d_regs > 1) { UseScratchRegisterScope temps(down_cast(codegen)->GetVIXLAssembler()); vixl32::Register base = sp; if (stack_offset != 0) { base = temps.Acquire(); __ Add(base, sp, Operand::From(stack_offset)); } __ Vstm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs)); } stack_offset += number_of_d_regs * kDRegSizeInBytes; } if (save_last) { __ Vstr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset)); stack_offset += kSRegSizeInBytes; } return stack_offset; } static size_t RestoreContiguousSRegisterList(size_t first, size_t last, CodeGenerator* codegen, size_t stack_offset) { static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes."); static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes."); DCHECK_LE(first, last); if ((first == last) && (first == 0)) { __ Vldr(vixl32::SRegister(first), MemOperand(sp, stack_offset)); return stack_offset + kSRegSizeInBytes; } if (first % 2 == 1) { __ Vldr(vixl32::SRegister(first++), MemOperand(sp, stack_offset)); stack_offset += kSRegSizeInBytes; } bool restore_last = false; if (last % 2 == 0) { restore_last = true; --last; } if (first < last) { vixl32::DRegister d_reg = vixl32::DRegister(first / 2); DCHECK_EQ((last - first + 1) % 2, 0u); size_t number_of_d_regs = (last - first + 1) / 2; if (number_of_d_regs == 1) { __ Vldr(d_reg, MemOperand(sp, stack_offset)); } else if (number_of_d_regs > 1) { UseScratchRegisterScope temps(down_cast(codegen)->GetVIXLAssembler()); vixl32::Register base = sp; if (stack_offset != 0) { base = temps.Acquire(); __ Add(base, sp, Operand::From(stack_offset)); } __ Vldm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs)); } stack_offset += number_of_d_regs * kDRegSizeInBytes; } if (restore_last) { __ Vldr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset)); stack_offset += kSRegSizeInBytes; } return stack_offset; } static LoadOperandType GetLoadOperandType(DataType::Type type) { switch (type) { case DataType::Type::kReference: return kLoadWord; case DataType::Type::kBool: case DataType::Type::kUint8: return kLoadUnsignedByte; case DataType::Type::kInt8: return kLoadSignedByte; case DataType::Type::kUint16: return kLoadUnsignedHalfword; case DataType::Type::kInt16: return kLoadSignedHalfword; case DataType::Type::kInt32: return kLoadWord; case DataType::Type::kInt64: return kLoadWordPair; case DataType::Type::kFloat32: return kLoadSWord; case DataType::Type::kFloat64: return kLoadDWord; default: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } } static StoreOperandType GetStoreOperandType(DataType::Type type) { switch (type) { case DataType::Type::kReference: return kStoreWord; case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: return kStoreByte; case DataType::Type::kUint16: case DataType::Type::kInt16: return kStoreHalfword; case DataType::Type::kInt32: return kStoreWord; case DataType::Type::kInt64: return kStoreWordPair; case DataType::Type::kFloat32: return kStoreSWord; case DataType::Type::kFloat64: return kStoreDWord; default: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } } void SlowPathCodeARMVIXL::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); size_t orig_offset = stack_offset; const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true); for (uint32_t i : LowToHighBits(core_spills)) { // If the register holds an object, update the stack mask. if (locations->RegisterContainsObject(i)) { locations->SetStackBit(stack_offset / kVRegSize); } DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); saved_core_stack_offsets_[i] = stack_offset; stack_offset += kArmWordSize; } CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); arm_codegen->GetAssembler()->StoreRegisterList(core_spills, orig_offset); uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false); orig_offset = stack_offset; for (uint32_t i : LowToHighBits(fp_spills)) { DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); saved_fpu_stack_offsets_[i] = stack_offset; stack_offset += kArmWordSize; } stack_offset = orig_offset; while (fp_spills != 0u) { uint32_t begin = CTZ(fp_spills); uint32_t tmp = fp_spills + (1u << begin); fp_spills &= tmp; // Clear the contiguous range of 1s. uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined. stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset); } DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); } void SlowPathCodeARMVIXL::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); size_t orig_offset = stack_offset; const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true); for (uint32_t i : LowToHighBits(core_spills)) { DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); stack_offset += kArmWordSize; } // TODO(VIXL): Check the coherency of stack_offset after this with a test. CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); arm_codegen->GetAssembler()->LoadRegisterList(core_spills, orig_offset); uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false); while (fp_spills != 0u) { uint32_t begin = CTZ(fp_spills); uint32_t tmp = fp_spills + (1u << begin); fp_spills &= tmp; // Clear the contiguous range of 1s. uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined. stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset); } DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); } class NullCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: explicit NullCheckSlowPathARMVIXL(HNullCheck* instruction) : SlowPathCodeARMVIXL(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } arm_codegen->InvokeRuntime(kQuickThrowNullPointer, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } bool IsFatal() const override { return true; } const char* GetDescription() const override { return "NullCheckSlowPathARMVIXL"; } private: DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARMVIXL); }; class DivZeroCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: explicit DivZeroCheckSlowPathARMVIXL(HDivZeroCheck* instruction) : SlowPathCodeARMVIXL(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } bool IsFatal() const override { return true; } const char* GetDescription() const override { return "DivZeroCheckSlowPathARMVIXL"; } private: DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARMVIXL); }; class SuspendCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: SuspendCheckSlowPathARMVIXL(HSuspendCheck* instruction, HBasicBlock* successor) : SlowPathCodeARMVIXL(instruction), successor_(successor) {} void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); if (successor_ == nullptr) { __ B(GetReturnLabel()); } else { __ B(arm_codegen->GetLabelOf(successor_)); } } vixl32::Label* GetReturnLabel() { DCHECK(successor_ == nullptr); return &return_label_; } HBasicBlock* GetSuccessor() const { return successor_; } const char* GetDescription() const override { return "SuspendCheckSlowPathARMVIXL"; } private: // If not null, the block to branch to after the suspend check. HBasicBlock* const successor_; // If `successor_` is null, the label to branch to after the suspend check. vixl32::Label return_label_; DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARMVIXL); }; class BoundsCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: explicit BoundsCheckSlowPathARMVIXL(HBoundsCheck* instruction) : SlowPathCodeARMVIXL(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); LocationSummary* locations = instruction_->GetLocations(); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConventionARMVIXL calling_convention; codegen->EmitParallelMoves( locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), DataType::Type::kInt32, locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), DataType::Type::kInt32); QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() ? kQuickThrowStringBounds : kQuickThrowArrayBounds; arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); CheckEntrypointTypes(); } bool IsFatal() const override { return true; } const char* GetDescription() const override { return "BoundsCheckSlowPathARMVIXL"; } private: DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARMVIXL); }; class LoadClassSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: LoadClassSlowPathARMVIXL(HLoadClass* cls, HInstruction* at) : SlowPathCodeARMVIXL(at), cls_(cls) { DCHECK(at->IsLoadClass() || at->IsClinitCheck()); DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); } void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); Location out = locations->Out(); const uint32_t dex_pc = instruction_->GetDexPc(); bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath(); bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck(); CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConventionARMVIXL calling_convention; if (must_resolve_type) { DCHECK(IsSameDexFile(cls_->GetDexFile(), arm_codegen->GetGraph()->GetDexFile())); dex::TypeIndex type_index = cls_->GetTypeIndex(); __ Mov(calling_convention.GetRegisterAt(0), type_index.index_); if (cls_->NeedsAccessCheck()) { CheckEntrypointTypes(); arm_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this); } else { CheckEntrypointTypes(); arm_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this); } // If we also must_do_clinit, the resolved type is now in the correct register. } else { DCHECK(must_do_clinit); Location source = instruction_->IsLoadClass() ? out : locations->InAt(0); arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), source); } if (must_do_clinit) { arm_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this); CheckEntrypointTypes(); } // Move the class to the desired location. if (out.IsValid()) { DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); arm_codegen->Move32(locations->Out(), LocationFrom(r0)); } RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } const char* GetDescription() const override { return "LoadClassSlowPathARMVIXL"; } private: // The class this slow path will load. HLoadClass* const cls_; DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARMVIXL); }; class LoadStringSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: explicit LoadStringSlowPathARMVIXL(HLoadString* instruction) : SlowPathCodeARMVIXL(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { DCHECK(instruction_->IsLoadString()); DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry); LocationSummary* locations = instruction_->GetLocations(); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConventionARMVIXL calling_convention; __ Mov(calling_convention.GetRegisterAt(0), string_index.index_); arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); arm_codegen->Move32(locations->Out(), LocationFrom(r0)); RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } const char* GetDescription() const override { return "LoadStringSlowPathARMVIXL"; } private: DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARMVIXL); }; class TypeCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: TypeCheckSlowPathARMVIXL(HInstruction* instruction, bool is_fatal) : SlowPathCodeARMVIXL(instruction), is_fatal_(is_fatal) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); DCHECK(instruction_->IsCheckCast() || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) { SaveLiveRegisters(codegen, locations); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConventionARMVIXL calling_convention; codegen->EmitParallelMoves(locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), DataType::Type::kReference, locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), DataType::Type::kReference); if (instruction_->IsInstanceOf()) { arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); arm_codegen->Move32(locations->Out(), LocationFrom(r0)); } else { DCHECK(instruction_->IsCheckCast()); arm_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } if (!is_fatal_) { RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } } const char* GetDescription() const override { return "TypeCheckSlowPathARMVIXL"; } bool IsFatal() const override { return is_fatal_; } private: const bool is_fatal_; DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARMVIXL); }; class DeoptimizationSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: explicit DeoptimizationSlowPathARMVIXL(HDeoptimize* instruction) : SlowPathCodeARMVIXL(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); LocationSummary* locations = instruction_->GetLocations(); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConventionARMVIXL calling_convention; __ Mov(calling_convention.GetRegisterAt(0), static_cast(instruction_->AsDeoptimize()->GetDeoptimizationKind())); arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } const char* GetDescription() const override { return "DeoptimizationSlowPathARMVIXL"; } private: DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARMVIXL); }; class ArraySetSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: explicit ArraySetSlowPathARMVIXL(HInstruction* instruction) : SlowPathCodeARMVIXL(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConventionARMVIXL calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); parallel_move.AddMove( locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), DataType::Type::kReference, nullptr); parallel_move.AddMove( locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), DataType::Type::kInt32, nullptr); parallel_move.AddMove( locations->InAt(2), LocationFrom(calling_convention.GetRegisterAt(2)), DataType::Type::kReference, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } const char* GetDescription() const override { return "ArraySetSlowPathARMVIXL"; } private: DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARMVIXL); }; // Slow path generating a read barrier for a heap reference. class ReadBarrierForHeapReferenceSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) : SlowPathCodeARMVIXL(instruction), out_(out), ref_(ref), obj_(obj), offset_(offset), index_(index) { DCHECK(kEmitCompilerReadBarrier); // If `obj` is equal to `out` or `ref`, it means the initial object // has been overwritten by (or after) the heap object reference load // to be instrumented, e.g.: // // __ LoadFromOffset(kLoadWord, out, out, offset); // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); // // In that case, we have lost the information about the original // object, and the emitted read barrier cannot work properly. DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; } void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); LocationSummary* locations = instruction_->GetLocations(); vixl32::Register reg_out = RegisterFrom(out_); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode())); DCHECK(instruction_->IsInstanceFieldGet() || instruction_->IsPredicatedInstanceFieldGet() || instruction_->IsStaticFieldGet() || instruction_->IsArrayGet() || instruction_->IsInstanceOf() || instruction_->IsCheckCast() || (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier for heap reference slow path: " << instruction_->DebugName(); // The read barrier instrumentation of object ArrayGet // instructions does not support the HIntermediateAddress // instruction. DCHECK(!(instruction_->IsArrayGet() && instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // We may have to change the index's value, but as `index_` is a // constant member (like other "inputs" of this slow path), // introduce a copy of it, `index`. Location index = index_; if (index_.IsValid()) { // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. if (instruction_->IsArrayGet()) { // Compute the actual memory offset and store it in `index`. vixl32::Register index_reg = RegisterFrom(index_); DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg.GetCode())); if (codegen->IsCoreCalleeSaveRegister(index_reg.GetCode())) { // We are about to change the value of `index_reg` (see the // calls to art::arm::ArmVIXLMacroAssembler::Lsl and // art::arm::ArmVIXLMacroAssembler::Add below), but it has // not been saved by the previous call to // art::SlowPathCode::SaveLiveRegisters, as it is a // callee-save register -- // art::SlowPathCode::SaveLiveRegisters does not consider // callee-save registers, as it has been designed with the // assumption that callee-save registers are supposed to be // handled by the called function. So, as a callee-save // register, `index_reg` _would_ eventually be saved onto // the stack, but it would be too late: we would have // changed its value earlier. Therefore, we manually save // it here into another freely available register, // `free_reg`, chosen of course among the caller-save // registers (as a callee-save `free_reg` register would // exhibit the same problem). // // Note we could have requested a temporary register from // the register allocator instead; but we prefer not to, as // this is a slow path, and we know we can find a // caller-save register that is available. vixl32::Register free_reg = FindAvailableCallerSaveRegister(codegen); __ Mov(free_reg, index_reg); index_reg = free_reg; index = LocationFrom(index_reg); } else { // The initial register stored in `index_` has already been // saved in the call to art::SlowPathCode::SaveLiveRegisters // (as it is not a callee-save register), so we can freely // use it. } // Shifting the index value contained in `index_reg` by the scale // factor (2) cannot overflow in practice, as the runtime is // unable to allocate object arrays with a size larger than // 2^26 - 1 (that is, 2^28 - 4 bytes). __ Lsl(index_reg, index_reg, TIMES_4); static_assert( sizeof(mirror::HeapReference) == sizeof(int32_t), "art::mirror::HeapReference and int32_t have different sizes."); __ Add(index_reg, index_reg, offset_); } else { // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile // intrinsics, `index_` is not shifted by a scale factor of 2 // (as in the case of ArrayGet), as it is actually an offset // to an object field within an object. DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); Intrinsics intrinsic = instruction_->AsInvoke()->GetIntrinsic(); DCHECK(intrinsic == Intrinsics::kUnsafeGetObject || intrinsic == Intrinsics::kUnsafeGetObjectVolatile || mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == mirror::VarHandle::AccessModeTemplate::kGet || mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == mirror::VarHandle::AccessModeTemplate::kCompareAndSet || mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == mirror::VarHandle::AccessModeTemplate::kCompareAndExchange || mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == mirror::VarHandle::AccessModeTemplate::kGetAndUpdate) << instruction_->AsInvoke()->GetIntrinsic(); DCHECK_EQ(offset_, 0U); // Though UnsafeGet's offset location is a register pair, we only pass the low // part (high part is irrelevant for 32-bit addresses) to the slow path. // For VarHandle intrinsics, the index is always just a register. DCHECK(index_.IsRegister()); index = index_; } } // We're moving two or three locations to locations that could // overlap, so we need a parallel move resolver. InvokeRuntimeCallingConventionARMVIXL calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); parallel_move.AddMove(ref_, LocationFrom(calling_convention.GetRegisterAt(0)), DataType::Type::kReference, nullptr); parallel_move.AddMove(obj_, LocationFrom(calling_convention.GetRegisterAt(1)), DataType::Type::kReference, nullptr); if (index.IsValid()) { parallel_move.AddMove(index, LocationFrom(calling_convention.GetRegisterAt(2)), DataType::Type::kInt32, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); } else { codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); __ Mov(calling_convention.GetRegisterAt(2), offset_); } arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes< kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); arm_codegen->Move32(out_, LocationFrom(r0)); RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARMVIXL"; } private: vixl32::Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { uint32_t ref = RegisterFrom(ref_).GetCode(); uint32_t obj = RegisterFrom(obj_).GetCode(); for (uint32_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { return vixl32::Register(i); } } // We shall never fail to find a free caller-save register, as // there are more than two core caller-save registers on ARM // (meaning it is possible to find one which is different from // `ref` and `obj`). DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); LOG(FATAL) << "Could not find a free caller-save register"; UNREACHABLE(); } const Location out_; const Location ref_; const Location obj_; const uint32_t offset_; // An additional location containing an index to an array. // Only used for HArrayGet and the UnsafeGetObject & // UnsafeGetObjectVolatile intrinsics. const Location index_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARMVIXL); }; // Slow path generating a read barrier for a GC root. class ReadBarrierForRootSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: ReadBarrierForRootSlowPathARMVIXL(HInstruction* instruction, Location out, Location root) : SlowPathCodeARMVIXL(instruction), out_(out), root_(root) { DCHECK(kEmitCompilerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); vixl32::Register reg_out = RegisterFrom(out_); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode())); DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString() || (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier for GC root slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConventionARMVIXL calling_convention; CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), root_); arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes*>(); arm_codegen->Move32(out_, LocationFrom(r0)); RestoreLiveRegisters(codegen, locations); __ B(GetExitLabel()); } const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARMVIXL"; } private: const Location out_; const Location root_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARMVIXL); }; inline vixl32::Condition ARMCondition(IfCondition cond) { switch (cond) { case kCondEQ: return eq; case kCondNE: return ne; case kCondLT: return lt; case kCondLE: return le; case kCondGT: return gt; case kCondGE: return ge; case kCondB: return lo; case kCondBE: return ls; case kCondA: return hi; case kCondAE: return hs; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } // Maps signed condition to unsigned condition. inline vixl32::Condition ARMUnsignedCondition(IfCondition cond) { switch (cond) { case kCondEQ: return eq; case kCondNE: return ne; // Signed to unsigned. case kCondLT: return lo; case kCondLE: return ls; case kCondGT: return hi; case kCondGE: return hs; // Unsigned remain unchanged. case kCondB: return lo; case kCondBE: return ls; case kCondA: return hi; case kCondAE: return hs; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } inline vixl32::Condition ARMFPCondition(IfCondition cond, bool gt_bias) { // The ARM condition codes can express all the necessary branches, see the // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual. // There is no dex instruction or HIR that would need the missing conditions // "equal or unordered" or "not equal". switch (cond) { case kCondEQ: return eq; case kCondNE: return ne /* unordered */; case kCondLT: return gt_bias ? cc : lt /* unordered */; case kCondLE: return gt_bias ? ls : le /* unordered */; case kCondGT: return gt_bias ? hi /* unordered */ : gt; case kCondGE: return gt_bias ? cs /* unordered */ : ge; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } inline ShiftType ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) { switch (op_kind) { case HDataProcWithShifterOp::kASR: return ShiftType::ASR; case HDataProcWithShifterOp::kLSL: return ShiftType::LSL; case HDataProcWithShifterOp::kLSR: return ShiftType::LSR; default: LOG(FATAL) << "Unexpected op kind " << op_kind; UNREACHABLE(); } } void CodeGeneratorARMVIXL::DumpCoreRegister(std::ostream& stream, int reg) const { stream << vixl32::Register(reg); } void CodeGeneratorARMVIXL::DumpFloatingPointRegister(std::ostream& stream, int reg) const { stream << vixl32::SRegister(reg); } const ArmInstructionSetFeatures& CodeGeneratorARMVIXL::GetInstructionSetFeatures() const { return *GetCompilerOptions().GetInstructionSetFeatures()->AsArmInstructionSetFeatures(); } static uint32_t ComputeSRegisterListMask(const SRegisterList& regs) { uint32_t mask = 0; for (uint32_t i = regs.GetFirstSRegister().GetCode(); i <= regs.GetLastSRegister().GetCode(); ++i) { mask |= (1 << i); } return mask; } // Saves the register in the stack. Returns the size taken on stack. size_t CodeGeneratorARMVIXL::SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED, uint32_t reg_id ATTRIBUTE_UNUSED) { TODO_VIXL32(FATAL); UNREACHABLE(); } // Restores the register from the stack. Returns the size taken on stack. size_t CodeGeneratorARMVIXL::RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED, uint32_t reg_id ATTRIBUTE_UNUSED) { TODO_VIXL32(FATAL); UNREACHABLE(); } size_t CodeGeneratorARMVIXL::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED, uint32_t reg_id ATTRIBUTE_UNUSED) { TODO_VIXL32(FATAL); UNREACHABLE(); } size_t CodeGeneratorARMVIXL::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED, uint32_t reg_id ATTRIBUTE_UNUSED) { TODO_VIXL32(FATAL); UNREACHABLE(); } static void GenerateDataProcInstruction(HInstruction::InstructionKind kind, vixl32::Register out, vixl32::Register first, const Operand& second, CodeGeneratorARMVIXL* codegen) { if (second.IsImmediate() && second.GetImmediate() == 0) { const Operand in = kind == HInstruction::kAnd ? Operand(0) : Operand(first); __ Mov(out, in); } else { switch (kind) { case HInstruction::kAdd: __ Add(out, first, second); break; case HInstruction::kAnd: __ And(out, first, second); break; case HInstruction::kOr: __ Orr(out, first, second); break; case HInstruction::kSub: __ Sub(out, first, second); break; case HInstruction::kXor: __ Eor(out, first, second); break; default: LOG(FATAL) << "Unexpected instruction kind: " << kind; UNREACHABLE(); } } } static void GenerateDataProc(HInstruction::InstructionKind kind, const Location& out, const Location& first, const Operand& second_lo, const Operand& second_hi, CodeGeneratorARMVIXL* codegen) { const vixl32::Register first_hi = HighRegisterFrom(first); const vixl32::Register first_lo = LowRegisterFrom(first); const vixl32::Register out_hi = HighRegisterFrom(out); const vixl32::Register out_lo = LowRegisterFrom(out); if (kind == HInstruction::kAdd) { __ Adds(out_lo, first_lo, second_lo); __ Adc(out_hi, first_hi, second_hi); } else if (kind == HInstruction::kSub) { __ Subs(out_lo, first_lo, second_lo); __ Sbc(out_hi, first_hi, second_hi); } else { GenerateDataProcInstruction(kind, out_lo, first_lo, second_lo, codegen); GenerateDataProcInstruction(kind, out_hi, first_hi, second_hi, codegen); } } static Operand GetShifterOperand(vixl32::Register rm, ShiftType shift, uint32_t shift_imm) { return shift_imm == 0 ? Operand(rm) : Operand(rm, shift, shift_imm); } static void GenerateLongDataProc(HDataProcWithShifterOp* instruction, CodeGeneratorARMVIXL* codegen) { DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64); DCHECK(HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind())); const LocationSummary* const locations = instruction->GetLocations(); const uint32_t shift_value = instruction->GetShiftAmount(); const HInstruction::InstructionKind kind = instruction->GetInstrKind(); const Location first = locations->InAt(0); const Location second = locations->InAt(1); const Location out = locations->Out(); const vixl32::Register first_hi = HighRegisterFrom(first); const vixl32::Register first_lo = LowRegisterFrom(first); const vixl32::Register out_hi = HighRegisterFrom(out); const vixl32::Register out_lo = LowRegisterFrom(out); const vixl32::Register second_hi = HighRegisterFrom(second); const vixl32::Register second_lo = LowRegisterFrom(second); const ShiftType shift = ShiftFromOpKind(instruction->GetOpKind()); if (shift_value >= 32) { if (shift == ShiftType::LSL) { GenerateDataProcInstruction(kind, out_hi, first_hi, Operand(second_lo, ShiftType::LSL, shift_value - 32), codegen); GenerateDataProcInstruction(kind, out_lo, first_lo, 0, codegen); } else if (shift == ShiftType::ASR) { GenerateDataProc(kind, out, first, GetShifterOperand(second_hi, ShiftType::ASR, shift_value - 32), Operand(second_hi, ShiftType::ASR, 31), codegen); } else { DCHECK_EQ(shift, ShiftType::LSR); GenerateDataProc(kind, out, first, GetShifterOperand(second_hi, ShiftType::LSR, shift_value - 32), 0, codegen); } } else { DCHECK_GT(shift_value, 1U); DCHECK_LT(shift_value, 32U); UseScratchRegisterScope temps(codegen->GetVIXLAssembler()); if (shift == ShiftType::LSL) { // We are not doing this for HInstruction::kAdd because the output will require // Location::kOutputOverlap; not applicable to other cases. if (kind == HInstruction::kOr || kind == HInstruction::kXor) { GenerateDataProcInstruction(kind, out_hi, first_hi, Operand(second_hi, ShiftType::LSL, shift_value), codegen); GenerateDataProcInstruction(kind, out_hi, out_hi, Operand(second_lo, ShiftType::LSR, 32 - shift_value), codegen); GenerateDataProcInstruction(kind, out_lo, first_lo, Operand(second_lo, ShiftType::LSL, shift_value), codegen); } else { const vixl32::Register temp = temps.Acquire(); __ Lsl(temp, second_hi, shift_value); __ Orr(temp, temp, Operand(second_lo, ShiftType::LSR, 32 - shift_value)); GenerateDataProc(kind, out, first, Operand(second_lo, ShiftType::LSL, shift_value), temp, codegen); } } else { DCHECK(shift == ShiftType::ASR || shift == ShiftType::LSR); // We are not doing this for HInstruction::kAdd because the output will require // Location::kOutputOverlap; not applicable to other cases. if (kind == HInstruction::kOr || kind == HInstruction::kXor) { GenerateDataProcInstruction(kind, out_lo, first_lo, Operand(second_lo, ShiftType::LSR, shift_value), codegen); GenerateDataProcInstruction(kind, out_lo, out_lo, Operand(second_hi, ShiftType::LSL, 32 - shift_value), codegen); GenerateDataProcInstruction(kind, out_hi, first_hi, Operand(second_hi, shift, shift_value), codegen); } else { const vixl32::Register temp = temps.Acquire(); __ Lsr(temp, second_lo, shift_value); __ Orr(temp, temp, Operand(second_hi, ShiftType::LSL, 32 - shift_value)); GenerateDataProc(kind, out, first, temp, Operand(second_hi, shift, shift_value), codegen); } } } } static void GenerateVcmp(HInstruction* instruction, CodeGeneratorARMVIXL* codegen) { const Location rhs_loc = instruction->GetLocations()->InAt(1); if (rhs_loc.IsConstant()) { // 0.0 is the only immediate that can be encoded directly in // a VCMP instruction. // // Both the JLS (section 15.20.1) and the JVMS (section 6.5) // specify that in a floating-point comparison, positive zero // and negative zero are considered equal, so we can use the // literal 0.0 for both cases here. // // Note however that some methods (Float.equal, Float.compare, // Float.compareTo, Double.equal, Double.compare, // Double.compareTo, Math.max, Math.min, StrictMath.max, // StrictMath.min) consider 0.0 to be (strictly) greater than // -0.0. So if we ever translate calls to these methods into a // HCompare instruction, we must handle the -0.0 case with // care here. DCHECK(rhs_loc.GetConstant()->IsArithmeticZero()); const DataType::Type type = instruction->InputAt(0)->GetType(); if (type == DataType::Type::kFloat32) { __ Vcmp(F32, InputSRegisterAt(instruction, 0), 0.0); } else { DCHECK_EQ(type, DataType::Type::kFloat64); __ Vcmp(F64, InputDRegisterAt(instruction, 0), 0.0); } } else { __ Vcmp(InputVRegisterAt(instruction, 0), InputVRegisterAt(instruction, 1)); } } static int64_t AdjustConstantForCondition(int64_t value, IfCondition* condition, IfCondition* opposite) { if (value == 1) { if (*condition == kCondB) { value = 0; *condition = kCondEQ; *opposite = kCondNE; } else if (*condition == kCondAE) { value = 0; *condition = kCondNE; *opposite = kCondEQ; } } else if (value == -1) { if (*condition == kCondGT) { value = 0; *condition = kCondGE; *opposite = kCondLT; } else if (*condition == kCondLE) { value = 0; *condition = kCondLT; *opposite = kCondGE; } } return value; } static std::pair GenerateLongTestConstant( HCondition* condition, bool invert, CodeGeneratorARMVIXL* codegen) { DCHECK_EQ(condition->GetLeft()->GetType(), DataType::Type::kInt64); const LocationSummary* const locations = condition->GetLocations(); IfCondition cond = condition->GetCondition(); IfCondition opposite = condition->GetOppositeCondition(); if (invert) { std::swap(cond, opposite); } std::pair ret(eq, ne); const Location left = locations->InAt(0); const Location right = locations->InAt(1); DCHECK(right.IsConstant()); const vixl32::Register left_high = HighRegisterFrom(left); const vixl32::Register left_low = LowRegisterFrom(left); int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right), &cond, &opposite); UseScratchRegisterScope temps(codegen->GetVIXLAssembler()); // Comparisons against 0 are common enough to deserve special attention. if (value == 0) { switch (cond) { case kCondNE: // x > 0 iff x != 0 when the comparison is unsigned. case kCondA: ret = std::make_pair(ne, eq); FALLTHROUGH_INTENDED; case kCondEQ: // x <= 0 iff x == 0 when the comparison is unsigned. case kCondBE: __ Orrs(temps.Acquire(), left_low, left_high); return ret; case kCondLT: case kCondGE: __ Cmp(left_high, 0); return std::make_pair(ARMCondition(cond), ARMCondition(opposite)); // Trivially true or false. case kCondB: ret = std::make_pair(ne, eq); FALLTHROUGH_INTENDED; case kCondAE: __ Cmp(left_low, left_low); return ret; default: break; } } switch (cond) { case kCondEQ: case kCondNE: case kCondB: case kCondBE: case kCondA: case kCondAE: { const uint32_t value_low = Low32Bits(value); Operand operand_low(value_low); __ Cmp(left_high, High32Bits(value)); // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, // we must ensure that the operands corresponding to the least significant // halves of the inputs fit into a 16-bit CMP encoding. if (!left_low.IsLow() || !IsUint<8>(value_low)) { operand_low = Operand(temps.Acquire()); __ Mov(LeaveFlags, operand_low.GetBaseRegister(), value_low); } // We use the scope because of the IT block that follows. ExactAssemblyScope guard(codegen->GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ it(eq); __ cmp(eq, left_low, operand_low); ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite)); break; } case kCondLE: case kCondGT: // Trivially true or false. if (value == std::numeric_limits::max()) { __ Cmp(left_low, left_low); ret = cond == kCondLE ? std::make_pair(eq, ne) : std::make_pair(ne, eq); break; } if (cond == kCondLE) { DCHECK_EQ(opposite, kCondGT); cond = kCondLT; opposite = kCondGE; } else { DCHECK_EQ(cond, kCondGT); DCHECK_EQ(opposite, kCondLE); cond = kCondGE; opposite = kCondLT; } value++; FALLTHROUGH_INTENDED; case kCondGE: case kCondLT: { __ Cmp(left_low, Low32Bits(value)); __ Sbcs(temps.Acquire(), left_high, High32Bits(value)); ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite)); break; } default: LOG(FATAL) << "Unreachable"; UNREACHABLE(); } return ret; } static std::pair GenerateLongTest( HCondition* condition, bool invert, CodeGeneratorARMVIXL* codegen) { DCHECK_EQ(condition->GetLeft()->GetType(), DataType::Type::kInt64); const LocationSummary* const locations = condition->GetLocations(); IfCondition cond = condition->GetCondition(); IfCondition opposite = condition->GetOppositeCondition(); if (invert) { std::swap(cond, opposite); } std::pair ret(eq, ne); Location left = locations->InAt(0); Location right = locations->InAt(1); DCHECK(right.IsRegisterPair()); switch (cond) { case kCondEQ: case kCondNE: case kCondB: case kCondBE: case kCondA: case kCondAE: { __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right)); // We use the scope because of the IT block that follows. ExactAssemblyScope guard(codegen->GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ it(eq); __ cmp(eq, LowRegisterFrom(left), LowRegisterFrom(right)); ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite)); break; } case kCondLE: case kCondGT: if (cond == kCondLE) { DCHECK_EQ(opposite, kCondGT); cond = kCondGE; opposite = kCondLT; } else { DCHECK_EQ(cond, kCondGT); DCHECK_EQ(opposite, kCondLE); cond = kCondLT; opposite = kCondGE; } std::swap(left, right); FALLTHROUGH_INTENDED; case kCondGE: case kCondLT: { UseScratchRegisterScope temps(codegen->GetVIXLAssembler()); __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right)); __ Sbcs(temps.Acquire(), HighRegisterFrom(left), HighRegisterFrom(right)); ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite)); break; } default: LOG(FATAL) << "Unreachable"; UNREACHABLE(); } return ret; } static std::pair GenerateTest(HCondition* condition, bool invert, CodeGeneratorARMVIXL* codegen) { const DataType::Type type = condition->GetLeft()->GetType(); IfCondition cond = condition->GetCondition(); IfCondition opposite = condition->GetOppositeCondition(); std::pair ret(eq, ne); if (invert) { std::swap(cond, opposite); } if (type == DataType::Type::kInt64) { ret = condition->GetLocations()->InAt(1).IsConstant() ? GenerateLongTestConstant(condition, invert, codegen) : GenerateLongTest(condition, invert, codegen); } else if (DataType::IsFloatingPointType(type)) { GenerateVcmp(condition, codegen); __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR); ret = std::make_pair(ARMFPCondition(cond, condition->IsGtBias()), ARMFPCondition(opposite, condition->IsGtBias())); } else { DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type; __ Cmp(InputRegisterAt(condition, 0), InputOperandAt(condition, 1)); ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite)); } return ret; } static void GenerateConditionGeneric(HCondition* cond, CodeGeneratorARMVIXL* codegen) { const vixl32::Register out = OutputRegister(cond); const auto condition = GenerateTest(cond, false, codegen); __ Mov(LeaveFlags, out, 0); if (out.IsLow()) { // We use the scope because of the IT block that follows. ExactAssemblyScope guard(codegen->GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ it(condition.first); __ mov(condition.first, out, 1); } else { vixl32::Label done_label; vixl32::Label* const final_label = codegen->GetFinalLabel(cond, &done_label); __ B(condition.second, final_label, /* is_far_target= */ false); __ Mov(out, 1); if (done_label.IsReferenced()) { __ Bind(&done_label); } } } static void GenerateEqualLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) { DCHECK_EQ(cond->GetLeft()->GetType(), DataType::Type::kInt64); const LocationSummary* const locations = cond->GetLocations(); IfCondition condition = cond->GetCondition(); const vixl32::Register out = OutputRegister(cond); const Location left = locations->InAt(0); const Location right = locations->InAt(1); vixl32::Register left_high = HighRegisterFrom(left); vixl32::Register left_low = LowRegisterFrom(left); vixl32::Register temp; UseScratchRegisterScope temps(codegen->GetVIXLAssembler()); if (right.IsConstant()) { IfCondition opposite = cond->GetOppositeCondition(); const int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite); Operand right_high = High32Bits(value); Operand right_low = Low32Bits(value); // The output uses Location::kNoOutputOverlap. if (out.Is(left_high)) { std::swap(left_low, left_high); std::swap(right_low, right_high); } __ Sub(out, left_low, right_low); temp = temps.Acquire(); __ Sub(temp, left_high, right_high); } else { DCHECK(right.IsRegisterPair()); temp = temps.Acquire(); __ Sub(temp, left_high, HighRegisterFrom(right)); __ Sub(out, left_low, LowRegisterFrom(right)); } // Need to check after calling AdjustConstantForCondition(). DCHECK(condition == kCondEQ || condition == kCondNE) << condition; if (condition == kCondNE && out.IsLow()) { __ Orrs(out, out, temp); // We use the scope because of the IT block that follows. ExactAssemblyScope guard(codegen->GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ it(ne); __ mov(ne, out, 1); } else { __ Orr(out, out, temp); codegen->GenerateConditionWithZero(condition, out, out, temp); } } static void GenerateConditionLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) { DCHECK_EQ(cond->GetLeft()->GetType(), DataType::Type::kInt64); const LocationSummary* const locations = cond->GetLocations(); IfCondition condition = cond->GetCondition(); const vixl32::Register out = OutputRegister(cond); const Location left = locations->InAt(0); const Location right = locations->InAt(1); if (right.IsConstant()) { IfCondition opposite = cond->GetOppositeCondition(); // Comparisons against 0 are common enough to deserve special attention. if (AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite) == 0) { switch (condition) { case kCondNE: case kCondA: if (out.IsLow()) { // We only care if both input registers are 0 or not. __ Orrs(out, LowRegisterFrom(left), HighRegisterFrom(left)); // We use the scope because of the IT block that follows. ExactAssemblyScope guard(codegen->GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ it(ne); __ mov(ne, out, 1); return; } FALLTHROUGH_INTENDED; case kCondEQ: case kCondBE: // We only care if both input registers are 0 or not. __ Orr(out, LowRegisterFrom(left), HighRegisterFrom(left)); codegen->GenerateConditionWithZero(condition, out, out); return; case kCondLT: case kCondGE: // We only care about the sign bit. FALLTHROUGH_INTENDED; case kCondAE: case kCondB: codegen->GenerateConditionWithZero(condition, out, HighRegisterFrom(left)); return; case kCondLE: case kCondGT: default: break; } } } // If `out` is a low register, then the GenerateConditionGeneric() // function generates a shorter code sequence that is still branchless. if ((condition == kCondEQ || condition == kCondNE) && !out.IsLow()) { GenerateEqualLong(cond, codegen); return; } GenerateConditionGeneric(cond, codegen); } static void GenerateConditionIntegralOrNonPrimitive(HCondition* cond, CodeGeneratorARMVIXL* codegen) { const DataType::Type type = cond->GetLeft()->GetType(); DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type; if (type == DataType::Type::kInt64) { GenerateConditionLong(cond, codegen); return; } IfCondition condition = cond->GetCondition(); vixl32::Register in = InputRegisterAt(cond, 0); const vixl32::Register out = OutputRegister(cond); const Location right = cond->GetLocations()->InAt(1); int64_t value; if (right.IsConstant()) { IfCondition opposite = cond->GetOppositeCondition(); value = AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite); // Comparisons against 0 are common enough to deserve special attention. if (value == 0) { switch (condition) { case kCondNE: case kCondA: if (out.IsLow() && out.Is(in)) { __ Cmp(out, 0); // We use the scope because of the IT block that follows. ExactAssemblyScope guard(codegen->GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ it(ne); __ mov(ne, out, 1); return; } FALLTHROUGH_INTENDED; case kCondEQ: case kCondBE: case kCondLT: case kCondGE: case kCondAE: case kCondB: codegen->GenerateConditionWithZero(condition, out, in); return; case kCondLE: case kCondGT: default: break; } } } if (condition == kCondEQ || condition == kCondNE) { Operand operand(0); if (right.IsConstant()) { operand = Operand::From(value); } else if (out.Is(RegisterFrom(right))) { // Avoid 32-bit instructions if possible. operand = InputOperandAt(cond, 0); in = RegisterFrom(right); } else { operand = InputOperandAt(cond, 1); } if (condition == kCondNE && out.IsLow()) { __ Subs(out, in, operand); // We use the scope because of the IT block that follows. ExactAssemblyScope guard(codegen->GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ it(ne); __ mov(ne, out, 1); } else { __ Sub(out, in, operand); codegen->GenerateConditionWithZero(condition, out, out); } return; } GenerateConditionGeneric(cond, codegen); } static bool CanEncodeConstantAs8BitImmediate(HConstant* constant) { const DataType::Type type = constant->GetType(); bool ret = false; DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type; if (type == DataType::Type::kInt64) { const uint64_t value = Uint64ConstantFrom(constant); ret = IsUint<8>(Low32Bits(value)) && IsUint<8>(High32Bits(value)); } else { ret = IsUint<8>(Int32ConstantFrom(constant)); } return ret; } static Location Arm8BitEncodableConstantOrRegister(HInstruction* constant) { DCHECK(!DataType::IsFloatingPointType(constant->GetType())); if (constant->IsConstant() && CanEncodeConstantAs8BitImmediate(constant->AsConstant())) { return Location::ConstantLocation(constant->AsConstant()); } return Location::RequiresRegister(); } static bool CanGenerateConditionalMove(const Location& out, const Location& src) { // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, // we check that we are not dealing with floating-point output (there is no // 16-bit VMOV encoding). if (!out.IsRegister() && !out.IsRegisterPair()) { return false; } // For constants, we also check that the output is in one or two low registers, // and that the constants fit in an 8-bit unsigned integer, so that a 16-bit // MOV encoding can be used. if (src.IsConstant()) { if (!CanEncodeConstantAs8BitImmediate(src.GetConstant())) { return false; } if (out.IsRegister()) { if (!RegisterFrom(out).IsLow()) { return false; } } else { DCHECK(out.IsRegisterPair()); if (!HighRegisterFrom(out).IsLow()) { return false; } } } return true; } #undef __ vixl32::Label* CodeGeneratorARMVIXL::GetFinalLabel(HInstruction* instruction, vixl32::Label* final_label) { DCHECK(!instruction->IsControlFlow() && !instruction->IsSuspendCheck()); DCHECK(!instruction->IsInvoke() || !instruction->GetLocations()->CanCall()); const HBasicBlock* const block = instruction->GetBlock(); const HLoopInformation* const info = block->GetLoopInformation(); HInstruction* const next = instruction->GetNext(); // Avoid a branch to a branch. if (next->IsGoto() && (info == nullptr || !info->IsBackEdge(*block) || !info->HasSuspendCheck())) { final_label = GetLabelOf(next->AsGoto()->GetSuccessor()); } return final_label; } CodeGeneratorARMVIXL::CodeGeneratorARMVIXL(HGraph* graph, const CompilerOptions& compiler_options, OptimizingCompilerStats* stats) : CodeGenerator(graph, kNumberOfCoreRegisters, kNumberOfSRegisters, kNumberOfRegisterPairs, kCoreCalleeSaves.GetList(), ComputeSRegisterListMask(kFpuCalleeSaves), compiler_options, stats), block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), location_builder_(graph, this), instruction_visitor_(graph, this), move_resolver_(graph->GetAllocator(), this), assembler_(graph->GetAllocator()), boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), uint32_literals_(std::less(), graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), jit_string_patches_(StringReferenceValueComparator(), graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), jit_class_patches_(TypeReferenceValueComparator(), graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), jit_baker_read_barrier_slow_paths_(std::less(), graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) { // Always save the LR register to mimic Quick. AddAllocatedRegister(Location::RegisterLocation(LR)); // Give D30 and D31 as scratch register to VIXL. The register allocator only works on // S0-S31, which alias to D0-D15. GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d31); GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d30); } void JumpTableARMVIXL::EmitTable(CodeGeneratorARMVIXL* codegen) { uint32_t num_entries = switch_instr_->GetNumEntries(); DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold); // We are about to use the assembler to place literals directly. Make sure we have enough // underlying code buffer and we have generated a jump table of the right size, using // codegen->GetVIXLAssembler()->GetBuffer().Align(); ExactAssemblyScope aas(codegen->GetVIXLAssembler(), num_entries * sizeof(int32_t), CodeBufferCheckScope::kMaximumSize); // TODO(VIXL): Check that using lower case bind is fine here. codegen->GetVIXLAssembler()->bind(&table_start_); for (uint32_t i = 0; i < num_entries; i++) { codegen->GetVIXLAssembler()->place(bb_addresses_[i].get()); } } void JumpTableARMVIXL::FixTable(CodeGeneratorARMVIXL* codegen) { uint32_t num_entries = switch_instr_->GetNumEntries(); DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold); const ArenaVector& successors = switch_instr_->GetBlock()->GetSuccessors(); for (uint32_t i = 0; i < num_entries; i++) { vixl32::Label* target_label = codegen->GetLabelOf(successors[i]); DCHECK(target_label->IsBound()); int32_t jump_offset = target_label->GetLocation() - table_start_.GetLocation(); // When doing BX to address we need to have lower bit set to 1 in T32. if (codegen->GetVIXLAssembler()->IsUsingT32()) { jump_offset++; } DCHECK_GT(jump_offset, std::numeric_limits::min()); DCHECK_LE(jump_offset, std::numeric_limits::max()); bb_addresses_[i].get()->UpdateValue(jump_offset, codegen->GetVIXLAssembler()->GetBuffer()); } } void CodeGeneratorARMVIXL::FixJumpTables() { for (auto&& jump_table : jump_tables_) { jump_table->FixTable(this); } } #define __ reinterpret_cast(GetAssembler())->GetVIXLAssembler()-> // NOLINT void CodeGeneratorARMVIXL::Finalize(CodeAllocator* allocator) { FixJumpTables(); // Emit JIT baker read barrier slow paths. DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty()); for (auto& entry : jit_baker_read_barrier_slow_paths_) { uint32_t encoded_data = entry.first; vixl::aarch32::Label* slow_path_entry = &entry.second.label; __ Bind(slow_path_entry); CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr); } GetAssembler()->FinalizeCode(); CodeGenerator::Finalize(allocator); // Verify Baker read barrier linker patches. if (kIsDebugBuild) { ArrayRef code = allocator->GetMemory(); for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) { DCHECK(info.label.IsBound()); uint32_t literal_offset = info.label.GetLocation(); DCHECK_ALIGNED(literal_offset, 2u); auto GetInsn16 = [&code](uint32_t offset) { DCHECK_ALIGNED(offset, 2u); return (static_cast(code[offset + 0]) << 0) + (static_cast(code[offset + 1]) << 8); }; auto GetInsn32 = [=](uint32_t offset) { return (GetInsn16(offset) << 16) + (GetInsn16(offset + 2u) << 0); }; uint32_t encoded_data = info.custom_data; BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); // Check that the next instruction matches the expected LDR. switch (kind) { case BakerReadBarrierKind::kField: { BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data); if (width == BakerReadBarrierWidth::kWide) { DCHECK_GE(code.size() - literal_offset, 8u); uint32_t next_insn = GetInsn32(literal_offset + 4u); // LDR (immediate), encoding T3, with correct base_reg. CheckValidReg((next_insn >> 12) & 0xfu); // Check destination register. const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); CHECK_EQ(next_insn & 0xffff0000u, 0xf8d00000u | (base_reg << 16)); } else { DCHECK_GE(code.size() - literal_offset, 6u); uint32_t next_insn = GetInsn16(literal_offset + 4u); // LDR (immediate), encoding T1, with correct base_reg. CheckValidReg(next_insn & 0x7u); // Check destination register. const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); CHECK_EQ(next_insn & 0xf838u, 0x6800u | (base_reg << 3)); } break; } case BakerReadBarrierKind::kArray: { DCHECK_GE(code.size() - literal_offset, 8u); uint32_t next_insn = GetInsn32(literal_offset + 4u); // LDR (register) with correct base_reg, S=1 and option=011 (LDR Wt, [Xn, Xm, LSL #2]). CheckValidReg((next_insn >> 12) & 0xfu); // Check destination register. const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); CHECK_EQ(next_insn & 0xffff0ff0u, 0xf8500020u | (base_reg << 16)); CheckValidReg(next_insn & 0xf); // Check index register break; } case BakerReadBarrierKind::kGcRoot: { BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data); if (width == BakerReadBarrierWidth::kWide) { DCHECK_GE(literal_offset, 4u); uint32_t prev_insn = GetInsn32(literal_offset - 4u); // LDR (immediate), encoding T3, with correct root_reg. const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); CHECK_EQ(prev_insn & 0xfff0f000u, 0xf8d00000u | (root_reg << 12)); } else { DCHECK_GE(literal_offset, 2u); uint32_t prev_insn = GetInsn16(literal_offset - 2u); const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); // Usually LDR (immediate), encoding T1, with correct root_reg but we may have // a `MOV marked, old_value` for intrinsic CAS where `marked` is a low register. if ((prev_insn & 0xff87u) != (0x4600 | root_reg)) { CHECK_EQ(prev_insn & 0xf807u, 0x6800u | root_reg); } } break; } case BakerReadBarrierKind::kIntrinsicCas: { DCHECK_GE(literal_offset, 4u); uint32_t prev_insn = GetInsn32(literal_offset - 4u); // MOV (register), encoding T3, with correct root_reg. const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); DCHECK_GE(root_reg, 8u); // Used only for high registers. CHECK_EQ(prev_insn & 0xfffffff0u, 0xea4f0000u | (root_reg << 8)); break; } default: LOG(FATAL) << "Unexpected kind: " << static_cast(kind); UNREACHABLE(); } } } } void CodeGeneratorARMVIXL::SetupBlockedRegisters() const { // Stack register, LR and PC are always reserved. blocked_core_registers_[SP] = true; blocked_core_registers_[LR] = true; blocked_core_registers_[PC] = true; if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // Reserve marking register. blocked_core_registers_[MR] = true; } // Reserve thread register. blocked_core_registers_[TR] = true; // Reserve temp register. blocked_core_registers_[IP] = true; if (GetGraph()->IsDebuggable()) { // Stubs do not save callee-save floating point registers. If the graph // is debuggable, we need to deal with these registers differently. For // now, just block them. for (uint32_t i = kFpuCalleeSaves.GetFirstSRegister().GetCode(); i <= kFpuCalleeSaves.GetLastSRegister().GetCode(); ++i) { blocked_fpu_registers_[i] = true; } } } InstructionCodeGeneratorARMVIXL::InstructionCodeGeneratorARMVIXL(HGraph* graph, CodeGeneratorARMVIXL* codegen) : InstructionCodeGenerator(graph, codegen), assembler_(codegen->GetAssembler()), codegen_(codegen) {} void CodeGeneratorARMVIXL::ComputeSpillMask() { core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; DCHECK_NE(core_spill_mask_ & (1u << kLrCode), 0u) << "At least the return address register must be saved"; // 16-bit PUSH/POP (T1) can save/restore just the LR/PC. DCHECK(GetVIXLAssembler()->IsUsingT32()); fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; // We use vpush and vpop for saving and restoring floating point registers, which take // a SRegister and the number of registers to save/restore after that SRegister. We // therefore update the `fpu_spill_mask_` to also contain those registers not allocated, // but in the range. if (fpu_spill_mask_ != 0) { uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_); uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_); for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) { fpu_spill_mask_ |= (1 << i); } } } void CodeGeneratorARMVIXL::MaybeIncrementHotness(bool is_frame_entry) { if (GetCompilerOptions().CountHotnessInCompiledCode()) { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); static_assert(ArtMethod::MaxCounter() == 0xFFFF, "asm is probably wrong"); if (!is_frame_entry) { __ Push(vixl32::Register(kMethodRegister)); GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize); GetAssembler()->LoadFromOffset(kLoadWord, kMethodRegister, sp, kArmWordSize); } // Load with zero extend to clear the high bits for integer overflow check. __ Ldrh(temp, MemOperand(kMethodRegister, ArtMethod::HotnessCountOffset().Int32Value())); __ Add(temp, temp, 1); // Subtract one if the counter would overflow. __ Sub(temp, temp, Operand(temp, ShiftType::LSR, 16)); __ Strh(temp, MemOperand(kMethodRegister, ArtMethod::HotnessCountOffset().Int32Value())); if (!is_frame_entry) { __ Pop(vixl32::Register(kMethodRegister)); GetAssembler()->cfi().AdjustCFAOffset(-static_cast(kArmWordSize)); } } if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) { ScopedProfilingInfoUse spiu( Runtime::Current()->GetJit(), GetGraph()->GetArtMethod(), Thread::Current()); ProfilingInfo* info = spiu.GetProfilingInfo(); if (info != nullptr) { uint32_t address = reinterpret_cast32(info); vixl::aarch32::Label done; UseScratchRegisterScope temps(GetVIXLAssembler()); temps.Exclude(ip); if (!is_frame_entry) { __ Push(r4); // Will be used as temporary. For frame entry, r4 is always available. GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize); } __ Mov(r4, address); __ Ldrh(ip, MemOperand(r4, ProfilingInfo::BaselineHotnessCountOffset().Int32Value())); __ Add(ip, ip, 1); instruction_visitor_.GenerateAndConst(ip, ip, interpreter::kTieredHotnessMask); __ Strh(ip, MemOperand(r4, ProfilingInfo::BaselineHotnessCountOffset().Int32Value())); if (!is_frame_entry) { __ Pop(r4); GetAssembler()->cfi().AdjustCFAOffset(-static_cast(kArmWordSize)); } __ Lsls(ip, ip, 16); __ B(ne, &done); uint32_t entry_point_offset = GetThreadOffset(kQuickCompileOptimized).Int32Value(); if (HasEmptyFrame()) { CHECK(is_frame_entry); // For leaf methods, we need to spill lr and r0. Also spill r1 and r2 for // alignment. uint32_t core_spill_mask = (1 << lr.GetCode()) | (1 << r0.GetCode()) | (1 << r1.GetCode()) | (1 << r2.GetCode()); __ Push(RegisterList(core_spill_mask)); GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask)); __ Ldr(lr, MemOperand(tr, entry_point_offset)); __ Blx(lr); __ Pop(RegisterList(core_spill_mask)); GetAssembler()->cfi().AdjustCFAOffset( -static_cast(kArmWordSize) * POPCOUNT(core_spill_mask)); } else { if (!RequiresCurrentMethod()) { CHECK(is_frame_entry); GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0); } __ Ldr(lr, MemOperand(tr, entry_point_offset)); __ Blx(lr); } __ Bind(&done); } } } void CodeGeneratorARMVIXL::GenerateFrameEntry() { bool skip_overflow_check = IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm); DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); __ Bind(&frame_entry_label_); if (HasEmptyFrame()) { // Ensure that the CFI opcode list is not empty. GetAssembler()->cfi().Nop(); MaybeIncrementHotness(/* is_frame_entry= */ true); return; } if (!skip_overflow_check) { // Using r4 instead of IP saves 2 bytes. UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp; // TODO: Remove this check when R4 is made a callee-save register // in ART compiled code (b/72801708). Currently we need to make // sure r4 is not blocked, e.g. in special purpose // TestCodeGeneratorARMVIXL; also asserting that r4 is available // here. if (!blocked_core_registers_[R4]) { for (vixl32::Register reg : kParameterCoreRegistersVIXL) { DCHECK(!reg.Is(r4)); } DCHECK(!kCoreCalleeSaves.Includes(r4)); temp = r4; } else { temp = temps.Acquire(); } __ Sub(temp, sp, Operand::From(GetStackOverflowReservedBytes(InstructionSet::kArm))); // The load must immediately precede RecordPcInfo. ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ ldr(temp, MemOperand(temp)); RecordPcInfo(nullptr, 0); } uint32_t frame_size = GetFrameSize(); uint32_t core_spills_offset = frame_size - GetCoreSpillSize(); uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize(); if ((fpu_spill_mask_ == 0u || IsPowerOfTwo(fpu_spill_mask_)) && core_spills_offset <= 3u * kArmWordSize) { // Do a single PUSH for core registers including the method and up to two // filler registers. Then store the single FP spill if any. // (The worst case is when the method is not required and we actually // store 3 extra registers but they are stored in the same properly // aligned 16-byte chunk where we're already writing anyway.) DCHECK_EQ(kMethodRegister.GetCode(), 0u); uint32_t extra_regs = MaxInt(core_spills_offset / kArmWordSize); DCHECK_LT(MostSignificantBit(extra_regs), LeastSignificantBit(core_spill_mask_)); __ Push(RegisterList(core_spill_mask_ | extra_regs)); GetAssembler()->cfi().AdjustCFAOffset(frame_size); GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister), core_spills_offset, core_spill_mask_, kArmWordSize); if (fpu_spill_mask_ != 0u) { DCHECK(IsPowerOfTwo(fpu_spill_mask_)); vixl::aarch32::SRegister sreg(LeastSignificantBit(fpu_spill_mask_)); GetAssembler()->StoreSToOffset(sreg, sp, fp_spills_offset); GetAssembler()->cfi().RelOffset(DWARFReg(sreg), /*offset=*/ fp_spills_offset); } } else { __ Push(RegisterList(core_spill_mask_)); GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_)); GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister), /*offset=*/ 0, core_spill_mask_, kArmWordSize); if (fpu_spill_mask_ != 0) { uint32_t first = LeastSignificantBit(fpu_spill_mask_); // Check that list is contiguous. DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_))); __ Vpush(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_))); GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_)); GetAssembler()->cfi().RelOffsetForMany(DWARFReg(s0), /*offset=*/ 0, fpu_spill_mask_, kArmWordSize); } // Adjust SP and save the current method if we need it. Note that we do // not save the method in HCurrentMethod, as the instruction might have // been removed in the SSA graph. if (RequiresCurrentMethod() && fp_spills_offset <= 3 * kArmWordSize) { DCHECK_EQ(kMethodRegister.GetCode(), 0u); __ Push(RegisterList(MaxInt(fp_spills_offset / kArmWordSize))); GetAssembler()->cfi().AdjustCFAOffset(fp_spills_offset); } else { IncreaseFrame(fp_spills_offset); if (RequiresCurrentMethod()) { GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0); } } } if (GetGraph()->HasShouldDeoptimizeFlag()) { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); // Initialize should_deoptimize flag to 0. __ Mov(temp, 0); GetAssembler()->StoreToOffset(kStoreWord, temp, sp, GetStackOffsetOfShouldDeoptimizeFlag()); } MaybeIncrementHotness(/* is_frame_entry= */ true); MaybeGenerateMarkingRegisterCheck(/* code= */ 1); } void CodeGeneratorARMVIXL::GenerateFrameExit() { if (HasEmptyFrame()) { __ Bx(lr); return; } // Pop LR into PC to return. DCHECK_NE(core_spill_mask_ & (1 << kLrCode), 0U); uint32_t pop_mask = (core_spill_mask_ & (~(1 << kLrCode))) | 1 << kPcCode; uint32_t frame_size = GetFrameSize(); uint32_t core_spills_offset = frame_size - GetCoreSpillSize(); uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize(); if ((fpu_spill_mask_ == 0u || IsPowerOfTwo(fpu_spill_mask_)) && // r4 is blocked by TestCodeGeneratorARMVIXL used by some tests. core_spills_offset <= (blocked_core_registers_[r4.GetCode()] ? 2u : 3u) * kArmWordSize) { // Load the FP spill if any and then do a single POP including the method // and up to two filler registers. If we have no FP spills, this also has // the advantage that we do not need to emit CFI directives. if (fpu_spill_mask_ != 0u) { DCHECK(IsPowerOfTwo(fpu_spill_mask_)); vixl::aarch32::SRegister sreg(LeastSignificantBit(fpu_spill_mask_)); GetAssembler()->cfi().RememberState(); GetAssembler()->LoadSFromOffset(sreg, sp, fp_spills_offset); GetAssembler()->cfi().Restore(DWARFReg(sreg)); } // Clobber registers r2-r4 as they are caller-save in ART managed ABI and // never hold the return value. uint32_t extra_regs = MaxInt(core_spills_offset / kArmWordSize) << r2.GetCode(); DCHECK_EQ(extra_regs & kCoreCalleeSaves.GetList(), 0u); DCHECK_LT(MostSignificantBit(extra_regs), LeastSignificantBit(pop_mask)); __ Pop(RegisterList(pop_mask | extra_regs)); if (fpu_spill_mask_ != 0u) { GetAssembler()->cfi().RestoreState(); } } else { GetAssembler()->cfi().RememberState(); DecreaseFrame(fp_spills_offset); if (fpu_spill_mask_ != 0) { uint32_t first = LeastSignificantBit(fpu_spill_mask_); // Check that list is contiguous. DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_))); __ Vpop(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_))); GetAssembler()->cfi().AdjustCFAOffset( -static_cast(kArmWordSize) * POPCOUNT(fpu_spill_mask_)); GetAssembler()->cfi().RestoreMany(DWARFReg(vixl32::SRegister(0)), fpu_spill_mask_); } __ Pop(RegisterList(pop_mask)); GetAssembler()->cfi().RestoreState(); GetAssembler()->cfi().DefCFAOffset(GetFrameSize()); } } void CodeGeneratorARMVIXL::Bind(HBasicBlock* block) { __ Bind(GetLabelOf(block)); } Location InvokeDexCallingConventionVisitorARMVIXL::GetNextLocation(DataType::Type type) { switch (type) { case DataType::Type::kReference: case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: { uint32_t index = gp_index_++; uint32_t stack_index = stack_index_++; if (index < calling_convention.GetNumberOfRegisters()) { return LocationFrom(calling_convention.GetRegisterAt(index)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case DataType::Type::kInt64: { uint32_t index = gp_index_; uint32_t stack_index = stack_index_; gp_index_ += 2; stack_index_ += 2; if (index + 1 < calling_convention.GetNumberOfRegisters()) { if (calling_convention.GetRegisterAt(index).Is(r1)) { // Skip R1, and use R2_R3 instead. gp_index_++; index++; } } if (index + 1 < calling_convention.GetNumberOfRegisters()) { DCHECK_EQ(calling_convention.GetRegisterAt(index).GetCode() + 1, calling_convention.GetRegisterAt(index + 1).GetCode()); return LocationFrom(calling_convention.GetRegisterAt(index), calling_convention.GetRegisterAt(index + 1)); } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case DataType::Type::kFloat32: { uint32_t stack_index = stack_index_++; if (float_index_ % 2 == 0) { float_index_ = std::max(double_index_, float_index_); } if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) { return LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case DataType::Type::kFloat64: { double_index_ = std::max(double_index_, RoundUp(float_index_, 2)); uint32_t stack_index = stack_index_; stack_index_ += 2; if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) { uint32_t index = double_index_; double_index_ += 2; Location result = LocationFrom( calling_convention.GetFpuRegisterAt(index), calling_convention.GetFpuRegisterAt(index + 1)); DCHECK(ExpectedPairLayout(result)); return result; } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case DataType::Type::kUint32: case DataType::Type::kUint64: case DataType::Type::kVoid: LOG(FATAL) << "Unexpected parameter type " << type; UNREACHABLE(); } return Location::NoLocation(); } Location InvokeDexCallingConventionVisitorARMVIXL::GetReturnLocation(DataType::Type type) const { switch (type) { case DataType::Type::kReference: case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kUint32: case DataType::Type::kInt32: { return LocationFrom(r0); } case DataType::Type::kFloat32: { return LocationFrom(s0); } case DataType::Type::kUint64: case DataType::Type::kInt64: { return LocationFrom(r0, r1); } case DataType::Type::kFloat64: { return LocationFrom(s0, s1); } case DataType::Type::kVoid: return Location::NoLocation(); } UNREACHABLE(); } Location InvokeDexCallingConventionVisitorARMVIXL::GetMethodLocation() const { return LocationFrom(kMethodRegister); } Location CriticalNativeCallingConventionVisitorARMVIXL::GetNextLocation(DataType::Type type) { DCHECK_NE(type, DataType::Type::kReference); // Native ABI uses the same registers as managed, except that the method register r0 // is a normal argument. Location location = Location::NoLocation(); if (DataType::Is64BitType(type)) { gpr_index_ = RoundUp(gpr_index_, 2u); stack_offset_ = RoundUp(stack_offset_, 2 * kFramePointerSize); if (gpr_index_ < 1u + kParameterCoreRegistersLengthVIXL) { location = LocationFrom(gpr_index_ == 0u ? r0 : kParameterCoreRegistersVIXL[gpr_index_ - 1u], kParameterCoreRegistersVIXL[gpr_index_]); gpr_index_ += 2u; } } else { if (gpr_index_ < 1u + kParameterCoreRegistersLengthVIXL) { location = LocationFrom(gpr_index_ == 0u ? r0 : kParameterCoreRegistersVIXL[gpr_index_ - 1u]); ++gpr_index_; } } if (location.IsInvalid()) { if (DataType::Is64BitType(type)) { location = Location::DoubleStackSlot(stack_offset_); stack_offset_ += 2 * kFramePointerSize; } else { location = Location::StackSlot(stack_offset_); stack_offset_ += kFramePointerSize; } if (for_register_allocation_) { location = Location::Any(); } } return location; } Location CriticalNativeCallingConventionVisitorARMVIXL::GetReturnLocation(DataType::Type type) const { // We perform conversion to the managed ABI return register after the call if needed. InvokeDexCallingConventionVisitorARMVIXL dex_calling_convention; return dex_calling_convention.GetReturnLocation(type); } Location CriticalNativeCallingConventionVisitorARMVIXL::GetMethodLocation() const { // Pass the method in the hidden argument R4. return Location::RegisterLocation(R4); } void CodeGeneratorARMVIXL::Move32(Location destination, Location source) { if (source.Equals(destination)) { return; } if (destination.IsRegister()) { if (source.IsRegister()) { __ Mov(RegisterFrom(destination), RegisterFrom(source)); } else if (source.IsFpuRegister()) { __ Vmov(RegisterFrom(destination), SRegisterFrom(source)); } else { GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(destination), sp, source.GetStackIndex()); } } else if (destination.IsFpuRegister()) { if (source.IsRegister()) { __ Vmov(SRegisterFrom(destination), RegisterFrom(source)); } else if (source.IsFpuRegister()) { __ Vmov(SRegisterFrom(destination), SRegisterFrom(source)); } else { GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex()); } } else { DCHECK(destination.IsStackSlot()) << destination; if (source.IsRegister()) { GetAssembler()->StoreToOffset(kStoreWord, RegisterFrom(source), sp, destination.GetStackIndex()); } else if (source.IsFpuRegister()) { GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex()); } else { DCHECK(source.IsStackSlot()) << source; UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex()); GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); } } } void CodeGeneratorARMVIXL::MoveConstant(Location location, int32_t value) { DCHECK(location.IsRegister()); __ Mov(RegisterFrom(location), value); } void CodeGeneratorARMVIXL::MoveLocation(Location dst, Location src, DataType::Type dst_type) { // TODO(VIXL): Maybe refactor to have the 'move' implementation here and use it in // `ParallelMoveResolverARMVIXL::EmitMove`, as is done in the `arm64` backend. HParallelMove move(GetGraph()->GetAllocator()); move.AddMove(src, dst, dst_type, nullptr); GetMoveResolver()->EmitNativeCode(&move); } void CodeGeneratorARMVIXL::AddLocationAsTemp(Location location, LocationSummary* locations) { if (location.IsRegister()) { locations->AddTemp(location); } else if (location.IsRegisterPair()) { locations->AddTemp(LocationFrom(LowRegisterFrom(location))); locations->AddTemp(LocationFrom(HighRegisterFrom(location))); } else { UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; } } void CodeGeneratorARMVIXL::InvokeRuntime(QuickEntrypointEnum entrypoint, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path) { ValidateInvokeRuntime(entrypoint, instruction, slow_path); ThreadOffset32 entrypoint_offset = GetThreadOffset(entrypoint); // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the // entire oat file. This adds an extra branch and we do not want to slow down the main path. // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative. if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) { __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value())); // Ensure the pc position is recorded immediately after the `blx` instruction. // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used. ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ blx(lr); if (EntrypointRequiresStackMap(entrypoint)) { RecordPcInfo(instruction, dex_pc, slow_path); } } else { // Ensure the pc position is recorded immediately after the `bl` instruction. ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::k32BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); EmitEntrypointThunkCall(entrypoint_offset); if (EntrypointRequiresStackMap(entrypoint)) { RecordPcInfo(instruction, dex_pc, slow_path); } } } void CodeGeneratorARMVIXL::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, HInstruction* instruction, SlowPathCode* slow_path) { ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); __ Ldr(lr, MemOperand(tr, entry_point_offset)); __ Blx(lr); } void InstructionCodeGeneratorARMVIXL::HandleGoto(HInstruction* got, HBasicBlock* successor) { if (successor->IsExitBlock()) { DCHECK(got->GetPrevious()->AlwaysThrows()); return; // no code needed } HBasicBlock* block = got->GetBlock(); HInstruction* previous = got->GetPrevious(); HLoopInformation* info = block->GetLoopInformation(); if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false); GenerateSuspendCheck(info->GetSuspendCheck(), successor); return; } if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 2); } if (!codegen_->GoesToNextBlock(block, successor)) { __ B(codegen_->GetLabelOf(successor)); } } void LocationsBuilderARMVIXL::VisitGoto(HGoto* got) { got->SetLocations(nullptr); } void InstructionCodeGeneratorARMVIXL::VisitGoto(HGoto* got) { HandleGoto(got, got->GetSuccessor()); } void LocationsBuilderARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) { try_boundary->SetLocations(nullptr); } void InstructionCodeGeneratorARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) { HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); if (!successor->IsExitBlock()) { HandleGoto(try_boundary, successor); } } void LocationsBuilderARMVIXL::VisitExit(HExit* exit) { exit->SetLocations(nullptr); } void InstructionCodeGeneratorARMVIXL::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { } void InstructionCodeGeneratorARMVIXL::GenerateCompareTestAndBranch(HCondition* condition, vixl32::Label* true_target, vixl32::Label* false_target, bool is_far_target) { if (true_target == false_target) { DCHECK(true_target != nullptr); __ B(true_target); return; } vixl32::Label* non_fallthrough_target; bool invert; bool emit_both_branches; if (true_target == nullptr) { // The true target is fallthrough. DCHECK(false_target != nullptr); non_fallthrough_target = false_target; invert = true; emit_both_branches = false; } else { non_fallthrough_target = true_target; invert = false; // Either the false target is fallthrough, or there is no fallthrough // and both branches must be emitted. emit_both_branches = (false_target != nullptr); } const auto cond = GenerateTest(condition, invert, codegen_); __ B(cond.first, non_fallthrough_target, is_far_target); if (emit_both_branches) { // No target falls through, we need to branch. __ B(false_target); } } void InstructionCodeGeneratorARMVIXL::GenerateTestAndBranch(HInstruction* instruction, size_t condition_input_index, vixl32::Label* true_target, vixl32::Label* false_target, bool far_target) { HInstruction* cond = instruction->InputAt(condition_input_index); if (true_target == nullptr && false_target == nullptr) { // Nothing to do. The code always falls through. return; } else if (cond->IsIntConstant()) { // Constant condition, statically compared against "true" (integer value 1). if (cond->AsIntConstant()->IsTrue()) { if (true_target != nullptr) { __ B(true_target); } } else { DCHECK(cond->AsIntConstant()->IsFalse()) << Int32ConstantFrom(cond); if (false_target != nullptr) { __ B(false_target); } } return; } // The following code generates these patterns: // (1) true_target == nullptr && false_target != nullptr // - opposite condition true => branch to false_target // (2) true_target != nullptr && false_target == nullptr // - condition true => branch to true_target // (3) true_target != nullptr && false_target != nullptr // - condition true => branch to true_target // - branch to false_target if (IsBooleanValueOrMaterializedCondition(cond)) { // Condition has been materialized, compare the output to 0. if (kIsDebugBuild) { Location cond_val = instruction->GetLocations()->InAt(condition_input_index); DCHECK(cond_val.IsRegister()); } if (true_target == nullptr) { __ CompareAndBranchIfZero(InputRegisterAt(instruction, condition_input_index), false_target, far_target); } else { __ CompareAndBranchIfNonZero(InputRegisterAt(instruction, condition_input_index), true_target, far_target); } } else { // Condition has not been materialized. Use its inputs as the comparison and // its condition as the branch condition. HCondition* condition = cond->AsCondition(); // If this is a long or FP comparison that has been folded into // the HCondition, generate the comparison directly. DataType::Type type = condition->InputAt(0)->GetType(); if (type == DataType::Type::kInt64 || DataType::IsFloatingPointType(type)) { GenerateCompareTestAndBranch(condition, true_target, false_target, far_target); return; } vixl32::Label* non_fallthrough_target; vixl32::Condition arm_cond = vixl32::Condition::None(); const vixl32::Register left = InputRegisterAt(cond, 0); const Operand right = InputOperandAt(cond, 1); if (true_target == nullptr) { arm_cond = ARMCondition(condition->GetOppositeCondition()); non_fallthrough_target = false_target; } else { arm_cond = ARMCondition(condition->GetCondition()); non_fallthrough_target = true_target; } if (right.IsImmediate() && right.GetImmediate() == 0 && (arm_cond.Is(ne) || arm_cond.Is(eq))) { if (arm_cond.Is(eq)) { __ CompareAndBranchIfZero(left, non_fallthrough_target, far_target); } else { DCHECK(arm_cond.Is(ne)); __ CompareAndBranchIfNonZero(left, non_fallthrough_target, far_target); } } else { __ Cmp(left, right); __ B(arm_cond, non_fallthrough_target, far_target); } } // If neither branch falls through (case 3), the conditional branch to `true_target` // was already emitted (case 2) and we need to emit a jump to `false_target`. if (true_target != nullptr && false_target != nullptr) { __ B(false_target); } } void LocationsBuilderARMVIXL::VisitIf(HIf* if_instr) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr); if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { locations->SetInAt(0, Location::RequiresRegister()); } } void InstructionCodeGeneratorARMVIXL::VisitIf(HIf* if_instr) { HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); vixl32::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? nullptr : codegen_->GetLabelOf(true_successor); vixl32::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? nullptr : codegen_->GetLabelOf(false_successor); GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target); } void LocationsBuilderARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); InvokeRuntimeCallingConventionARMVIXL calling_convention; RegisterSet caller_saves = RegisterSet::Empty(); caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetCustomSlowPathCallerSaves(caller_saves); if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { locations->SetInAt(0, Location::RequiresRegister()); } } void InstructionCodeGeneratorARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) { SlowPathCodeARMVIXL* slow_path = deopt_slow_paths_.NewSlowPath(deoptimize); GenerateTestAndBranch(deoptimize, /* condition_input_index= */ 0, slow_path->GetEntryLabel(), /* false_target= */ nullptr); } void LocationsBuilderARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(flag, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { GetAssembler()->LoadFromOffset(kLoadWord, OutputRegister(flag), sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()); } void LocationsBuilderARMVIXL::VisitSelect(HSelect* select) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select); const bool is_floating_point = DataType::IsFloatingPointType(select->GetType()); if (is_floating_point) { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::FpuRegisterOrConstant(select->GetTrueValue())); } else { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Arm8BitEncodableConstantOrRegister(select->GetTrueValue())); } if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { locations->SetInAt(2, Location::RegisterOrConstant(select->GetCondition())); // The code generator handles overlap with the values, but not with the condition. locations->SetOut(Location::SameAsFirstInput()); } else if (is_floating_point) { locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } else { if (!locations->InAt(1).IsConstant()) { locations->SetInAt(0, Arm8BitEncodableConstantOrRegister(select->GetFalseValue())); } locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } void InstructionCodeGeneratorARMVIXL::VisitSelect(HSelect* select) { HInstruction* const condition = select->GetCondition(); const LocationSummary* const locations = select->GetLocations(); const DataType::Type type = select->GetType(); const Location first = locations->InAt(0); const Location out = locations->Out(); const Location second = locations->InAt(1); // In the unlucky case the output of this instruction overlaps // with an input of an "emitted-at-use-site" condition, and // the output of this instruction is not one of its inputs, we'll // need to fallback to branches instead of conditional ARM instructions. bool output_overlaps_with_condition_inputs = !IsBooleanValueOrMaterializedCondition(condition) && !out.Equals(first) && !out.Equals(second) && (condition->GetLocations()->InAt(0).Equals(out) || condition->GetLocations()->InAt(1).Equals(out)); DCHECK(!output_overlaps_with_condition_inputs || condition->IsCondition()); Location src; if (condition->IsIntConstant()) { if (condition->AsIntConstant()->IsFalse()) { src = first; } else { src = second; } codegen_->MoveLocation(out, src, type); return; } if (!DataType::IsFloatingPointType(type) && !output_overlaps_with_condition_inputs) { bool invert = false; if (out.Equals(second)) { src = first; invert = true; } else if (out.Equals(first)) { src = second; } else if (second.IsConstant()) { DCHECK(CanEncodeConstantAs8BitImmediate(second.GetConstant())); src = second; } else if (first.IsConstant()) { DCHECK(CanEncodeConstantAs8BitImmediate(first.GetConstant())); src = first; invert = true; } else { src = second; } if (CanGenerateConditionalMove(out, src)) { if (!out.Equals(first) && !out.Equals(second)) { codegen_->MoveLocation(out, src.Equals(first) ? second : first, type); } std::pair cond(eq, ne); if (IsBooleanValueOrMaterializedCondition(condition)) { __ Cmp(InputRegisterAt(select, 2), 0); cond = invert ? std::make_pair(eq, ne) : std::make_pair(ne, eq); } else { cond = GenerateTest(condition->AsCondition(), invert, codegen_); } const size_t instr_count = out.IsRegisterPair() ? 4 : 2; // We use the scope because of the IT block that follows. ExactAssemblyScope guard(GetVIXLAssembler(), instr_count * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); if (out.IsRegister()) { __ it(cond.first); __ mov(cond.first, RegisterFrom(out), OperandFrom(src, type)); } else { DCHECK(out.IsRegisterPair()); Operand operand_high(0); Operand operand_low(0); if (src.IsConstant()) { const int64_t value = Int64ConstantFrom(src); operand_high = High32Bits(value); operand_low = Low32Bits(value); } else { DCHECK(src.IsRegisterPair()); operand_high = HighRegisterFrom(src); operand_low = LowRegisterFrom(src); } __ it(cond.first); __ mov(cond.first, LowRegisterFrom(out), operand_low); __ it(cond.first); __ mov(cond.first, HighRegisterFrom(out), operand_high); } return; } } vixl32::Label* false_target = nullptr; vixl32::Label* true_target = nullptr; vixl32::Label select_end; vixl32::Label other_case; vixl32::Label* const target = codegen_->GetFinalLabel(select, &select_end); if (out.Equals(second)) { true_target = target; src = first; } else { false_target = target; src = second; if (!out.Equals(first)) { if (output_overlaps_with_condition_inputs) { false_target = &other_case; } else { codegen_->MoveLocation(out, first, type); } } } GenerateTestAndBranch(select, 2, true_target, false_target, /* far_target= */ false); codegen_->MoveLocation(out, src, type); if (output_overlaps_with_condition_inputs) { __ B(target); __ Bind(&other_case); codegen_->MoveLocation(out, first, type); } if (select_end.IsReferenced()) { __ Bind(&select_end); } } void LocationsBuilderARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo* info) { new (GetGraph()->GetAllocator()) LocationSummary(info); } void InstructionCodeGeneratorARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo*) { // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. } void CodeGeneratorARMVIXL::IncreaseFrame(size_t adjustment) { __ Claim(adjustment); GetAssembler()->cfi().AdjustCFAOffset(adjustment); } void CodeGeneratorARMVIXL::DecreaseFrame(size_t adjustment) { __ Drop(adjustment); GetAssembler()->cfi().AdjustCFAOffset(-adjustment); } void CodeGeneratorARMVIXL::GenerateNop() { __ Nop(); } // `temp` is an extra temporary register that is used for some conditions; // callers may not specify it, in which case the method will use a scratch // register instead. void CodeGeneratorARMVIXL::GenerateConditionWithZero(IfCondition condition, vixl32::Register out, vixl32::Register in, vixl32::Register temp) { switch (condition) { case kCondEQ: // x <= 0 iff x == 0 when the comparison is unsigned. case kCondBE: if (!temp.IsValid() || (out.IsLow() && !out.Is(in))) { temp = out; } // Avoid 32-bit instructions if possible; note that `in` and `temp` must be // different as well. if (in.IsLow() && temp.IsLow() && !in.Is(temp)) { // temp = - in; only 0 sets the carry flag. __ Rsbs(temp, in, 0); if (out.Is(in)) { std::swap(in, temp); } // out = - in + in + carry = carry __ Adc(out, temp, in); } else { // If `in` is 0, then it has 32 leading zeros, and less than that otherwise. __ Clz(out, in); // Any number less than 32 logically shifted right by 5 bits results in 0; // the same operation on 32 yields 1. __ Lsr(out, out, 5); } break; case kCondNE: // x > 0 iff x != 0 when the comparison is unsigned. case kCondA: { UseScratchRegisterScope temps(GetVIXLAssembler()); if (out.Is(in)) { if (!temp.IsValid() || in.Is(temp)) { temp = temps.Acquire(); } } else if (!temp.IsValid() || !temp.IsLow()) { temp = out; } // temp = in - 1; only 0 does not set the carry flag. __ Subs(temp, in, 1); // out = in + ~temp + carry = in + (-(in - 1) - 1) + carry = in - in + 1 - 1 + carry = carry __ Sbc(out, in, temp); break; } case kCondGE: __ Mvn(out, in); in = out; FALLTHROUGH_INTENDED; case kCondLT: // We only care about the sign bit. __ Lsr(out, in, 31); break; case kCondAE: // Trivially true. __ Mov(out, 1); break; case kCondB: // Trivially false. __ Mov(out, 0); break; default: LOG(FATAL) << "Unexpected condition " << condition; UNREACHABLE(); } } void LocationsBuilderARMVIXL::HandleCondition(HCondition* cond) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cond, LocationSummary::kNoCall); const DataType::Type type = cond->InputAt(0)->GetType(); if (DataType::IsFloatingPointType(type)) { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1))); } else { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); } if (!cond->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } void InstructionCodeGeneratorARMVIXL::HandleCondition(HCondition* cond) { if (cond->IsEmittedAtUseSite()) { return; } const DataType::Type type = cond->GetLeft()->GetType(); if (DataType::IsFloatingPointType(type)) { GenerateConditionGeneric(cond, codegen_); return; } DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type; const IfCondition condition = cond->GetCondition(); // A condition with only one boolean input, or two boolean inputs without being equality or // inequality results from transformations done by the instruction simplifier, and is handled // as a regular condition with integral inputs. if (type == DataType::Type::kBool && cond->GetRight()->GetType() == DataType::Type::kBool && (condition == kCondEQ || condition == kCondNE)) { vixl32::Register left = InputRegisterAt(cond, 0); const vixl32::Register out = OutputRegister(cond); const Location right_loc = cond->GetLocations()->InAt(1); // The constant case is handled by the instruction simplifier. DCHECK(!right_loc.IsConstant()); vixl32::Register right = RegisterFrom(right_loc); // Avoid 32-bit instructions if possible. if (out.Is(right)) { std::swap(left, right); } __ Eor(out, left, right); if (condition == kCondEQ) { __ Eor(out, out, 1); } return; } GenerateConditionIntegralOrNonPrimitive(cond, codegen_); } void LocationsBuilderARMVIXL::VisitEqual(HEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARMVIXL::VisitEqual(HEqual* comp) { HandleCondition(comp); } void LocationsBuilderARMVIXL::VisitNotEqual(HNotEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARMVIXL::VisitNotEqual(HNotEqual* comp) { HandleCondition(comp); } void LocationsBuilderARMVIXL::VisitLessThan(HLessThan* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARMVIXL::VisitLessThan(HLessThan* comp) { HandleCondition(comp); } void LocationsBuilderARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARMVIXL::VisitGreaterThan(HGreaterThan* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARMVIXL::VisitGreaterThan(HGreaterThan* comp) { HandleCondition(comp); } void LocationsBuilderARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARMVIXL::VisitBelow(HBelow* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARMVIXL::VisitBelow(HBelow* comp) { HandleCondition(comp); } void LocationsBuilderARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARMVIXL::VisitAbove(HAbove* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARMVIXL::VisitAbove(HAbove* comp) { HandleCondition(comp); } void LocationsBuilderARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARMVIXL::VisitIntConstant(HIntConstant* constant) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARMVIXL::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARMVIXL::VisitNullConstant(HNullConstant* constant) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARMVIXL::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARMVIXL::VisitLongConstant(HLongConstant* constant) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARMVIXL::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARMVIXL::VisitFloatConstant(HFloatConstant* constant) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARMVIXL::VisitFloatConstant( HFloatConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARMVIXL::VisitDoubleConstant(HDoubleConstant* constant) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARMVIXL::VisitDoubleConstant( HDoubleConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARMVIXL::VisitConstructorFence(HConstructorFence* constructor_fence) { constructor_fence->SetLocations(nullptr); } void InstructionCodeGeneratorARMVIXL::VisitConstructorFence( HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); } void LocationsBuilderARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { memory_barrier->SetLocations(nullptr); } void InstructionCodeGeneratorARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); } void LocationsBuilderARMVIXL::VisitReturnVoid(HReturnVoid* ret) { ret->SetLocations(nullptr); } void InstructionCodeGeneratorARMVIXL::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { codegen_->GenerateFrameExit(); } void LocationsBuilderARMVIXL::VisitReturn(HReturn* ret) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(ret, LocationSummary::kNoCall); locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType())); } void InstructionCodeGeneratorARMVIXL::VisitReturn(HReturn* ret) { if (GetGraph()->IsCompilingOsr()) { // To simplify callers of an OSR method, we put the return value in both // floating point and core registers. switch (ret->InputAt(0)->GetType()) { case DataType::Type::kFloat32: __ Vmov(r0, s0); break; case DataType::Type::kFloat64: __ Vmov(r0, r1, d0); break; default: break; } } codegen_->GenerateFrameExit(); } void LocationsBuilderARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { // The trampoline uses the same calling convention as dex calling conventions, // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain // the method_idx. HandleInvoke(invoke); } void InstructionCodeGeneratorARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 3); } void LocationsBuilderARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { return; } if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) { CriticalNativeCallingConventionVisitorARMVIXL calling_convention_visitor( /*for_register_allocation=*/ true); CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); } else { HandleInvoke(invoke); } } static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARMVIXL* codegen) { if (invoke->GetLocations()->Intrinsified()) { IntrinsicCodeGeneratorARMVIXL intrinsic(codegen); intrinsic.Dispatch(invoke); return true; } return false; } void InstructionCodeGeneratorARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); if (TryGenerateIntrinsicCode(invoke, codegen_)) { codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 4); return; } LocationSummary* locations = invoke->GetLocations(); codegen_->GenerateStaticOrDirectCall( invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 5); } void LocationsBuilderARMVIXL::HandleInvoke(HInvoke* invoke) { InvokeDexCallingConventionVisitorARMVIXL calling_convention_visitor; CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); } void LocationsBuilderARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) { IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } void InstructionCodeGeneratorARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) { if (TryGenerateIntrinsicCode(invoke, codegen_)) { codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 6); return; } codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); DCHECK(!codegen_->IsLeafMethod()); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 7); } void LocationsBuilderARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) { HandleInvoke(invoke); // Add the hidden argument. if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) { // We cannot request r12 as it's blocked by the register allocator. invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any()); } } void CodeGeneratorARMVIXL::MaybeGenerateInlineCacheCheck(HInstruction* instruction, vixl32::Register klass) { DCHECK_EQ(r0.GetCode(), klass.GetCode()); // We know the destination of an intrinsic, so no need to record inline // caches. if (!instruction->GetLocations()->Intrinsified() && GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) { DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke()); ScopedProfilingInfoUse spiu( Runtime::Current()->GetJit(), GetGraph()->GetArtMethod(), Thread::Current()); ProfilingInfo* info = spiu.GetProfilingInfo(); if (info != nullptr) { InlineCache* cache = info->GetInlineCache(instruction->GetDexPc()); uint32_t address = reinterpret_cast32(cache); vixl32::Label done; UseScratchRegisterScope temps(GetVIXLAssembler()); temps.Exclude(ip); __ Mov(r4, address); __ Ldr(ip, MemOperand(r4, InlineCache::ClassesOffset().Int32Value())); // Fast path for a monomorphic cache. __ Cmp(klass, ip); __ B(eq, &done, /* is_far_target= */ false); InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc()); __ Bind(&done); } } } void InstructionCodeGeneratorARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) { // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. LocationSummary* locations = invoke->GetLocations(); vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); Location receiver = locations->InAt(0); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); DCHECK(!receiver.IsStackSlot()); // Ensure the pc position is recorded immediately after the `ldr` instruction. { ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); // /* HeapReference */ temp = receiver->klass_ __ ldr(temp, MemOperand(RegisterFrom(receiver), class_offset)); codegen_->MaybeRecordImplicitNullCheck(invoke); } // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // However this is not required in practice, as this is an // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). GetAssembler()->MaybeUnpoisonHeapReference(temp); // If we're compiling baseline, update the inline cache. codegen_->MaybeGenerateInlineCacheCheck(invoke, temp); GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value()); uint32_t method_offset = static_cast(ImTable::OffsetOfElement( invoke->GetImtIndex(), kArmPointerSize)); // temp = temp->GetImtEntryAt(method_offset); GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset); uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value(); // LR = temp->GetEntryPoint(); GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point); { // Set the hidden (in r12) argument. It is done here, right before a BLX to prevent other // instruction from clobbering it as they might use r12 as a scratch register. Location hidden_reg = Location::RegisterLocation(r12.GetCode()); // The VIXL macro assembler may clobber any of the scratch registers that are available to it, // so it checks if the application is using them (by passing them to the macro assembler // methods). The following application of UseScratchRegisterScope corrects VIXL's notion of // what is available, and is the opposite of the standard usage: Instead of requesting a // temporary location, it imposes an external constraint (i.e. a specific register is reserved // for the hidden argument). Note that this works even if VIXL needs a scratch register itself // (to materialize the constant), since the destination register becomes available for such use // internally for the duration of the macro instruction. UseScratchRegisterScope temps(GetVIXLAssembler()); temps.Exclude(RegisterFrom(hidden_reg)); if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) { Location current_method = locations->InAt(invoke->GetNumberOfArguments() - 1); if (current_method.IsStackSlot()) { GetAssembler()->LoadFromOffset( kLoadWord, RegisterFrom(hidden_reg), sp, current_method.GetStackIndex()); } else { __ Mov(RegisterFrom(hidden_reg), RegisterFrom(current_method)); } } else if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) { // We pass the method from the IMT in case of a conflict. This will ensure // we go into the runtime to resolve the actual method. CHECK_NE(temp.GetCode(), lr.GetCode()); __ Mov(RegisterFrom(hidden_reg), temp); } else { codegen_->LoadMethod(invoke->GetHiddenArgumentLoadKind(), hidden_reg, invoke); } } { // Ensure the pc position is recorded immediately after the `blx` instruction. // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used. ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); // LR(); __ blx(lr); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); DCHECK(!codegen_->IsLeafMethod()); } codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 8); } void LocationsBuilderARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } void InstructionCodeGeneratorARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { if (TryGenerateIntrinsicCode(invoke, codegen_)) { codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 9); return; } codegen_->GenerateInvokePolymorphicCall(invoke); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 10); } void LocationsBuilderARMVIXL::VisitInvokeCustom(HInvokeCustom* invoke) { HandleInvoke(invoke); } void InstructionCodeGeneratorARMVIXL::VisitInvokeCustom(HInvokeCustom* invoke) { codegen_->GenerateInvokeCustomCall(invoke); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 11); } void LocationsBuilderARMVIXL::VisitNeg(HNeg* neg) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall); switch (neg->GetResultType()) { case DataType::Type::kInt32: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case DataType::Type::kInt64: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void InstructionCodeGeneratorARMVIXL::VisitNeg(HNeg* neg) { LocationSummary* locations = neg->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); switch (neg->GetResultType()) { case DataType::Type::kInt32: __ Rsb(OutputRegister(neg), InputRegisterAt(neg, 0), 0); break; case DataType::Type::kInt64: // out.lo = 0 - in.lo (and update the carry/borrow (C) flag) __ Rsbs(LowRegisterFrom(out), LowRegisterFrom(in), 0); // We cannot emit an RSC (Reverse Subtract with Carry) // instruction here, as it does not exist in the Thumb-2 // instruction set. We use the following approach // using SBC and SUB instead. // // out.hi = -C __ Sbc(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(out)); // out.hi = out.hi - in.hi __ Sub(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(in)); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ Vneg(OutputVRegister(neg), InputVRegister(neg)); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void LocationsBuilderARMVIXL::VisitTypeConversion(HTypeConversion* conversion) { DataType::Type result_type = conversion->GetResultType(); DataType::Type input_type = conversion->GetInputType(); DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) << input_type << " -> " << result_type; // The float-to-long, double-to-long and long-to-float type conversions // rely on a call to the runtime. LocationSummary::CallKind call_kind = (((input_type == DataType::Type::kFloat32 || input_type == DataType::Type::kFloat64) && result_type == DataType::Type::kInt64) || (input_type == DataType::Type::kInt64 && result_type == DataType::Type::kFloat32)) ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(conversion, call_kind); switch (result_type) { case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK(DataType::IsIntegralType(input_type)) << input_type; locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case DataType::Type::kInt32: switch (input_type) { case DataType::Type::kInt64: locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case DataType::Type::kFloat32: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case DataType::Type::kInt64: switch (input_type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case DataType::Type::kFloat32: { InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(LocationFrom(r0, r1)); break; } case DataType::Type::kFloat64: { InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1))); locations->SetOut(LocationFrom(r0, r1)); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case DataType::Type::kFloat32: switch (input_type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case DataType::Type::kInt64: { InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); locations->SetOut(LocationFrom(calling_convention.GetFpuRegisterAt(0))); break; } case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case DataType::Type::kFloat64: switch (input_type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case DataType::Type::kFloat32: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void InstructionCodeGeneratorARMVIXL::VisitTypeConversion(HTypeConversion* conversion) { LocationSummary* locations = conversion->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); DataType::Type result_type = conversion->GetResultType(); DataType::Type input_type = conversion->GetInputType(); DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) << input_type << " -> " << result_type; switch (result_type) { case DataType::Type::kUint8: switch (input_type) { case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8); break; case DataType::Type::kInt64: __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case DataType::Type::kInt8: switch (input_type) { case DataType::Type::kUint8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8); break; case DataType::Type::kInt64: __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case DataType::Type::kUint16: switch (input_type) { case DataType::Type::kInt8: case DataType::Type::kInt16: case DataType::Type::kInt32: __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16); break; case DataType::Type::kInt64: __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case DataType::Type::kInt16: switch (input_type) { case DataType::Type::kUint16: case DataType::Type::kInt32: __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16); break; case DataType::Type::kInt64: __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case DataType::Type::kInt32: switch (input_type) { case DataType::Type::kInt64: DCHECK(out.IsRegister()); if (in.IsRegisterPair()) { __ Mov(OutputRegister(conversion), LowRegisterFrom(in)); } else if (in.IsDoubleStackSlot()) { GetAssembler()->LoadFromOffset(kLoadWord, OutputRegister(conversion), sp, in.GetStackIndex()); } else { DCHECK(in.IsConstant()); DCHECK(in.GetConstant()->IsLongConstant()); int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); __ Mov(OutputRegister(conversion), static_cast(value)); } break; case DataType::Type::kFloat32: { vixl32::SRegister temp = LowSRegisterFrom(locations->GetTemp(0)); __ Vcvt(S32, F32, temp, InputSRegisterAt(conversion, 0)); __ Vmov(OutputRegister(conversion), temp); break; } case DataType::Type::kFloat64: { vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0)); __ Vcvt(S32, F64, temp_s, DRegisterFrom(in)); __ Vmov(OutputRegister(conversion), temp_s); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case DataType::Type::kInt64: switch (input_type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: DCHECK(out.IsRegisterPair()); DCHECK(in.IsRegister()); __ Mov(LowRegisterFrom(out), InputRegisterAt(conversion, 0)); // Sign extension. __ Asr(HighRegisterFrom(out), LowRegisterFrom(out), 31); break; case DataType::Type::kFloat32: codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc()); CheckEntrypointTypes(); break; case DataType::Type::kFloat64: codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc()); CheckEntrypointTypes(); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case DataType::Type::kFloat32: switch (input_type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: __ Vmov(OutputSRegister(conversion), InputRegisterAt(conversion, 0)); __ Vcvt(F32, S32, OutputSRegister(conversion), OutputSRegister(conversion)); break; case DataType::Type::kInt64: codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc()); CheckEntrypointTypes(); break; case DataType::Type::kFloat64: __ Vcvt(F32, F64, OutputSRegister(conversion), DRegisterFrom(in)); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case DataType::Type::kFloat64: switch (input_type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: __ Vmov(LowSRegisterFrom(out), InputRegisterAt(conversion, 0)); __ Vcvt(F64, S32, DRegisterFrom(out), LowSRegisterFrom(out)); break; case DataType::Type::kInt64: { vixl32::Register low = LowRegisterFrom(in); vixl32::Register high = HighRegisterFrom(in); vixl32::SRegister out_s = LowSRegisterFrom(out); vixl32::DRegister out_d = DRegisterFrom(out); vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0)); vixl32::DRegister temp_d = DRegisterFrom(locations->GetTemp(0)); vixl32::DRegister constant_d = DRegisterFrom(locations->GetTemp(1)); // temp_d = int-to-double(high) __ Vmov(temp_s, high); __ Vcvt(F64, S32, temp_d, temp_s); // constant_d = k2Pow32EncodingForDouble __ Vmov(constant_d, bit_cast(k2Pow32EncodingForDouble)); // out_d = unsigned-to-double(low) __ Vmov(out_s, low); __ Vcvt(F64, U32, out_d, out_s); // out_d += temp_d * constant_d __ Vmla(F64, out_d, temp_d, constant_d); break; } case DataType::Type::kFloat32: __ Vcvt(F64, F32, DRegisterFrom(out), InputSRegisterAt(conversion, 0)); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void LocationsBuilderARMVIXL::VisitAdd(HAdd* add) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(add, LocationSummary::kNoCall); switch (add->GetResultType()) { case DataType::Type::kInt32: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case DataType::Type::kInt64: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void InstructionCodeGeneratorARMVIXL::VisitAdd(HAdd* add) { LocationSummary* locations = add->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (add->GetResultType()) { case DataType::Type::kInt32: { __ Add(OutputRegister(add), InputRegisterAt(add, 0), InputOperandAt(add, 1)); } break; case DataType::Type::kInt64: { if (second.IsConstant()) { uint64_t value = static_cast(Int64FromConstant(second.GetConstant())); GenerateAddLongConst(out, first, value); } else { DCHECK(second.IsRegisterPair()); __ Adds(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second)); __ Adc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second)); } break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ Vadd(OutputVRegister(add), InputVRegisterAt(add, 0), InputVRegisterAt(add, 1)); break; default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void LocationsBuilderARMVIXL::VisitSub(HSub* sub) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(sub, LocationSummary::kNoCall); switch (sub->GetResultType()) { case DataType::Type::kInt32: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case DataType::Type::kInt64: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void InstructionCodeGeneratorARMVIXL::VisitSub(HSub* sub) { LocationSummary* locations = sub->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (sub->GetResultType()) { case DataType::Type::kInt32: { __ Sub(OutputRegister(sub), InputRegisterAt(sub, 0), InputOperandAt(sub, 1)); break; } case DataType::Type::kInt64: { if (second.IsConstant()) { uint64_t value = static_cast(Int64FromConstant(second.GetConstant())); GenerateAddLongConst(out, first, -value); } else { DCHECK(second.IsRegisterPair()); __ Subs(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second)); __ Sbc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second)); } break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ Vsub(OutputVRegister(sub), InputVRegisterAt(sub, 0), InputVRegisterAt(sub, 1)); break; default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void LocationsBuilderARMVIXL::VisitMul(HMul* mul) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall); switch (mul->GetResultType()) { case DataType::Type::kInt32: case DataType::Type::kInt64: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorARMVIXL::VisitMul(HMul* mul) { LocationSummary* locations = mul->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (mul->GetResultType()) { case DataType::Type::kInt32: { __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1)); break; } case DataType::Type::kInt64: { vixl32::Register out_hi = HighRegisterFrom(out); vixl32::Register out_lo = LowRegisterFrom(out); vixl32::Register in1_hi = HighRegisterFrom(first); vixl32::Register in1_lo = LowRegisterFrom(first); vixl32::Register in2_hi = HighRegisterFrom(second); vixl32::Register in2_lo = LowRegisterFrom(second); // Extra checks to protect caused by the existence of R1_R2. // The algorithm is wrong if out.hi is either in1.lo or in2.lo: // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2); DCHECK(!out_hi.Is(in1_lo)); DCHECK(!out_hi.Is(in2_lo)); // input: in1 - 64 bits, in2 - 64 bits // output: out // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32] // parts: out.lo = (in1.lo * in2.lo)[31:0] UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); // temp <- in1.lo * in2.hi __ Mul(temp, in1_lo, in2_hi); // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo __ Mla(out_hi, in1_hi, in2_lo, temp); // out.lo <- (in1.lo * in2.lo)[31:0]; __ Umull(out_lo, temp, in1_lo, in2_lo); // out.