/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "class_linker.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "android-base/stringprintf.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "barrier.h" #include "base/arena_allocator.h" #include "base/casts.h" #include "base/file_utils.h" #include "base/hash_map.h" #include "base/hash_set.h" #include "base/leb128.h" #include "base/logging.h" #include "base/metrics/metrics.h" #include "base/mutex-inl.h" #include "base/os.h" #include "base/quasi_atomic.h" #include "base/scoped_arena_containers.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/string_view_cpp20.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/unix_file/fd_file.h" #include "base/utils.h" #include "base/value_object.h" #include "cha.h" #include "class_linker-inl.h" #include "class_loader_utils.h" #include "class_root-inl.h" #include "class_table-inl.h" #include "compiler_callbacks.h" #include "debug_print.h" #include "debugger.h" #include "dex/class_accessor-inl.h" #include "dex/descriptors_names.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_exception_helpers.h" #include "dex/dex_file_loader.h" #include "dex/signature-inl.h" #include "dex/utf.h" #include "entrypoints/entrypoint_utils-inl.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "experimental_flags.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap-inl.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/heap-visit-objects-inl.h" #include "gc/heap.h" #include "gc/scoped_gc_critical_section.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "gc_root-inl.h" #include "handle_scope-inl.h" #include "hidden_api.h" #include "image-inl.h" #include "imt_conflict_table.h" #include "imtable-inl.h" #include "intern_table-inl.h" #include "interpreter/interpreter.h" #include "interpreter/mterp/nterp.h" #include "jit/debugger_interface.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jni/java_vm_ext.h" #include "jni/jni_internal.h" #include "linear_alloc.h" #include "mirror/array-alloc-inl.h" #include "mirror/array-inl.h" #include "mirror/call_site.h" #include "mirror/class-alloc-inl.h" #include "mirror/class-inl.h" #include "mirror/class.h" #include "mirror/class_ext.h" #include "mirror/class_loader.h" #include "mirror/dex_cache-inl.h" #include "mirror/dex_cache.h" #include "mirror/emulated_stack_frame.h" #include "mirror/field.h" #include "mirror/iftable-inl.h" #include "mirror/method.h" #include "mirror/method_handle_impl.h" #include "mirror/method_handles_lookup.h" #include "mirror/method_type.h" #include "mirror/object-inl.h" #include "mirror/object-refvisitor-inl.h" #include "mirror/object.h" #include "mirror/object_array-alloc-inl.h" #include "mirror/object_array-inl.h" #include "mirror/object_array.h" #include "mirror/object_reference.h" #include "mirror/object_reference-inl.h" #include "mirror/proxy.h" #include "mirror/reference-inl.h" #include "mirror/stack_trace_element.h" #include "mirror/string-inl.h" #include "mirror/throwable.h" #include "mirror/var_handle.h" #include "native/dalvik_system_DexFile.h" #include "nativehelper/scoped_local_ref.h" #include "nterp_helpers.h" #include "oat.h" #include "oat_file-inl.h" #include "oat_file.h" #include "oat_file_assistant.h" #include "oat_file_manager.h" #include "object_lock.h" #include "profile/profile_compilation_info.h" #include "runtime.h" #include "runtime_callbacks.h" #include "scoped_thread_state_change-inl.h" #include "thread-inl.h" #include "thread.h" #include "thread_list.h" #include "trace.h" #include "transaction.h" #include "vdex_file.h" #include "verifier/class_verifier.h" #include "verifier/verifier_deps.h" #include "well_known_classes.h" #include "interpreter/interpreter_mterp_impl.h" namespace art { using android::base::StringPrintf; static constexpr bool kCheckImageObjects = kIsDebugBuild; static constexpr bool kVerifyArtMethodDeclaringClasses = kIsDebugBuild; static void ThrowNoClassDefFoundError(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2))) REQUIRES_SHARED(Locks::mutator_lock_); static void ThrowNoClassDefFoundError(const char* fmt, ...) { va_list args; va_start(args, fmt); Thread* self = Thread::Current(); self->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args); va_end(args); } static bool HasInitWithString(Thread* self, ClassLinker* class_linker, const char* descriptor) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* method = self->GetCurrentMethod(nullptr); StackHandleScope<1> hs(self); Handle class_loader(hs.NewHandle(method != nullptr ? method->GetDeclaringClass()->GetClassLoader() : nullptr)); ObjPtr exception_class = class_linker->FindClass(self, descriptor, class_loader); if (exception_class == nullptr) { // No exc class ~ no -with-string. CHECK(self->IsExceptionPending()); self->ClearException(); return false; } ArtMethod* exception_init_method = exception_class->FindConstructor( "(Ljava/lang/String;)V", class_linker->GetImagePointerSize()); return exception_init_method != nullptr; } static ObjPtr GetVerifyError(ObjPtr c) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr ext(c->GetExtData()); if (ext == nullptr) { return nullptr; } else { return ext->GetVerifyError(); } } // Helper for ThrowEarlierClassFailure. Throws the stored error. static void HandleEarlierVerifyError(Thread* self, ClassLinker* class_linker, ObjPtr c) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr obj = GetVerifyError(c); DCHECK(obj != nullptr); self->AssertNoPendingException(); if (obj->IsClass()) { // Previous error has been stored as class. Create a new exception of that type. // It's possible the exception doesn't have a (String). std::string temp; const char* descriptor = obj->AsClass()->GetDescriptor(&temp); if (HasInitWithString(self, class_linker, descriptor)) { self->ThrowNewException(descriptor, c->PrettyDescriptor().c_str()); } else { self->ThrowNewException(descriptor, nullptr); } } else { // Previous error has been stored as an instance. Just rethrow. ObjPtr throwable_class = GetClassRoot(class_linker); ObjPtr error_class = obj->GetClass(); CHECK(throwable_class->IsAssignableFrom(error_class)); self->SetException(obj->AsThrowable()); } self->AssertPendingException(); } static void ChangeInterpreterBridgeToNterp(ArtMethod* method, ClassLinker* class_linker) REQUIRES_SHARED(Locks::mutator_lock_) { Runtime* runtime = Runtime::Current(); if (class_linker->IsQuickToInterpreterBridge(method->GetEntryPointFromQuickCompiledCode()) && CanMethodUseNterp(method)) { if (method->GetDeclaringClass()->IsVisiblyInitialized() || !NeedsClinitCheckBeforeCall(method)) { runtime->GetInstrumentation()->UpdateMethodsCode(method, interpreter::GetNterpEntryPoint()); } else { // Put the resolution stub, which will initialize the class and then // call the method with nterp. runtime->GetInstrumentation()->UpdateMethodsCode(method, GetQuickResolutionStub()); } } } // Ensures that methods have the kAccSkipAccessChecks bit set. We use the // kAccVerificationAttempted bit on the class access flags to determine whether this has been done // before. static void EnsureSkipAccessChecksMethods(Handle klass, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); if (!klass->WasVerificationAttempted()) { klass->SetSkipAccessChecksFlagOnAllMethods(pointer_size); klass->SetVerificationAttempted(); // Now that the class has passed verification, try to set nterp entrypoints // to methods that currently use the switch interpreter. if (interpreter::CanRuntimeUseNterp()) { for (ArtMethod& m : klass->GetMethods(pointer_size)) { ChangeInterpreterBridgeToNterp(&m, class_linker); } } } } // Callback responsible for making a batch of classes visibly initialized // after all threads have called it from a checkpoint, ensuring visibility. class ClassLinker::VisiblyInitializedCallback final : public Closure, public IntrusiveForwardListNode { public: explicit VisiblyInitializedCallback(ClassLinker* class_linker) : class_linker_(class_linker), num_classes_(0u), thread_visibility_counter_(0), barriers_() { std::fill_n(classes_, kMaxClasses, nullptr); } bool IsEmpty() const { DCHECK_LE(num_classes_, kMaxClasses); return num_classes_ == 0u; } bool IsFull() const { DCHECK_LE(num_classes_, kMaxClasses); return num_classes_ == kMaxClasses; } void AddClass(Thread* self, ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_EQ(klass->GetStatus(), ClassStatus::kInitialized); DCHECK(!IsFull()); classes_[num_classes_] = self->GetJniEnv()->GetVm()->AddWeakGlobalRef(self, klass); ++num_classes_; } void AddBarrier(Barrier* barrier) { barriers_.push_front(barrier); } std::forward_list GetAndClearBarriers() { std::forward_list result; result.swap(barriers_); result.reverse(); // Return barriers in insertion order. return result; } void MakeVisible(Thread* self) { DCHECK_EQ(thread_visibility_counter_.load(std::memory_order_relaxed), 0); size_t count = Runtime::Current()->GetThreadList()->RunCheckpoint(this); AdjustThreadVisibilityCounter(self, count); } void Run(Thread* self) override { self->ClearMakeVisiblyInitializedCounter(); AdjustThreadVisibilityCounter(self, -1); } private: void AdjustThreadVisibilityCounter(Thread* self, ssize_t adjustment) { ssize_t old = thread_visibility_counter_.fetch_add(adjustment, std::memory_order_relaxed); if (old + adjustment == 0) { // All threads passed the checkpoint. Mark classes as visibly initialized. { ScopedObjectAccess soa(self); StackHandleScope<1u> hs(self); MutableHandle klass = hs.NewHandle(nullptr); JavaVMExt* vm = self->GetJniEnv()->GetVm(); for (size_t i = 0, num = num_classes_; i != num; ++i) { klass.Assign(ObjPtr::DownCast(self->DecodeJObject(classes_[i]))); vm->DeleteWeakGlobalRef(self, classes_[i]); if (klass != nullptr) { mirror::Class::SetStatus(klass, ClassStatus::kVisiblyInitialized, self); class_linker_->FixupStaticTrampolines(self, klass.Get()); } } num_classes_ = 0u; } class_linker_->VisiblyInitializedCallbackDone(self, this); } } static constexpr size_t kMaxClasses = 16; ClassLinker* const class_linker_; size_t num_classes_; jweak classes_[kMaxClasses]; // The thread visibility counter starts at 0 and it is incremented by the number of // threads that need to run this callback (by the thread that request the callback // to be run) and decremented once for each `Run()` execution. When it reaches 0, // whether after the increment or after a decrement, we know that `Run()` was executed // for all threads and therefore we can mark the classes as visibly initialized. std::atomic thread_visibility_counter_; // List of barries to `Pass()` for threads that wait for the callback to complete. std::forward_list barriers_; }; void ClassLinker::MakeInitializedClassesVisiblyInitialized(Thread* self, bool wait) { if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) { return; // Nothing to do. Thanks to the x86 memory model classes skip the initialized status. } std::optional maybe_barrier; // Avoid constructing the Barrier for `wait == false`. if (wait) { maybe_barrier.emplace(0); } int wait_count = 0; VisiblyInitializedCallback* callback = nullptr; { MutexLock lock(self, visibly_initialized_callback_lock_); if (visibly_initialized_callback_ != nullptr && !visibly_initialized_callback_->IsEmpty()) { callback = visibly_initialized_callback_.release(); running_visibly_initialized_callbacks_.push_front(*callback); } if (wait) { DCHECK(maybe_barrier.has_value()); Barrier* barrier = std::addressof(*maybe_barrier); for (VisiblyInitializedCallback& cb : running_visibly_initialized_callbacks_) { cb.AddBarrier(barrier); ++wait_count; } } } if (callback != nullptr) { callback->MakeVisible(self); } if (wait_count != 0) { DCHECK(maybe_barrier.has_value()); maybe_barrier->Increment(self, wait_count); } } void