/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_LOAD_STORE_ANALYSIS_H_ #define ART_COMPILER_OPTIMIZING_LOAD_STORE_ANALYSIS_H_ #include "base/arena_allocator.h" #include "base/arena_bit_vector.h" #include "base/bit_vector-inl.h" #include "base/scoped_arena_allocator.h" #include "base/scoped_arena_containers.h" #include "base/stl_util.h" #include "escape.h" #include "execution_subgraph.h" #include "nodes.h" #include "optimizing/optimizing_compiler_stats.h" namespace art { enum class LoadStoreAnalysisType { kBasic, kNoPredicatedInstructions, kFull, }; // A ReferenceInfo contains additional info about a reference such as // whether it's a singleton, returned, etc. class ReferenceInfo : public DeletableArenaObject { public: ReferenceInfo(HInstruction* reference, ScopedArenaAllocator* allocator, size_t pos, LoadStoreAnalysisType elimination_type) : reference_(reference), position_(pos), is_singleton_(true), is_singleton_and_not_returned_(true), is_singleton_and_not_deopt_visible_(true), allocator_(allocator), subgraph_(nullptr) { // TODO We can do this in one pass. // TODO NewArray is possible but will need to get a handle on how to deal with the dynamic loads // for now just ignore it. bool can_be_partial = elimination_type != LoadStoreAnalysisType::kBasic && (/* reference_->IsNewArray() || */ reference_->IsNewInstance()); if (can_be_partial) { subgraph_.reset( new (allocator) ExecutionSubgraph(reference->GetBlock()->GetGraph(), allocator)); CollectPartialEscapes(reference_->GetBlock()->GetGraph()); } CalculateEscape(reference_, nullptr, &is_singleton_, &is_singleton_and_not_returned_, &is_singleton_and_not_deopt_visible_); if (can_be_partial) { if (elimination_type == LoadStoreAnalysisType::kNoPredicatedInstructions) { // This is to mark writes to partially escaped values as also part of the escaped subset. // TODO We can avoid this if we have a 'ConditionalWrite' instruction. Will require testing // to see if the additional branches are worth it. PrunePartialEscapeWrites(); } DCHECK(subgraph_ != nullptr); subgraph_->Finalize(); } else { DCHECK(subgraph_ == nullptr); } } const ExecutionSubgraph* GetNoEscapeSubgraph() const { DCHECK(IsPartialSingleton()); return subgraph_.get(); } HInstruction* GetReference() const { return reference_; } size_t GetPosition() const { return position_; } // Returns true if reference_ is the only name that can refer to its value during // the lifetime of the method. So it's guaranteed to not have any alias in // the method (including its callees). bool IsSingleton() const { return is_singleton_; } // This is a singleton and there are paths that don't escape the method bool IsPartialSingleton() const { auto ref = GetReference(); // TODO NewArray is possible but will need to get a handle on how to deal with the dynamic loads // for now just ignore it. return (/* ref->IsNewArray() || */ ref->IsNewInstance()) && subgraph_ != nullptr && subgraph_->IsValid(); } // Returns true if reference_ is a singleton and not returned to the caller or // used as an environment local of an HDeoptimize instruction. // The allocation and stores into reference_ may be eliminated for such cases. bool IsSingletonAndRemovable() const { return is_singleton_and_not_returned_ && is_singleton_and_not_deopt_visible_; } // Returns true if reference_ is a singleton and returned to the caller or // used as an environment local of an HDeoptimize instruction. bool IsSingletonAndNonRemovable() const { return is_singleton_ && (!is_singleton_and_not_returned_ || !is_singleton_and_not_deopt_visible_); } private: void CollectPartialEscapes(HGraph* graph); void HandleEscape(HBasicBlock* escape) { DCHECK(subgraph_ != nullptr); subgraph_->RemoveBlock(escape); } void HandleEscape(HInstruction* escape) { HandleEscape(escape->GetBlock()); } // Make sure we mark any writes/potential writes to heap-locations within partially // escaped values as escaping. void PrunePartialEscapeWrites(); HInstruction* const reference_; const size_t position_; // position in HeapLocationCollector's ref_info_array_. // Can only be referred to by a single name in the method. bool is_singleton_; // Is singleton and not returned to caller. bool is_singleton_and_not_returned_; // Is singleton and not used as an environment local of HDeoptimize. bool is_singleton_and_not_deopt_visible_; ScopedArenaAllocator* allocator_; std::unique_ptr subgraph_; DISALLOW_COPY_AND_ASSIGN(ReferenceInfo); }; // A