/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_LIBARTBASE_BASE_BIT_UTILS_H_ #define ART_LIBARTBASE_BASE_BIT_UTILS_H_ #include #include #include #include "globals.h" #include "stl_util_identity.h" namespace art { // Like sizeof, but count how many bits a type takes. Pass type explicitly. template constexpr size_t BitSizeOf() { static_assert(std::is_integral::value, "T must be integral"); using unsigned_type = typename std::make_unsigned::type; static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!"); static_assert(std::numeric_limits::radix == 2, "Unexpected radix!"); return std::numeric_limits::digits; } // Like sizeof, but count how many bits a type takes. Infers type from parameter. template constexpr size_t BitSizeOf(T /*x*/) { return BitSizeOf(); } template constexpr int CLZ(T x) { static_assert(std::is_integral::value, "T must be integral"); static_assert(std::is_unsigned::value, "T must be unsigned"); static_assert(std::numeric_limits::radix == 2, "Unexpected radix!"); static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t), "Unsupported sizeof(T)"); DCHECK_NE(x, 0u); constexpr bool is_64_bit = (sizeof(T) == sizeof(uint64_t)); constexpr size_t adjustment = is_64_bit ? 0u : std::numeric_limits::digits - std::numeric_limits::digits; return is_64_bit ? __builtin_clzll(x) : __builtin_clz(x) - adjustment; } // Similar to CLZ except that on zero input it returns bitwidth and supports signed integers. template constexpr int JAVASTYLE_CLZ(T x) { static_assert(std::is_integral::value, "T must be integral"); using unsigned_type = typename std::make_unsigned::type; return (x == 0) ? BitSizeOf() : CLZ(static_cast(x)); } template constexpr int CTZ(T x) { static_assert(std::is_integral::value, "T must be integral"); // It is not unreasonable to ask for trailing zeros in a negative number. As such, do not check // that T is an unsigned type. static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t), "Unsupported sizeof(T)"); DCHECK_NE(x, static_cast(0)); return (sizeof(T) == sizeof(uint64_t)) ? __builtin_ctzll(x) : __builtin_ctz(x); } // Similar to CTZ except that on zero input it returns bitwidth and supports signed integers. template constexpr int JAVASTYLE_CTZ(T x) { static_assert(std::is_integral::value, "T must be integral"); using unsigned_type = typename std::make_unsigned::type; return (x == 0) ? BitSizeOf() : CTZ(static_cast(x)); } // Return the number of 1-bits in `x`. template constexpr int POPCOUNT(T x) { return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x); } // Swap bytes. template constexpr T BSWAP(T x) { if (sizeof(T) == sizeof(uint16_t)) { return __builtin_bswap16(x); } else if (sizeof(T) == sizeof(uint32_t)) { return __builtin_bswap32(x); } else { return __builtin_bswap64(x); } } // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set. template constexpr ssize_t MostSignificantBit(T value) { static_assert(std::is_integral::value, "T must be integral"); static_assert(std::is_unsigned::value, "T must be unsigned"); static_assert(std::numeric_limits::radix == 2, "Unexpected radix!"); return (value == 0) ? -1 : std::numeric_limits::digits - 1 - CLZ(value); } // Find the bit position of the least significant bit (0-based), or -1 if there were no bits set. template constexpr ssize_t LeastSignificantBit(T value) { static_assert(std::is_integral::value, "T must be integral"); static_assert(std::is_unsigned::value, "T must be unsigned"); return (value == 0) ? -1 : CTZ(value); } // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc. template constexpr size_t MinimumBitsToStore(T value) { return static_cast(MostSignificantBit(value) + 1); } template constexpr T RoundUpToPowerOfTwo(T x) { static_assert(std::is_integral::value, "T must be integral"); static_assert(std::is_unsigned::value, "T must be