/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "utf.h" #include #include #include #include "base/casts.h" #include "utf-inl.h" namespace art { using android::base::StringAppendF; // This is used only from debugger and test code. size_t CountModifiedUtf8Chars(const char* utf8) { return CountModifiedUtf8Chars(utf8, strlen(utf8)); } /* * This does not validate UTF8 rules (nor did older code). But it gets the right answer * for valid UTF-8 and that's fine because it's used only to size a buffer for later * conversion. * * Modified UTF-8 consists of a series of bytes up to 21 bit Unicode code points as follows: * U+0001 - U+007F 0xxxxxxx * U+0080 - U+07FF 110xxxxx 10xxxxxx * U+0800 - U+FFFF 1110xxxx 10xxxxxx 10xxxxxx * U+10000 - U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx * * U+0000 is encoded using the 2nd form to avoid nulls inside strings (this differs from * standard UTF-8). * The four byte encoding converts to two utf16 characters. */ size_t CountModifiedUtf8Chars(const char* utf8, size_t byte_count) { DCHECK_LE(byte_count, strlen(utf8)); size_t len = 0; const char* end = utf8 + byte_count; for (; utf8 < end; ++utf8) { int ic = *utf8; len++; if (LIKELY((ic & 0x80) == 0)) { // One-byte encoding. continue; } // Two- or three-byte encoding. utf8++; if ((ic & 0x20) == 0) { // Two-byte encoding. continue; } utf8++; if ((ic & 0x10) == 0) { // Three-byte encoding. continue; } // Four-byte encoding: needs to be converted into a surrogate // pair. utf8++; len++; } return len; } // This is used only from debugger and test code. void ConvertModifiedUtf8ToUtf16(uint16_t* utf16_data_out, const char* utf8_data_in) { while (*utf8_data_in != '\0') { const uint32_t ch = GetUtf16FromUtf8(&utf8_data_in); const uint16_t leading = GetLeadingUtf16Char(ch); const uint16_t trailing = GetTrailingUtf16Char(ch); *utf16_data_out++ = leading; if (trailing != 0) { *utf16_data_out++ = trailing; } } } void ConvertModifiedUtf8ToUtf16(uint16_t* utf16_data_out, size_t out_chars, const char* utf8_data_in, size_t in_bytes) { const char *in_start = utf8_data_in; const char *in_end = utf8_data_in + in_bytes; uint16_t *out_p = utf16_data_out; if (LIKELY(out_chars == in_bytes)) { // Common case where all characters are ASCII. for (const char *p = in_start; p < in_end;) { // Safe even if char is signed because ASCII characters always have // the high bit cleared. *out_p++ = dchecked_integral_cast(*p++); } return; } // String contains non-ASCII characters. for (const char *p = in_start; p < in_end;) { const uint32_t ch = GetUtf16FromUtf8(&p); const uint16_t leading = GetLeadingUtf16Char(ch); const uint16_t trailing = GetTrailingUtf16Char(ch); *out_p++ = leading; if (trailing != 0) { *out_p++ = trailing; } } } void ConvertUtf16ToModifiedUtf8(char* utf8_out, size_t byte_count, const uint16_t* utf16_in, size_t char_count) { if (LIKELY(byte_count == char_count)) { // Common case where all characters are ASCII. const uint16_t *utf16_end = utf16_in + char_count; for (const uint16_t *p = utf16_in; p < utf16_end;) { *utf8_out++ = dchecked_integral_cast(*p++); } return; } // String contains non-ASCII characters. while (char_count--) { const uint16_t ch = *utf16_in++; if (ch > 0 && ch <= 0x7f) { *utf8_out++ = ch; } else { // Char_count == 0 here implies we've encountered an unpaired // surrogate and we have no choice but to encode it as 3-byte UTF // sequence. Note that unpaired surrogates can occur as a part of // "normal" operation. if ((ch >= 0xd800 && ch <= 0xdbff) && (char_count > 0)) { const uint16_t ch2 = *utf16_in; // Check if the other half of the pair is within the expected // range. If it isn't, we will have to emit both "halves" as // separate 3 byte sequences. if (ch2 >= 0xdc00 && ch2 <= 