ClassLinker::VisiblyInitializedCallbackDone(Thread* self, VisiblyInitializedCallback* callback) { MutexLock lock(self, visibly_initialized_callback_lock_); // Pass the barriers if requested. for (Barrier* barrier : callback->GetAndClearBarriers()) { barrier->Pass(self); } // Remove the callback from the list of running callbacks. auto before = running_visibly_initialized_callbacks_.before_begin(); auto it = running_visibly_initialized_callbacks_.begin(); DCHECK(it != running_visibly_initialized_callbacks_.end()); while (std::addressof(*it) != callback) { before = it; ++it; DCHECK(it != running_visibly_initialized_callbacks_.end()); } running_visibly_initialized_callbacks_.erase_after(before); // Reuse or destroy the callback object. if (visibly_initialized_callback_ == nullptr) { visibly_initialized_callback_.reset(callback); } else { delete callback; } } void ClassLinker::ForceClassInitialized(Thread* self, Handle klass) { ClassLinker::VisiblyInitializedCallback* cb = MarkClassInitialized(self, klass); if (cb != nullptr) { cb->MakeVisible(self); } ScopedThreadSuspension sts(self, ThreadState::kSuspended); MakeInitializedClassesVisiblyInitialized(self, /*wait=*/true); } ClassLinker::VisiblyInitializedCallback* ClassLinker::MarkClassInitialized( Thread* self, Handle klass) { if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) { // Thanks to the x86 memory model, we do not need any memory fences and // we can immediately mark the class as visibly initialized. mirror::Class::SetStatus(klass, ClassStatus::kVisiblyInitialized, self); FixupStaticTrampolines(self, klass.Get()); return nullptr; } if (Runtime::Current()->IsActiveTransaction()) { // Transactions are single-threaded, so we can mark the class as visibly intialized. // (Otherwise we'd need to track the callback's entry in the transaction for rollback.) mirror::Class::SetStatus(klass, ClassStatus::kVisiblyInitialized, self); FixupStaticTrampolines(self, klass.Get()); return nullptr; } mirror::Class::SetStatus(klass, ClassStatus::kInitialized, self); MutexLock lock(self, visibly_initialized_callback_lock_); if (visibly_initialized_callback_ == nullptr) { visibly_initialized_callback_.reset(new VisiblyInitializedCallback(this)); } DCHECK(!visibly_initialized_callback_->IsFull()); visibly_initialized_callback_->AddClass(self, klass.Get()); if (visibly_initialized_callback_->IsFull()) { VisiblyInitializedCallback* callback = visibly_initialized_callback_.release(); running_visibly_initialized_callbacks_.push_front(*callback); return callback; } else { return nullptr; } } const void* ClassLinker::RegisterNative( Thread* self, ArtMethod* method, const void* native_method) { CHECK(method->IsNative()) << method->PrettyMethod(); CHECK(native_method != nullptr) << method->PrettyMethod(); void* new_native_method = nullptr; Runtime* runtime = Runtime::Current(); runtime->GetRuntimeCallbacks()->RegisterNativeMethod(method, native_method, /*out*/&new_native_method); if (method->IsCriticalNative()) { MutexLock lock(self, critical_native_code_with_clinit_check_lock_); // Remove old registered method if any. auto it = critical_native_code_with_clinit_check_.find(method); if (it != critical_native_code_with_clinit_check_.end()) { critical_native_code_with_clinit_check_.erase(it); } // To ensure correct memory visibility, we need the class to be visibly // initialized before we can set the JNI entrypoint. if (method->GetDeclaringClass()->IsVisiblyInitialized()) { method->SetEntryPointFromJni(new_native_method); } else { critical_native_code_with_clinit_check_.emplace(method, new_native_method); } } else { method->SetEntryPointFromJni(new_native_method); } return new_native_method; } void ClassLinker::UnregisterNative(Thread* self, ArtMethod* method) { CHECK(method->IsNative()) << method->PrettyMethod(); // Restore stub to lookup native pointer via dlsym. if (method->IsCriticalNative()) { MutexLock lock(self, critical_native_code_with_clinit_check_lock_); auto it = critical_native_code_with_clinit_check_.find(method); if (it != critical_native_code_with_clinit_check_.end()) { critical_native_code_with_clinit_check_.erase(it); } method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub()); } else { method->SetEntryPointFromJni(GetJniDlsymLookupStub()); } } const void* ClassLinker::GetRegisteredNative(Thread* self, ArtMethod* method) { if (method->IsCriticalNative()) { MutexLock lock(self, critical_native_code_with_clinit_check_lock_); auto it = critical_native_code_with_clinit_check_.find(method); if (it != critical_native_code_with_clinit_check_.end()) { return it->second; } const void* native_code = method->GetEntryPointFromJni(); return IsJniDlsymLookupCriticalStub(native_code) ? nullptr : native_code; } else { const void* native_code = method->GetEntryPointFromJni(); return IsJniDlsymLookupStub(native_code) ? nullptr : native_code; } } void ClassLinker::ThrowEarlierClassFailure(ObjPtr c, bool wrap_in_no_class_def, bool log) { // The class failed to initialize on a previous attempt, so we want to throw // a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we // failed in verification, in which case v2 5.4.1 says we need to re-throw // the previous error. Runtime* const runtime = Runtime::Current(); if (!runtime->IsAotCompiler()) { // Give info if this occurs at runtime. std::string extra; ObjPtr verify_error = GetVerifyError(c); if (verify_error != nullptr) { if (verify_error->IsClass()) { extra = mirror::Class::PrettyDescriptor(verify_error->AsClass()); } else { extra = verify_error->AsThrowable()->Dump(); } } if (log) { LOG(INFO) << "Rejecting re-init on previously-failed class " << c->PrettyClass() << ": " << extra; } } CHECK(c->IsErroneous()) << c->PrettyClass() << " " << c->GetStatus(); Thread* self = Thread::Current(); if (runtime->IsAotCompiler()) { // At compile