unsigned"); // NOTE: Undefined if x > (1 << (std::numeric_limits::digits - 1)). return (x < 2u) ? x : static_cast(1u) << (std::numeric_limits::digits - CLZ(x - 1u)); } // Return highest possible N - a power of two - such that val >= N. template constexpr T TruncToPowerOfTwo(T val) { static_assert(std::is_integral::value, "T must be integral"); static_assert(std::is_unsigned::value, "T must be unsigned"); return (val != 0) ? static_cast(1u) << (BitSizeOf() - CLZ(val) - 1u) : 0; } template constexpr bool IsPowerOfTwo(T x) { static_assert(std::is_integral::value, "T must be integral"); // TODO: assert unsigned. There is currently many uses with signed values. return (x & (x - 1)) == 0; } template constexpr int WhichPowerOf2(T x) { static_assert(std::is_integral::value, "T must be integral"); // TODO: assert unsigned. There is currently many uses with signed values. DCHECK((x != 0) && IsPowerOfTwo(x)); return CTZ(x); } // For rounding integers. // Note: Omit the `n` from T type deduction, deduce only from the `x` argument. template constexpr T RoundDown(T x, typename Identity::type n) WARN_UNUSED; template constexpr T RoundDown(T x, typename Identity::type n) { DCHECK(IsPowerOfTwo(n)); return (x & -n); } template constexpr T RoundUp(T x, typename std::remove_reference::type n) WARN_UNUSED; template constexpr T RoundUp(T x, typename std::remove_reference::type n) { return RoundDown(x + n - 1, n); } // For aligning pointers. template inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED; template inline T* AlignDown(T* x, uintptr_t n) { return reinterpret_cast(RoundDown(reinterpret_cast(x), n)); } template inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED; template inline T* AlignUp(T* x, uintptr_t n) { return reinterpret_cast(RoundUp(reinterpret_cast(x), n)); } template constexpr bool IsAligned(T x) { static_assert((n & (n - 1)) == 0, "n is not a power of two"); return (x & (n - 1)) == 0; } template inline bool IsAligned(T* x) { return IsAligned(reinterpret_cast(x)); } template inline bool IsAlignedParam(T x, int n) { return (x & (n - 1)) == 0; } template inline bool IsAlignedParam(T* x, int n) { return IsAlignedParam(reinterpret_cast(x), n); } #define CHECK_ALIGNED(value, alignment) \ CHECK(::art::IsAligned(value)) << reinterpret_cast(value) #define DCHECK_ALIGNED(value, alignment) \ DCHECK(::art::IsAligned(value)) << reinterpret_cast(value) #define CHECK_ALIGNED_PARAM(value, alignment) \ CHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast(value) #define DCHECK_ALIGNED_PARAM(value, alignment) \ DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast(value) inline uint16_t Low16Bits(uint32_t value) { return static_cast(value); } inline uint16_t High16Bits(uint32_t value) { return static_cast(value >> 16); } inline uint32_t Low32Bits(uint64_t value) { return static_cast(value); } inline uint32_t High32Bits(uint64_t value) { return static_cast(value >> 32); } // Check whether an N-bit two's-complement representation can hold value. template inline bool IsInt(size_t N, T value) { if (N == BitSizeOf()) { return true; } else { CHECK_LT(0u, N); CHECK_LT(N, BitSizeOf()); T limit = static_cast(1) << (N - 1u); return (-limit <= value) && (value < limit); } } template constexpr T GetIntLimit(size_t bits) { DCHECK_NE(bits, 0u); DCHECK_LT(bits, BitSizeOf()); return static_cast(1) << (bits - 1); } template constexpr bool IsInt(T value) { static_assert(kBits > 0, "kBits cannot be zero."); static_assert(kBits <= BitSizeOf(), "kBits must be <= max."); static_assert(std::is_signed::value, "Needs a signed type."); // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is // trivially true. return (kBits == BitSizeOf()) ? true : (-GetIntLimit(kBits) <= value) && (value < GetIntLimit(kBits)); } template constexpr bool IsUint(T value) { static_assert(kBits > 0, "kBits cannot be zero."); static_assert(kBits <= BitSizeOf(), "kBits must be <= max."); static_assert(std::is_integral::value, "Needs an integral type."); // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is // trivially true. // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf(), // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows. using unsigned_type = typename std::make_unsigned::type; return (0 <= value) && (kBits == BitSizeOf() || (static_cast(value) <= GetIntLimit(kBits) * 2u - 1u)); } template constexpr bool IsAbsoluteUint(T value) { static_assert(kBits <= BitSizeOf(), "kBits must be <= max."); static_assert(std::is_integral::value, "Needs an integral type."); using unsigned_type = typename std::make_unsigned::type; return (kBits == BitSizeOf()) ? true : IsUint(value < 0 ? static_cast(-1 - value) + 1u // Avoid overflow. : static_cast(value)); } // Generate maximum/minimum values for signed/unsigned n-bit integers template constexpr T MaxInt(size_t bits) { DCHECK(std::is_unsigned::value || bits > 0u) << "bits cannot be zero for signed."; DCHECK_LE(bits, BitSizeOf()); using unsigned_type = typename std::make_unsigned::type; return bits == BitSizeOf() ? std::numeric_limits::max() : std::is_signed::value ? ((bits == 1u) ? 0 : static_cast(MaxInt(bits - 1))) : static_cast(UINT64_C(1) << bits) - static_cast(1); } template constexpr T MinInt(size_t bits) { DCHECK(std::is_unsigned::value || bits > 0) << "bits cannot be zero for signed."; DCHECK_LE(bits, BitSizeOf()); return bits == BitSizeOf() ? std::numeric_limits::min() : std::is_signed::value ? ((bits == 1u) ? -1 : static_cast(-1) - MaxInt(bits)) : static_cast(0); } // Returns value with bit set in lowest one-bit position or 0 if 0. (java.lang.X.lowestOneBit). template inline static kind LowestOneBitValue(kind opnd) { // Hacker's Delight, Section 2-1 return opnd & -opnd; } // Returns value with bit set in hightest one-bit position or 0 if 0. (java.lang.X.highestOneBit). template inline static T HighestOneBitValue(T opnd) { using unsigned_type = typename std::make_unsigned::type; T res; if (opnd == 0) { res = 0; } else { int bit_position = BitSizeOf() - (CLZ(static_cast(opnd)) + 1); res = static_cast(UINT64_C(1) << bit_position); } return res; } // Rotate bits. template inline static T Rot(T opnd, int distance) { int mask = BitSizeOf() - 1; int unsigned_right_shift = left ? (-distance & mask) : (distance & mask); int signed_left_shift = left ? (distance & mask) : (-distance & mask); using unsigned_type = typename std::make_unsigned::type; return (static_cast(opnd) >> unsigned_right_shift) | (opnd << signed_left_shift); } // TUNING: use rbit for arm/arm64 inline static uint32_t ReverseBits32(uint32_t opnd) { // Hacker's Delight 7-1 opnd = ((opnd >> 1) & 0x55555555) | ((opnd & 0x55555555) << 1); opnd = ((opnd >> 2) & 0x33333333) | ((opnd & 0x33333333) << 2); opnd = ((opnd >> 4) & 0x0F0F0F0F) | ((opnd & 0x0F0F0F0F) << 4); opnd = ((opnd >> 8) & 0x00FF00FF) | ((opnd & 0x00FF00FF) << 8); opnd = ((opnd >> 16)) | ((opnd) << 16); return opnd; } // TUNING: use rbit for arm/arm64 inline static uint64_t ReverseBits64(uint64_t opnd) { // Hacker's Delight 7-1 opnd = (opnd & 0x5555555555555555L) << 1 | ((opnd >> 1) & 0x5555555555555555L); opnd = (opnd & 0x3333333333333333L) << 2 | ((opnd >> 2) & 0x3333333333333333L); opnd = (opnd & 0x0f0f0f0f0f0f0f0fL) << 4 | ((opnd >> 4) & 0x0f0f0f0f0f0f0f0fL); opnd = (opnd & 0x00ff00ff00ff00ffL) << 8 | ((opnd >> 8) & 0x00ff00ff00ff00ffL); opnd = (opnd << 48) | ((opnd & 0xffff0000L) << 16) | ((opnd >> 16) & 0xffff0000L) | (opnd >> 48); return opnd; } // Create a mask for the least significant "bits" // The returned value is always unsigned to prevent undefined behavior for bitwise ops. // // Given 'bits', // Returns: // <--- bits ---> // +-----------------+------------+ // | 0 ............0 | 1.....1 | // +-----------------+------------+ // msb lsb template inline static constexpr std::make_unsigned_t MaskLeastSignificant(size_t bits) { DCHECK_GE(BitSizeOf(), bits) << "Bits out of range for type T"; using unsigned_T = std::make_unsigned_t; if (bits >= BitSizeOf()) { return std::numeric_limits::max(); } else { auto kOne = static_cast(1); // Do not truncate for T>size_t. return static_cast((kOne << bits) - kOne); } } // Clears the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'. // (Equivalent of ARM BFC instruction). // // Given: // <-- width --> // +--------+------------+--------+ // | ABC... | bitfield | XYZ... + // +--------+------------+--------+ // lsb 0 // Returns: // <-- width --> // +--------+------------+--------+ // | ABC... | 0........0 | XYZ... + // +--------+------------+--------+ // lsb 0 template inline static constexpr T BitFieldClear(T value, size_t lsb, size_t width) { DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value"; const auto val = static_cast>(value); const auto mask = MaskLeastSignificant(width); return static_cast(val & ~(mask << lsb)); } // Inserts the contents of 'data' into bitfield of 'value' starting // at the least significant bit "lsb" with a bitwidth of 'width'. // Note: data must be within range of [MinInt(width), MaxInt(width)]. // (Equivalent of ARM BFI instruction). // // Given (data): // <-- width --> // +--------+------------+--------+ // | ABC... | bitfield | XYZ... + // +--------+------------+--------+ // lsb 0 // Returns: // <-- width --> // +--------+------------+--------+ // | ABC... | 0...data | XYZ... + // +--------+------------+--------+ // lsb 0 template inline static constexpr T BitFieldInsert(T value, T2 data, size_t lsb, size_t width) { DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value"; if (width != 0u) { DCHECK_GE(MaxInt(width), data) << "Data out of range [too large] for bitwidth"; DCHECK_LE(MinInt(width), data) << "Data out of range [too small] for bitwidth"; } else { DCHECK_EQ(static_cast(0), data) << "Data out of range [nonzero] for bitwidth 0"; } const auto data_mask = MaskLeastSignificant(width); const auto value_cleared = BitFieldClear(value, lsb, width); return static_cast(value_cleared | ((data & data_mask) << lsb)); } // Extracts the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'. // Signed types are sign-extended during extraction. (Equivalent of ARM UBFX/SBFX instruction). // // Given: // <-- width --> // +--------+-------------+-------+ // | | bitfield | + // +--------+-------------+-------+ // lsb 0 // (Unsigned) Returns: // <-- width --> // +----------------+-------------+ // | 0... 0 | bitfield | // +----------------+-------------+ // 0 // (Signed) Returns: // <-- width --> // +----------------+-------------+ // | S... S | bitfield | // +----------------+-------------+ // 0 // where S is the highest bit in 'bitfield'. template inline static constexpr T BitFieldExtract(T value, size_t lsb, size_t width) { DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value"; const auto val = static_cast>(value); const T bitfield_unsigned = static_cast((val >> lsb) & MaskLeastSignificant(width)); if (std::is_signed::value) { // Perform sign extension if (width == 0) { // Avoid underflow. return static_cast(0); } else if (bitfield_unsigned & (1 << (width - 1))) { // Detect if sign bit was set. // MSB LSB // 0b11111...100...000000 const auto ones_negmask = ~MaskLeastSignificant(width); return static_cast(bitfield_unsigned | ones_negmask); } } // Skip sign extension. return bitfield_unsigned; } inline static constexpr size_t BitsToBytesRoundUp(size_t num_bits) { return RoundUp(num_bits, kBitsPerByte) / kBitsPerByte; } } // namespace art #endif // ART_LIBARTBASE_BASE_BIT_UTILS_H_