heap location is a reference-offset/index pair that a value can be loaded from // or stored to. class HeapLocation : public ArenaObject { public: static constexpr size_t kInvalidFieldOffset = -1; // Default value for heap locations which are not vector data. static constexpr size_t kScalar = 1; // TODO: more fine-grained array types. static constexpr int16_t kDeclaringClassDefIndexForArrays = -1; HeapLocation(ReferenceInfo* ref_info, DataType::Type type, size_t offset, HInstruction* index, size_t vector_length, int16_t declaring_class_def_index) : ref_info_(ref_info), type_(DataType::ToSigned(type)), offset_(offset), index_(index), vector_length_(vector_length), declaring_class_def_index_(declaring_class_def_index), has_aliased_locations_(false) { DCHECK(ref_info != nullptr); DCHECK((offset == kInvalidFieldOffset && index != nullptr) || (offset != kInvalidFieldOffset && index == nullptr)); } ReferenceInfo* GetReferenceInfo() const { return ref_info_; } DataType::Type GetType() const { return type_; } size_t GetOffset() const { return offset_; } HInstruction* GetIndex() const { return index_; } size_t GetVectorLength() const { return vector_length_; } // Returns the definition of declaring class' dex index. // It's kDeclaringClassDefIndexForArrays for an array element. int16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_; } bool IsArray() const { return index_ != nullptr; } bool HasAliasedLocations() const { return has_aliased_locations_; } void SetHasAliasedLocations(bool val) { has_aliased_locations_ = val; } private: // Reference for instance/static field, array element or vector data. ReferenceInfo* const ref_info_; // Type of data residing at HeapLocation (always signed for integral // data since e.g. a[i] and a[i] & 0xff are represented by differently // signed types; char vs short are disambiguated through the reference). const DataType::Type type_; // Offset of static/instance field. // Invalid when this HeapLocation is not field. const size_t offset_; // Index of an array element or starting index of vector data. // Invalid when this HeapLocation is not array. HInstruction* const index_; // Vector length of vector data. // When this HeapLocation is not vector data, it's value is kScalar. const size_t vector_length_; // Declaring class's def's dex index. // Invalid when this HeapLocation is not field access. const int16_t declaring_class_def_index_; // Has aliased heap locations in the method, due to either the // reference is aliased or the array element is aliased via different // index names. bool has_aliased_locations_; DISALLOW_COPY_AND_ASSIGN(HeapLocation); }; // A HeapLocationCollector collects all relevant heap locations and keeps // an aliasing matrix for all locations. class HeapLocationCollector : public HGraphVisitor { public: static constexpr size_t kHeapLocationNotFound = -1; // Start with a single uint32_t word. That's enough bits for pair-wise // aliasing matrix of 8 heap locations. static constexpr uint32_t kInitialAliasingMatrixBitVectorSize = 32; HeapLocationCollector(HGraph* graph, ScopedArenaAllocator* allocator, LoadStoreAnalysisType lse_type) : HGraphVisitor(graph), allocator_(allocator), ref_info_array_(allocator->Adapter(kArenaAllocLSA)), heap_locations_(allocator->Adapter(kArenaAllocLSA)), aliasing_matrix_(allocator, kInitialAliasingMatrixBitVectorSize, true, kArenaAllocLSA), has_heap_stores_(false), has_volatile_(false), has_monitor_operations_(false), lse_type_(lse_type) { aliasing_matrix_.ClearAllBits(); } ~HeapLocationCollector() { CleanUp(); } void CleanUp() { heap_locations_.clear(); STLDeleteContainerPointers(ref_info_array_.begin(), ref_info_array_.end()); ref_info_array_.clear(); } size_t CountPartialSingletons() const { return std::count_if(ref_info_array_.begin(), ref_info_array_.end(), [](ReferenceInfo* ri) { return ri->IsPartialSingleton(); }); } size_t GetNumberOfHeapLocations() const { return heap_locations_.size(); } HeapLocation* GetHeapLocation(size_t index) const { return heap_locations_[index]; } size_t GetHeapLocationIndex(const HeapLocation* hl) const { auto res = std::find(heap_locations_.cbegin(), heap_locations_.cend(), hl); return std::distance(heap_locations_.cbegin(), res); } HInstruction* HuntForOriginalReference(HInstruction* ref) const { // An original reference can be transformed by instructions like: // i0 NewArray // i1 HInstruction(i0) <-- NullCheck, BoundType, IntermediateAddress. // i2 