time, accurate errors and NCDFE are disabled to speed compilation. ObjPtr pre_allocated = runtime->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); } else { ObjPtr verify_error = GetVerifyError(c); if (verify_error != nullptr) { // Rethrow stored error. HandleEarlierVerifyError(self, this, c); } // TODO This might be wrong if we hit an OOME while allocating the ClassExt. In that case we // might have meant to go down the earlier if statement with the original error but it got // swallowed by the OOM so we end up here. if (verify_error == nullptr || wrap_in_no_class_def) { // If there isn't a recorded earlier error, or this is a repeat throw from initialization, // the top-level exception must be a NoClassDefFoundError. The potentially already pending // exception will be a cause. self->ThrowNewWrappedException("Ljava/lang/NoClassDefFoundError;", c->PrettyDescriptor().c_str()); } } } static void VlogClassInitializationFailure(Handle klass) REQUIRES_SHARED(Locks::mutator_lock_) { if (VLOG_IS_ON(class_linker)) { std::string temp; LOG(INFO) << "Failed to initialize class " << klass->GetDescriptor(&temp) << " from " << klass->GetLocation() << "\n" << Thread::Current()->GetException()->Dump(); } } static void WrapExceptionInInitializer(Handle klass) REQUIRES_SHARED(Locks::mutator_lock_) { Thread* self = Thread::Current(); JNIEnv* env = self->GetJniEnv(); ScopedLocalRef cause(env, env->ExceptionOccurred()); CHECK(cause.get() != nullptr); // Boot classpath classes should not fail initialization. This is a consistency debug check. // This cannot in general be guaranteed, but in all likelihood leads to breakage down the line. if (klass->GetClassLoader() == nullptr && !Runtime::Current()->IsAotCompiler()) { std::string tmp; // We want to LOG(FATAL) on debug builds since this really shouldn't be happening but we need to // make sure to only do it if we don't have AsyncExceptions being thrown around since those // could have caused the error. bool known_impossible = kIsDebugBuild && !Runtime::Current()->AreAsyncExceptionsThrown(); LOG(known_impossible ? FATAL : WARNING) << klass->GetDescriptor(&tmp) << " failed initialization: " << self->GetException()->Dump(); } env->ExceptionClear(); bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error); env->Throw(cause.get()); // We only wrap non-Error exceptions; an Error can just be used as-is. if (!is_error) { self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", nullptr); } VlogClassInitializationFailure(klass); } ClassLinker::ClassLinker(InternTable* intern_table, bool fast_class_not_found_exceptions) : boot_class_table_(new ClassTable()), failed_dex_cache_class_lookups_(0), class_roots_(nullptr), find_array_class_cache_next_victim_(0), init_done_(false), log_new_roots_(false), intern_table_(intern_table), fast_class_not_found_exceptions_(fast_class_not_found_exceptions), jni_dlsym_lookup_trampoline_(nullptr), jni_dlsym_lookup_critical_trampoline_(nullptr), quick_resolution_trampoline_(nullptr), quick_imt_conflict_trampoline_(nullptr), quick_generic_jni_trampoline_(nullptr), quick_to_interpreter_bridge_trampoline_(nullptr), nterp_trampoline_(nullptr), image_pointer_size_(kRuntimePointerSize), visibly_initialized_callback_lock_("visibly initialized callback lock"), visibly_initialized_callback_(nullptr), critical_native_code_with_clinit_check_lock_("critical native code with clinit check lock"), critical_native_code_with_clinit_check_(), cha_(Runtime::Current()->IsAotCompiler() ? nullptr : new ClassHierarchyAnalysis()) { // For CHA disabled during Aot, see b/34193647. CHECK(intern_table_ != nullptr); static_assert(kFindArrayCacheSize == arraysize(find_array_class_cache_), "Array cache size wrong."); std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot(nullptr)); } void ClassLinker::CheckSystemClass(Thread* self, Handle c1, const char* descriptor) { ObjPtr c2 = FindSystemClass(self, descriptor); if (c2 == nullptr) { LOG(FATAL) << "Could not find class " << descriptor; UNREACHABLE(); } if (c1.Get() != c2) { std::ostringstream os1, os2; c1->DumpClass(os1, mirror::Class::kDumpClassFullDetail); c2->DumpClass(os2, mirror::Class::kDumpClassFullDetail); LOG(FATAL) << "InitWithoutImage: Class mismatch for " << descriptor << ". This is most likely the result of a broken build. Make sure that " << "libcore and art projects match.\n\n" << os1.str() << "\n\n" << os2.str(); UNREACHABLE(); } } bool ClassLinker::InitWithoutImage(std::vector> boot_class_path, std::string* error_msg) { VLOG(startup) << "ClassLinker::Init"; Thread* const self = Thread::Current(); Runtime* const runtime = Runtime::Current(); gc::Heap* const heap = runtime->GetHeap(); CHECK(!heap->HasBootImageSpace()) << "Runtime has image. We should use it."; CHECK(!init_done_); // Use the pointer size from the runtime since we are probably creating the image. image_pointer_size_ = InstructionSetPointerSize(runtime->GetInstructionSet()); // java_lang_Class comes first, it's needed for AllocClass // The GC can't handle an object with a null class since we can't get the size of this object. heap->IncrementDisableMovingGC(self); StackHandleScope<64> hs(self); // 64 is picked arbitrarily. auto class_class_size = mirror::Class::ClassClassSize(image_pointer_size_); // Allocate the object as non-movable so that there are no cases where Object::IsClass returns // the incorrect result when comparing to-space vs from-space. Handle java_lang_Class(hs.NewHandle(ObjPtr::DownCast( heap->AllocNonMovableObject(self, nullptr, class_class_size, VoidFunctor())))); CHECK(java_lang_Class != nullptr); java_lang_Class->SetClassFlags(mirror::kClassFlagClass); java_lang_Class->SetClass(java_lang_Class.Get()); if (kUseBakerReadBarrier) { java_lang_Class->AssertReadBarrierState(); } java_lang_Class->SetClassSize(class_class_size); java_lang_Class->SetPrimitiveType(Primitive::kPrimNot); heap->DecrementDisableMovingGC(self); // AllocClass(ObjPtr) can