0xdfff) { utf16_in++; char_count--; const uint32_t code_point = (ch << 10) + ch2 - 0x035fdc00; *utf8_out++ = (code_point >> 18) | 0xf0; *utf8_out++ = ((code_point >> 12) & 0x3f) | 0x80; *utf8_out++ = ((code_point >> 6) & 0x3f) | 0x80; *utf8_out++ = (code_point & 0x3f) | 0x80; continue; } } if (ch > 0x07ff) { // Three byte encoding. *utf8_out++ = (ch >> 12) | 0xe0; *utf8_out++ = ((ch >> 6) & 0x3f) | 0x80; *utf8_out++ = (ch & 0x3f) | 0x80; } else /*(ch > 0x7f || ch == 0)*/ { // Two byte encoding. *utf8_out++ = (ch >> 6) | 0xc0; *utf8_out++ = (ch & 0x3f) | 0x80; } } } } int32_t ComputeUtf16HashFromModifiedUtf8(const char* utf8, size_t utf16_length) { uint32_t hash = 0; while (utf16_length != 0u) { const uint32_t pair = GetUtf16FromUtf8(&utf8); const uint16_t first = GetLeadingUtf16Char(pair); hash = hash * 31 + first; --utf16_length; const uint16_t second = GetTrailingUtf16Char(pair); if (second != 0) { hash = hash * 31 + second; DCHECK_NE(utf16_length, 0u); --utf16_length; } } return static_cast(hash); } uint32_t ComputeModifiedUtf8Hash(const char* chars) { uint32_t hash = 0; while (*chars != '\0') { hash = hash * 31 + static_cast(*chars); ++chars; } return hash; } int CompareModifiedUtf8ToUtf16AsCodePointValues(const char* utf8, const uint16_t* utf16, size_t utf16_length) { for (;;) { if (*utf8 == '\0') { return (utf16_length == 0) ? 0 : -1; } else if (utf16_length == 0) { return 1; } const uint32_t pair = GetUtf16FromUtf8(&utf8); // First compare the leading utf16 char. const uint16_t lhs = GetLeadingUtf16Char(pair); const uint16_t rhs = *utf16++; --utf16_length; if (lhs != rhs) { return lhs > rhs ? 1 : -1; } // Then compare the trailing utf16 char. First check if there // are any characters left to consume. const uint16_t lhs2 = GetTrailingUtf16Char(pair); if (lhs2 != 0) { if (utf16_length == 0) { return 1; } const uint16_t rhs2 = *utf16++; --utf16_length; if (lhs2 != rhs2) { return lhs2 > rhs2 ? 1 : -1; } } } } size_t CountUtf8Bytes(const uint16_t* chars, size_t char_count) { size_t result = 0; const uint16_t *end = chars + char_count; while (chars < end) { const uint16_t ch = *chars++; if (LIKELY(ch != 0 && ch < 0x80)) { result++; continue; } if (ch < 0x800) { result += 2; continue; } if (ch >= 0xd800 && ch < 0xdc00) { if (chars < end) { const uint16_t ch2 = *chars; // If we find a properly paired surrogate, we emit it as a 4 byte // UTF sequence. If we find an unpaired leading or trailing surrogate, // we emit it as a 3 byte sequence like would have done earlier. if (ch2 >= 0xdc00 && ch2 < 0xe000) { chars++; result += 4; continue; } } } result += 3; } return result; } static inline constexpr bool NeedsEscaping(uint16_t ch) { return (ch < ' ' || ch > '~'); } std::string PrintableChar(uint16_t ch) { std::string result; result += '\''; if (NeedsEscaping(ch)) { StringAppendF(&result, "\\u%04x", ch); } else { result += static_cast(ch); } result += '\''; return result; } std::string PrintableString(const char* utf8) { std::string result; result += '"'; const char* p = utf8; size_t char_count = CountModifiedUtf8Chars(p); for (size_t i = 0; i < char_count; ++i) { uint32_t ch = GetUtf16FromUtf8(&p); if (ch == '\\') { result += "\\\\"; } else if (ch == '\n') { result += "\\n"; } else if (ch == '\r') { result += "\\r"; } else if (ch == '\t') { result += "\\t"; } else { const uint16_t leading = GetLeadingUtf16Char(ch); if (NeedsEscaping(leading)) { StringAppendF(&result, "\\u%04x", leading); } else { result += static_cast(leading); } const uint32_t trailing = GetTrailingUtf16Char(ch); if (trailing != 0) { // All high surrogates will need escaping. StringAppendF(&result, "\\u%04x", trailing); // Account for the surrogate pair. ++i; DCHECK_LT(i, char_count); } } } result += '"'; return result; } } // namespace art