ArrayGet(i1, index) DCHECK(ref != nullptr); while (ref->IsNullCheck() || ref->IsBoundType() || ref->IsIntermediateAddress()) { ref = ref->InputAt(0); } return ref; } ReferenceInfo* FindReferenceInfoOf(HInstruction* ref) const { for (size_t i = 0; i < ref_info_array_.size(); i++) { ReferenceInfo* ref_info = ref_info_array_[i]; if (ref_info->GetReference() == ref) { DCHECK_EQ(i, ref_info->GetPosition()); return ref_info; } } return nullptr; } size_t GetFieldHeapLocation(HInstruction* object, const FieldInfo* field) const { DCHECK(object != nullptr); DCHECK(field != nullptr); return FindHeapLocationIndex(FindReferenceInfoOf(HuntForOriginalReference(object)), field->GetFieldType(), field->GetFieldOffset().SizeValue(), nullptr, HeapLocation::kScalar, field->GetDeclaringClassDefIndex()); } size_t GetArrayHeapLocation(HInstruction* instruction) const { DCHECK(instruction != nullptr); HInstruction* array = instruction->InputAt(0); HInstruction* index = instruction->InputAt(1); DataType::Type type = instruction->GetType(); size_t vector_length = HeapLocation::kScalar; if (instruction->IsArraySet()) { type = instruction->AsArraySet()->GetComponentType(); } else if (instruction->IsVecStore() || instruction->IsVecLoad()) { HVecOperation* vec_op = instruction->AsVecOperation(); type = vec_op->GetPackedType(); vector_length = vec_op->GetVectorLength(); } else { DCHECK(instruction->IsArrayGet()); } return FindHeapLocationIndex(FindReferenceInfoOf(HuntForOriginalReference(array)), type, HeapLocation::kInvalidFieldOffset, index, vector_length, HeapLocation::kDeclaringClassDefIndexForArrays); } bool HasHeapStores() const { return has_heap_stores_; } bool HasVolatile() const { return has_volatile_; } bool HasMonitorOps() const { return has_monitor_operations_; } // Find and return the heap location index in heap_locations_. // NOTE: When heap locations are created, potentially aliasing/overlapping // accesses are given different indexes. This find function also // doesn't take aliasing/overlapping into account. For example, // this function returns three different indexes for: // - ref_info=array, index=i, vector_length=kScalar; // - ref_info=array, index=i, vector_length=2; // - ref_info=array, index=i, vector_length=4; // In later analysis, ComputeMayAlias() and MayAlias() compute and tell whether // these indexes alias. size_t FindHeapLocationIndex(ReferenceInfo* ref_info, DataType::Type type, size_t offset, HInstruction* index, size_t vector_length, int16_t declaring_class_def_index) const { DataType::Type lookup_type = DataType::ToSigned(type); for (size_t i = 0; i < heap_locations_.size(); i++) { HeapLocation* loc = heap_locations_[i]; if (loc->GetReferenceInfo() == ref_info && loc->GetType() == lookup_type && loc->GetOffset() == offset && loc->GetIndex() == index && loc->GetVectorLength() == vector_length && loc->GetDeclaringClassDefIndex() == declaring_class_def_index) { return i; } } return kHeapLocationNotFound; } bool InstructionEligibleForLSERemoval(HInstruction* inst) const; // Get some estimated statistics based on our analysis. void DumpReferenceStats(OptimizingCompilerStats* stats); // Returns true if heap_locations_[index1] and heap_locations_[index2] may alias. bool MayAlias(size_t index1, size_t index2) const { if (index1 < index2) { return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index1, index2)); } else if (index1 > index2) { return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index2, index1)); } else { DCHECK(false) << "index1 and index2 are expected to be different"; return true; } } void BuildAliasingMatrix() { const size_t number_of_locations = heap_locations_.size(); if (number_of_locations == 0) { return; } size_t pos = 0; // Compute aliasing info between every pair of different heap locations. // Save the result in a matrix represented as a BitVector. for (size_t i = 0; i < number_of_locations - 1; i++) { for (size_t j = i + 1; j < number_of_locations; j++) { if (ComputeMayAlias(i, j)) { aliasing_matrix_.SetBit(CheckedAliasingMatrixPosition(i, j, pos)); } pos++; } } } static bool CanReferencesAlias(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) { if (ref_info1 == ref_info2) { return true; } else if (ref_info1->IsSingleton()) { return false; } else if (ref_info2->IsSingleton()) { return false; } else if (!MayAliasWithPreexistenceChecking(ref_info1, ref_info2) || !MayAliasWithPreexistenceChecking(ref_info2, ref_info1)) { return