now be used // Class[] is used for reflection support. auto class_array_class_size = mirror::ObjectArray::ClassSize(image_pointer_size_); Handle class_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), class_array_class_size))); class_array_class->SetComponentType(java_lang_Class.Get()); // java_lang_Object comes next so that object_array_class can be created. Handle java_lang_Object(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize(image_pointer_size_)))); CHECK(java_lang_Object != nullptr); // backfill Object as the super class of Class. java_lang_Class->SetSuperClass(java_lang_Object.Get()); mirror::Class::SetStatus(java_lang_Object, ClassStatus::kLoaded, self); java_lang_Object->SetObjectSize(sizeof(mirror::Object)); // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been // cleared without triggering the read barrier and unintentionally mark the sentinel alive. runtime->SetSentinel(heap->AllocNonMovableObject(self, java_lang_Object.Get(), java_lang_Object->GetObjectSize(), VoidFunctor())); // Initialize the SubtypeCheck bitstring for java.lang.Object and java.lang.Class. if (kBitstringSubtypeCheckEnabled) { // It might seem the lock here is unnecessary, however all the SubtypeCheck // functions are annotated to require locks all the way down. // // We take the lock here to avoid using NO_THREAD_SAFETY_ANALYSIS. MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); SubtypeCheck>::EnsureInitialized(java_lang_Object.Get()); SubtypeCheck>::EnsureInitialized(java_lang_Class.Get()); } // Object[] next to hold class roots. Handle object_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray::ClassSize(image_pointer_size_)))); object_array_class->SetComponentType(java_lang_Object.Get()); // Setup java.lang.String. // // We make this class non-movable for the unlikely case where it were to be // moved by a sticky-bit (minor) collection when using the Generational // Concurrent Copying (CC) collector, potentially creating a stale reference // in the `klass_` field of one of its instances allocated in the Large-Object // Space (LOS) -- see the comment about the dirty card scanning logic in // art::gc::collector::ConcurrentCopying::MarkingPhase. Handle java_lang_String(hs.NewHandle( AllocClass( self, java_lang_Class.Get(), mirror::String::ClassSize(image_pointer_size_)))); java_lang_String->SetStringClass(); mirror::Class::SetStatus(java_lang_String, ClassStatus::kResolved, self); // Setup java.lang.ref.Reference. Handle java_lang_ref_Reference(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize(image_pointer_size_)))); java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize()); mirror::Class::SetStatus(java_lang_ref_Reference, ClassStatus::kResolved, self); // Create storage for root classes, save away our work so far (requires descriptors). class_roots_ = GcRoot>( mirror::ObjectArray::Alloc(self, object_array_class.Get(), static_cast(ClassRoot::kMax))); CHECK(!class_roots_.IsNull()); SetClassRoot(ClassRoot::kJavaLangClass, java_lang_Class.Get()); SetClassRoot(ClassRoot::kJavaLangObject, java_lang_Object.Get()); SetClassRoot(ClassRoot::kClassArrayClass, class_array_class.Get()); SetClassRoot(ClassRoot::kObjectArrayClass, object_array_class.Get()); SetClassRoot(ClassRoot::kJavaLangString, java_lang_String.Get()); SetClassRoot(ClassRoot::kJavaLangRefReference, java_lang_ref_Reference.Get()); // Fill in the empty iftable. Needs to be done after the kObjectArrayClass root is set. java_lang_Object->SetIfTable(AllocIfTable(self, 0)); // Create array interface entries to populate once we can load system classes. object_array_class->SetIfTable(AllocIfTable(self, 2)); DCHECK_EQ(GetArrayIfTable(), object_array_class->GetIfTable()); // Setup the primitive type classes. CreatePrimitiveClass(self, Primitive::kPrimBoolean, ClassRoot::kPrimitiveBoolean); CreatePrimitiveClass(self, Primitive::kPrimByte, ClassRoot::kPrimitiveByte); CreatePrimitiveClass(self, Primitive::kPrimChar, ClassRoot::kPrimitiveChar); CreatePrimitiveClass(self, Primitive::kPrimShort, ClassRoot::kPrimitiveShort); CreatePrimitiveClass(self, Primitive::kPrimInt, ClassRoot::kPrimitiveInt); CreatePrimitiveClass(self, Primitive::kPrimLong, ClassRoot::kPrimitiveLong); CreatePrimitiveClass(self, Primitive::kPrimFloat, ClassRoot::kPrimitiveFloat); CreatePrimitiveClass(self, Primitive::kPrimDouble, ClassRoot::kPrimitiveDouble); CreatePrimitiveClass(self, Primitive::kPrimVoid, ClassRoot::kPrimitiveVoid); // Allocate the primitive array classes. We need only the native pointer // array at this point (int[] or long[], depending on architecture) but // we shall perform the same setup steps for all primitive array classes. AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveBoolean, ClassRoot::kBooleanArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveByte, ClassRoot::kByteArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveChar, ClassRoot::kCharArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveShort, ClassRoot::kShortArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveInt, ClassRoot::kIntArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveLong, ClassRoot::kLongArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveFloat, ClassRoot::kFloatArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveDouble, ClassRoot::kDoubleArrayClass); // now that these are registered, we can use AllocClass() and AllocObjectArray // Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache. Handle java_lang_DexCache(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize(image_pointer_size_)))); SetClassRoot(ClassRoot::kJavaLangDexCache, java_lang_DexCache.Get()); java_lang_DexCache->SetDexCacheClass(); java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize()); mirror::Class::SetStatus(java_lang_DexCache, ClassStatus::kResolved, self); // Setup