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] __ Add(out_hi, out_hi, temp); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ Vmul(OutputVRegister(mul), InputVRegisterAt(mul, 0), InputVRegisterAt(mul, 1)); break; default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorARMVIXL::DivRemOneOrMinusOne(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); DCHECK(instruction->GetResultType() == DataType::Type::kInt32); Location second = instruction->GetLocations()->InAt(1); DCHECK(second.IsConstant()); vixl32::Register out = OutputRegister(instruction); vixl32::Register dividend = InputRegisterAt(instruction, 0); int32_t imm = Int32ConstantFrom(second); DCHECK(imm == 1 || imm == -1); if (instruction->IsRem()) { __ Mov(out, 0); } else { if (imm == 1) { __ Mov(out, dividend); } else { __ Rsb(out, dividend, 0); } } } void InstructionCodeGeneratorARMVIXL::DivRemByPowerOfTwo(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); DCHECK(instruction->GetResultType() == DataType::Type::kInt32); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); DCHECK(second.IsConstant()); vixl32::Register out = OutputRegister(instruction); vixl32::Register dividend = InputRegisterAt(instruction, 0); int32_t imm = Int32ConstantFrom(second); uint32_t abs_imm = static_cast(AbsOrMin(imm)); int ctz_imm = CTZ(abs_imm); auto generate_div_code = [this, imm, ctz_imm](vixl32::Register out, vixl32::Register in) { __ Asr(out, in, ctz_imm); if (imm < 0) { __ Rsb(out, out, 0); } }; if (HasNonNegativeOrMinIntInputAt(instruction, 0)) { // No need to adjust the result for non-negative dividends or the INT32_MIN dividend. // NOTE: The generated code for HDiv/HRem correctly works for the INT32_MIN dividend: // imm == 2 // HDiv // add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001 // asr out, out(0x80000001), #1 => out = 0xc0000000 // This is the same as 'asr out, dividend(0x80000000), #1' // // imm > 2 // HDiv // asr out, dividend(0x80000000), #31 => out = -1 // add out, dividend(0x80000000), out(-1), lsr #(32 - ctz_imm) => out = 0b10..01..1, // where the number of the rightmost 1s is ctz_imm. // asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the // leftmost 1s is ctz_imm + 1. // This is the same as 'asr out, dividend(0x80000000), #ctz_imm'. // // imm == INT32_MIN // HDiv // asr out, dividend(0x80000000), #31 => out = -1 // add out, dividend(0x80000000), out(-1), lsr #1 => out = 0xc0000000 // asr out, out(0xc0000000), #31 => out = -1 // rsb out, out(-1), #0 => out = 1 // This is the same as // asr out, dividend(0x80000000), #31 // rsb out, out, #0 // // // INT_MIN % imm must be 0 for any imm of power 2. 'and' and 'ubfx' work only with bits // 0..30 of a dividend. For INT32_MIN those bits are zeros. So 'and' and 'ubfx' always // produce zero. if (instruction->IsDiv()) { generate_div_code(out, dividend); } else { if (GetVIXLAssembler()->IsModifiedImmediate(abs_imm - 1)) { __ And(out, dividend, abs_imm - 1); } else { __ Ubfx(out, dividend, 0, ctz_imm); } return; } } else { vixl32::Register add_right_input = dividend; if (ctz_imm > 1) { __ Asr(out, dividend, 31); add_right_input = out; } __ Add(out, dividend, Operand(add_right_input, vixl32::LSR, 32 - ctz_imm)); if (instruction->IsDiv()) { generate_div_code(out, out); } else { __ Bfc(out, 0, ctz_imm); __ Sub(out, dividend, out); } } } void InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); DCHECK(instruction->GetResultType() == DataType::Type::kInt32); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); DCHECK(second.IsConstant()); vixl32::Register out = OutputRegister(instruction); vixl32::Register dividend = InputRegisterAt(instruction, 0); vixl32::Register temp1 = RegisterFrom(locations->GetTemp(0)); vixl32::Register temp2 = RegisterFrom(locations->GetTemp(1)); int32_t imm = Int32ConstantFrom(second); int64_t magic; int shift; CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift); auto generate_unsigned_div_code =[this, magic, shift](vixl32::Register out, vixl32::Register dividend, vixl32::Register temp1, vixl32::Register temp2) { // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed. __ Mov(temp1, static_cast(magic)); if (magic > 0 && shift == 0) { __ Smull(temp2, out, dividend, temp1); } else { __ Smull(temp2, temp1, dividend, temp1); if (magic < 0) { // The negative magic M = static_cast(m) means that the multiplier m is greater // than INT32_MAX. In such a case shift is never 0. // Proof: // m = (2^p + d - 2^p % d) / d, where p = 32 + shift, d > 2 // // If shift == 0, m = (2^32 + d - 2^32 % d) / d = // = (2^32 + d - (2^32 - (2^32 / d) * d)) / d = // = (d + (2^32 / d) * d) / d = 1 + (2^32 / d), here '/' is the integer division. // // 1 + (2^32 / d) is decreasing when d is increasing. // The maximum is 1 431 655 766, when d == 3. This value is less than INT32_MAX. // the minimum is 3, when d = 2^31 -1. // So for all values of d in [3, INT32_MAX] m with p == 32 is in [3, INT32_MAX) and // is never less than 0. __ Add(temp1, temp1, dividend); } DCHECK_NE(shift, 0); __ Lsr(out, temp1, shift); } }; if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) { // No need to adjust the result for a non-negative dividend and a positive divisor. if (instruction->IsDiv()) { generate_unsigned_div_code(out, dividend, temp1, temp2); } else { generate_unsigned_div_code(temp1, dividend, temp1, temp2); __ Mov(temp2, imm); __ Mls(out, temp1, temp2, dividend); } } else { // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed. __ Mov(temp1, static_cast(magic)); __ Smull(temp2, temp1, dividend, temp1); if (imm > 0 && magic < 0) { __ Add(temp1, temp1, dividend); } else if (imm < 0 && magic > 0) { __ Sub(temp1, temp1, dividend); } if (shift != 0) { __ Asr(temp1, temp1, shift); } if (instruction->IsDiv()) { __ Sub(out, temp1, Operand(temp1, vixl32::Shift(ASR), 31)); } else { __ Sub(temp1, temp1, Operand(temp1, vixl32::Shift(ASR), 31)); // TODO: Strength reduction for mls. __ Mov(temp2, imm); __ Mls(out, temp1, temp2, dividend); } } } void InstructionCodeGeneratorARMVIXL::GenerateDivRemConstantIntegral( HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); DCHECK(instruction->GetResultType() == DataType::Type::kInt32); Location second = instruction->GetLocations()->InAt(1); DCHECK(second.IsConstant()); int32_t imm = Int32ConstantFrom(second); if (imm == 0) { // Do not generate anything. DivZeroCheck would prevent any code to be executed. } else if (imm == 1 || imm == -1) { DivRemOneOrMinusOne(instruction); } else if (IsPowerOfTwo(AbsOrMin(imm))) { DivRemByPowerOfTwo(instruction); } else { DCHECK(imm <= -2 || imm >= 2); GenerateDivRemWithAnyConstant(instruction); } } void LocationsBuilderARMVIXL::VisitDiv(HDiv* div) { LocationSummary::CallKind call_kind = LocationSummary::kNoCall; if (div->GetResultType() == DataType::Type::kInt64) { // pLdiv runtime call. call_kind = LocationSummary::kCallOnMainOnly; } else if (div->GetResultType() == DataType::Type::kInt32 && div->InputAt(1)->IsConstant()) { // sdiv will be replaced by other instruction sequence. } else if (div->GetResultType() == DataType::Type::kInt32 && !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { // pIdivmod runtime call. call_kind = LocationSummary::kCallOnMainOnly; } LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, call_kind); switch (div->GetResultType()) { case DataType::Type::kInt32: { if (div->InputAt(1)->IsConstant()) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant())); int32_t value = Int32ConstantFrom(div->InputAt(1)); Location::OutputOverlap out_overlaps = Location::kNoOutputOverlap; if (value == 1 || value == 0 || value == -1) { // No temp register required. } else if (IsPowerOfTwo(AbsOrMin(value)) && value != 2 && value != -2 && !HasNonNegativeOrMinIntInputAt(div, 0)) { // The "out" register is used as a temporary, so it overlaps with the inputs. out_overlaps = Location::kOutputOverlap; } else { locations->AddRegisterTemps(2); } locations->SetOut(Location::RequiresRegister(), out_overlaps); } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } else { InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but // we only need the former. locations->SetOut(LocationFrom(r0)); } break; } case DataType::Type::kInt64: { InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom( calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); locations->SetInAt(1, LocationFrom( calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); locations->SetOut(LocationFrom(r0, r1)); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void InstructionCodeGeneratorARMVIXL::VisitDiv(HDiv* div) { Location lhs = div->GetLocations()->InAt(0); Location rhs = div->GetLocations()->InAt(1); switch (div->GetResultType()) { case DataType::Type::kInt32: { if (rhs.IsConstant()) { GenerateDivRemConstantIntegral(div); } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { __ Sdiv(OutputRegister(div), InputRegisterAt(div, 0), InputRegisterAt(div, 1)); } else { InvokeRuntimeCallingConventionARMVIXL calling_convention; DCHECK(calling_convention.GetRegisterAt(0).Is(RegisterFrom(lhs))); DCHECK(calling_convention.GetRegisterAt(1).Is(RegisterFrom(rhs))); DCHECK(r0.Is(OutputRegister(div))); codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc()); CheckEntrypointTypes(); } break; } case DataType::Type::kInt64: { InvokeRuntimeCallingConventionARMVIXL calling_convention; DCHECK(calling_convention.GetRegisterAt(0).Is(LowRegisterFrom(lhs))); DCHECK(calling_convention.GetRegisterAt(1).Is(HighRegisterFrom(lhs))); DCHECK(calling_convention.GetRegisterAt(2).Is(LowRegisterFrom(rhs))); DCHECK(calling_convention.GetRegisterAt(3).Is(HighRegisterFrom(rhs))); DCHECK(LowRegisterFrom(div->GetLocations()->Out()).Is(r0)); DCHECK(HighRegisterFrom(div->GetLocations()->Out()).Is(r1)); codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc()); CheckEntrypointTypes(); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ Vdiv(OutputVRegister(div), InputVRegisterAt(div, 0), InputVRegisterAt(div, 1)); break; default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void LocationsBuilderARMVIXL::VisitRem(HRem* rem) { DataType::Type type = rem->GetResultType(); // Most remainders are implemented in the runtime. LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly; if (rem->GetResultType() == DataType::Type::kInt32 && rem->InputAt(1)->IsConstant()) { // sdiv will be replaced by other instruction sequence. call_kind = LocationSummary::kNoCall; } else if ((rem->GetResultType() == DataType::Type::kInt32) && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { // Have hardware divide instruction for int, do it with three instructions. call_kind = LocationSummary::kNoCall; } LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind); switch (type) { case DataType::Type::kInt32: { if (rem->InputAt(1)->IsConstant()) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant())); int32_t value = Int32ConstantFrom(rem->InputAt(1)); Location::OutputOverlap out_overlaps = Location::kNoOutputOverlap; if (value == 1 || value == 0 || value == -1) { // No temp register required. } else if (IsPowerOfTwo(AbsOrMin(value)) && !HasNonNegativeOrMinIntInputAt(rem, 0)) { // The "out" register is used as a temporary, so it overlaps with the inputs. out_overlaps = Location::kOutputOverlap; } else { locations->AddRegisterTemps(2); } locations->SetOut(Location::RequiresRegister(), out_overlaps); } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); locations->AddTemp(Location::RequiresRegister()); } else { InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but // we only need the latter. locations->SetOut(LocationFrom(r1)); } break; } case DataType::Type::kInt64: { InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom( calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); locations->SetInAt(1, LocationFrom( calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); // The runtime helper puts the output in R2,R3. locations->SetOut(LocationFrom(r2, r3)); break; } case DataType::Type::kFloat32: { InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1))); locations->SetOut(LocationFrom(s0)); break; } case DataType::Type::kFloat64: { InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom( calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1))); locations->SetInAt(1, LocationFrom( calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3))); locations->SetOut(LocationFrom(s0, s1)); break; } default: LOG(FATAL) << "Unexpected rem type " << type; } } void InstructionCodeGeneratorARMVIXL::VisitRem(HRem* rem) { LocationSummary* locations = rem->GetLocations(); Location second = locations->InAt(1); DataType::Type type = rem->GetResultType(); switch (type) { case DataType::Type::kInt32: { vixl32::Register reg1 = InputRegisterAt(rem, 0); vixl32::Register out_reg = OutputRegister(rem); if (second.IsConstant()) { GenerateDivRemConstantIntegral(rem); } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { vixl32::Register reg2 = RegisterFrom(second); vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); // temp = reg1 / reg2 (integer division) // dest = reg1 - temp * reg2 __ Sdiv(temp, reg1, reg2); __ Mls(out_reg, temp, reg2, reg1); } else { InvokeRuntimeCallingConventionARMVIXL calling_convention; DCHECK(reg1.Is(calling_convention.GetRegisterAt(0))); DCHECK(RegisterFrom(second).Is(calling_convention.GetRegisterAt(1))); DCHECK(out_reg.Is(r1)); codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc()); CheckEntrypointTypes(); } break; } case DataType::Type::kInt64: { codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc()); CheckEntrypointTypes(); break; } case DataType::Type::kFloat32: { codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc()); CheckEntrypointTypes(); break; } case DataType::Type::kFloat64: { codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc()); CheckEntrypointTypes(); break; } default: LOG(FATAL) << "Unexpected rem type " << type; } } static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) { LocationSummary* locations = new (allocator) LocationSummary(minmax); switch (minmax->GetResultType()) { case DataType::Type::kInt32: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); break; case DataType::Type::kFloat32: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); break; case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); break; default: LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType(); } } void InstructionCodeGeneratorARMVIXL::GenerateMinMaxInt(LocationSummary* locations, bool is_min) { Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); Location out_loc = locations->Out(); vixl32::Register op1 = RegisterFrom(op1_loc); vixl32::Register op2 = RegisterFrom(op2_loc); vixl32::Register out = RegisterFrom(out_loc); __ Cmp(op1, op2); { ExactAssemblyScope aas(GetVIXLAssembler(), 3 * kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ ite(is_min ? lt : gt); __ mov(is_min ? lt : gt, out, op1); __ mov(is_min ? ge : le, out, op2); } } void InstructionCodeGeneratorARMVIXL::GenerateMinMaxLong(LocationSummary* locations, bool is_min) { Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); Location out_loc = locations->Out(); // Optimization: don't generate any code if inputs are the same. if (op1_loc.Equals(op2_loc)) { DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in location builder. return; } vixl32::Register op1_lo = LowRegisterFrom(op1_loc); vixl32::Register op1_hi = HighRegisterFrom(op1_loc); vixl32::Register op2_lo = LowRegisterFrom(op2_loc); vixl32::Register op2_hi = HighRegisterFrom(op2_loc); vixl32::Register out_lo = LowRegisterFrom(out_loc); vixl32::Register out_hi = HighRegisterFrom(out_loc); UseScratchRegisterScope temps(GetVIXLAssembler()); const vixl32::Register temp = temps.Acquire(); DCHECK(op1_lo.Is(out_lo)); DCHECK(op1_hi.Is(out_hi)); // Compare op1 >= op2, or op1 < op2. __ Cmp(out_lo, op2_lo); __ Sbcs(temp, out_hi, op2_hi); // Now GE/LT condition code is correct for the long comparison. { vixl32::ConditionType cond = is_min ? ge : lt; ExactAssemblyScope it_scope(GetVIXLAssembler(), 3 * kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ itt(cond); __ mov(cond, out_lo, op2_lo); __ mov(cond, out_hi, op2_hi); } } void InstructionCodeGeneratorARMVIXL::GenerateMinMaxFloat(HInstruction* minmax, bool is_min) { LocationSummary* locations = minmax->GetLocations(); Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); Location out_loc = locations->Out(); // Optimization: don't generate any code if inputs are the same. if (op1_loc.Equals(op2_loc)) { DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in location builder. return; } vixl32::SRegister op1 = SRegisterFrom(op1_loc); vixl32::SRegister op2 = SRegisterFrom(op2_loc); vixl32::SRegister out = SRegisterFrom(out_loc); UseScratchRegisterScope temps(GetVIXLAssembler()); const vixl32::Register temp1 = temps.Acquire(); vixl32::Register temp2 = RegisterFrom(locations->GetTemp(0)); vixl32::Label nan, done; vixl32::Label* final_label = codegen_->GetFinalLabel(minmax, &done); DCHECK(op1.Is(out)); __ Vcmp(op1, op2); __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR); __ B(vs, &nan, /* is_far_target= */ false); // if un-ordered, go to NaN handling. // op1 <> op2 vixl32::ConditionType cond = is_min ? gt : lt; { ExactAssemblyScope it_scope(GetVIXLAssembler(), 2 * kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ it(cond); __ vmov(cond, F32, out, op2); } // for <>(not equal), we've done min/max calculation. __ B(ne, final_label, /* is_far_target= */ false); // handle op1 == op2, max(+0.0,-0.0), min(+0.0,-0.0). __ Vmov(temp1, op1); __ Vmov(temp2, op2); if (is_min) { __ Orr(temp1, temp1, temp2); } else { __ And(temp1, temp1, temp2); } __ Vmov(out, temp1); __ B(final_label); // handle NaN input. __ Bind(&nan); __ Movt(temp1, High16Bits(kNanFloat)); // 0x7FC0xxxx is a NaN. __ Vmov(out, temp1); if (done.IsReferenced()) { __ Bind(&done); } } void InstructionCodeGeneratorARMVIXL::GenerateMinMaxDouble(HInstruction* minmax, bool is_min) { LocationSummary* locations = minmax->GetLocations(); Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); Location out_loc = locations->Out(); // Optimization: don't generate any code if inputs are the same. if (op1_loc.Equals(op2_loc)) { DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in. return; } vixl32::DRegister op1 = DRegisterFrom(op1_loc); vixl32::DRegister op2 = DRegisterFrom(op2_loc); vixl32::DRegister out = DRegisterFrom(out_loc); vixl32::Label handle_nan_eq, done; vixl32::Label* final_label = codegen_->GetFinalLabel(minmax, &done); DCHECK(op1.Is(out)); __ Vcmp(op1, op2); __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR); __ B(vs, &handle_nan_eq, /* is_far_target= */ false); // if un-ordered, go to NaN handling. // op1 <> op2 vixl32::ConditionType cond = is_min ? gt : lt; { ExactAssemblyScope it_scope(GetVIXLAssembler(), 2 * kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ it(cond); __ vmov(cond, F64, out, op2); } // for <>(not equal), we've done min/max calculation. __ B(ne, final_label, /* is_far_target= */ false); // handle op1 == op2, max(+0.0,-0.0). if (!is_min) { __ Vand(F64, out, op1, op2); __ B(final_label); } // handle op1 == op2, min(+0.0,-0.0), NaN input. __ Bind(&handle_nan_eq); __ Vorr(F64, out, op1, op2); // assemble op1/-0.0/NaN. if (done.IsReferenced()) { __ Bind(&done); } } void InstructionCodeGeneratorARMVIXL::GenerateMinMax(HBinaryOperation* minmax, bool is_min) { DataType::Type type = minmax->GetResultType(); switch (type) { case DataType::Type::kInt32: GenerateMinMaxInt(minmax->GetLocations(), is_min); break; case DataType::Type::kInt64: GenerateMinMaxLong(minmax->GetLocations(), is_min); break; case DataType::Type::kFloat32: GenerateMinMaxFloat(minmax, is_min); break; case DataType::Type::kFloat64: GenerateMinMaxDouble(minmax, is_min); break; default: LOG(FATAL) << "Unexpected type for HMinMax " << type; } } void LocationsBuilderARMVIXL::VisitMin(HMin* min) { CreateMinMaxLocations(GetGraph()->GetAllocator(), min); } void InstructionCodeGeneratorARMVIXL::VisitMin(HMin* min) { GenerateMinMax(min, /*is_min*/ true); } void LocationsBuilderARMVIXL::VisitMax(HMax* max) { CreateMinMaxLocations(GetGraph()->GetAllocator(), max); } void InstructionCodeGeneratorARMVIXL::VisitMax(HMax* max) { GenerateMinMax(max, /*is_min*/ false); } void LocationsBuilderARMVIXL::VisitAbs(HAbs* abs) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs); switch (abs->GetResultType()) { case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); locations->AddTemp(Location::RequiresRegister()); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType(); } } void InstructionCodeGeneratorARMVIXL::VisitAbs(HAbs* abs) { LocationSummary* locations = abs->GetLocations(); switch (abs->GetResultType()) { case DataType::Type::kInt32: { vixl32::Register in_reg = RegisterFrom(locations->InAt(0)); vixl32::Register out_reg = RegisterFrom(locations->Out()); vixl32::Register mask = RegisterFrom(locations->GetTemp(0)); __ Asr(mask, in_reg, 31); __ Add(out_reg, in_reg, mask); __ Eor(out_reg, out_reg, mask); break; } case DataType::Type::kInt64: { Location in = locations->InAt(0); vixl32::Register in_reg_lo = LowRegisterFrom(in); vixl32::Register in_reg_hi = HighRegisterFrom(in); Location output = locations->Out(); vixl32::Register out_reg_lo = LowRegisterFrom(output); vixl32::Register out_reg_hi = HighRegisterFrom(output); DCHECK(!out_reg_lo.Is(in_reg_hi)) << "Diagonal overlap unexpected."; vixl32::Register mask = RegisterFrom(locations->GetTemp(0)); __ Asr(mask, in_reg_hi, 31); __ Adds(out_reg_lo, in_reg_lo, mask); __ Adc(out_reg_hi, in_reg_hi, mask); __ Eor(out_reg_lo, out_reg_lo, mask); __ Eor(out_reg_hi, out_reg_hi, mask); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: __ Vabs(OutputVRegister(abs), InputVRegisterAt(abs, 0)); break; default: LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType(); } } void LocationsBuilderARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) { LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); } void InstructionCodeGeneratorARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) { DivZeroCheckSlowPathARMVIXL* slow_path = new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARMVIXL(instruction); codegen_->AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location value = locations->InAt(0); switch (instruction->GetType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: { if (value.IsRegister()) { __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel()); } else { DCHECK(value.IsConstant()) << value; if (Int32ConstantFrom(value) == 0) { __ B(slow_path->GetEntryLabel()); } } break; } case DataType::Type::kInt64: { if (value.IsRegisterPair()) { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Orrs(temp, LowRegisterFrom(value), HighRegisterFrom(value)); __ B(eq, slow_path->GetEntryLabel()); } else { DCHECK(value.IsConstant()) << value; if (Int64ConstantFrom(value) == 0) { __ B(slow_path->GetEntryLabel()); } } break; } default: LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); } } void InstructionCodeGeneratorARMVIXL::HandleIntegerRotate(HRor* ror) { LocationSummary* locations = ror->GetLocations(); vixl32::Register in = InputRegisterAt(ror, 0); Location rhs = locations->InAt(1); vixl32::Register out = OutputRegister(ror); if (rhs.IsConstant()) { // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31], // so map all rotations to a +ve. equivalent in that range. // (e.g. left *or* right by -2 bits == 30 bits in the same direction.) uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F; if (rot) { // Rotate, mapping left rotations to right equivalents if necessary. // (e.g. left by 2 bits == right by 30.) __ Ror(out, in, rot); } else if (!out.Is(in)) { __ Mov(out, in); } } else { __ Ror(out, in, RegisterFrom(rhs)); } } // Gain some speed by mapping all Long rotates onto equivalent pairs of Integer // rotates by swapping input regs (effectively rotating by the first 32-bits of // a larger rotation) or flipping direction (thus treating larger right/left // rotations as sub-word sized rotations in the other direction) as appropriate. void InstructionCodeGeneratorARMVIXL::HandleLongRotate(HRor* ror) { LocationSummary* locations = ror->GetLocations(); vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0)); vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0)); Location rhs = locations->InAt(1); vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out()); vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out()); if (rhs.IsConstant()) { uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant()); // Map all rotations to +ve. equivalents on the interval [0,63]. rot &= kMaxLongShiftDistance; // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate // logic below to a simple pair of binary orr. // (e.g. 34 bits == in_reg swap + 2 bits right.) if (rot >= kArmBitsPerWord) { rot -= kArmBitsPerWord; std::swap(in_reg_hi, in_reg_lo); } // Rotate, or mov to out for zero or word size rotations. if (rot != 0u) { __ Lsr(out_reg_hi, in_reg_hi, Operand::From(rot)); __ Orr(out_reg_hi, out_reg_hi, Operand(in_reg_lo, ShiftType::LSL, kArmBitsPerWord - rot)); __ Lsr(out_reg_lo, in_reg_lo, Operand::From(rot)); __ Orr(out_reg_lo, out_reg_lo, Operand(in_reg_hi, ShiftType::LSL, kArmBitsPerWord - rot)); } else { __ Mov(out_reg_lo, in_reg_lo); __ Mov(out_reg_hi, in_reg_hi); } } else { vixl32::Register shift_right = RegisterFrom(locations->GetTemp(0)); vixl32::Register shift_left = RegisterFrom(locations->GetTemp(1)); vixl32::Label end; vixl32::Label shift_by_32_plus_shift_right; vixl32::Label* final_label = codegen_->GetFinalLabel(ror, &end); __ And(shift_right, RegisterFrom(rhs), 0x1F); __ Lsrs(shift_left, RegisterFrom(rhs), 6); __ Rsb(LeaveFlags, shift_left, shift_right, Operand::From(kArmBitsPerWord)); __ B(cc, &shift_by_32_plus_shift_right, /* is_far_target= */ false); // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right). // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right). __ Lsl(out_reg_hi, in_reg_hi, shift_left); __ Lsr(out_reg_lo, in_reg_lo, shift_right); __ Add(out_reg_hi, out_reg_hi, out_reg_lo); __ Lsl(out_reg_lo, in_reg_lo, shift_left); __ Lsr(shift_left, in_reg_hi, shift_right); __ Add(out_reg_lo, out_reg_lo, shift_left); __ B(final_label); __ Bind(&shift_by_32_plus_shift_right); // Shift by 32+shift_right. // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left). // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left). __ Lsr(out_reg_hi, in_reg_hi, shift_right); __ Lsl(out_reg_lo, in_reg_lo, shift_left); __ Add(out_reg_hi, out_reg_hi, out_reg_lo); __ Lsr(out_reg_lo, in_reg_lo, shift_right); __ Lsl(shift_right, in_reg_hi, shift_left); __ Add(out_reg_lo, out_reg_lo, shift_right); if (end.IsReferenced()) { __ Bind(&end); } } } void LocationsBuilderARMVIXL::VisitRor(HRor* ror) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(ror, LocationSummary::kNoCall); switch (ror->GetResultType()) { case DataType::Type::kInt32: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case DataType::Type::kInt64: { locations->SetInAt(0, Location::RequiresRegister()); if (ror->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant())); } else { locations->SetInAt(1, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; } default: LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); } } void InstructionCodeGeneratorARMVIXL::VisitRor(HRor* ror) { DataType::Type type = ror->GetResultType(); switch (type) { case DataType::Type::kInt32: { HandleIntegerRotate(ror); break; } case DataType::Type::kInt64: { HandleLongRotate(ror); break; } default: LOG(FATAL) << "Unexpected operation type " << type; UNREACHABLE(); } } void LocationsBuilderARMVIXL::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(op, LocationSummary::kNoCall); switch (op->GetResultType()) { case DataType::Type::kInt32: { locations->SetInAt(0, Location::RequiresRegister()); if (op->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant())); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } else { locations->SetInAt(1, Location::RequiresRegister()); // Make the output overlap, as it will be used to hold the masked // second input. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } break; } case DataType::Type::kInt64: { locations->SetInAt(0, Location::RequiresRegister()); if (op->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant())); // For simplicity, use kOutputOverlap even though we only require that low registers // don't clash with high registers which the register allocator currently guarantees. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } else { locations->SetInAt(1, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } break; } default: LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); } } void InstructionCodeGeneratorARMVIXL::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = op->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); DataType::Type type = op->GetResultType(); switch (type) { case DataType::Type::kInt32: { vixl32::Register out_reg = OutputRegister(op); vixl32::Register first_reg = InputRegisterAt(op, 0); if (second.IsRegister()) { vixl32::Register second_reg = RegisterFrom(second); // ARM doesn't mask the shift count so we need to do it ourselves. __ And(out_reg, second_reg, kMaxIntShiftDistance); if (op->IsShl()) { __ Lsl(out_reg, first_reg, out_reg); } else if (op->IsShr()) { __ Asr(out_reg, first_reg, out_reg); } else { __ Lsr(out_reg, first_reg, out_reg); } } else { int32_t cst = Int32ConstantFrom(second); uint32_t shift_value = cst & kMaxIntShiftDistance; if (shift_value == 0) { // ARM does not support shifting with 0 immediate. __ Mov(out_reg, first_reg); } else if (op->IsShl()) { __ Lsl(out_reg, first_reg, shift_value); } else if (op->IsShr()) { __ Asr(out_reg, first_reg, shift_value); } else { __ Lsr(out_reg, first_reg, shift_value); } } break; } case DataType::Type::kInt64: { vixl32::Register o_h = HighRegisterFrom(out); vixl32::Register o_l = LowRegisterFrom(out); vixl32::Register high = HighRegisterFrom(first); vixl32::Register low = LowRegisterFrom(first); if (second.IsRegister()) { vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); vixl32::Register second_reg = RegisterFrom(second); if (op->IsShl()) { __ And(o_l, second_reg, kMaxLongShiftDistance); // Shift the high part __ Lsl(o_h, high, o_l); // Shift the low part and `or` what overflew on the high part __ Rsb(temp, o_l, Operand::From(kArmBitsPerWord)); __ Lsr(temp, low, temp); __ Orr(o_h, o_h, temp); // If the shift is > 32 bits, override the high part __ Subs(temp, o_l, Operand::From(kArmBitsPerWord)); { ExactAssemblyScope guard(GetVIXLAssembler(), 2 * vixl32::kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ it(pl); __ lsl(pl, o_h, low, temp); } // Shift the low part __ Lsl(o_l, low, o_l); } else if (op->IsShr()) { __ And(o_h, second_reg, kMaxLongShiftDistance); // Shift the low part __ Lsr(o_l, low, o_h); // Shift the high part and `or` what underflew on the low part __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord)); __ Lsl(temp, high, temp); __ Orr(o_l, o_l, temp); // If the shift is > 32 bits, override the low part __ Subs(temp, o_h, Operand::From(kArmBitsPerWord)); { ExactAssemblyScope guard(GetVIXLAssembler(), 2 * vixl32::kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ it(pl); __ asr(pl, o_l, high, temp); } // Shift the high part __ Asr(o_h, high, o_h); } else { __ And(o_h, second_reg, kMaxLongShiftDistance); // same as Shr except we use `Lsr`s and not `Asr`s __ Lsr(o_l, low, o_h); __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord)); __ Lsl(temp, high, temp); __ Orr(o_l, o_l, temp); __ Subs(temp, o_h, Operand::From(kArmBitsPerWord)); { ExactAssemblyScope guard(GetVIXLAssembler(), 2 * vixl32::kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ it(pl); __ lsr(pl, o_l, high, temp); } __ Lsr(o_h, high, o_h); } } else { // Register allocator doesn't create partial overlap. DCHECK(!o_l.Is(high)); DCHECK(!o_h.Is(low)); int32_t cst = Int32ConstantFrom(second); uint32_t shift_value = cst & kMaxLongShiftDistance; if (shift_value > 32) { if (op->IsShl()) { __ Lsl(o_h, low, shift_value - 32); __ Mov(o_l, 0); } else if (op->IsShr()) { __ Asr(o_l, high, shift_value - 32); __ Asr(o_h, high, 31); } else { __ Lsr(o_l, high, shift_value - 32); __ Mov(o_h, 0); } } else if (shift_value == 32) { if (op->IsShl()) { __ Mov(o_h, low); __ Mov(o_l, 0); } else if (op->IsShr()) { __ Mov(o_l, high); __ Asr(o_h, high, 31); } else { __ Mov(o_l, high); __ Mov(o_h, 0); } } else if (shift_value == 1) { if (op->IsShl()) { __ Lsls(o_l, low, 1); __ Adc(o_h, high, high); } else if (op->IsShr()) { __ Asrs(o_h, high, 1); __ Rrx(o_l, low); } else { __ Lsrs(o_h, high, 1); __ Rrx(o_l, low); } } else if (shift_value == 0) { __ Mov(o_l, low); __ Mov(o_h, high); } else { DCHECK(0 < shift_value && shift_value < 32) << shift_value; if (op->IsShl()) { __ Lsl(o_h, high, shift_value); __ Orr(o_h, o_h, Operand(low, ShiftType::LSR, 32 - shift_value)); __ Lsl(o_l, low, shift_value); } else if (op->IsShr()) { __ Lsr(o_l, low, shift_value); __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value)); __ Asr(o_h, high, shift_value); } else { __ Lsr(o_l, low, shift_value); __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value)); __ Lsr(o_h, high, shift_value); } } } break; } default: LOG(FATAL) << "Unexpected operation type " << type; UNREACHABLE(); } } void LocationsBuilderARMVIXL::VisitShl(HShl* shl) { HandleShift(shl); } void InstructionCodeGeneratorARMVIXL::VisitShl(HShl* shl) { HandleShift(shl); } void LocationsBuilderARMVIXL::VisitShr(HShr* shr) { HandleShift(shr); } void InstructionCodeGeneratorARMVIXL::VisitShr(HShr* shr) { HandleShift(shr); } void LocationsBuilderARMVIXL::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void InstructionCodeGeneratorARMVIXL::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void LocationsBuilderARMVIXL::VisitNewInstance(HNewInstance* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetOut(LocationFrom(r0)); } void InstructionCodeGeneratorARMVIXL::VisitNewInstance(HNewInstance* instruction) { codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); CheckEntrypointTypes(); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 12); } void LocationsBuilderARMVIXL::VisitNewArray(HNewArray* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetOut(LocationFrom(r0)); locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); } void InstructionCodeGeneratorARMVIXL::VisitNewArray(HNewArray* instruction) { // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference. QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction); codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); CheckEntrypointTypes(); DCHECK(!codegen_->IsLeafMethod()); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 13); } void LocationsBuilderARMVIXL::VisitParameterValue(HParameterValue* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); if (location.IsStackSlot()) { location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } else if (location.IsDoubleStackSlot()) { location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } locations->SetOut(location); } void InstructionCodeGeneratorARMVIXL::VisitParameterValue( HParameterValue* instruction ATTRIBUTE_UNUSED) { // Nothing to do, the parameter is already at its location. } void LocationsBuilderARMVIXL::VisitCurrentMethod(HCurrentMethod* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetOut(LocationFrom(kMethodRegister)); } void InstructionCodeGeneratorARMVIXL::VisitCurrentMethod( HCurrentMethod* instruction ATTRIBUTE_UNUSED) { // Nothing to do, the method is already at its location. } void LocationsBuilderARMVIXL::VisitNot(HNot* not_) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(not_, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARMVIXL::VisitNot(HNot* not_) { LocationSummary* locations = not_->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); switch (not_->GetResultType()) { case DataType::Type::kInt32: __ Mvn(OutputRegister(not_), InputRegisterAt(not_, 0)); break; case DataType::Type::kInt64: __ Mvn(LowRegisterFrom(out), LowRegisterFrom(in)); __ Mvn(HighRegisterFrom(out), HighRegisterFrom(in)); break; default: LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); } } void LocationsBuilderARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(bool_not, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) { __ Eor(OutputRegister(bool_not), InputRegister(bool_not), 1); } void LocationsBuilderARMVIXL::VisitCompare(HCompare* compare) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall); switch (compare->InputAt(0)->GetType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Output overlaps because it is written before doing the low comparison. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1))); locations->SetOut(Location::RequiresRegister()); break; } default: LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); } } void InstructionCodeGeneratorARMVIXL::VisitCompare(HCompare* compare) { LocationSummary* locations = compare->GetLocations(); vixl32::Register out = OutputRegister(compare); Location left = locations->InAt(0); Location right = locations->InAt(1); vixl32::Label less, greater, done; vixl32::Label* final_label = codegen_->GetFinalLabel(compare, &done); DataType::Type type = compare->InputAt(0)->GetType(); vixl32::Condition less_cond = vixl32::Condition::None(); switch (type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: { // Emit move to `out` before the `Cmp`, as `Mov` might affect the status flags. __ Mov(out, 0); __ Cmp(RegisterFrom(left), RegisterFrom(right)); // Signed compare. less_cond = lt; break; } case DataType::Type::kInt64: { __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right)); // Signed compare. __ B(lt, &less, /* is_far_target= */ false); __ B(gt, &greater, /* is_far_target= */ false); // Emit move to `out` before the last `Cmp`, as `Mov` might affect the status flags. __ Mov(out, 0); __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right)); // Unsigned compare. less_cond = lo; break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: { __ Mov(out, 0); GenerateVcmp(compare, codegen_); // To branch on the FP compare result we transfer FPSCR to APSR (encoded as PC in VMRS). __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR); less_cond = ARMFPCondition(kCondLT, compare->IsGtBias()); break; } default: LOG(FATAL) << "Unexpected compare type " << type; UNREACHABLE(); } __ B(eq, final_label, /* is_far_target= */ false); __ B(less_cond, &less, /* is_far_target= */ false); __ Bind(&greater); __ Mov(out, 1); __ B(final_label); __ Bind(&less); __ Mov(out, -1); if (done.IsReferenced()) { __ Bind(&done); } } void LocationsBuilderARMVIXL::VisitPhi(HPhi* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { locations->SetInAt(i, Location::Any()); } locations->SetOut(Location::Any()); } void InstructionCodeGeneratorARMVIXL::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { LOG(FATAL) << "Unreachable"; } void CodeGeneratorARMVIXL::GenerateMemoryBarrier(MemBarrierKind kind) { // TODO (ported from quick): revisit ARM barrier kinds. DmbOptions flavor = DmbOptions::ISH; // Quiet C++ warnings. switch (kind) { case MemBarrierKind::kAnyStore: case MemBarrierKind::kLoadAny: case MemBarrierKind::kAnyAny: { flavor = DmbOptions::ISH; break; } case MemBarrierKind::kStoreStore: { flavor = DmbOptions::ISHST; break; } default: LOG(FATAL) << "Unexpected memory barrier " << kind; } __ Dmb(flavor); } void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicLoad(vixl32::Register addr, uint32_t offset, vixl32::Register out_lo, vixl32::Register out_hi) { UseScratchRegisterScope temps(GetVIXLAssembler()); if (offset != 0) { vixl32::Register temp = temps.Acquire(); __ Add(temp, addr, offset); addr = temp; } __ Ldrexd(out_lo, out_hi, MemOperand(addr)); } void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicStore(vixl32::Register addr, uint32_t offset, vixl32::Register value_lo, vixl32::Register value_hi, vixl32::Register temp1, vixl32::Register temp2, HInstruction* instruction) { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Label fail; if (offset != 0) { vixl32::Register temp = temps.Acquire(); __ Add(temp, addr, offset); addr = temp; } __ Bind(&fail); { // Ensure the pc position is recorded immediately after the `ldrexd` instruction. ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); // We need a load followed by store. (The address used in a STREX instruction must // be the same as the address in the most recently executed LDREX instruction.) __ ldrexd(temp1, temp2, MemOperand(addr)); codegen_->MaybeRecordImplicitNullCheck(instruction); } __ Strexd(temp1, value_lo, value_hi, MemOperand(addr)); __ CompareAndBranchIfNonZero(temp1, &fail); } void LocationsBuilderARMVIXL::HandleFieldSet( HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); DataType::Type field_type = field_info.GetFieldType(); if (DataType::IsFloatingPointType(field_type)) { locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::RequiresRegister()); } bool is_wide = field_type == DataType::Type::kInt64 || field_type == DataType::Type::kFloat64; bool generate_volatile = field_info.IsVolatile() && is_wide && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); // Temporary registers for the write barrier. // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark. if (needs_write_barrier) { locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. locations->AddTemp(Location::RequiresRegister()); } else if (generate_volatile) { // ARM encoding have some additional constraints for ldrexd/strexd: // - registers need to be consecutive // - the first register should be even but not R14. // We don't test for ARM yet, and the assertion makes sure that we // revisit this if we ever enable ARM encoding. DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); if (field_type == DataType::Type::kFloat64) { // For doubles we need two more registers to copy the value. locations->AddTemp(LocationFrom(r2)); locations->AddTemp(LocationFrom(r3)); } } } void InstructionCodeGeneratorARMVIXL::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info, bool value_can_be_null) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = instruction->GetLocations(); vixl32::Register base = InputRegisterAt(instruction, 0); Location value = locations->InAt(1); std::optional pred_is_null; bool is_predicated = instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->GetIsPredicatedSet(); bool is_volatile = field_info.IsVolatile(); bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); DataType::Type field_type = field_info.GetFieldType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); if (is_predicated) { pred_is_null.emplace(); __ CompareAndBranchIfZero(base, &*pred_is_null, /* is_far_target= */ false); } if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); } switch (field_type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); StoreOperandType operand_type = GetStoreOperandType(field_type); GetAssembler()->StoreToOffset(operand_type, RegisterFrom(value), base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kReference: { vixl32::Register value_reg = RegisterFrom(value); if (kPoisonHeapReferences && needs_write_barrier) { // Note that in the case where `value` is a null reference, // we do not enter this block, as a null reference does not // need poisoning. DCHECK_EQ(field_type, DataType::Type::kReference); value_reg = RegisterFrom(locations->GetTemp(0)); __ Mov(value_reg, RegisterFrom(value)); GetAssembler()->PoisonHeapReference(value_reg); } // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); GetAssembler()->StoreToOffset(kStoreWord, value_reg, base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kInt64: { if (is_volatile && !atomic_ldrd_strd) { GenerateWideAtomicStore(base, offset, LowRegisterFrom(value), HighRegisterFrom(value), RegisterFrom(locations->GetTemp(0)), RegisterFrom(locations->GetTemp(1)), instruction); } else { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } break; } case DataType::Type::kFloat32: { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); GetAssembler()->StoreSToOffset(SRegisterFrom(value), base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kFloat64: { vixl32::DRegister value_reg = DRegisterFrom(value); if (is_volatile && !atomic_ldrd_strd) { vixl32::Register value_reg_lo = RegisterFrom(locations->GetTemp(0)); vixl32::Register value_reg_hi = RegisterFrom(locations->GetTemp(1)); __ Vmov(value_reg_lo, value_reg_hi, value_reg); GenerateWideAtomicStore(base, offset, value_reg_lo, value_reg_hi, RegisterFrom(locations->GetTemp(2)), RegisterFrom(locations->GetTemp(3)), instruction); } else { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); GetAssembler()->StoreDToOffset(value_reg, base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } break; } case DataType::Type::kUint32: case DataType::Type::kUint64: case DataType::Type::kVoid: LOG(FATAL) << "Unreachable type " << field_type; UNREACHABLE(); } if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); vixl32::Register card = RegisterFrom(locations->GetTemp(1)); codegen_->MarkGCCard(temp, card, base, RegisterFrom(value), value_can_be_null); } if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); } if (is_predicated) { __ Bind(&*pred_is_null); } } void LocationsBuilderARMVIXL::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet() || instruction->IsPredicatedInstanceFieldGet()); bool object_field_get_with_read_barrier = kEmitCompilerReadBarrier && (field_info.GetFieldType() == DataType::Type::kReference); bool is_predicated = instruction->IsPredicatedInstanceFieldGet(); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, object_field_get_with_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } // Input for object receiver. locations->SetInAt(is_predicated ? 1 : 0, Location::RequiresRegister()); bool volatile_for_double = field_info.IsVolatile() && (field_info.GetFieldType() == DataType::Type::kFloat64) && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); // The output overlaps in case of volatile long: we don't want the // code generated by GenerateWideAtomicLoad to overwrite the // object's location. Likewise, in the case of an object field get // with read barriers enabled, we do not want the load to overwrite // the object's location, as we need it to emit the read barrier. bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == DataType::Type::kInt64)) || object_field_get_with_read_barrier; if (DataType::IsFloatingPointType(instruction->GetType())) { if (is_predicated) { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); } else { locations->SetOut(Location::RequiresFpuRegister()); } } else { if (is_predicated) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } else { locations->SetOut(Location::RequiresRegister(), (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap)); } } if (volatile_for_double) { // ARM encoding have some additional constraints for ldrexd/strexd: // - registers need to be consecutive // - the first register should be even but not R14. // We don't test for ARM yet, and the assertion makes sure that we // revisit this if we ever enable ARM encoding. DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { // We need a temporary register for the read barrier load in // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier() // only if the offset is too big. if (field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) { locations->AddTemp(Location::RequiresRegister()); } } } Location LocationsBuilderARMVIXL::ArithmeticZeroOrFpuRegister(HInstruction* input) { DCHECK(DataType::IsFloatingPointType(input->GetType())) << input->GetType(); if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) || (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) { return Location::ConstantLocation(input->AsConstant()); } else { return Location::RequiresFpuRegister(); } } Location LocationsBuilderARMVIXL::ArmEncodableConstantOrRegister(HInstruction* constant, Opcode opcode) { DCHECK(!DataType::IsFloatingPointType(constant->GetType())); if (constant->IsConstant() && CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) { return Location::ConstantLocation(constant->AsConstant()); } return Location::RequiresRegister(); } static bool CanEncode32BitConstantAsImmediate( CodeGeneratorARMVIXL* codegen, uint32_t value, Opcode opcode, vixl32::FlagsUpdate flags_update = vixl32::FlagsUpdate::DontCare) { ArmVIXLAssembler* assembler = codegen->GetAssembler(); if (assembler->ShifterOperandCanHold(opcode, value, flags_update)) { return true; } Opcode neg_opcode = kNoOperand; uint32_t neg_value = 0; switch (opcode) { case AND: neg_opcode = BIC; neg_value = ~value; break; case ORR: neg_opcode = ORN; neg_value = ~value; break; case ADD: neg_opcode = SUB; neg_value = -value; break; case ADC: neg_opcode = SBC; neg_value = ~value; break; case SUB: neg_opcode = ADD; neg_value = -value; break; case SBC: neg_opcode = ADC; neg_value = ~value; break; case MOV: neg_opcode = MVN; neg_value = ~value; break; default: return false; } if (assembler->ShifterOperandCanHold(neg_opcode, neg_value, flags_update)) { return true; } return opcode == AND && IsPowerOfTwo(value + 1); } bool LocationsBuilderARMVIXL::CanEncodeConstantAsImmediate(HConstant* input_cst, Opcode opcode) { uint64_t value = static_cast(Int64FromConstant(input_cst)); if (DataType::Is64BitType(input_cst->GetType())) { Opcode high_opcode = opcode; vixl32::FlagsUpdate low_flags_update = vixl32::FlagsUpdate::DontCare; switch (opcode) { case SUB: // Flip the operation to an ADD. value = -value; opcode = ADD; FALLTHROUGH_INTENDED; case ADD: if (Low32Bits(value) == 0u) { return CanEncode32BitConstantAsImmediate(codegen_, High32Bits(value), opcode); } high_opcode = ADC; low_flags_update = vixl32::FlagsUpdate::SetFlags; break; default: break; } return CanEncode32BitConstantAsImmediate(codegen_, High32Bits(value), high_opcode) && CanEncode32BitConstantAsImmediate(codegen_, Low32Bits(value), opcode, low_flags_update); } else { return CanEncode32BitConstantAsImmediate(codegen_, Low32Bits(value), opcode); } } void InstructionCodeGeneratorARMVIXL::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet() || instruction->IsPredicatedInstanceFieldGet()); LocationSummary* locations = instruction->GetLocations(); uint32_t receiver_input = instruction->IsPredicatedInstanceFieldGet() ? 1 : 0; vixl32::Register base = InputRegisterAt(instruction, receiver_input); Location out = locations->Out(); bool is_volatile = field_info.IsVolatile(); bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType())); DataType::Type load_type = instruction->GetType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); switch (load_type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); LoadOperandType operand_type = GetLoadOperandType(load_type); GetAssembler()->LoadFromOffset(operand_type, RegisterFrom(out), base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kReference: { // /* HeapReference */ out = *(base + offset) if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { Location maybe_temp = (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location(); // Note that a potential implicit null check is handled in this // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier call. codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, base, offset, maybe_temp, /* needs_null_check= */ true); if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } } else { { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(out), base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). codegen_->MaybeGenerateReadBarrierSlow( instruction, out, out, locations->InAt(receiver_input), offset); } break; } case DataType::Type::kInt64: { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); if (is_volatile && !atomic_ldrd_strd) { GenerateWideAtomicLoad(base, offset, LowRegisterFrom(out), HighRegisterFrom(out)); } else { GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out), base, offset); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kFloat32: { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); GetAssembler()->LoadSFromOffset(SRegisterFrom(out), base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kFloat64: { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); vixl32::DRegister out_dreg = DRegisterFrom(out); if (is_volatile && !atomic_ldrd_strd) { vixl32::Register lo = RegisterFrom(locations->GetTemp(0)); vixl32::Register hi = RegisterFrom(locations->GetTemp(1)); GenerateWideAtomicLoad(base, offset, lo, hi); codegen_->MaybeRecordImplicitNullCheck(instruction); __ Vmov(out_dreg, lo, hi); } else { GetAssembler()->LoadDFromOffset(out_dreg, base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } break; } case DataType::Type::kUint32: case DataType::Type::kUint64: case DataType::Type::kVoid: LOG(FATAL) << "Unreachable type " << load_type; UNREACHABLE(); } if (is_volatile) { if (load_type == DataType::Type::kReference) { // Memory barriers, in the case of references, are also handled // in the previous switch statement. } else { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } } } void LocationsBuilderARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); } void LocationsBuilderARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARMVIXL::VisitPredicatedInstanceFieldGet( HPredicatedInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARMVIXL::VisitPredicatedInstanceFieldGet( HPredicatedInstanceFieldGet* instruction) { vixl::aarch32::Label finish; __ CompareAndBranchIfZero(InputRegisterAt(instruction, 1), &finish, false); HandleFieldGet(instruction, instruction->GetFieldInfo()); __ Bind(&finish); } void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); } void LocationsBuilderARMVIXL::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(r0)); } void InstructionCodeGeneratorARMVIXL::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { __ Mov(r0, instruction->GetFormat()->GetValue()); codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc()); } void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldGet( HUnresolvedInstanceFieldGet* instruction) { FieldAccessCallingConventionARMVIXL calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldGet( HUnresolvedInstanceFieldGet* instruction) { FieldAccessCallingConventionARMVIXL calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldSet( HUnresolvedInstanceFieldSet* instruction) { FieldAccessCallingConventionARMVIXL calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldSet( HUnresolvedInstanceFieldSet* instruction) { FieldAccessCallingConventionARMVIXL calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldGet( HUnresolvedStaticFieldGet* instruction) { FieldAccessCallingConventionARMVIXL calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldGet( HUnresolvedStaticFieldGet* instruction) { FieldAccessCallingConventionARMVIXL calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldSet( HUnresolvedStaticFieldSet* instruction) { FieldAccessCallingConventionARMVIXL calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldSet( HUnresolvedStaticFieldSet* instruction) { FieldAccessCallingConventionARMVIXL calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARMVIXL::VisitNullCheck(HNullCheck* instruction) { LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); locations->SetInAt(0, Location::RequiresRegister()); } void CodeGeneratorARMVIXL::GenerateImplicitNullCheck(HNullCheck* instruction) { if (CanMoveNullCheckToUser(instruction)) { return; } UseScratchRegisterScope temps(GetVIXLAssembler()); // Ensure the pc position is recorded immediately after the `ldr` instruction. ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ ldr(temps.Acquire(), MemOperand(InputRegisterAt(instruction, 0))); RecordPcInfo(instruction, instruction->GetDexPc()); } void CodeGeneratorARMVIXL::GenerateExplicitNullCheck(HNullCheck* instruction) { NullCheckSlowPathARMVIXL* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARMVIXL(instruction); AddSlowPath(slow_path); __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel()); } void InstructionCodeGeneratorARMVIXL::VisitNullCheck(HNullCheck* instruction) { codegen_->GenerateNullCheck(instruction); } void CodeGeneratorARMVIXL::LoadFromShiftedRegOffset(DataType::Type type, Location out_loc, vixl32::Register base, vixl32::Register reg_index, vixl32::Condition cond) { uint32_t shift_count = DataType::SizeShift(type); MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count); switch (type) { case DataType::Type::kBool: case DataType::Type::kUint8: __ Ldrb(cond, RegisterFrom(out_loc), mem_address); break; case DataType::Type::kInt8: __ Ldrsb(cond, RegisterFrom(out_loc), mem_address); break; case DataType::Type::kUint16: __ Ldrh(cond, RegisterFrom(out_loc), mem_address); break; case DataType::Type::kInt16: __ Ldrsh(cond, RegisterFrom(out_loc), mem_address); break; case DataType::Type::kReference: case DataType::Type::kInt32: __ Ldr(cond, RegisterFrom(out_loc), mem_address); break; // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types. case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: default: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } } void CodeGeneratorARMVIXL::StoreToShiftedRegOffset(DataType::Type type, Location loc, vixl32::Register base, vixl32::Register reg_index, vixl32::Condition cond) { uint32_t shift_count = DataType::SizeShift(type); MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count); switch (type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: __ Strb(cond, RegisterFrom(loc), mem_address); break; case DataType::Type::kUint16: case DataType::Type::kInt16: __ Strh(cond, RegisterFrom(loc), mem_address); break; case DataType::Type::kReference: case DataType::Type::kInt32: __ Str(cond, RegisterFrom(loc), mem_address); break; // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types. case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: default: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } } void LocationsBuilderARMVIXL::VisitArrayGet(HArrayGet* instruction) { bool object_array_get_with_read_barrier = kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, object_array_get_with_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (DataType::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } else { // The output overlaps in the case of an object array get with // read barriers enabled: we do not want the move to overwrite the // array's location, as we need it to emit the read barrier. locations->SetOut( Location::RequiresRegister(), object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); } if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { if (instruction->GetIndex()->IsConstant()) { // Array loads with constant index are treated as field loads. // We need a temporary register for the read barrier load in // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier() // only if the offset is too big. uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction); uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue(); offset += index << DataType::SizeShift(DataType::Type::kReference); if (offset >= kReferenceLoadMinFarOffset) { locations->AddTemp(Location::RequiresRegister()); } } else { // We need a non-scratch temporary for the array data pointer in // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier(). locations->AddTemp(Location::RequiresRegister()); } } else if (mirror::kUseStringCompression && instruction->IsStringCharAt()) { // Also need a temporary for String compression feature. locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorARMVIXL::VisitArrayGet(HArrayGet* instruction) { LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); vixl32::Register obj = InputRegisterAt(instruction, 0); Location index = locations->InAt(1); Location out_loc = locations->Out(); uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); DataType::Type type = instruction->GetType(); const bool maybe_compressed_char_at = mirror::kUseStringCompression && instruction->IsStringCharAt(); HInstruction* array_instr = instruction->GetArray(); bool has_intermediate_address = array_instr->IsIntermediateAddress(); switch (type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: { vixl32::Register length; if (maybe_compressed_char_at) { length = RegisterFrom(locations->GetTemp(0)); uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); GetAssembler()->LoadFromOffset(kLoadWord, length, obj, count_offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } if (index.IsConstant()) { int32_t const_index = Int32ConstantFrom(index); if (maybe_compressed_char_at) { vixl32::Label uncompressed_load, done; vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done); __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not. static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ B(cs, &uncompressed_load, /* is_far_target= */ false); GetAssembler()->LoadFromOffset(kLoadUnsignedByte, RegisterFrom(out_loc), obj, data_offset + const_index); __ B(final_label); __ Bind(&uncompressed_load); GetAssembler()->LoadFromOffset(GetLoadOperandType(DataType::Type::kUint16), RegisterFrom(out_loc), obj, data_offset + (const_index << 1)); if (done.IsReferenced()) { __ Bind(&done); } } else { uint32_t full_offset = data_offset + (const_index << DataType::SizeShift(type)); // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); LoadOperandType load_type = GetLoadOperandType(type); GetAssembler()->LoadFromOffset(load_type, RegisterFrom(out_loc), obj, full_offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } } else { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); if (has_intermediate_address) { // We do not need to compute the intermediate address from the array: the // input instruction has done it already. See the comment in // `TryExtractArrayAccessAddress()`. if (kIsDebugBuild) { HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset); } temp = obj; } else { __ Add(temp, obj, data_offset); } if (maybe_compressed_char_at) { vixl32::Label uncompressed_load, done; vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done); __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not. static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ B(cs, &uncompressed_load, /* is_far_target= */ false); __ Ldrb(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 0)); __ B(final_label); __ Bind(&uncompressed_load); __ Ldrh(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 1)); if (done.IsReferenced()) { __ Bind(&done); } } else { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index)); codegen_->MaybeRecordImplicitNullCheck(instruction); } } break; } case DataType::Type::kReference: { // The read barrier instrumentation of object ArrayGet // instructions does not support the HIntermediateAddress // instruction. DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier)); static_assert( sizeof(mirror::HeapReference) == sizeof(int32_t), "art::mirror::HeapReference and int32_t have different sizes."); // /* HeapReference */ out = // *(obj + data_offset + index * sizeof(HeapReference)) if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // Note that a potential implicit null check is handled in this // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier call. DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0))); if (index.IsConstant()) { // Array load with a constant index can be treated as a field load. Location maybe_temp = (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location(); data_offset += Int32ConstantFrom(index) << DataType::SizeShift(type); codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, out_loc, obj, data_offset, maybe_temp, /* needs_null_check= */ false); } else { Location temp = locations->GetTemp(0); codegen_->GenerateArrayLoadWithBakerReadBarrier( out_loc, obj, data_offset, index, temp, /* needs_null_check= */ false); } } else { vixl32::Register out = OutputRegister(instruction); if (index.IsConstant()) { size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset; { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); GetAssembler()->LoadFromOffset(kLoadWord, out, obj, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); } else { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); if (has_intermediate_address) { // We do not need to compute the intermediate address from the array: the // input instruction has done it already. See the comment in // `TryExtractArrayAccessAddress()`. if (kIsDebugBuild) { HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset); } temp = obj; } else { __ Add(temp, obj, data_offset); } { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index)); temps.Close(); codegen_->MaybeRecordImplicitNullCheck(instruction); } // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). codegen_->MaybeGenerateReadBarrierSlow( instruction, out_loc, out_loc, obj_loc, data_offset, index); } } break; } case DataType::Type::kInt64: { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. // As two macro instructions can be emitted the max size is doubled. EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes); if (index.IsConstant()) { size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset; GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), obj, offset); } else { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8)); GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), temp, data_offset); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kFloat32: { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. // As two macro instructions can be emitted the max size is doubled. EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes); vixl32::SRegister out = SRegisterFrom(out_loc); if (index.IsConstant()) { size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset; GetAssembler()->LoadSFromOffset(out, obj, offset); } else { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4)); GetAssembler()->LoadSFromOffset(out, temp, data_offset); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kFloat64: { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. // As two macro instructions can be emitted the max size is doubled. EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes); if (index.IsConstant()) { size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset; GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), obj, offset); } else { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8)); GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), temp, data_offset); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kUint32: case DataType::Type::kUint64: case DataType::Type::kVoid: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } } void LocationsBuilderARMVIXL::VisitArraySet(HArraySet* instruction) { DataType::Type value_type = instruction->GetComponentType(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); bool needs_type_check = instruction->NeedsTypeCheck(); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (DataType::IsFloatingPointType(value_type)) { locations->SetInAt(2, Location::RequiresFpuRegister()); } else { locations->SetInAt(2, Location::RequiresRegister()); } if (needs_write_barrier) { // Temporary registers for the write barrier. locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too. locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorARMVIXL::VisitArraySet(HArraySet* instruction) { LocationSummary* locations = instruction->GetLocations(); vixl32::Register array = InputRegisterAt(instruction, 0); Location index = locations->InAt(1); DataType::Type value_type = instruction->GetComponentType(); bool needs_type_check = instruction->NeedsTypeCheck(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); uint32_t data_offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value(); Location value_loc = locations->InAt(2); HInstruction* array_instr = instruction->GetArray(); bool has_intermediate_address = array_instr->IsIntermediateAddress(); switch (value_type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: { if (index.IsConstant()) { int32_t const_index = Int32ConstantFrom(index); uint32_t full_offset = data_offset + (const_index << DataType::SizeShift(value_type)); StoreOperandType store_type = GetStoreOperandType(value_type); // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); GetAssembler()->StoreToOffset(store_type, RegisterFrom(value_loc), array, full_offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } else { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); if (has_intermediate_address) { // We do not need to compute the intermediate address from the array: the // input instruction has done it already. See the comment in // `TryExtractArrayAccessAddress()`. if (kIsDebugBuild) { HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset); } temp = array; } else { __ Add(temp, array, data_offset); } // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index)); codegen_->MaybeRecordImplicitNullCheck(instruction); } break; } case DataType::Type::kReference: { vixl32::Register value = RegisterFrom(value_loc); // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet. // See the comment in instruction_simplifier_shared.cc. DCHECK(!has_intermediate_address); if (instruction->InputAt(2)->IsNullConstant()) { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. // As two macro instructions can be emitted the max size is doubled. EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes); // Just setting null. if (index.IsConstant()) { size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset; GetAssembler()->StoreToOffset(kStoreWord, value, array, offset); } else { DCHECK(index.IsRegister()) << index; UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Add(temp, array, data_offset); codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index)); } codegen_->MaybeRecordImplicitNullCheck(instruction); DCHECK(!needs_write_barrier); DCHECK(!needs_type_check); break; } DCHECK(needs_write_barrier); Location temp1_loc = locations->GetTemp(0); vixl32::Register temp1 = RegisterFrom(temp1_loc); Location temp2_loc = locations->GetTemp(1); vixl32::Register temp2 = RegisterFrom(temp2_loc); bool can_value_be_null = instruction->GetValueCanBeNull(); vixl32::Label do_store; if (can_value_be_null) { __ CompareAndBranchIfZero(value, &do_store, /* is_far_target= */ false); } SlowPathCodeARMVIXL* slow_path = nullptr; if (needs_type_check) { slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARMVIXL(instruction); codegen_->AddSlowPath(slow_path); const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); // Note that when read barriers are enabled, the type checks // are performed without read barriers. This is fine, even in // the case where a class object is in the from-space after // the flip, as a comparison involving such a type would not // produce a false positive; it may of course produce a false // negative, in which case we would take the ArraySet slow // path. { // Ensure we record the pc position immediately after the `ldr` instruction. ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); // /* HeapReference */ temp1 = array->klass_ __ ldr(temp1, MemOperand(array, class_offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); } GetAssembler()->MaybeUnpoisonHeapReference(temp1); // /* HeapReference */ temp1 = temp1->component_type_ GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, component_offset); // /* HeapReference */ temp2 = value->klass_ GetAssembler()->LoadFromOffset(kLoadWord, temp2, value, class_offset); // If heap poisoning is enabled, no need to unpoison `temp1` // nor `temp2`, as we are comparing two poisoned references. __ Cmp(temp1, temp2); if (instruction->StaticTypeOfArrayIsObjectArray()) { vixl32::Label do_put; __ B(eq, &do_put, /* is_far_target= */ false); // If heap poisoning is enabled, the `temp1` reference has // not been unpoisoned yet; unpoison it now. GetAssembler()->MaybeUnpoisonHeapReference(temp1); // /* HeapReference */ temp1 = temp1->super_class_ GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, super_offset); // If heap poisoning is enabled, no need to unpoison // `temp1`, as we are comparing against null below. __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel()); __ Bind(&do_put); } else { __ B(ne, slow_path->GetEntryLabel()); } } codegen_->MarkGCCard(temp1, temp2, array, value, /* value_can_be_null= */ false); if (can_value_be_null) { DCHECK(do_store.IsReferenced()); __ Bind(&do_store); } vixl32::Register source = value; if (kPoisonHeapReferences) { // Note that in the case where `value` is a null reference, // we do not enter this block, as a null reference does not // need poisoning. DCHECK_EQ(value_type, DataType::Type::kReference); __ Mov(temp1, value); GetAssembler()->PoisonHeapReference(temp1); source = temp1; } { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. // As two macro instructions can be emitted the max size is doubled. EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes); if (index.IsConstant()) { size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset; GetAssembler()->StoreToOffset(kStoreWord, source, array, offset); } else { DCHECK(index.IsRegister()) << index; UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Add(temp, array, data_offset); codegen_->StoreToShiftedRegOffset(value_type, LocationFrom(source), temp, RegisterFrom(index)); } if (can_value_be_null || !needs_type_check) { codegen_->MaybeRecordImplicitNullCheck(instruction); } } if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } break; } case DataType::Type::kInt64: { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. // As two macro instructions can be emitted the max size is doubled. EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes); Location value = locations->InAt(2); if (index.IsConstant()) { size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset; GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), array, offset); } else { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8)); GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), temp, data_offset); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kFloat32: { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. // As two macro instructions can be emitted the max size is doubled. EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes); Location value = locations->InAt(2); DCHECK(value.IsFpuRegister()); if (index.IsConstant()) { size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset; GetAssembler()->StoreSToOffset(SRegisterFrom(value), array, offset); } else { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4)); GetAssembler()->StoreSToOffset(SRegisterFrom(value), temp, data_offset); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kFloat64: { // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. // As two macro instructions can be emitted the max size is doubled. EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes); Location value = locations->InAt(2); DCHECK(value.IsFpuRegisterPair()); if (index.IsConstant()) { size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset; GetAssembler()->StoreDToOffset(DRegisterFrom(value), array, offset); } else { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8)); GetAssembler()->StoreDToOffset(DRegisterFrom(value), temp, data_offset); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case DataType::Type::kUint32: case DataType::Type::kUint64: case DataType::Type::kVoid: LOG(FATAL) << "Unreachable type " << value_type; UNREACHABLE(); } } void LocationsBuilderARMVIXL::VisitArrayLength(HArrayLength* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARMVIXL::VisitArrayLength(HArrayLength* instruction) { uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); vixl32::Register obj = InputRegisterAt(instruction, 0); vixl32::Register out = OutputRegister(instruction); { ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ ldr(out, MemOperand(obj, offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); } // Mask out compression flag from String's array length. if (mirror::kUseStringCompression && instruction->IsStringLength()) { __ Lsr(out, out, 1u); } } void LocationsBuilderARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset())); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) { vixl32::Register out = OutputRegister(instruction); vixl32::Register first = InputRegisterAt(instruction, 0); Location second = instruction->GetLocations()->InAt(1); if (second.IsRegister()) { __ Add(out, first, RegisterFrom(second)); } else { __ Add(out, first, Int32ConstantFrom(second)); } } void LocationsBuilderARMVIXL::VisitIntermediateAddressIndex( HIntermediateAddressIndex* instruction) { LOG(FATAL) << "Unreachable " << instruction->GetId(); } void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddressIndex( HIntermediateAddressIndex* instruction) { LOG(FATAL) << "Unreachable " << instruction->GetId(); } void LocationsBuilderARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) { RegisterSet caller_saves = RegisterSet::Empty(); InvokeRuntimeCallingConventionARMVIXL calling_convention; caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0))); caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(1))); LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); HInstruction* index = instruction->InputAt(0); HInstruction* length = instruction->InputAt(1); // If both index and length are constants we can statically check the bounds. But if at least one // of them is not encodable ArmEncodableConstantOrRegister will create // Location::RequiresRegister() which is not desired to happen. Instead we create constant // locations. bool both_const = index->IsConstant() && length->IsConstant(); locations->SetInAt(0, both_const ? Location::ConstantLocation(index->AsConstant()) : ArmEncodableConstantOrRegister(index, CMP)); locations->SetInAt(1, both_const ? Location::ConstantLocation(length->AsConstant()) : ArmEncodableConstantOrRegister(length, CMP)); } void InstructionCodeGeneratorARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) { LocationSummary* locations = instruction->GetLocations(); Location index_loc = locations->InAt(0); Location length_loc = locations->InAt(1); if (length_loc.IsConstant()) { int32_t length = Int32ConstantFrom(length_loc); if (index_loc.IsConstant()) { // BCE will remove the bounds check if we are guaranteed to pass. int32_t index = Int32ConstantFrom(index_loc); if (index < 0 || index >= length) { SlowPathCodeARMVIXL* slow_path = new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction); codegen_->AddSlowPath(slow_path); __ B(slow_path->GetEntryLabel()); } else { // Some optimization after BCE may have generated this, and we should not // generate a bounds check if it is a valid range. } return; } SlowPathCodeARMVIXL* slow_path = new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction); __ Cmp(RegisterFrom(index_loc), length); codegen_->AddSlowPath(slow_path); __ B(hs, slow_path->GetEntryLabel()); } else { SlowPathCodeARMVIXL* slow_path = new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction); __ Cmp(RegisterFrom(length_loc), InputOperandAt(instruction, 0)); codegen_->AddSlowPath(slow_path); __ B(ls, slow_path->GetEntryLabel()); } } void CodeGeneratorARMVIXL::MarkGCCard(vixl32::Register temp, vixl32::Register card, vixl32::Register object, vixl32::Register value, bool value_can_be_null) { vixl32::Label is_null; if (value_can_be_null) { __ CompareAndBranchIfZero(value, &is_null, /* is_far_target=*/ false); } // Load the address of the card table into `card`. GetAssembler()->LoadFromOffset( kLoadWord, card, tr, Thread::CardTableOffset().Int32Value()); // Calculate the offset (in the card table) of the card corresponding to // `object`. __ Lsr(temp, object, Operand::From(gc::accounting::CardTable::kCardShift)); // Write the `art::gc::accounting::CardTable::kCardDirty` value into the // `object`'s card. // // Register `card` contains the address of the card table. Note that the card // table's base is biased during its creation so that it always starts at an // address whose least-significant byte is equal to `kCardDirty` (see // art::gc::accounting::CardTable::Create). Therefore the STRB instruction // below writes the `kCardDirty` (byte) value into the `object`'s card // (located at `card + object >> kCardShift`). // // This dual use of the value in register `card` (1. to calculate the location // of the card to mark; and 2. to load the `kCardDirty` value) saves a load // (no need to explicitly load `kCardDirty` as an immediate value). __ Strb(card, MemOperand(card, temp)); if (value_can_be_null) { __ Bind(&is_null); } } void LocationsBuilderARMVIXL::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorARMVIXL::VisitParallelMove(HParallelMove* instruction) { if (instruction->GetNext()->IsSuspendCheck() && instruction->GetBlock()->GetLoopInformation() != nullptr) { HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck(); // The back edge will generate the suspend check. codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction); } codegen_->GetMoveResolver()->EmitNativeCode(instruction); } void LocationsBuilderARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, LocationSummary::kCallOnSlowPath); locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } void InstructionCodeGeneratorARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) { HBasicBlock* block = instruction->GetBlock(); if (block->GetLoopInformation() != nullptr) { DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); // The back edge will generate the suspend check. return; } if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { // The goto will generate the suspend check. return; } GenerateSuspendCheck(instruction, nullptr); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 14); } void InstructionCodeGeneratorARMVIXL::GenerateSuspendCheck(HSuspendCheck* instruction, HBasicBlock* successor) { SuspendCheckSlowPathARMVIXL* slow_path = down_cast(instruction->GetSlowPath()); if (slow_path == nullptr) { slow_path = new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARMVIXL(instruction, successor); instruction->SetSlowPath(slow_path); codegen_->AddSlowPath(slow_path); if (successor != nullptr) { DCHECK(successor->IsLoopHeader()); } } else { DCHECK_EQ(slow_path->GetSuccessor(), successor); } UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); GetAssembler()->LoadFromOffset( kLoadUnsignedHalfword, temp, tr, Thread::ThreadFlagsOffset().Int32Value()); if (successor == nullptr) { __ CompareAndBranchIfNonZero(temp, slow_path->GetEntryLabel()); __ Bind(slow_path->GetReturnLabel()); } else { __ CompareAndBranchIfZero(temp, codegen_->GetLabelOf(successor)); __ B(slow_path->GetEntryLabel()); } } ArmVIXLAssembler* ParallelMoveResolverARMVIXL::GetAssembler() const { return codegen_->GetAssembler(); } void ParallelMoveResolverARMVIXL::EmitMove(size_t index) { UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler()); MoveOperands* move = moves_[index]; Location source = move->GetSource(); Location destination = move->GetDestination(); if (source.IsRegister()) { if (destination.IsRegister()) { __ Mov(RegisterFrom(destination), RegisterFrom(source)); } else if (destination.IsFpuRegister()) { __ Vmov(SRegisterFrom(destination), RegisterFrom(source)); } else { DCHECK(destination.IsStackSlot()); GetAssembler()->StoreToOffset(kStoreWord, RegisterFrom(source), sp, destination.GetStackIndex()); } } else if (source.IsStackSlot()) { if (destination.IsRegister()) { GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(destination), sp, source.GetStackIndex()); } else if (destination.IsFpuRegister()) { GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex()); } else { DCHECK(destination.IsStackSlot()); vixl32::Register temp = temps.Acquire(); GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex()); GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); } } else if (source.IsFpuRegister()) { if (destination.IsRegister()) { __ Vmov(RegisterFrom(destination), SRegisterFrom(source)); } else if (destination.IsFpuRegister()) { __ Vmov(SRegisterFrom(destination), SRegisterFrom(source)); } else { DCHECK(destination.IsStackSlot()); GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex()); } } else if (source.IsDoubleStackSlot()) { if (destination.IsDoubleStackSlot()) { vixl32::DRegister temp = temps.AcquireD(); GetAssembler()->LoadDFromOffset(temp, sp, source.GetStackIndex()); GetAssembler()->StoreDToOffset(temp, sp, destination.GetStackIndex()); } else if (destination.IsRegisterPair()) { DCHECK(ExpectedPairLayout(destination)); GetAssembler()->LoadFromOffset( kLoadWordPair, LowRegisterFrom(destination), sp, source.GetStackIndex()); } else { DCHECK(destination.IsFpuRegisterPair()) << destination; GetAssembler()->LoadDFromOffset(DRegisterFrom(destination), sp, source.GetStackIndex()); } } else if (source.IsRegisterPair()) { if (destination.IsRegisterPair()) { __ Mov(LowRegisterFrom(destination), LowRegisterFrom(source)); __ Mov(HighRegisterFrom(destination), HighRegisterFrom(source)); } else if (destination.IsFpuRegisterPair()) { __ Vmov(DRegisterFrom(destination), LowRegisterFrom(source), HighRegisterFrom(source)); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; DCHECK(ExpectedPairLayout(source)); GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(source), sp, destination.GetStackIndex()); } } else if (source.IsFpuRegisterPair()) { if (destination.IsRegisterPair()) { __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), DRegisterFrom(source)); } else if (destination.IsFpuRegisterPair()) { __ Vmov(DRegisterFrom(destination), DRegisterFrom(source)); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; GetAssembler()->StoreDToOffset(DRegisterFrom(source), sp, destination.GetStackIndex()); } } else { DCHECK(source.IsConstant()) << source; HConstant* constant = source.GetConstant(); if (constant->IsIntConstant() || constant->IsNullConstant()) { int32_t value = CodeGenerator::GetInt32ValueOf(constant); if (destination.IsRegister()) { __ Mov(RegisterFrom(destination), value); } else { DCHECK(destination.IsStackSlot()); vixl32::Register temp = temps.Acquire(); __ Mov(temp, value); GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); } } else if (constant->IsLongConstant()) { int64_t value = Int64ConstantFrom(source); if (destination.IsRegisterPair()) { __ Mov(LowRegisterFrom(destination), Low32Bits(value)); __ Mov(HighRegisterFrom(destination), High32Bits(value)); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; vixl32::Register temp = temps.Acquire(); __ Mov(temp, Low32Bits(value)); GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); __ Mov(temp, High32Bits(value)); GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetHighStackIndex(kArmWordSize)); } } else if (constant->IsDoubleConstant()) { double value = constant->AsDoubleConstant()->GetValue(); if (destination.IsFpuRegisterPair()) { __ Vmov(DRegisterFrom(destination), value); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; uint64_t int_value = bit_cast(value); vixl32::Register temp = temps.Acquire(); __ Mov(temp, Low32Bits(int_value)); GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); __ Mov(temp, High32Bits(int_value)); GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetHighStackIndex(kArmWordSize)); } } else { DCHECK(constant->IsFloatConstant()) << constant->DebugName(); float value = constant->AsFloatConstant()->GetValue(); if (destination.IsFpuRegister()) { __ Vmov(SRegisterFrom(destination), value); } else { DCHECK(destination.IsStackSlot()); vixl32::Register temp = temps.Acquire(); __ Mov(temp, bit_cast(value)); GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex()); } } } } void ParallelMoveResolverARMVIXL::Exchange(vixl32::Register reg, int mem) { UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Mov(temp, reg); GetAssembler()->LoadFromOffset(kLoadWord, reg, sp, mem); GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem); } void ParallelMoveResolverARMVIXL::Exchange(int mem1, int mem2) { // TODO(VIXL32): Double check the performance of this implementation. UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler()); vixl32::Register temp1 = temps.Acquire(); ScratchRegisterScope ensure_scratch( this, temp1.GetCode(), r0.GetCode(), codegen_->GetNumberOfCoreRegisters()); vixl32::Register temp2(ensure_scratch.GetRegister()); int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0; GetAssembler()->LoadFromOffset(kLoadWord, temp1, sp, mem1 + stack_offset); GetAssembler()->LoadFromOffset(kLoadWord, temp2, sp, mem2 + stack_offset); GetAssembler()->StoreToOffset(kStoreWord, temp1, sp, mem2 + stack_offset); GetAssembler()->StoreToOffset(kStoreWord, temp2, sp, mem1 + stack_offset); } void ParallelMoveResolverARMVIXL::EmitSwap(size_t index) { MoveOperands* move = moves_[index]; Location source = move->GetSource(); Location destination = move->GetDestination(); UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler()); if (source.IsRegister() && destination.IsRegister()) { vixl32::Register temp = temps.Acquire(); DCHECK(!RegisterFrom(source).Is(temp)); DCHECK(!RegisterFrom(destination).Is(temp)); __ Mov(temp, RegisterFrom(destination)); __ Mov(RegisterFrom(destination), RegisterFrom(source)); __ Mov(RegisterFrom(source), temp); } else if (source.IsRegister() && destination.IsStackSlot()) { Exchange(RegisterFrom(source), destination.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsRegister()) { Exchange(RegisterFrom(destination), source.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsStackSlot()) { Exchange(source.GetStackIndex(), destination.GetStackIndex()); } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { vixl32::Register temp = temps.Acquire(); __ Vmov(temp, SRegisterFrom(source)); __ Vmov(SRegisterFrom(source), SRegisterFrom(destination)); __ Vmov(SRegisterFrom(destination), temp); } else if (source.IsRegisterPair() && destination.IsRegisterPair()) { vixl32::DRegister temp = temps.AcquireD(); __ Vmov(temp, LowRegisterFrom(source), HighRegisterFrom(source)); __ Mov(LowRegisterFrom(source), LowRegisterFrom(destination)); __ Mov(HighRegisterFrom(source), HighRegisterFrom(destination)); __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), temp); } else if (source.IsRegisterPair() || destination.IsRegisterPair()) { vixl32::Register low_reg = LowRegisterFrom(source.IsRegisterPair() ? source : destination); int mem = source.IsRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex(); DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination)); vixl32::DRegister temp = temps.AcquireD(); __ Vmov(temp, low_reg, vixl32::Register(low_reg.GetCode() + 1)); GetAssembler()->LoadFromOffset(kLoadWordPair, low_reg, sp, mem); GetAssembler()->StoreDToOffset(temp, sp, mem); } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) { vixl32::DRegister first = DRegisterFrom(source); vixl32::DRegister second = DRegisterFrom(destination); vixl32::DRegister temp = temps.AcquireD(); __ Vmov(temp, first); __ Vmov(first, second); __ Vmov(second, temp); } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) { vixl32::DRegister reg = source.IsFpuRegisterPair() ? DRegisterFrom(source) : DRegisterFrom(destination); int mem = source.IsFpuRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex(); vixl32::DRegister temp = temps.AcquireD(); __ Vmov(temp, reg); GetAssembler()->LoadDFromOffset(reg, sp, mem); GetAssembler()->StoreDToOffset(temp, sp, mem); } else if (source.IsFpuRegister() || destination.IsFpuRegister()) { vixl32::SRegister reg = source.IsFpuRegister() ? SRegisterFrom(source) : SRegisterFrom(destination); int mem = source.IsFpuRegister() ? destination.GetStackIndex() : source.GetStackIndex(); vixl32::Register temp = temps.Acquire(); __ Vmov(temp, reg); GetAssembler()->LoadSFromOffset(reg, sp, mem); GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem); } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) { vixl32::DRegister temp1 = temps.AcquireD(); vixl32::DRegister temp2 = temps.AcquireD(); __ Vldr(temp1, MemOperand(sp, source.GetStackIndex())); __ Vldr(temp2, MemOperand(sp, destination.GetStackIndex())); __ Vstr(temp1, MemOperand(sp, destination.GetStackIndex())); __ Vstr(temp2, MemOperand(sp, source.GetStackIndex())); } else { LOG(FATAL) << "Unimplemented" << source << " <-> " << destination; } } void ParallelMoveResolverARMVIXL::SpillScratch(int reg) { __ Push(vixl32::Register(reg)); } void ParallelMoveResolverARMVIXL::RestoreScratch(int reg) { __ Pop(vixl32::Register(reg)); } HLoadClass::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadClassKind( HLoadClass::LoadKind desired_class_load_kind) { switch (desired_class_load_kind) { case HLoadClass::LoadKind::kInvalid: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); case HLoadClass::LoadKind::kReferrersClass: break; case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: case HLoadClass::LoadKind::kBootImageRelRo: case HLoadClass::LoadKind::kBssEntry: case HLoadClass::LoadKind::kBssEntryPublic: case HLoadClass::LoadKind::kBssEntryPackage: DCHECK(!GetCompilerOptions().IsJitCompiler()); break; case HLoadClass::LoadKind::kJitBootImageAddress: case HLoadClass::LoadKind::kJitTableAddress: DCHECK(GetCompilerOptions().IsJitCompiler()); break; case HLoadClass::LoadKind::kRuntimeCall: break; } return desired_class_load_kind; } void LocationsBuilderARMVIXL::VisitLoadClass(HLoadClass* cls) { HLoadClass::LoadKind load_kind = cls->GetLoadKind(); if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { InvokeRuntimeCallingConventionARMVIXL calling_convention; CodeGenerator::CreateLoadClassRuntimeCallLocationSummary( cls, LocationFrom(calling_convention.GetRegisterAt(0)), LocationFrom(r0)); DCHECK(calling_convention.GetRegisterAt(0).Is(r0)); return; } DCHECK_EQ(cls->NeedsAccessCheck(), load_kind == HLoadClass::LoadKind::kBssEntryPublic || load_kind == HLoadClass::LoadKind::kBssEntryPackage); const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind); if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } if (load_kind == HLoadClass::LoadKind::kReferrersClass) { locations->SetInAt(0, Location::RequiresRegister()); } locations->SetOut(Location::RequiresRegister()); if (load_kind == HLoadClass::LoadKind::kBssEntry) { if (!kUseReadBarrier || kUseBakerReadBarrier) { // Rely on the type resolution or initialization and marking to save everything we need. locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); } else { // For non-Baker read barrier we have a temp-clobbering call. } } } // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not // move. void InstructionCodeGeneratorARMVIXL::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { HLoadClass::LoadKind load_kind = cls->GetLoadKind(); if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { codegen_->GenerateLoadClassRuntimeCall(cls); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 15); return; } DCHECK_EQ(cls->NeedsAccessCheck(), load_kind == HLoadClass::LoadKind::kBssEntryPublic || load_kind == HLoadClass::LoadKind::kBssEntryPackage); LocationSummary* locations = cls->GetLocations(); Location out_loc = locations->Out(); vixl32::Register out = OutputRegister(cls); const ReadBarrierOption read_barrier_option = cls->IsInBootImage() ? kWithoutReadBarrier : kCompilerReadBarrierOption; bool generate_null_check = false; switch (load_kind) { case HLoadClass::LoadKind::kReferrersClass: { DCHECK(!cls->CanCallRuntime()); DCHECK(!cls->MustGenerateClinitCheck()); // /* GcRoot */ out = current_method->declaring_class_ vixl32::Register current_method = InputRegisterAt(cls, 0); codegen_->GenerateGcRootFieldLoad(cls, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value(), read_barrier_option); break; } case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { DCHECK(codegen_->GetCompilerOptions().IsBootImage() || codegen_->GetCompilerOptions().IsBootImageExtension()); DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex()); codegen_->EmitMovwMovtPlaceholder(labels, out); break; } case HLoadClass::LoadKind::kBootImageRelRo: { DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = codegen_->NewBootImageRelRoPatch(CodeGenerator::GetBootImageOffset(cls)); codegen_->EmitMovwMovtPlaceholder(labels, out); __ Ldr(out, MemOperand(out, /* offset= */ 0)); break; } case HLoadClass::LoadKind::kBssEntry: case HLoadClass::LoadKind::kBssEntryPublic: case HLoadClass::LoadKind::kBssEntryPackage: { CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = codegen_->NewTypeBssEntryPatch(cls); codegen_->EmitMovwMovtPlaceholder(labels, out); // All aligned loads are implicitly atomic consume operations on ARM. codegen_->GenerateGcRootFieldLoad(cls, out_loc, out, /* offset= */ 0, read_barrier_option); generate_null_check = true; break; } case HLoadClass::LoadKind::kJitBootImageAddress: { DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); uint32_t address = reinterpret_cast32(cls->GetClass().Get()); DCHECK_NE(address, 0u); __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address)); break; } case HLoadClass::LoadKind::kJitTableAddress: { __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(), cls->GetTypeIndex(), cls->GetClass())); // /* GcRoot */ out = *out codegen_->GenerateGcRootFieldLoad(cls, out_loc, out, /* offset= */ 0, read_barrier_option); break; } case HLoadClass::LoadKind::kRuntimeCall: case HLoadClass::LoadKind::kInvalid: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } if (generate_null_check || cls->MustGenerateClinitCheck()) { DCHECK(cls->CanCallRuntime()); LoadClassSlowPathARMVIXL* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathARMVIXL(cls, cls); codegen_->AddSlowPath(slow_path); if (generate_null_check) { __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel()); } if (cls->MustGenerateClinitCheck()) { GenerateClassInitializationCheck(slow_path, out); } else { __ Bind(slow_path->GetExitLabel()); } codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 16); } } void LocationsBuilderARMVIXL::VisitLoadMethodHandle(HLoadMethodHandle* load) { InvokeRuntimeCallingConventionARMVIXL calling_convention; Location location = LocationFrom(calling_convention.GetRegisterAt(0)); CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location); } void InstructionCodeGeneratorARMVIXL::VisitLoadMethodHandle(HLoadMethodHandle* load) { codegen_->GenerateLoadMethodHandleRuntimeCall(load); } void LocationsBuilderARMVIXL::VisitLoadMethodType(HLoadMethodType* load) { InvokeRuntimeCallingConventionARMVIXL calling_convention; Location location = LocationFrom(calling_convention.GetRegisterAt(0)); CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location); } void InstructionCodeGeneratorARMVIXL::VisitLoadMethodType(HLoadMethodType* load) { codegen_->GenerateLoadMethodTypeRuntimeCall(load); } void LocationsBuilderARMVIXL::VisitClinitCheck(HClinitCheck* check) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath); locations->SetInAt(0, Location::RequiresRegister()); if (check->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } // Rely on the type initialization to save everything we need. locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); } void InstructionCodeGeneratorARMVIXL::VisitClinitCheck(HClinitCheck* check) { // We assume the class is not null. LoadClassSlowPathARMVIXL* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathARMVIXL(check->GetLoadClass(), check); codegen_->AddSlowPath(slow_path); GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0)); } void InstructionCodeGeneratorARMVIXL::GenerateClassInitializationCheck( LoadClassSlowPathARMVIXL* slow_path, vixl32::Register class_reg) { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf(); constexpr uint32_t shifted_visibly_initialized_value = enum_cast(ClassStatus::kVisiblyInitialized) << status_lsb_position; const size_t status_offset = mirror::Class::StatusOffset().SizeValue(); GetAssembler()->LoadFromOffset(kLoadWord, temp, class_reg, status_offset); __ Cmp(temp, shifted_visibly_initialized_value); __ B(lo, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void InstructionCodeGeneratorARMVIXL::GenerateBitstringTypeCheckCompare( HTypeCheckInstruction* check, vixl32::Register temp, vixl32::FlagsUpdate flags_update) { uint32_t path_to_root = check->GetBitstringPathToRoot(); uint32_t mask = check->GetBitstringMask(); DCHECK(IsPowerOfTwo(mask + 1)); size_t mask_bits = WhichPowerOf2(mask + 1); // Note that HInstanceOf shall check for zero value in `temp` but HCheckCast needs // the Z flag for BNE. This is indicated by the `flags_update` parameter. if (mask_bits == 16u) { // Load only the bitstring part of the status word. __ Ldrh(temp, MemOperand(temp, mirror::Class::StatusOffset().Int32Value())); // Check if the bitstring bits are equal to `path_to_root`. if (flags_update == SetFlags) { __ Cmp(temp, path_to_root); } else { __ Sub(temp, temp, path_to_root); } } else { // /* uint32_t */ temp = temp->status_ __ Ldr(temp, MemOperand(temp, mirror::Class::StatusOffset().Int32Value())); if (GetAssembler()->ShifterOperandCanHold(SUB, path_to_root)) { // Compare the bitstring bits using SUB. __ Sub(temp, temp, path_to_root); // Shift out bits that do not contribute to the comparison. __ Lsl(flags_update, temp, temp, dchecked_integral_cast(32u - mask_bits)); } else if (IsUint<16>(path_to_root)) { if (temp.IsLow()) { // Note: Optimized for size but contains one more dependent instruction than necessary. // MOVW+SUB(register) would be 8 bytes unless we find a low-reg temporary but the // macro assembler would use the high reg IP for the constant by default. // Compare the bitstring bits using SUB. __ Sub(temp, temp, path_to_root & 0x00ffu); // 16-bit SUB (immediate) T2 __ Sub(temp, temp, path_to_root & 0xff00u); // 32-bit SUB (immediate) T3 // Shift out bits that do not contribute to the comparison. __ Lsl(flags_update, temp, temp, dchecked_integral_cast(32u - mask_bits)); } else { // Extract the bitstring bits. __ Ubfx(temp, temp, 0, mask_bits); // Check if the bitstring bits are equal to `path_to_root`. if (flags_update == SetFlags) { __ Cmp(temp, path_to_root); } else { __ Sub(temp, temp, path_to_root); } } } else { // Shift out bits that do not contribute to the comparison. __ Lsl(temp, temp, dchecked_integral_cast(32u - mask_bits)); // Check if the shifted bitstring bits are equal to `path_to_root << (32u - mask_bits)`. if (flags_update == SetFlags) { __ Cmp(temp, path_to_root << (32u - mask_bits)); } else { __ Sub(temp, temp, path_to_root << (32u - mask_bits)); } } } } HLoadString::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadStringKind( HLoadString::LoadKind desired_string_load_kind) { switch (desired_string_load_kind) { case HLoadString::LoadKind::kBootImageLinkTimePcRelative: case HLoadString::LoadKind::kBootImageRelRo: case HLoadString::LoadKind::kBssEntry: DCHECK(!GetCompilerOptions().IsJitCompiler()); break; case HLoadString::LoadKind::kJitBootImageAddress: case HLoadString::LoadKind::kJitTableAddress: DCHECK(GetCompilerOptions().IsJitCompiler()); break; case HLoadString::LoadKind::kRuntimeCall: break; } return desired_string_load_kind; } void LocationsBuilderARMVIXL::VisitLoadString(HLoadString* load) { LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind); HLoadString::LoadKind load_kind = load->GetLoadKind(); if (load_kind == HLoadString::LoadKind::kRuntimeCall) { locations->SetOut(LocationFrom(r0)); } else { locations->SetOut(Location::RequiresRegister()); if (load_kind == HLoadString::LoadKind::kBssEntry) { if (!kUseReadBarrier || kUseBakerReadBarrier) { // Rely on the pResolveString and marking to save everything we need, including temps. locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); } else { // For non-Baker read barrier we have a temp-clobbering call. } } } } // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not // move. void InstructionCodeGeneratorARMVIXL::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { LocationSummary* locations = load->GetLocations(); Location out_loc = locations->Out(); vixl32::Register out = OutputRegister(load); HLoadString::LoadKind load_kind = load->GetLoadKind(); switch (load_kind) { case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { DCHECK(codegen_->GetCompilerOptions().IsBootImage() || codegen_->GetCompilerOptions().IsBootImageExtension()); CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex()); codegen_->EmitMovwMovtPlaceholder(labels, out); return; } case HLoadString::LoadKind::kBootImageRelRo: { DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = codegen_->NewBootImageRelRoPatch(CodeGenerator::GetBootImageOffset(load)); codegen_->EmitMovwMovtPlaceholder(labels, out); __ Ldr(out, MemOperand(out, /* offset= */ 0)); return; } case HLoadString::LoadKind::kBssEntry: { CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex()); codegen_->EmitMovwMovtPlaceholder(labels, out); // All aligned loads are implicitly atomic consume operations on ARM. codegen_->GenerateGcRootFieldLoad( load, out_loc, out, /* offset= */ 0, kCompilerReadBarrierOption); LoadStringSlowPathARMVIXL* slow_path = new (codegen_->GetScopedAllocator()) LoadStringSlowPathARMVIXL(load); codegen_->AddSlowPath(slow_path); __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 17); return; } case HLoadString::LoadKind::kJitBootImageAddress: { uint32_t address = reinterpret_cast32(load->GetString().Get()); DCHECK_NE(address, 0u); __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address)); return; } case HLoadString::LoadKind::kJitTableAddress: { __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(), load->GetStringIndex(), load->GetString())); // /* GcRoot */ out = *out codegen_->GenerateGcRootFieldLoad( load, out_loc, out, /* offset= */ 0, kCompilerReadBarrierOption); return; } default: break; } // TODO: Re-add the compiler code to do string dex cache lookup again. DCHECK_EQ(load->GetLoadKind(), HLoadString::LoadKind::kRuntimeCall); InvokeRuntimeCallingConventionARMVIXL calling_convention; __ Mov(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_); codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); CheckEntrypointTypes(); codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 18); } static int32_t GetExceptionTlsOffset() { return Thread::ExceptionOffset().Int32Value(); } void LocationsBuilderARMVIXL::VisitLoadException(HLoadException* load) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARMVIXL::VisitLoadException(HLoadException* load) { vixl32::Register out = OutputRegister(load); GetAssembler()->LoadFromOffset(kLoadWord, out, tr, GetExceptionTlsOffset()); } void LocationsBuilderARMVIXL::VisitClearException(HClearException* clear) { new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall); } void InstructionCodeGeneratorARMVIXL::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Mov(temp, 0); GetAssembler()->StoreToOffset(kStoreWord, temp, tr, GetExceptionTlsOffset()); } void LocationsBuilderARMVIXL::VisitThrow(HThrow* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorARMVIXL::VisitThrow(HThrow* instruction) { codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); CheckEntrypointTypes(); } // Temp is used for read barrier. static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { if (kEmitCompilerReadBarrier && (kUseBakerReadBarrier || type_check_kind == TypeCheckKind::kAbstractClassCheck || type_check_kind == TypeCheckKind::kClassHierarchyCheck || type_check_kind == TypeCheckKind::kArrayObjectCheck)) { return 1; } return 0; } // Interface case has 3 temps, one for holding the number of interfaces, one for the current // interface pointer, one for loading the current interface. // The other checks have one temp for loading the object's class. static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { if (type_check_kind == TypeCheckKind::kInterfaceCheck) { return 3; } return 1 + NumberOfInstanceOfTemps(type_check_kind); } void LocationsBuilderARMVIXL::VisitInstanceOf(HInstanceOf* instruction) { LocationSummary::CallKind call_kind = LocationSummary::kNoCall; TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); bool baker_read_barrier_slow_path = false; switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kAbstractClassCheck: case TypeCheckKind::kClassHierarchyCheck: case TypeCheckKind::kArrayObjectCheck: { bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction); call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier; break; } case TypeCheckKind::kArrayCheck: case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: call_kind = LocationSummary::kCallOnSlowPath; break; case TypeCheckKind::kBitstringCheck: break; } LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); if (baker_read_barrier_slow_path) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::RequiresRegister()); if (type_check_kind == TypeCheckKind::kBitstringCheck) { locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); } else { locations->SetInAt(1, Location::RequiresRegister()); } // The "out" register is used as a temporary, so it overlaps with the inputs. // Note that TypeCheckSlowPathARM uses this register too. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); } void InstructionCodeGeneratorARMVIXL::VisitInstanceOf(HInstanceOf* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); vixl32::Register obj = InputRegisterAt(instruction, 0); vixl32::Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck) ? vixl32::Register() : InputRegisterAt(instruction, 1); Location out_loc = locations->Out(); vixl32::Register out = OutputRegister(instruction); const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); DCHECK_LE(num_temps, 1u); Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); vixl32::Label done; vixl32::Label* const final_label = codegen_->GetFinalLabel(instruction, &done); SlowPathCodeARMVIXL* slow_path = nullptr; // Return 0 if `obj` is null. // avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { DCHECK(!out.Is(obj)); __ Mov(out, 0); __ CompareAndBranchIfZero(obj, final_label, /* is_far_target= */ false); } switch (type_check_kind) { case TypeCheckKind::kExactCheck: { ReadBarrierOption read_barrier_option = CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); // Classes must be equal for the instanceof to succeed. __ Cmp(out, cls); // We speculatively set the result to false without changing the condition // flags, which allows us to avoid some branching later. __ Mov(LeaveFlags, out, 0); // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, // we check that the output is in a low register, so that a 16-bit MOV // encoding can be used. if (out.IsLow()) { // We use the scope because of the IT block that follows. ExactAssemblyScope guard(GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ it(eq); __ mov(eq, out, 1); } else { __ B(ne, final_label, /* is_far_target= */ false); __ Mov(out, 1); } break; } case TypeCheckKind::kAbstractClassCheck: { ReadBarrierOption read_barrier_option = CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); // If the class is abstract, we eagerly fetch the super class of the // object to avoid doing a comparison we know will fail. vixl32::Label loop; __ Bind(&loop); // /* HeapReference */ out = out->super_class_ GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc, read_barrier_option); // If `out` is null, we use it for the result, and jump to the final label. __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false); __ Cmp(out, cls); __ B(ne, &loop, /* is_far_target= */ false); __ Mov(out, 1); break; } case TypeCheckKind::kClassHierarchyCheck: { ReadBarrierOption read_barrier_option = CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); // Walk over the class hierarchy to find a match. vixl32::Label loop, success; __ Bind(&loop); __ Cmp(out, cls); __ B(eq, &success, /* is_far_target= */ false); // /* HeapReference */ out = out->super_class_ GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc, read_barrier_option); // This is essentially a null check, but it sets the condition flags to the // proper value for the code that follows the loop, i.e. not `eq`. __ Cmp(out, 1); __ B(hs, &loop, /* is_far_target= */ false); // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, // we check that the output is in a low register, so that a 16-bit MOV // encoding can be used. if (out.IsLow()) { // If `out` is null, we use it for the result, and the condition flags // have already been set to `ne`, so the IT block that comes afterwards // (and which handles the successful case) turns into a NOP (instead of // overwriting `out`). __ Bind(&success); // We use the scope because of the IT block that follows. ExactAssemblyScope guard(GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); // There is only one branch to the `success` label (which is bound to this // IT block), and it has the same condition, `eq`, so in that case the MOV // is executed. __ it(eq); __ mov(eq, out, 1); } else { // If `out` is null, we use it for the result, and jump to the final label. __ B(final_label); __ Bind(&success); __ Mov(out, 1); } break; } case TypeCheckKind::kArrayObjectCheck: { ReadBarrierOption read_barrier_option = CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option); // Do an exact check. vixl32::Label exact_check; __ Cmp(out, cls); __ B(eq, &exact_check, /* is_far_target= */ false); // Otherwise, we need to check that the object's class is a non-primitive array. // /* HeapReference */ out = out->component_type_ GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc, read_barrier_option); // If `out` is null, we use it for the result, and jump to the final label. __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false); GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ Cmp(out, 0); // We speculatively set the result to false without changing the condition // flags, which allows us to avoid some branching later. __ Mov(LeaveFlags, out, 0); // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, // we check that the output is in a low register, so that a 16-bit MOV // encoding can be used. if (out.IsLow()) { __ Bind(&exact_check); // We use the scope because of the IT block that follows. ExactAssemblyScope guard(GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ it(eq); __ mov(eq, out, 1); } else { __ B(ne, final_label, /* is_far_target= */ false); __ Bind(&exact_check); __ Mov(out, 1); } break; } case TypeCheckKind::kArrayCheck: { // No read barrier since the slow path will retry upon failure. // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kWithoutReadBarrier); __ Cmp(out, cls); DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL( instruction, /* is_fatal= */ false); codegen_->AddSlowPath(slow_path); __ B(ne, slow_path->GetEntryLabel()); __ Mov(out, 1); break; } case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: { // Note that we indeed only call on slow path, but we always go // into the slow path for the unresolved and interface check // cases. // // We cannot directly call the InstanceofNonTrivial runtime // entry point without resorting to a type checking slow path // here (i.e. by calling InvokeRuntime directly), as it would // require to assign fixed registers for the inputs of this // HInstanceOf instruction (following the runtime calling // convention), which might be cluttered by the potential first // read barrier emission at the beginning of this method. // // TODO: Introduce a new runtime entry point taking the object // to test (instead of its class) as argument, and let it deal // with the read barrier issues. This will let us refactor this // case of the `switch` code as it was previously (with a direct // call to the runtime not using a type checking slow path). // This should also be beneficial for the other cases above. DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL( instruction, /* is_fatal= */ false); codegen_->AddSlowPath(slow_path); __ B(slow_path->GetEntryLabel()); break; } case TypeCheckKind::kBitstringCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kWithoutReadBarrier); GenerateBitstringTypeCheckCompare(instruction, out, DontCare); // If `out` is a low reg and we would have another low reg temp, we could // optimize this as RSBS+ADC, see GenerateConditionWithZero(). // // Also, in some cases when `out` is a low reg and we're loading a constant to IP // it would make sense to use CMP+MOV+IT+MOV instead of SUB+CLZ+LSR as the code size // would be the same and we would have fewer direct data dependencies. codegen_->GenerateConditionWithZero(kCondEQ, out, out); // CLZ+LSR break; } } if (done.IsReferenced()) { __ Bind(&done); } if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void LocationsBuilderARMVIXL::VisitCheckCast(HCheckCast* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); locations->SetInAt(0, Location::RequiresRegister()); if (type_check_kind == TypeCheckKind::kBitstringCheck) { locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); } else { locations->SetInAt(1, Location::RequiresRegister()); } locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); } void InstructionCodeGeneratorARMVIXL::VisitCheckCast(HCheckCast* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); vixl32::Register obj = InputRegisterAt(instruction, 0); vixl32::Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck) ? vixl32::Register() : InputRegisterAt(instruction, 1); Location temp_loc = locations->GetTemp(0); vixl32::Register temp = RegisterFrom(temp_loc); const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); DCHECK_LE(num_temps, 3u); Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation(); const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); const uint32_t object_array_data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction); SlowPathCodeARMVIXL* type_check_slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL( instruction, is_type_check_slow_path_fatal); codegen_->AddSlowPath(type_check_slow_path); vixl32::Label done; vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done); // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ CompareAndBranchIfZero(obj, final_label, /* is_far_target= */ false); } switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kArrayCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); __ Cmp(temp, cls); // Jump to slow path for throwing the exception or doing a // more involved array check. __ B(ne, type_check_slow_path->GetEntryLabel()); break; } case TypeCheckKind::kAbstractClassCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the class is abstract, we eagerly fetch the super class of the // object to avoid doing a comparison we know will fail. vixl32::Label loop; __ Bind(&loop); // /* HeapReference */ temp = temp->super_class_ GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the class reference currently in `temp` is null, jump to the slow path to throw the // exception. __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); // Otherwise, compare the classes. __ Cmp(temp, cls); __ B(ne, &loop, /* is_far_target= */ false); break; } case TypeCheckKind::kClassHierarchyCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // Walk over the class hierarchy to find a match. vixl32::Label loop; __ Bind(&loop); __ Cmp(temp, cls); __ B(eq, final_label, /* is_far_target= */ false); // /* HeapReference */ temp = temp->super_class_ GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the class reference currently in `temp` is null, jump to the slow path to throw the // exception. __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); // Otherwise, jump to the beginning of the loop. __ B(&loop); break; } case TypeCheckKind::kArrayObjectCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // Do an exact check. __ Cmp(temp, cls); __ B(eq, final_label, /* is_far_target= */ false); // Otherwise, we need to check that the object's class is a non-primitive array. // /* HeapReference */ temp = temp->component_type_ GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the component type is null, jump to the slow path to throw the exception. __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type` // to further check that this component type is not a primitive type. GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel()); break; } case TypeCheckKind::kUnresolvedCheck: // We always go into the type check slow path for the unresolved check case. // We cannot directly call the CheckCast runtime entry point // without resorting to a type checking slow path here (i.e. by // calling InvokeRuntime directly), as it would require to // assign fixed registers for the inputs of this HInstanceOf // instruction (following the runtime calling convention), which // might be cluttered by the potential first read barrier // emission at the beginning of this method. __ B(type_check_slow_path->GetEntryLabel()); break; case TypeCheckKind::kInterfaceCheck: { // Avoid read barriers to improve performance of the fast path. We can not get false // positives by doing this. // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // /* HeapReference */ temp = temp->iftable_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, temp_loc, iftable_offset, maybe_temp2_loc, kWithoutReadBarrier); // Iftable is never null. __ Ldr(RegisterFrom(maybe_temp2_loc), MemOperand(temp, array_length_offset)); // Loop through the iftable and check if any class matches. vixl32::Label start_loop; __ Bind(&start_loop); __ CompareAndBranchIfZero(RegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel()); __ Ldr(RegisterFrom(maybe_temp3_loc), MemOperand(temp, object_array_data_offset)); GetAssembler()->MaybeUnpoisonHeapReference(RegisterFrom(maybe_temp3_loc)); // Go to next interface. __ Add(temp, temp, Operand::From(2 * kHeapReferenceSize)); __ Sub(RegisterFrom(maybe_temp2_loc), RegisterFrom(maybe_temp2_loc), 2); // Compare the classes and continue the loop if they do not match. __ Cmp(cls, RegisterFrom(maybe_temp3_loc)); __ B(ne, &start_loop, /* is_far_target= */ false); break; } case TypeCheckKind::kBitstringCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); GenerateBitstringTypeCheckCompare(instruction, temp, SetFlags); __ B(ne, type_check_slow_path->GetEntryLabel()); break; } } if (done.IsReferenced()) { __ Bind(&done); } __ Bind(type_check_slow_path->GetExitLabel()); } void LocationsBuilderARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) { codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, instruction, instruction->GetDexPc()); if (instruction->IsEnter()) { CheckEntrypointTypes(); } else { CheckEntrypointTypes(); } codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 19); } void LocationsBuilderARMVIXL::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction, AND); } void LocationsBuilderARMVIXL::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction, ORR); } void LocationsBuilderARMVIXL::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction, EOR); } void LocationsBuilderARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); DCHECK(instruction->GetResultType() == DataType::Type::kInt32 || instruction->GetResultType() == DataType::Type::kInt64); // Note: GVN reorders commutative operations to have the constant on the right hand side. locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARMVIXL::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorARMVIXL::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorARMVIXL::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); DCHECK(instruction->GetResultType() == DataType::Type::kInt32 || instruction->GetResultType() == DataType::Type::kInt64); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) { LocationSummary* locations = instruction->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); if (instruction->GetResultType() == DataType::Type::kInt32) { vixl32::Register first_reg = RegisterFrom(first); vixl32::Register second_reg = RegisterFrom(second); vixl32::Register out_reg = RegisterFrom(out); switch (instruction->GetOpKind()) { case HInstruction::kAnd: __ Bic(out_reg, first_reg, second_reg); break; case HInstruction::kOr: __ Orn(out_reg, first_reg, second_reg); break; // There is no EON on arm. case HInstruction::kXor: default: LOG(FATAL) << "Unexpected instruction " << instruction->DebugName(); UNREACHABLE(); } return; } else { DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64); vixl32::Register first_low = LowRegisterFrom(first); vixl32::Register first_high = HighRegisterFrom(first); vixl32::Register second_low = LowRegisterFrom(second); vixl32::Register second_high = HighRegisterFrom(second); vixl32::Register out_low = LowRegisterFrom(out); vixl32::Register out_high = HighRegisterFrom(out); switch (instruction->GetOpKind()) { case HInstruction::kAnd: __ Bic(out_low, first_low, second_low); __ Bic(out_high, first_high, second_high); break; case HInstruction::kOr: __ Orn(out_low, first_low, second_low); __ Orn(out_high, first_high, second_high); break; // There is no EON on arm. case HInstruction::kXor: default: LOG(FATAL) << "Unexpected instruction " << instruction->DebugName(); UNREACHABLE(); } } } void LocationsBuilderARMVIXL::VisitDataProcWithShifterOp( HDataProcWithShifterOp* instruction) { DCHECK(instruction->GetType() == DataType::Type::kInt32 || instruction->GetType() == DataType::Type::kInt64); LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); const bool overlap = instruction->GetType() == DataType::Type::kInt64 && HDataProcWithShifterOp::IsExtensionOp(instruction->GetOpKind()); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap); } void InstructionCodeGeneratorARMVIXL::VisitDataProcWithShifterOp( HDataProcWithShifterOp* instruction) { const LocationSummary* const locations = instruction->GetLocations(); const HInstruction::InstructionKind kind = instruction->GetInstrKind(); const HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind(); if (instruction->GetType() == DataType::Type::kInt32) { const vixl32::Register first = InputRegisterAt(instruction, 0); const vixl32::Register output = OutputRegister(instruction); const vixl32::Register second = instruction->InputAt(1)->GetType() == DataType::Type::kInt64 ? LowRegisterFrom(locations->InAt(1)) : InputRegisterAt(instruction, 1); if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) { DCHECK_EQ(kind, HInstruction::kAdd); switch (op_kind) { case HDataProcWithShifterOp::kUXTB: __ Uxtab(output, first, second); break; case HDataProcWithShifterOp::kUXTH: __ Uxtah(output, first, second); break; case HDataProcWithShifterOp::kSXTB: __ Sxtab(output, first, second); break; case HDataProcWithShifterOp::kSXTH: __ Sxtah(output, first, second); break; default: LOG(FATAL) << "Unexpected operation kind: " << op_kind; UNREACHABLE(); } } else { GenerateDataProcInstruction(kind, output, first, Operand(second, ShiftFromOpKind(op_kind), instruction->GetShiftAmount()), codegen_); } } else { DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64); if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) { const vixl32::Register second = InputRegisterAt(instruction, 1); DCHECK(!LowRegisterFrom(locations->Out()).Is(second)); GenerateDataProc(kind, locations->Out(), locations->InAt(0), second, Operand(second, ShiftType::ASR, 31), codegen_); } else { GenerateLongDataProc(instruction, codegen_); } } } // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl. void InstructionCodeGeneratorARMVIXL::GenerateAndConst(vixl32::Register out, vixl32::Register first, uint32_t value) { // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier). if (value == 0xffffffffu) { if (!out.Is(first)) { __ Mov(out, first); } return; } if (value == 0u) { __ Mov(out, 0); return; } if (GetAssembler()->ShifterOperandCanHold(AND, value)) { __ And(out, first, value); } else if (GetAssembler()->ShifterOperandCanHold(BIC, ~value)) { __ Bic(out, first, ~value); } else { DCHECK(IsPowerOfTwo(value + 1)); __ Ubfx(out, first, 0, WhichPowerOf2(value + 1)); } } // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl. void InstructionCodeGeneratorARMVIXL::GenerateOrrConst(vixl32::Register out, vixl32::Register first, uint32_t value) { // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier). if (value == 0u) { if (!out.Is(first)) { __ Mov(out, first); } return; } if (value == 0xffffffffu) { __ Mvn(out, 0); return; } if (GetAssembler()->ShifterOperandCanHold(ORR, value)) { __ Orr(out, first, value); } else { DCHECK(GetAssembler()->ShifterOperandCanHold(ORN, ~value)); __ Orn(out, first, ~value); } } // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl. void InstructionCodeGeneratorARMVIXL::GenerateEorConst(vixl32::Register out, vixl32::Register first, uint32_t value) { // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier). if (value == 0u) { if (!out.Is(first)) { __ Mov(out, first); } return; } __ Eor(out, first, value); } void InstructionCodeGeneratorARMVIXL::GenerateAddLongConst(Location out, Location first, uint64_t value) { vixl32::Register out_low = LowRegisterFrom(out); vixl32::Register out_high = HighRegisterFrom(out); vixl32::Register first_low = LowRegisterFrom(first); vixl32::Register first_high = HighRegisterFrom(first); uint32_t value_low = Low32Bits(value); uint32_t value_high = High32Bits(value); if (value_low == 0u) { if (!out_low.Is(first_low)) { __ Mov(out_low, first_low); } __ Add(out_high, first_high, value_high); return; } __ Adds(out_low, first_low, value_low); if (GetAssembler()->ShifterOperandCanHold(ADC, value_high)) { __ Adc(out_high, first_high, value_high); } else { DCHECK(GetAssembler()->ShifterOperandCanHold(SBC, ~value_high)); __ Sbc(out_high, first_high, ~value_high); } } void InstructionCodeGeneratorARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction) { LocationSummary* locations = instruction->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); if (second.IsConstant()) { uint64_t value = static_cast(Int64FromConstant(second.GetConstant())); uint32_t value_low = Low32Bits(value); if (instruction->GetResultType() == DataType::Type::kInt32) { vixl32::Register first_reg = InputRegisterAt(instruction, 0); vixl32::Register out_reg = OutputRegister(instruction); if (instruction->IsAnd()) { GenerateAndConst(out_reg, first_reg, value_low); } else if (instruction->IsOr()) { GenerateOrrConst(out_reg, first_reg, value_low); } else { DCHECK(instruction->IsXor()); GenerateEorConst(out_reg, first_reg, value_low); } } else { DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64); uint32_t value_high = High32Bits(value); vixl32::Register first_low = LowRegisterFrom(first); vixl32::Register first_high = HighRegisterFrom(first); vixl32::Register out_low = LowRegisterFrom(out); vixl32::Register out_high = HighRegisterFrom(out); if (instruction->IsAnd()) { GenerateAndConst(out_low, first_low, value_low); GenerateAndConst(out_high, first_high, value_high); } else if (instruction->IsOr()) { GenerateOrrConst(out_low, first_low, value_low); GenerateOrrConst(out_high, first_high, value_high); } else { DCHECK(instruction->IsXor()); GenerateEorConst(out_low, first_low, value_low); GenerateEorConst(out_high, first_high, value_high); } } return; } if (instruction->GetResultType() == DataType::Type::kInt32) { vixl32::Register first_reg = InputRegisterAt(instruction, 0); vixl32::Register second_reg = InputRegisterAt(instruction, 1); vixl32::Register out_reg = OutputRegister(instruction); if (instruction->IsAnd()) { __ And(out_reg, first_reg, second_reg); } else if (instruction->IsOr()) { __ Orr(out_reg, first_reg, second_reg); } else { DCHECK(instruction->IsXor()); __ Eor(out_reg, first_reg, second_reg); } } else { DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64); vixl32::Register first_low = LowRegisterFrom(first); vixl32::Register first_high = HighRegisterFrom(first); vixl32::Register second_low = LowRegisterFrom(second); vixl32::Register second_high = HighRegisterFrom(second); vixl32::Register out_low = LowRegisterFrom(out); vixl32::Register out_high = HighRegisterFrom(out); if (instruction->IsAnd()) { __ And(out_low, first_low, second_low); __ And(out_high, first_high, second_high); } else if (instruction->IsOr()) { __ Orr(out_low, first_low, second_low); __ Orr(out_high, first_high, second_high); } else { DCHECK(instruction->IsXor()); __ Eor(out_low, first_low, second_low); __ Eor(out_high, first_high, second_high); } } } void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadOneRegister( HInstruction* instruction, Location out, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option) { vixl32::Register out_reg = RegisterFrom(out); if (read_barrier_option == kWithReadBarrier) { CHECK(kEmitCompilerReadBarrier); DCHECK(maybe_temp.IsRegister()) << maybe_temp; if (kUseBakerReadBarrier) { // Load with fast path based Baker's read barrier. // /* HeapReference */ out = *(out + offset) codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, out_reg, offset, maybe_temp, /* needs_null_check= */ false); } else { // Load with slow path based read barrier. // Save the value of `out` into `maybe_temp` before overwriting it // in the following move operation, as we will need it for the // read barrier below. __ Mov(RegisterFrom(maybe_temp), out_reg); // /* HeapReference */ out = *(out + offset) GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset); codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); } } else { // Plain load with no read barrier. // /* HeapReference */ out = *(out + offset) GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset); GetAssembler()->MaybeUnpoisonHeapReference(out_reg); } } void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadTwoRegisters( HInstruction* instruction, Location out, Location obj, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option) { vixl32::Register out_reg = RegisterFrom(out); vixl32::Register obj_reg = RegisterFrom(obj); if (read_barrier_option == kWithReadBarrier) { CHECK(kEmitCompilerReadBarrier); if (kUseBakerReadBarrier) { DCHECK(maybe_temp.IsRegister()) << maybe_temp; // Load with fast path based Baker's read barrier. // /* HeapReference */ out = *(obj + offset) codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check= */ false); } else { // Load with slow path based read barrier. // /* HeapReference */ out = *(obj + offset) GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); } } else { // Plain load with no read barrier. // /* HeapReference */ out = *(obj + offset) GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); GetAssembler()->MaybeUnpoisonHeapReference(out_reg); } } void CodeGeneratorARMVIXL::GenerateGcRootFieldLoad( HInstruction* instruction, Location root, vixl32::Register obj, uint32_t offset, ReadBarrierOption read_barrier_option) { vixl32::Register root_reg = RegisterFrom(root); if (read_barrier_option == kWithReadBarrier) { DCHECK(kEmitCompilerReadBarrier); if (kUseBakerReadBarrier) { // Fast path implementation of art::ReadBarrier::BarrierForRoot when // Baker's read barrier are used. // Query `art::Thread::Current()->GetIsGcMarking()` (stored in // the Marking Register) to decide whether we need to enter // the slow path to mark the GC root. // // We use shared thunks for the slow path; shared within the method // for JIT, across methods for AOT. That thunk checks the reference // and jumps to the entrypoint if needed. // // lr = &return_address; // GcRoot root = *(obj+offset); // Original reference load. // if (mr) { // Thread::Current()->GetIsGcMarking() // goto gc_root_thunk(lr) // } // return_address: UseScratchRegisterScope temps(GetVIXLAssembler()); temps.Exclude(ip); bool narrow = CanEmitNarrowLdr(root_reg, obj, offset); uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode(), narrow); size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u) + /* LDR */ (narrow ? 1u : 0u); size_t wide_instructions = /* ADR+CMP+LDR+BNE */ 4u - narrow_instructions; size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes + narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes; ExactAssemblyScope guard(GetVIXLAssembler(), exact_size); vixl32::Label return_address; EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address); __ cmp(mr, Operand(0)); // Currently the offset is always within range. If that changes, // we shall have to split the load the same way as for fields. DCHECK_LT(offset, kReferenceLoadMinFarOffset); ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset(); __ ldr(EncodingSize(narrow ? Narrow : Wide), root_reg, MemOperand(obj, offset)); EmitBakerReadBarrierBne(custom_data); __ bind(&return_address); DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(), narrow ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_OFFSET : BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_OFFSET); } else { // GC root loaded through a slow path for read barriers other // than Baker's. // /* GcRoot* */ root = obj + offset __ Add(root_reg, obj, offset); // /* mirror::Object* */ root = root->Read() GenerateReadBarrierForRootSlow(instruction, root, root); } } else { // Plain GC root load with no read barrier. // /* GcRoot */ root = *(obj + offset) GetAssembler()->LoadFromOffset(kLoadWord, root_reg, obj, offset); // Note that GC roots are not affected by heap poisoning, thus we // do not have to unpoison `root_reg` here. } MaybeGenerateMarkingRegisterCheck(/* code= */ 20); } void CodeGeneratorARMVIXL::GenerateIntrinsicCasMoveWithBakerReadBarrier( vixl::aarch32::Register marked_old_value, vixl::aarch32::Register old_value) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR. // For low registers, we can reuse the GC root narrow entrypoint, for high registers // we use a specialized entrypoint because the register bits are 8-11 instead of 12-15. bool narrow_mov = marked_old_value.IsLow(); uint32_t custom_data = narrow_mov ? EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode(), /*narrow=*/ true) : EncodeBakerReadBarrierIntrinsicCasData(marked_old_value.GetCode()); size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u) + /* MOV */ (narrow_mov ? 1u : 0u); size_t wide_instructions = /* ADR+CMP+MOV+BNE */ 4u - narrow_instructions; size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes + narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes; ExactAssemblyScope guard(GetVIXLAssembler(), exact_size); vixl32::Label return_address; EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address); __ cmp(mr, Operand(0)); ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset(); __ mov(EncodingSize(narrow_mov ? Narrow : Wide), marked_old_value, old_value); EmitBakerReadBarrierBne(custom_data); __ bind(&return_address); DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(), narrow_mov ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_OFFSET : BAKER_MARK_INTROSPECTION_INTRINSIC_CAS_MOV_OFFSET); } void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, vixl32::Register obj, const vixl32::MemOperand& src, bool needs_null_check) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the // Marking Register) to decide whether we need to enter the slow // path to mark the reference. Then, in the slow path, check the // gray bit in the lock word of the reference's holder (`obj`) to // decide whether to mark `ref` or not. // // We use shared thunks for the slow path; shared within the method // for JIT, across methods for AOT. That thunk checks the holder // and jumps to the entrypoint if needed. If the holder is not gray, // it creates a fake dependency and returns to the LDR instruction. // // lr = &gray_return_address; // if (mr) { // Thread::Current()->GetIsGcMarking() // goto field_thunk(lr) // } // not_gray_return_address: // // Original reference load. If the offset is too large to fit // // into LDR, we use an adjusted base register here. // HeapReference reference = *(obj+offset); // gray_return_address: DCHECK(src.GetAddrMode() == vixl32::Offset); DCHECK_ALIGNED(src.GetOffsetImmediate(), sizeof(mirror::HeapReference)); vixl32::Register ref_reg = RegisterFrom(ref, DataType::Type::kReference); bool narrow = CanEmitNarrowLdr(ref_reg, src.GetBaseRegister(), src.GetOffsetImmediate()); UseScratchRegisterScope temps(GetVIXLAssembler()); temps.Exclude(ip); uint32_t custom_data = EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode(), narrow); { size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u) + /* LDR+unpoison? */ (narrow ? (kPoisonHeapReferences ? 2u : 1u) : 0u); size_t wide_instructions = /* ADR+CMP+LDR+BNE+unpoison? */ (kPoisonHeapReferences ? 5u : 4u) - narrow_instructions; size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes + narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes; ExactAssemblyScope guard(GetVIXLAssembler(), exact_size); vixl32::Label return_address; EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address); __ cmp(mr, Operand(0)); EmitBakerReadBarrierBne(custom_data); ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset(); __ ldr(EncodingSize(narrow ? Narrow : Wide), ref_reg, src); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } // Note: We need a specific width for the unpoisoning NEG. if (kPoisonHeapReferences) { if (narrow) { // The only 16-bit encoding is T1 which sets flags outside IT block (i.e. RSBS, not RSB). __ rsbs(EncodingSize(Narrow), ref_reg, ref_reg, Operand(0)); } else { __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0)); } } __ bind(&return_address); DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(), narrow ? BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET : BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET); } MaybeGenerateMarkingRegisterCheck(/* code= */ 21, /* temp_loc= */ LocationFrom(ip)); } void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, vixl32::Register obj, uint32_t offset, Location maybe_temp, bool needs_null_check) { DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference)); vixl32::Register base = obj; if (offset >= kReferenceLoadMinFarOffset) { base = RegisterFrom(maybe_temp); static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2."); __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u))); offset &= (kReferenceLoadMinFarOffset - 1u); } GenerateFieldLoadWithBakerReadBarrier( instruction, ref, obj, MemOperand(base, offset), needs_null_check); } void CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier(Location ref, vixl32::Register obj, uint32_t data_offset, Location index, Location temp, bool needs_null_check) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); static_assert( sizeof(mirror::HeapReference) == sizeof(int32_t), "art::mirror::HeapReference and int32_t have different sizes."); ScaleFactor scale_factor = TIMES_4; // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the // Marking Register) to decide whether we need to enter the slow // path to mark the reference. Then, in the slow path, check the // gray bit in the lock word of the reference's holder (`obj`) to // decide whether to mark `ref` or not. // // We use shared thunks for the slow path; shared within the method // for JIT, across methods for AOT. That thunk checks the holder // and jumps to the entrypoint if needed. If the holder is not gray, // it creates a fake dependency and returns to the LDR instruction. // // lr = &gray_return_address; // if (mr) { // Thread::Current()->GetIsGcMarking() // goto array_thunk(lr) // } // not_gray_return_address: // // Original reference load. If the offset is too large to fit // // into LDR, we use an adjusted base register here. // HeapReference reference = data[index]; // gray_return_address: DCHECK(index.IsValid()); vixl32::Register index_reg = RegisterFrom(index, DataType::Type::kInt32); vixl32::Register ref_reg = RegisterFrom(ref, DataType::Type::kReference); vixl32::Register data_reg = RegisterFrom(temp, DataType::Type::kInt32); // Raw pointer. UseScratchRegisterScope temps(GetVIXLAssembler()); temps.Exclude(ip); uint32_t custom_data = EncodeBakerReadBarrierArrayData(data_reg.GetCode()); __ Add(data_reg, obj, Operand(data_offset)); { size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u); size_t wide_instructions = /* ADR+CMP+BNE+LDR+unpoison? */ (kPoisonHeapReferences ? 