false; } return true; } private: // An allocation cannot alias with a name which already exists at the point // of the allocation, such as a parameter or a load happening before the allocation. static bool MayAliasWithPreexistenceChecking(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) { if (ref_info1->GetReference()->IsNewInstance() || ref_info1->GetReference()->IsNewArray()) { // Any reference that can alias with the allocation must appear after it in the block/in // the block's successors. In reverse post order, those instructions will be visited after // the allocation. return ref_info2->GetPosition() >= ref_info1->GetPosition(); } return true; } bool CanArrayElementsAlias(const HInstruction* idx1, const size_t vector_length1, const HInstruction* idx2, const size_t vector_length2) const; // `index1` and `index2` are indices in the array of collected heap locations. // Returns the position in the bit vector that tracks whether the two heap // locations may alias. size_t AliasingMatrixPosition(size_t index1, size_t index2) const { DCHECK(index2 > index1); const size_t number_of_locations = heap_locations_.size(); // It's (num_of_locations - 1) + ... + (num_of_locations - index1) + (index2 - index1 - 1). return (number_of_locations * index1 - (1 + index1) * index1 / 2 + (index2 - index1 - 1)); } // An additional position is passed in to make sure the calculated position is correct. size_t CheckedAliasingMatrixPosition(size_t index1, size_t index2, size_t position) { size_t calculated_position = AliasingMatrixPosition(index1, index2); DCHECK_EQ(calculated_position, position); return calculated_position; } // Compute if two locations may alias to each other. bool ComputeMayAlias(size_t index1, size_t index2) const { DCHECK_NE(index1, index2); HeapLocation* loc1 = heap_locations_[index1]; HeapLocation* loc2 = heap_locations_[index2]; if (loc1->GetOffset() != loc2->GetOffset()) { // Either two different instance fields, or one is an instance // field and the other is an array data. return false; } if (loc1->GetDeclaringClassDefIndex() != loc2->GetDeclaringClassDefIndex()) { // Different types. return false; } if (!CanReferencesAlias(loc1->GetReferenceInfo(), loc2->GetReferenceInfo())) { return false; } if (loc1->IsArray() && loc2->IsArray()) { HInstruction* idx1 = loc1->GetIndex(); HInstruction* idx2 = loc2->GetIndex(); size_t vector_length1 = loc1->GetVectorLength(); size_t vector_length2 = loc2->GetVectorLength(); if (!CanArrayElementsAlias(idx1, vector_length1, idx2, vector_length2)) { return false; } } loc1->SetHasAliasedLocations(true); loc2->SetHasAliasedLocations(true); return true; } ReferenceInfo* GetOrCreateReferenceInfo(HInstruction* instruction) { ReferenceInfo* ref_info = FindReferenceInfoOf(instruction); if (ref_info == nullptr) { size_t pos = ref_info_array_.size(); ref_info = new (allocator_) ReferenceInfo(instruction, allocator_, pos, lse_type_); ref_info_array_.push_back(ref_info); } return ref_info; } void CreateReferenceInfoForReferenceType(HInstruction* instruction) { if (instruction->GetType() != DataType::Type::kReference) { return; } DCHECK(FindReferenceInfoOf(instruction) == nullptr); GetOrCreateReferenceInfo(instruction); } void MaybeCreateHeapLocation(HInstruction* ref, DataType::Type type, size_t offset, HInstruction* index, size_t vector_length, int16_t declaring_class_def_index) { HInstruction* original_ref = HuntForOriginalReference(ref); ReferenceInfo* ref_info = GetOrCreateReferenceInfo(original_ref); size_t heap_location_idx = FindHeapLocationIndex( ref_info, type, offset, index, vector_length, declaring_class_def_index); if (heap_location_idx == kHeapLocationNotFound) { HeapLocation* heap_loc = new (allocator_) HeapLocation(ref_info, type, offset, index, vector_length, declaring_class_def_index); heap_locations_.push_back(heap_loc); } } void VisitFieldAccess(HInstruction* ref, const FieldInfo& field_info) { if (field_info.IsVolatile()) { has_volatile_ = true; } DataType::Type type = field_info.GetFieldType(); const uint16_t declaring_class_def_index = field_info.GetDeclaringClassDefIndex(); const size_t offset = field_info.GetFieldOffset().SizeValue(); MaybeCreateHeapLocation(ref, type, offset, nullptr, HeapLocation::kScalar, declaring_class_def_index); } void VisitArrayAccess(HInstruction* array, HInstruction* index, DataType::Type type, size_t