dalvik.system.ClassExt Handle dalvik_system_ClassExt(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ClassExt::ClassSize(image_pointer_size_)))); SetClassRoot(ClassRoot::kDalvikSystemClassExt, dalvik_system_ClassExt.Get()); mirror::Class::SetStatus(dalvik_system_ClassExt, ClassStatus::kResolved, self); // Set up array classes for string, field, method Handle object_array_string(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray::ClassSize(image_pointer_size_)))); object_array_string->SetComponentType(java_lang_String.Get()); SetClassRoot(ClassRoot::kJavaLangStringArrayClass, object_array_string.Get()); LinearAlloc* linear_alloc = runtime->GetLinearAlloc(); // Create runtime resolution and imt conflict methods. runtime->SetResolutionMethod(runtime->CreateResolutionMethod()); runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod(linear_alloc)); runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod(linear_alloc)); // Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create // DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses // these roots. if (boot_class_path.empty()) { *error_msg = "Boot classpath is empty."; return false; } for (auto& dex_file : boot_class_path) { if (dex_file == nullptr) { *error_msg = "Null dex file."; return false; } AppendToBootClassPath(self, dex_file.get()); boot_dex_files_.push_back(std::move(dex_file)); } // now we can use FindSystemClass // Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that // we do not need friend classes or a publicly exposed setter. quick_generic_jni_trampoline_ = GetQuickGenericJniStub(); if (!runtime->IsAotCompiler()) { // We need to set up the generic trampolines since we don't have an image. jni_dlsym_lookup_trampoline_ = GetJniDlsymLookupStub(); jni_dlsym_lookup_critical_trampoline_ = GetJniDlsymLookupCriticalStub(); quick_resolution_trampoline_ = GetQuickResolutionStub(); quick_imt_conflict_trampoline_ = GetQuickImtConflictStub(); quick_generic_jni_trampoline_ = GetQuickGenericJniStub(); quick_to_interpreter_bridge_trampoline_ = GetQuickToInterpreterBridge(); nterp_trampoline_ = interpreter::GetNterpEntryPoint(); } // Object, String, ClassExt and DexCache need to be rerun through FindSystemClass to finish init mirror::Class::SetStatus(java_lang_Object, ClassStatus::kNotReady, self); CheckSystemClass(self, java_lang_Object, "Ljava/lang/Object;"); CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize()); mirror::Class::SetStatus(java_lang_String, ClassStatus::kNotReady, self); CheckSystemClass(self, java_lang_String, "Ljava/lang/String;"); mirror::Class::SetStatus(java_lang_DexCache, ClassStatus::kNotReady, self); CheckSystemClass(self, java_lang_DexCache, "Ljava/lang/DexCache;"); CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize()); mirror::Class::SetStatus(dalvik_system_ClassExt, ClassStatus::kNotReady, self); CheckSystemClass(self, dalvik_system_ClassExt, "Ldalvik/system/ClassExt;"); CHECK_EQ(dalvik_system_ClassExt->GetObjectSize(), mirror::ClassExt::InstanceSize()); // Run Class through FindSystemClass. This initializes the dex_cache_ fields and register it // in class_table_. CheckSystemClass(self, java_lang_Class, "Ljava/lang/Class;"); // Setup core array classes, i.e. Object[], String[] and Class[] and primitive // arrays - can't be done until Object has a vtable and component classes are loaded. FinishCoreArrayClassSetup(ClassRoot::kObjectArrayClass); FinishCoreArrayClassSetup(ClassRoot::kClassArrayClass); FinishCoreArrayClassSetup(ClassRoot::kJavaLangStringArrayClass); FinishCoreArrayClassSetup(ClassRoot::kBooleanArrayClass); FinishCoreArrayClassSetup(ClassRoot::kByteArrayClass); FinishCoreArrayClassSetup(ClassRoot::kCharArrayClass); FinishCoreArrayClassSetup(ClassRoot::kShortArrayClass); FinishCoreArrayClassSetup(ClassRoot::kIntArrayClass); FinishCoreArrayClassSetup(ClassRoot::kLongArrayClass); FinishCoreArrayClassSetup(ClassRoot::kFloatArrayClass); FinishCoreArrayClassSetup(ClassRoot::kDoubleArrayClass); // Setup the single, global copy of "iftable". auto java_lang_Cloneable = hs.NewHandle(FindSystemClass(self, "Ljava/lang/Cloneable;")); CHECK(java_lang_Cloneable != nullptr); auto java_io_Serializable = hs.NewHandle(FindSystemClass(self, "Ljava/io/Serializable;")); CHECK(java_io_Serializable != nullptr); // We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to // crawl up and explicitly list all of the supers as well. object_array_class->GetIfTable()->SetInterface(0, java_lang_Cloneable.Get()); object_array_class->GetIfTable()->SetInterface(1, java_io_Serializable.Get()); // Check Class[] and Object[]'s interfaces. GetDirectInterface may cause thread suspension. CHECK_EQ(java_lang_Cloneable.Get(), mirror::Class::GetDirectInterface(self, class_array_class.Get(), 0)); CHECK_EQ(java_io_Serializable.Get(), mirror::Class::GetDirectInterface(self, class_array_class.Get(), 1)); CHECK_EQ(java_lang_Cloneable.Get(), mirror::Class::GetDirectInterface(self, object_array_class.Get(), 0)); CHECK_EQ(java_io_Serializable.Get(), mirror::Class::GetDirectInterface(self, object_array_class.Get(), 1)); CHECK_EQ(object_array_string.Get(), FindSystemClass(self, GetClassRootDescriptor(ClassRoot::kJavaLangStringArrayClass))); // End of special init trickery, all subsequent classes may be loaded via FindSystemClass. // Create java.lang.reflect.Proxy root. SetClassRoot(ClassRoot::kJavaLangReflectProxy, FindSystemClass(self, "Ljava/lang/reflect/Proxy;")); // Create java.lang.reflect.Field.class root. ObjPtr class_root = FindSystemClass(self, "Ljava/lang/reflect/Field;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectField, class_root); // Create java.lang.reflect.Field array root. class_root = FindSystemClass(self, "[Ljava/lang/reflect/Field;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectFieldArrayClass, class_root); // Create java.lang.reflect.Constructor.class root and array root. class_root = FindSystemClass(self, "Ljava/lang/reflect/Constructor;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectConstructor, class_root); class_root = FindSystemClass(self, "[Ljava/lang/reflect/Constructor;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectConstructorArrayClass, class_root); // Create java.lang.reflect.Method.class root and array root. class_root = FindSystemClass(self, "Ljava/lang/reflect/Method;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectMethod, class_root); class_root = FindSystemClass(self, "[Ljava/lang/reflect/Method;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectMethodArrayClass, class_root); // Create java.lang.invoke.CallSite.