5u : 4u) - narrow_instructions; size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes + narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes; ExactAssemblyScope guard(GetVIXLAssembler(), exact_size); vixl32::Label return_address; EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address); __ cmp(mr, Operand(0)); EmitBakerReadBarrierBne(custom_data); ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset(); __ ldr(ref_reg, MemOperand(data_reg, index_reg, vixl32::LSL, scale_factor)); DCHECK(!needs_null_check); // The thunk cannot handle the null check. // Note: We need a Wide NEG for the unpoisoning. if (kPoisonHeapReferences) { __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0)); } __ bind(&return_address); DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(), BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET); } MaybeGenerateMarkingRegisterCheck(/* code= */ 22, /* temp_loc= */ LocationFrom(ip)); } void CodeGeneratorARMVIXL::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) { // The following condition is a compile-time one, so it does not have a run-time cost. if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) { // The following condition is a run-time one; it is executed after the // previous compile-time test, to avoid penalizing non-debug builds. if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) { UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp = temp_loc.IsValid() ? RegisterFrom(temp_loc) : temps.Acquire(); GetAssembler()->GenerateMarkingRegisterCheck(temp, kMarkingRegisterCheckBreakCodeBaseCode + code); } } } SlowPathCodeARMVIXL* CodeGeneratorARMVIXL::AddReadBarrierSlowPath(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { SlowPathCodeARMVIXL* slow_path = new (GetScopedAllocator()) ReadBarrierForHeapReferenceSlowPathARMVIXL(instruction, out, ref, obj, offset, index); AddSlowPath(slow_path); return slow_path; } void CodeGeneratorARMVIXL::GenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { DCHECK(kEmitCompilerReadBarrier); // Insert a slow path based read barrier *after* the reference load. // // If heap poisoning is enabled, the unpoisoning of the loaded // reference will be carried out by the runtime within the slow // path. // // Note that `ref` currently does not get unpoisoned (when heap // poisoning is enabled), which is alright as the `ref` argument is // not used by the artReadBarrierSlow entry point. // // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. SlowPathCodeARMVIXL* slow_path = AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index); __ B(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void CodeGeneratorARMVIXL::MaybeGenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { if (kEmitCompilerReadBarrier) { // Baker's read barriers shall be handled by the fast path // (CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier). DCHECK(!kUseBakerReadBarrier); // If heap poisoning is enabled, unpoisoning will be taken care of // by the runtime within the slow path. GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); } else if (kPoisonHeapReferences) { GetAssembler()->UnpoisonHeapReference(RegisterFrom(out)); } } void CodeGeneratorARMVIXL::GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root) { DCHECK(kEmitCompilerReadBarrier); // Insert a slow path based read barrier *after* the GC root load. // // Note that GC roots are not affected by heap poisoning, so we do // not need to do anything special for this here. SlowPathCodeARMVIXL* slow_path = new (GetScopedAllocator()) ReadBarrierForRootSlowPathARMVIXL(instruction, out, root); AddSlowPath(slow_path); __ B(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } // Check if the desired_dispatch_info is supported. If it is, return it, // otherwise return a fall-back info that should be used instead. HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARMVIXL::GetSupportedInvokeStaticOrDirectDispatch( const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, ArtMethod* method) { if (method->IsIntrinsic() && desired_dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative) { // As a work-around for soft-float native ABI interfering with type checks, we are // inserting fake calls to Float.floatToRawIntBits() or Double.doubleToRawLongBits() // when a float or double argument is passed in core registers but we cannot do that // for actual intrinsic implementations that expect them in FP registers. Therefore // we do not use `kCallCriticalNative` for intrinsics with FP arguments; if they are // properly intrinsified, the dispatch type does not matter anyway. ScopedObjectAccess soa(Thread::Current()); uint32_t shorty_len; const char* shorty = method->GetShorty(&shorty_len); for (uint32_t i = 1; i != shorty_len; ++i) { if (shorty[i] == 'D' || shorty[i] == 'F') { HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info; dispatch_info.code_ptr_location = CodePtrLocation::kCallArtMethod; return dispatch_info; } } } return desired_dispatch_info; } void CodeGeneratorARMVIXL::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) { switch (load_kind) { case MethodLoadKind::kBootImageLinkTimePcRelative: { DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); PcRelativePatchInfo* labels = NewBootImageMethodPatch(invoke->GetResolvedMethodReference()); vixl32::Register temp_reg = RegisterFrom(temp); EmitMovwMovtPlaceholder(labels, temp_reg); break; } case MethodLoadKind::kBootImageRelRo: { uint32_t boot_image_offset = GetBootImageOffset(invoke); PcRelativePatchInfo* labels = NewBootImageRelRoPatch(boot_image_offset); vixl32::Register temp_reg = RegisterFrom(temp); EmitMovwMovtPlaceholder(labels, temp_reg); GetAssembler()->LoadFromOffset(kLoadWord, temp_reg, temp_reg, /* offset*/ 0); break; } case MethodLoadKind::kBssEntry: { PcRelativePatchInfo* labels = NewMethodBssEntryPatch(invoke->GetMethodReference()); vixl32::Register temp_reg = RegisterFrom(temp); EmitMovwMovtPlaceholder(labels, temp_reg); // All aligned loads are implicitly atomic consume operations on ARM. GetAssembler()->LoadFromOffset(kLoadWord, temp_reg, temp_reg, /* offset*/ 0); break; } case MethodLoadKind::kJitDirectAddress: { __ Mov(RegisterFrom(temp), Operand::From(invoke->GetResolvedMethod())); break; } case MethodLoadKind::kRuntimeCall: { // Test situation, don't do anything. break; } default: { LOG(FATAL) << "Load kind should have already been handled " << load_kind; UNREACHABLE(); } } } void CodeGeneratorARMVIXL::GenerateStaticOrDirectCall( HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. switch (invoke->GetMethodLoadKind()) { case MethodLoadKind::kStringInit: { uint32_t offset = GetThreadOffset(invoke->GetStringInitEntryPoint()).Int32Value(); // temp = thread->string_init_entrypoint GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), tr, offset); break; } case MethodLoadKind::kRecursive: { callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex()); break; } case MethodLoadKind::kRuntimeCall: { GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); return; // No code pointer retrieval; the runtime performs the call directly. } case MethodLoadKind::kBootImageLinkTimePcRelative: // Note: Unlike arm64, x86 and x86-64, we do not avoid the materialization of method // pointer for kCallCriticalNative because it would not save us an instruction from // the current sequence MOVW+MOVT+ADD(pc)+LDR+BL. The ADD(pc) separates the patched // offset instructions MOVW+MOVT from the entrypoint load, so they cannot be fused. FALLTHROUGH_INTENDED; default: { LoadMethod(invoke->GetMethodLoadKind(), temp, invoke); break; } } auto call_code_pointer_member = [&](MemberOffset offset) { // LR = callee_method->member; GetAssembler()->LoadFromOffset(kLoadWord, lr, RegisterFrom(callee_method), offset.Int32Value()); { // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used. ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); // LR() __ blx(lr); RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); } }; switch (invoke->GetCodePtrLocation()) { case CodePtrLocation::kCallSelf: { // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::k32BitT32InstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ bl(GetFrameEntryLabel()); RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); } break; case CodePtrLocation::kCallCriticalNative: { size_t out_frame_size = PrepareCriticalNativeCall(invoke); call_code_pointer_member(ArtMethod::EntryPointFromJniOffset(kArmPointerSize)); // Move the result when needed due to native and managed ABI mismatch. switch (invoke->GetType()) { case DataType::Type::kFloat32: __ Vmov(s0, r0); break; case DataType::Type::kFloat64: __ Vmov(d0, r0, r1); break; case DataType::Type::kBool: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kVoid: break; default: DCHECK(false) << invoke->GetType(); break; } if (out_frame_size != 0u) { DecreaseFrame(out_frame_size); } break; } case CodePtrLocation::kCallArtMethod: call_code_pointer_member(ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize)); break; } DCHECK(!IsLeafMethod()); } void CodeGeneratorARMVIXL::GenerateVirtualCall( HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) { vixl32::Register temp = RegisterFrom(temp_location); uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( invoke->GetVTableIndex(), kArmPointerSize).Uint32Value(); // Use the calling convention instead of the location of the receiver, as // intrinsics may have put the receiver in a different register. In the intrinsics // slow path, the arguments have been moved to the right place, so here we are // guaranteed that the receiver is the first register of the calling convention. InvokeDexCallingConventionARMVIXL calling_convention; vixl32::Register receiver = calling_convention.GetRegisterAt(0); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); { // Make sure the pc is recorded immediately after the `ldr` instruction. ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); // /* HeapReference */ temp = receiver->klass_ __ ldr(temp, MemOperand(receiver, class_offset)); MaybeRecordImplicitNullCheck(invoke); } // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // However this is not required in practice, as this is an // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). GetAssembler()->MaybeUnpoisonHeapReference(temp); // If we're compiling baseline, update the inline cache. MaybeGenerateInlineCacheCheck(invoke, temp); // temp = temp->GetMethodAt(method_offset); uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset( kArmPointerSize).Int32Value(); GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset); // LR = temp->GetEntryPoint(); GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point); { // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used. ExactAssemblyScope aas(GetVIXLAssembler(), vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); // LR(); __ blx(lr); RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); } } CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageIntrinsicPatch( uint32_t intrinsic_data) { return NewPcRelativePatch(/* dex_file= */ nullptr, intrinsic_data, &boot_image_other_patches_); } CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageRelRoPatch( uint32_t boot_image_offset) { return NewPcRelativePatch(/* dex_file= */ nullptr, boot_image_offset, &boot_image_other_patches_); } CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageMethodPatch( MethodReference target_method) { return NewPcRelativePatch( target_method.dex_file, target_method.index, &boot_image_method_patches_); } CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewMethodBssEntryPatch( MethodReference target_method) { return NewPcRelativePatch( target_method.dex_file, target_method.index, &method_bss_entry_patches_); } CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageTypePatch( const DexFile& dex_file, dex::TypeIndex type_index) { return NewPcRelativePatch(&dex_file, type_index.index_, &boot_image_type_patches_); } CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewTypeBssEntryPatch( HLoadClass* load_class) { const DexFile& dex_file = load_class->GetDexFile(); dex::TypeIndex type_index = load_class->GetTypeIndex(); ArenaDeque* patches = nullptr; switch (load_class->GetLoadKind()) { case HLoadClass::LoadKind::kBssEntry: patches = &type_bss_entry_patches_; break; case HLoadClass::LoadKind::kBssEntryPublic: patches = &public_type_bss_entry_patches_; break; case HLoadClass::LoadKind::kBssEntryPackage: patches = &package_type_bss_entry_patches_; break; default: LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind(); UNREACHABLE(); } return NewPcRelativePatch(&dex_file, type_index.index_, patches); } CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageStringPatch( const DexFile& dex_file, dex::StringIndex string_index) { return NewPcRelativePatch(&dex_file, string_index.index_, &boot_image_string_patches_); } CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewStringBssEntryPatch( const DexFile& dex_file, dex::StringIndex string_index) { return NewPcRelativePatch(&dex_file, string_index.index_, &string_bss_entry_patches_); } CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativePatch( const DexFile* dex_file, uint32_t offset_or_index, ArenaDeque* patches) { patches->emplace_back(dex_file, offset_or_index); return &patches->back(); } void CodeGeneratorARMVIXL::EmitEntrypointThunkCall(ThreadOffset32 entrypoint_offset) { DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope. DCHECK(!GetCompilerOptions().IsJitCompiler()); call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value()); vixl::aarch32::Label* bl_label = &call_entrypoint_patches_.back().label; __ bind(bl_label); vixl32::Label placeholder_label; __ bl(&placeholder_label); // Placeholder, patched at link-time. __ bind(&placeholder_label); } void CodeGeneratorARMVIXL::EmitBakerReadBarrierBne(uint32_t custom_data) { DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope. if (GetCompilerOptions().IsJitCompiler()) { auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data); vixl::aarch32::Label* slow_path_entry = &it->second.label; __ b(ne, EncodingSize(Wide), slow_path_entry); } else { baker_read_barrier_patches_.emplace_back(custom_data); vixl::aarch32::Label* patch_label = &baker_read_barrier_patches_.back().label; __ bind(patch_label); vixl32::Label placeholder_label; __ b(ne, EncodingSize(Wide), &placeholder_label); // Placeholder, patched at link-time. __ bind(&placeholder_label); } } VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageAddressLiteral(uint32_t address) { return DeduplicateUint32Literal(address, &uint32_literals_); } VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitStringLiteral( const DexFile& dex_file, dex::StringIndex string_index, Handle handle) { ReserveJitStringRoot(StringReference(&dex_file, string_index), handle); return jit_string_patches_.GetOrCreate( StringReference(&dex_file, string_index), [this]() { return GetAssembler()->CreateLiteralDestroyedWithPool(/* value= */ 0u); }); } VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitClassLiteral(const DexFile& dex_file, dex::TypeIndex type_index, Handle handle) { ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle); return jit_class_patches_.GetOrCreate( TypeReference(&dex_file, type_index), [this]() { return GetAssembler()->CreateLiteralDestroyedWithPool(/* value= */ 0u); }); } void CodeGeneratorARMVIXL::LoadBootImageAddress(vixl32::Register reg, uint32_t boot_image_reference) { if (GetCompilerOptions().IsBootImage()) { CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = NewBootImageIntrinsicPatch(boot_image_reference); EmitMovwMovtPlaceholder(labels, reg); } else if (GetCompilerOptions().GetCompilePic()) { CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = NewBootImageRelRoPatch(boot_image_reference); EmitMovwMovtPlaceholder(labels, reg); __ Ldr(reg, MemOperand(reg, /* offset= */ 0)); } else { DCHECK(GetCompilerOptions().IsJitCompiler()); gc::Heap* heap = Runtime::Current()->GetHeap(); DCHECK(!heap->GetBootImageSpaces().empty()); uintptr_t address = reinterpret_cast(heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference); __ Ldr(reg, DeduplicateBootImageAddressLiteral(dchecked_integral_cast(address))); } } void CodeGeneratorARMVIXL::LoadTypeForBootImageIntrinsic(vixl::aarch32::Register reg, TypeReference target_type) { // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative. DCHECK(GetCompilerOptions().IsBootImage()); PcRelativePatchInfo* labels = NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex()); EmitMovwMovtPlaceholder(labels, reg); } void CodeGeneratorARMVIXL::LoadIntrinsicDeclaringClass(vixl32::Register reg, HInvoke* invoke) { DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone); if (GetCompilerOptions().IsBootImage()) { MethodReference target_method = invoke->GetResolvedMethodReference(); dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_; LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx)); } else { uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke); LoadBootImageAddress(reg, boot_image_offset); } } void CodeGeneratorARMVIXL::LoadClassRootForIntrinsic(vixl::aarch32::Register reg, ClassRoot class_root) { if (GetCompilerOptions().IsBootImage()) { ScopedObjectAccess soa(Thread::Current()); ObjPtr klass = GetClassRoot(class_root); TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex()); LoadTypeForBootImageIntrinsic(reg, target_type); } else { uint32_t boot_image_offset = GetBootImageOffset(class_root); LoadBootImageAddress(reg, boot_image_offset); } } template inline void CodeGeneratorARMVIXL::EmitPcRelativeLinkerPatches( const ArenaDeque& infos, ArenaVector* linker_patches) { for (const PcRelativePatchInfo& info : infos) { const DexFile* dex_file = info.target_dex_file; size_t offset_or_index = info.offset_or_index; DCHECK(info.add_pc_label.IsBound()); uint32_t add_pc_offset = dchecked_integral_cast(info.add_pc_label.GetLocation()); // Add MOVW patch. DCHECK(info.movw_label.IsBound()); uint32_t movw_offset = dchecked_integral_cast(info.movw_label.GetLocation()); linker_patches->push_back(Factory(movw_offset, dex_file, add_pc_offset, offset_or_index)); // Add MOVT patch. DCHECK(info.movt_label.IsBound()); uint32_t movt_offset = dchecked_integral_cast(info.movt_label.GetLocation()); linker_patches->push_back(Factory(movt_offset, dex_file, add_pc_offset, offset_or_index)); } } template linker::LinkerPatch NoDexFileAdapter(size_t literal_offset, const DexFile* target_dex_file, uint32_t pc_insn_offset, uint32_t boot_image_offset) { DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null. return Factory(literal_offset, pc_insn_offset, boot_image_offset); } void CodeGeneratorARMVIXL::EmitLinkerPatches(ArenaVector* linker_patches) { DCHECK(linker_patches->empty()); size_t size = /* MOVW+MOVT for each entry */ 2u * boot_image_method_patches_.size() + /* MOVW+MOVT for each entry */ 2u * method_bss_entry_patches_.size() + /* MOVW+MOVT for each entry */ 2u * boot_image_type_patches_.size() + /* MOVW+MOVT for each entry */ 2u * type_bss_entry_patches_.size() + /* MOVW+MOVT for each entry */ 2u * public_type_bss_entry_patches_.size() + /* MOVW+MOVT for each entry */ 2u * package_type_bss_entry_patches_.size() + /* MOVW+MOVT for each entry */ 2u * boot_image_string_patches_.size() + /* MOVW+MOVT for each entry */ 2u * string_bss_entry_patches_.size() + /* MOVW+MOVT for each entry */ 2u * boot_image_other_patches_.size() + call_entrypoint_patches_.size() + baker_read_barrier_patches_.size(); linker_patches->reserve(size); if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) { EmitPcRelativeLinkerPatches( boot_image_method_patches_, linker_patches); EmitPcRelativeLinkerPatches( boot_image_type_patches_, linker_patches); EmitPcRelativeLinkerPatches( boot_image_string_patches_, linker_patches); } else { DCHECK(boot_image_method_patches_.empty()); DCHECK(boot_image_type_patches_.empty()); DCHECK(boot_image_string_patches_.empty()); } if (GetCompilerOptions().IsBootImage()) { EmitPcRelativeLinkerPatches>( boot_image_other_patches_, linker_patches); } else { EmitPcRelativeLinkerPatches>( boot_image_other_patches_, linker_patches); } EmitPcRelativeLinkerPatches( method_bss_entry_patches_, linker_patches); EmitPcRelativeLinkerPatches( type_bss_entry_patches_, linker_patches); EmitPcRelativeLinkerPatches( public_type_bss_entry_patches_, linker_patches); EmitPcRelativeLinkerPatches( package_type_bss_entry_patches_, linker_patches); EmitPcRelativeLinkerPatches( string_bss_entry_patches_, linker_patches); for (const PatchInfo& info : call_entrypoint_patches_) { DCHECK(info.target_dex_file == nullptr); linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch( info.label.GetLocation(), info.offset_or_index)); } for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) { linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch( info.label.GetLocation(), info.custom_data)); } DCHECK_EQ(size, linker_patches->size()); } bool CodeGeneratorARMVIXL::NeedsThunkCode(const linker::LinkerPatch& patch) const { return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint || patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch || patch.GetType() == linker::LinkerPatch::Type::kCallRelative; } void CodeGeneratorARMVIXL::EmitThunkCode(const linker::LinkerPatch& patch, /*out*/ ArenaVector* code, /*out*/ std::string* debug_name) { arm::ArmVIXLAssembler assembler(GetGraph()->GetAllocator()); switch (patch.GetType()) { case linker::LinkerPatch::Type::kCallRelative: { // The thunk just uses the entry point in the ArtMethod. This works even for calls // to the generic JNI and interpreter trampolines. MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize); assembler.LoadFromOffset(arm::kLoadWord, vixl32::pc, vixl32::r0, offset.Int32Value()); assembler.GetVIXLAssembler()->Bkpt(0); if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { *debug_name = "MethodCallThunk"; } break; } case linker::LinkerPatch::Type::kCallEntrypoint: { assembler.LoadFromOffset(arm::kLoadWord, vixl32::pc, tr, patch.EntrypointOffset()); assembler.GetVIXLAssembler()->Bkpt(0); if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { *debug_name = "EntrypointCallThunk_" + std::to_string(patch.EntrypointOffset()); } break; } case linker::LinkerPatch::Type::kBakerReadBarrierBranch: { DCHECK_EQ(patch.GetBakerCustomValue2(), 0u); CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name); break; } default: LOG(FATAL) << "Unexpected patch type " << patch.GetType(); UNREACHABLE(); } // Ensure we emit the literal pool if any. assembler.FinalizeCode(); code->resize(assembler.CodeSize()); MemoryRegion code_region(code->data(), code->size()); assembler.FinalizeInstructions(code_region); } VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateUint32Literal( uint32_t value, Uint32ToLiteralMap* map) { return map->GetOrCreate( value, [this, value]() { return GetAssembler()->CreateLiteralDestroyedWithPool(/* value= */ value); }); } void LocationsBuilderARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall); locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex, Location::RequiresRegister()); locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister()); locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { vixl32::Register res = OutputRegister(instr); vixl32::Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); vixl32::Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex); vixl32::Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex); if (instr->GetOpKind() == HInstruction::kAdd) { __ Mla(res, mul_left, mul_right, accumulator); } else { __ Mls(res, mul_left, mul_right, accumulator); } } void LocationsBuilderARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { // Nothing to do, this should be removed during prepare for register allocator. LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { // Nothing to do, this should be removed during prepare for register allocator. LOG(FATAL) << "Unreachable"; } // Simple implementation of packed switch - generate cascaded compare/jumps. void LocationsBuilderARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold && codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) { locations->AddTemp(Location::RequiresRegister()); // We need a temp for the table base. if (switch_instr->GetStartValue() != 0) { locations->AddTemp(Location::RequiresRegister()); // We need a temp for the bias. } } } // TODO(VIXL): Investigate and reach the parity with old arm codegen. void InstructionCodeGeneratorARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) { int32_t lower_bound = switch_instr->GetStartValue(); uint32_t num_entries = switch_instr->GetNumEntries(); LocationSummary* locations = switch_instr->GetLocations(); vixl32::Register value_reg = InputRegisterAt(switch_instr, 0); HBasicBlock* default_block = switch_instr->GetDefaultBlock(); if (num_entries <= kPackedSwitchCompareJumpThreshold || !codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) { // Create a series of compare/jumps. UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register temp_reg = temps.Acquire(); // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store // the immediate, because IP is used as the destination register. For the other // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant, // and they can be encoded in the instruction without making use of IP register. __ Adds(temp_reg, value_reg, -lower_bound); const ArenaVector& successors = switch_instr->GetBlock()->GetSuccessors(); // Jump to successors[0] if value == lower_bound. __ B(eq, codegen_->GetLabelOf(successors[0])); int32_t last_index = 0; for (; num_entries - last_index > 2; last_index += 2) { __ Adds(temp_reg, temp_reg, -2); // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. __ B(lo, codegen_->GetLabelOf(successors[last_index + 1])); // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. __ B(eq, codegen_->GetLabelOf(successors[last_index + 2])); } if (num_entries - last_index == 2) { // The last missing case_value. __ Cmp(temp_reg, 1); __ B(eq, codegen_->GetLabelOf(successors[last_index + 1])); } // And the default for any other value. if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { __ B(codegen_->GetLabelOf(default_block)); } } else { // Create a table lookup. vixl32::Register table_base = RegisterFrom(locations->GetTemp(0)); JumpTableARMVIXL* jump_table = codegen_->CreateJumpTable(switch_instr); // Remove the bias. vixl32::Register key_reg; if (lower_bound != 0) { key_reg = RegisterFrom(locations->GetTemp(1)); __ Sub(key_reg, value_reg, lower_bound); } else { key_reg = value_reg; } // Check whether the value is in the table, jump to default block if not. __ Cmp(key_reg, num_entries - 1); __ B(hi, codegen_->GetLabelOf(default_block)); UseScratchRegisterScope temps(GetVIXLAssembler()); vixl32::Register jump_offset = temps.Acquire(); // Load jump offset from the table. { const size_t jump_size = switch_instr->GetNumEntries() * sizeof(int32_t); ExactAssemblyScope aas(GetVIXLAssembler(), (vixl32::kMaxInstructionSizeInBytes * 4) + jump_size, CodeBufferCheckScope::kMaximumSize); __ adr(table_base, jump_table->GetTableStartLabel()); __ ldr(jump_offset, MemOperand(table_base, key_reg, vixl32::LSL, 2)); // Jump to target block by branching to table_base(pc related) + offset. vixl32::Register target_address = table_base; __ add(target_address, table_base, jump_offset); __ bx(target_address); jump_table->EmitTable(codegen_); } } } // Copy the result of a call into the given target. void CodeGeneratorARMVIXL::MoveFromReturnRegister(Location trg, DataType::Type type) { if (!trg.IsValid()) { DCHECK_EQ(type, DataType::Type::kVoid); return; } DCHECK_NE(type, DataType::Type::kVoid); Location return_loc = InvokeDexCallingConventionVisitorARMVIXL().GetReturnLocation(type); if (return_loc.Equals(trg)) { return; } // Let the parallel move resolver take care of all of this. HParallelMove parallel_move(GetGraph()->GetAllocator()); parallel_move.AddMove(return_loc, trg, type, nullptr); GetMoveResolver()->EmitNativeCode(¶llel_move); } void LocationsBuilderARMVIXL::VisitClassTableGet(HClassTableGet* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARMVIXL::VisitClassTableGet(HClassTableGet* instruction) { if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( instruction->GetIndex(), kArmPointerSize).SizeValue(); GetAssembler()->LoadFromOffset(kLoadWord, OutputRegister(instruction), InputRegisterAt(instruction, 0), method_offset); } else { uint32_t method_offset = static_cast(ImTable::OffsetOfElement( instruction->GetIndex(), kArmPointerSize)); GetAssembler()->LoadFromOffset(kLoadWord, OutputRegister(instruction), InputRegisterAt(instruction, 0), mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value()); GetAssembler()->LoadFromOffset(kLoadWord, OutputRegister(instruction), OutputRegister(instruction), method_offset); } } static void PatchJitRootUse(uint8_t* code, const uint8_t* roots_data, VIXLUInt32Literal* literal, uint64_t index_in_table) { DCHECK(literal->IsBound()); uint32_t literal_offset = literal->GetLocation(); uintptr_t address = reinterpret_cast(roots_data) + index_in_table * sizeof(GcRoot); uint8_t* data = code + literal_offset; reinterpret_cast(data)[0] = dchecked_integral_cast(address); } void CodeGeneratorARMVIXL::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { for (const auto& entry : jit_string_patches_) { const StringReference& string_reference = entry.first; VIXLUInt32Literal* table_entry_literal = entry.second; uint64_t index_in_table = GetJitStringRootIndex(string_reference); PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); } for (const auto& entry : jit_class_patches_) { const TypeReference& type_reference = entry.first; VIXLUInt32Literal* table_entry_literal = entry.second; uint64_t index_in_table = GetJitClassRootIndex(type_reference); PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); } } void CodeGeneratorARMVIXL::EmitMovwMovtPlaceholder( CodeGeneratorARMVIXL::PcRelativePatchInfo* labels, vixl32::Register out) { ExactAssemblyScope aas(GetVIXLAssembler(), 3 * vixl32::kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); // TODO(VIXL): Think about using mov instead of movw. __ bind(&labels->movw_label); __ movw(out, /* operand= */ 0u); __ bind(&labels->movt_label); __ movt(out, /* operand= */ 0u); __ bind(&labels->add_pc_label); __ add(out, out, pc); } #undef __ #undef QUICK_ENTRY_POINT #undef TODO_VIXL32 #define __ assembler.GetVIXLAssembler()-> static void EmitGrayCheckAndFastPath(ArmVIXLAssembler& assembler, vixl32::Register base_reg, vixl32::MemOperand& lock_word, vixl32::Label* slow_path, int32_t raw_ldr_offset, vixl32::Label* throw_npe = nullptr) { // Load the lock word containing the rb_state. __ Ldr(ip, lock_word); // Given the numeric representation, it's enough to check the low bit of the rb_state. static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); __ Tst(ip, Operand(LockWord::kReadBarrierStateMaskShifted)); __ B(ne, slow_path, /* is_far_target= */ false); // To throw NPE, we return to the fast path; the artificial dependence below does not matter. if (throw_npe != nullptr) { __ Bind(throw_npe); } __ Add(lr, lr, raw_ldr_offset); // Introduce a dependency on the lock_word including rb_state, // to prevent load-load reordering, and without using // a memory barrier (which would be more expensive). __ Add(base_reg, base_reg, Operand(ip, LSR, 32)); __ Bx(lr); // And return back to the function. // Note: The fake dependency is unnecessary for the slow path. } // Load the read barrier introspection entrypoint in register `entrypoint` static vixl32::Register LoadReadBarrierMarkIntrospectionEntrypoint(ArmVIXLAssembler& assembler) { // The register where the read barrier introspection entrypoint is loaded // is the marking register. We clobber it here and the entrypoint restores it to 1. vixl32::Register entrypoint = mr; // entrypoint = Thread::Current()->pReadBarrierMarkReg12, i.e. pReadBarrierMarkIntrospection. DCHECK_EQ(ip.GetCode(), 12u); const int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset(ip.GetCode()); __ Ldr(entrypoint, MemOperand(tr, entry_point_offset)); return entrypoint; } void CodeGeneratorARMVIXL::CompileBakerReadBarrierThunk(ArmVIXLAssembler& assembler, uint32_t encoded_data, /*out*/ std::string* debug_name) { BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); switch (kind) { case BakerReadBarrierKind::kField: { vixl32::Register base_reg(BakerReadBarrierFirstRegField::Decode(encoded_data)); CheckValidReg(base_reg.GetCode()); vixl32::Register holder_reg(BakerReadBarrierSecondRegField::Decode(encoded_data)); CheckValidReg(holder_reg.GetCode()); BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data); UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); temps.Exclude(ip); // In the case of a field load, if `base_reg` differs from // `holder_reg`, the offset was too large and we must have emitted (during the construction // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do // not necessarily do that check before going to the thunk. vixl32::Label throw_npe_label; vixl32::Label* throw_npe = nullptr; if (GetCompilerOptions().GetImplicitNullChecks() && holder_reg.Is(base_reg)) { throw_npe = &throw_npe_label; __ CompareAndBranchIfZero(holder_reg, throw_npe, /* is_far_target= */ false); } // Check if the holder is gray and, if not, add fake dependency to the base register // and return to the LDR instruction to load the reference. Otherwise, use introspection // to load the reference and call the entrypoint that performs further checks on the // reference and marks it if needed. vixl32::Label slow_path; MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value()); const int32_t raw_ldr_offset = (width == BakerReadBarrierWidth::kWide) ? BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET : BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET; EmitGrayCheckAndFastPath( assembler, base_reg, lock_word, &slow_path, raw_ldr_offset, throw_npe); __ Bind(&slow_path); const int32_t ldr_offset = /* Thumb state adjustment (LR contains Thumb state). */ -1 + raw_ldr_offset; vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler); if (width == BakerReadBarrierWidth::kWide) { MemOperand ldr_half_address(lr, ldr_offset + 2); __ Ldrh(ip, ldr_half_address); // Load the LDR immediate half-word with "Rt | imm12". __ Ubfx(ip, ip, 0, 12); // Extract the offset imm12. __ Ldr(ip, MemOperand(base_reg, ip)); // Load the reference. } else { MemOperand ldr_address(lr, ldr_offset); __ Ldrh(ip, ldr_address); // Load the LDR immediate, encoding T1. __ Add(ep_reg, // Adjust the entrypoint address to the entrypoint ep_reg, // for narrow LDR. Operand(BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_ENTRYPOINT_OFFSET)); __ Ubfx(ip, ip, 6, 5); // Extract the imm5, i.e. offset / 4. __ Ldr(ip, MemOperand(base_reg, ip, LSL, 2)); // Load the reference. } // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference. __ Bx(ep_reg); // Jump to the entrypoint. break; } case BakerReadBarrierKind::kArray: { vixl32::Register base_reg(BakerReadBarrierFirstRegField::Decode(encoded_data)); CheckValidReg(base_reg.GetCode()); DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide); UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); temps.Exclude(ip); vixl32::Label slow_path; int32_t data_offset = mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value(); MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset); DCHECK_LT(lock_word.GetOffsetImmediate(), 0); const int32_t raw_ldr_offset = BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET; EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, raw_ldr_offset); __ Bind(&slow_path); const int32_t ldr_offset = /* Thumb state adjustment (LR contains Thumb state). */ -1 + raw_ldr_offset; MemOperand ldr_address(lr, ldr_offset + 2); __ Ldrb(ip, ldr_address); // Load the LDR (register) byte with "00 | imm2 | Rm", // i.e. Rm+32 because the scale in imm2 is 2. vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler); __ Bfi(ep_reg, ip, 3, 6); // Insert ip to the entrypoint address to create // a switch case target based on the index register. __ Mov(ip, base_reg); // Move the base register to ip0. __ Bx(ep_reg); // Jump to the entrypoint's array switch case. break; } case BakerReadBarrierKind::kGcRoot: case BakerReadBarrierKind::kIntrinsicCas: { // Check if the reference needs to be marked and if so (i.e. not null, not marked yet // and it does not have a forwarding address), call the correct introspection entrypoint; // otherwise return the reference (or the extracted forwarding address). // There is no gray bit check for GC roots. vixl32::Register root_reg(BakerReadBarrierFirstRegField::Decode(encoded_data)); CheckValidReg(root_reg.GetCode()); DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data); UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); temps.Exclude(ip); vixl32::Label return_label, not_marked, forwarding_address; __ CompareAndBranchIfZero(root_reg, &return_label, /* is_far_target= */ false); MemOperand lock_word(root_reg, mirror::Object::MonitorOffset().Int32Value()); __ Ldr(ip, lock_word); __ Tst(ip, LockWord::kMarkBitStateMaskShifted); __ B(eq, ¬_marked); __ Bind(&return_label); __ Bx(lr); __ Bind(¬_marked); static_assert(LockWord::kStateShift == 30 && LockWord::kStateForwardingAddress == 3, "To use 'CMP ip, #modified-immediate; BHS', we need the lock word state in " " the highest bits and the 'forwarding address' state to have all bits set"); __ Cmp(ip, Operand(0xc0000000)); __ B(hs, &forwarding_address); vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler); // Adjust the art_quick_read_barrier_mark_introspection address // in kBakerCcEntrypointRegister to one of // art_quick_read_barrier_mark_introspection_{gc_roots_{wide,narrow},intrinsic_cas}. if (kind == BakerReadBarrierKind::kIntrinsicCas) { DCHECK(width == BakerReadBarrierWidth::kWide); DCHECK(!root_reg.IsLow()); } int32_t entrypoint_offset = (kind == BakerReadBarrierKind::kGcRoot) ? (width == BakerReadBarrierWidth::kWide) ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_ENTRYPOINT_OFFSET : BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_ENTRYPOINT_OFFSET : BAKER_MARK_INTROSPECTION_INTRINSIC_CAS_ENTRYPOINT_OFFSET; __ Add(ep_reg, ep_reg, Operand(entrypoint_offset)); __ Mov(ip, root_reg); __ Bx(ep_reg); __ Bind(&forwarding_address); __ Lsl(root_reg, ip, LockWord::kForwardingAddressShift); __ Bx(lr); break; } default: LOG(FATAL) << "Unexpected kind: " << static_cast(kind); UNREACHABLE(); } // For JIT, the slow path is considered part of the compiled method, // so JIT should pass null as `debug_name`. DCHECK(!GetCompilerOptions().IsJitCompiler() || debug_name == nullptr); if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { std::ostringstream oss; oss << "BakerReadBarrierThunk"; switch (kind) { case BakerReadBarrierKind::kField: oss << "Field"; if (BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide) { oss << "Wide"; } oss << "_r" << BakerReadBarrierFirstRegField::Decode(encoded_data) << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data); break; case BakerReadBarrierKind::kArray: oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide); break; case BakerReadBarrierKind::kGcRoot: oss << "GcRoot"; if (BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide) { oss << "Wide"; } oss << "_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); break; case BakerReadBarrierKind::kIntrinsicCas: oss << "IntrinsicCas_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide); break; } *debug_name = oss.str(); } } #undef __ } // namespace arm } // namespace art