vector_length) { MaybeCreateHeapLocation(array, type, HeapLocation::kInvalidFieldOffset, index, vector_length, HeapLocation::kDeclaringClassDefIndexForArrays); } void VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet* instruction) override { VisitFieldAccess(instruction->GetTarget(), instruction->GetFieldInfo()); CreateReferenceInfoForReferenceType(instruction); } void VisitInstanceFieldGet(HInstanceFieldGet* instruction) override { VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); CreateReferenceInfoForReferenceType(instruction); } void VisitInstanceFieldSet(HInstanceFieldSet* instruction) override { VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); has_heap_stores_ = true; } void VisitStaticFieldGet(HStaticFieldGet* instruction) override { VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); CreateReferenceInfoForReferenceType(instruction); } void VisitStaticFieldSet(HStaticFieldSet* instruction) override { VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); has_heap_stores_ = true; } // We intentionally don't collect HUnresolvedInstanceField/HUnresolvedStaticField accesses // since we cannot accurately track the fields. void VisitArrayGet(HArrayGet* instruction) override { HInstruction* array = instruction->InputAt(0); HInstruction* index = instruction->InputAt(1); DataType::Type type = instruction->GetType(); VisitArrayAccess(array, index, type, HeapLocation::kScalar); CreateReferenceInfoForReferenceType(instruction); } void VisitArraySet(HArraySet* instruction) override { HInstruction* array = instruction->InputAt(0); HInstruction* index = instruction->InputAt(1); DataType::Type type = instruction->GetComponentType(); VisitArrayAccess(array, index, type, HeapLocation::kScalar); has_heap_stores_ = true; } void VisitVecLoad(HVecLoad* instruction) override { HInstruction* array = instruction->InputAt(0); HInstruction* index = instruction->InputAt(1); DataType::Type type = instruction->GetPackedType(); VisitArrayAccess(array, index, type, instruction->GetVectorLength()); CreateReferenceInfoForReferenceType(instruction); } void VisitVecStore(HVecStore* instruction) override { HInstruction* array = instruction->InputAt(0); HInstruction* index = instruction->InputAt(1); DataType::Type type = instruction->GetPackedType(); VisitArrayAccess(array, index, type, instruction->GetVectorLength()); has_heap_stores_ = true; } void VisitInstruction(HInstruction* instruction) override { // Any new-instance or new-array cannot alias with references that // pre-exist the new-instance/new-array. We append entries into // ref_info_array_ which keeps track of the order of creation // of reference values since we visit the blocks in reverse post order. // // By default, VisitXXX() (including VisitPhi()) calls VisitInstruction(), // unless VisitXXX() is overridden. VisitInstanceFieldGet() etc. above // also call CreateReferenceInfoForReferenceType() explicitly. CreateReferenceInfoForReferenceType(instruction); } void VisitMonitorOperation(HMonitorOperation* monitor ATTRIBUTE_UNUSED) override { has_monitor_operations_ = true; } ScopedArenaAllocator* allocator_; ScopedArenaVector ref_info_array_; // All references used for heap accesses. ScopedArenaVector heap_locations_; // All heap locations. ArenaBitVector aliasing_matrix_; // aliasing info between each pair of locations. bool has_heap_stores_; // If there is no heap stores, LSE acts as GVN with better // alias analysis and won't be as effective. bool has_volatile_; // If there are volatile field accesses. bool has_monitor_operations_; // If there are monitor operations. LoadStoreAnalysisType lse_type_; DISALLOW_COPY_AND_ASSIGN(HeapLocationCollector); }; class LoadStoreAnalysis { public: // for_elimination controls whether we should keep track of escapes at a per-block level for // partial LSE. explicit LoadStoreAnalysis(HGraph* graph, OptimizingCompilerStats* stats, ScopedArenaAllocator* local_allocator, LoadStoreAnalysisType lse_type) : graph_(graph), stats_(stats), heap_location_collector_( graph, local_allocator, ExecutionSubgraph::CanAnalyse(graph_) ? lse_type : LoadStoreAnalysisType::kBasic) {} const HeapLocationCollector& GetHeapLocationCollector() const { return heap_location_collector_; } bool Run(); private: HGraph* graph_; OptimizingCompilerStats* stats_; HeapLocationCollector heap_location_collector_; DISALLOW_COPY_AND_ASSIGN(LoadStoreAnalysis); }; } // namespace art #endif // ART_COMPILER_OPTIMIZING_LOAD_STORE_ANALYSIS_H_