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/CallSite;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeCallSite, class_root); // Create java.lang.invoke.MethodType.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodType;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeMethodType, class_root); // Create java.lang.invoke.MethodHandleImpl.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandleImpl;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeMethodHandleImpl, class_root); SetClassRoot(ClassRoot::kJavaLangInvokeMethodHandle, class_root->GetSuperClass()); // Create java.lang.invoke.MethodHandles.Lookup.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandles$Lookup;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeMethodHandlesLookup, class_root); // Create java.lang.invoke.VarHandle.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/VarHandle;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeVarHandle, class_root); // Create java.lang.invoke.FieldVarHandle.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/FieldVarHandle;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeFieldVarHandle, class_root); // Create java.lang.invoke.ArrayElementVarHandle.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/ArrayElementVarHandle;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeArrayElementVarHandle, class_root); // Create java.lang.invoke.ByteArrayViewVarHandle.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/ByteArrayViewVarHandle;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeByteArrayViewVarHandle, class_root); // Create java.lang.invoke.ByteBufferViewVarHandle.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/ByteBufferViewVarHandle;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeByteBufferViewVarHandle, class_root); class_root = FindSystemClass(self, "Ldalvik/system/EmulatedStackFrame;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kDalvikSystemEmulatedStackFrame, class_root); // java.lang.ref classes need to be specially flagged, but otherwise are normal classes // finish initializing Reference class mirror::Class::SetStatus(java_lang_ref_Reference, ClassStatus::kNotReady, self); CheckSystemClass(self, java_lang_ref_Reference, "Ljava/lang/ref/Reference;"); CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize()); CHECK_EQ(java_lang_ref_Reference->GetClassSize(), mirror::Reference::ClassSize(image_pointer_size_)); class_root = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagFinalizerReference); class_root = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagPhantomReference); class_root = FindSystemClass(self, "Ljava/lang/ref/SoftReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagSoftReference); class_root = FindSystemClass(self, "Ljava/lang/ref/WeakReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagWeakReference); // Setup the ClassLoader, verifying the object_size_. class_root = FindSystemClass(self, "Ljava/lang/ClassLoader;"); class_root->SetClassLoaderClass(); CHECK_EQ(class_root->GetObjectSize(), mirror::ClassLoader::InstanceSize()); SetClassRoot(ClassRoot::kJavaLangClassLoader, class_root); // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and // java.lang.StackTraceElement as a convenience. SetClassRoot(ClassRoot::kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;")); SetClassRoot(ClassRoot::kJavaLangClassNotFoundException, FindSystemClass(self, "Ljava/lang/ClassNotFoundException;")); SetClassRoot(ClassRoot::kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;")); SetClassRoot(ClassRoot::kJavaLangStackTraceElementArrayClass, FindSystemClass(self, "[Ljava/lang/StackTraceElement;")); SetClassRoot(ClassRoot::kJavaLangClassLoaderArrayClass, FindSystemClass(self, "[Ljava/lang/ClassLoader;")); // Create conflict tables that depend on the class linker. runtime->FixupConflictTables(); FinishInit(self); VLOG(startup) << "ClassLinker::InitFromCompiler exiting"; return true; } static void CreateStringInitBindings(Thread* self, ClassLinker* class_linker) REQUIRES_SHARED(Locks::mutator_lock_) { // Find String. -> StringFactory bindings. ObjPtr string_factory_class = class_linker->FindSystemClass(self, "Ljava/lang/StringFactory;"); CHECK(string_factory_class != nullptr); ObjPtr string_class = GetClassRoot(class_linker); WellKnownClasses::InitStringInit(string_class, string_factory_class); // Update the primordial thread. self->InitStringEntryPoints(); } void ClassLinker::FinishInit(Thread* self) { VLOG(startup) << "ClassLinker::FinishInit entering"; CreateStringInitBindings(self, this); // Let the heap know some key offsets into java.lang.ref instances // Note: we hard code the field indexes here rather than using FindInstanceField // as the types of the field can't be resolved prior to the runtime being // fully initialized StackHandleScope<3> hs(self); Handle java_lang_ref_Reference = hs.NewHandle(GetClassRoot(this)); Handle java_lang_ref_FinalizerReference = hs.NewHandle(FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;")); ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0); CHECK_STREQ(pendingNext->GetName(), "pendingNext"); CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;"); ArtField* queue = java_lang_ref_Reference->GetInstanceField(1); CHECK_STREQ(queue->GetName(), "queue"); CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;"); ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2); CHECK_STREQ(queueNext->GetName(), "queueNext"); CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;"); ArtField* referent = java_lang_ref_Reference->GetInstanceField(3); CHECK_STREQ(referent->GetName(), "referent"); CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;"); ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2); CHECK_STREQ(zombie->GetName(), "zombie"); CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;"); // ensure all class_roots_ are initialized for (size_t i = 0; i < static_cast(ClassRoot::kMax); i++) { ClassRoot class_root = static_cast(i); ObjPtr klass = GetClassRoot(class_root); CHECK(klass != nullptr); DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr); // note SetClassRoot does additional validation. // if possible add new checks there to catch errors early } CHECK(GetArrayIfTable() != nullptr); // disable the slow paths in FindClass and CreatePrimitiveClass now // that Object, Class, and Object[] are setup init_done_ = true; // Under sanitization, the small carve-out to handle stack overflow might not be enough to // initialize the StackOverflowError class (as it might require running the verifier). Instead, // ensure that the class will be initialized. if (kMemoryToolIsAvailable && !Runtime::Current()->IsAotCompiler()) { verifier::ClassVerifier::Init(this); // Need to prepare the verifier. ObjPtr soe_klass = FindSystemClass(self, "Ljava/lang/StackOverflowError;"); if (soe_klass == nullptr || !EnsureInitialized(self, hs.NewHandle(soe_klass), true, true)) { // Strange, but don't crash. LOG(WARNING) << "Could not prepare StackOverflowError."; self->ClearException(); } } VLOG(startup) << "ClassLinker::FinishInit exiting"; } void ClassLinker::RunRootClinits(Thread* self) { for (size_t i = 0; i < static_cast(ClassRoot::kMax); ++i) { ObjPtr c = GetClassRoot(ClassRoot(i), this); if (!c->IsArrayClass() && !c->IsPrimitive()) { StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(c)); if (!EnsureInitialized(self, h_class, true, true)) { LOG(FATAL) << "Exception when initializing " << h_class->PrettyClass() << ": " << self->GetException()->Dump(); } } else { DCHECK(c->IsInitialized()); } } } static void InitializeObjectVirtualMethodHashes(ObjPtr java_lang_Object, PointerSize pointer_size, /*out*/ ArrayRef virtual_method_hashes) REQUIRES_SHARED(Locks::mutator_lock_) { ArraySlice virtual_methods = java_lang_Object->GetVirtualMethods(pointer_size); DCHECK_EQ(virtual_method_hashes.size(), virtual_methods.size()); for (size_t i = 0; i != virtual_method_hashes.size(); ++i) { const char* name = virtual_methods[i].GetName(); virtual_method_hashes[i] = ComputeModifiedUtf8Hash(name); } } struct TrampolineCheckData { const void* quick_resolution_trampoline; const void* quick_imt_conflict_trampoline; const void* quick_generic_jni_trampoline; const void* quick_to_interpreter_bridge_trampoline; const void* nterp_trampoline; PointerSize pointer_size; ArtMethod* m; bool error; }; bool ClassLinker::InitFromBootImage(std::string* error_msg) { VLOG(startup) << __FUNCTION__ << " entering"; CHECK(!init_done_); Runtime* const runtime = Runtime::Current(); Thread* const self = Thread::Current(); gc::Heap* const heap = runtime->GetHeap(); std::vector spaces = heap->GetBootImageSpaces(); CHECK(!spaces.empty()); const ImageHeader& image_header = spaces[0]->GetImageHeader(); uint32_t pointer_size_unchecked = image_header.GetPointerSizeUnchecked(); if (!ValidPointerSize(pointer_size_unchecked)) { *error_msg = StringPrintf("Invalid image pointer size: %u", pointer_size_unchecked); return false; } image_pointer_size_ = image_header.GetPointerSize(); if (!runtime->IsAotCompiler()) { // Only the Aot compiler supports having an image with a different pointer size than the // runtime. This happens on the host for compiling 32 bit tests since we use a 64 bit libart // compiler. We may also use 32 bit dex2oat on a system with 64 bit apps. if (image_pointer_size_ != kRuntimePointerSize) { *error_msg = StringPrintf("Runtime must use current image pointer size: %zu vs %zu", static_cast(image_pointer_size_), sizeof(void*)); return false; } } DCHECK(!runtime->HasResolutionMethod()); runtime->SetResolutionMethod(image_header.GetImageMethod(ImageHeader::kResolutionMethod)); runtime->SetImtConflictMethod(image_header.GetImageMethod(ImageHeader::kImtConflictMethod)); runtime->SetImtUnimplementedMethod( image_header.GetImageMethod(ImageHeader::kImtUnimplementedMethod)); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod), CalleeSaveType::kSaveAllCalleeSaves); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveRefsOnlyMethod), CalleeSaveType::kSaveRefsOnly); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod), CalleeSaveType::kSaveRefsAndArgs); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveEverythingMethod), CalleeSaveType::kSaveEverything); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit), CalleeSaveType::kSaveEverythingForClinit); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck), CalleeSaveType::kSaveEverythingForSuspendCheck); std::vector oat_files = runtime->GetOatFileManager().RegisterImageOatFiles(spaces); DCHECK(!oat_files.empty()); const OatHeader& default_oat_header = oat_files[0]->GetOatHeader(); jni_dlsym_lookup_trampoline_ = default_oat_header.GetJniDlsymLookupTrampoline(); jni_dlsym_lookup_critical_trampoline_ = default_oat_header.GetJniDlsymLookupCriticalTrampoline(); quick_resolution_trampoline_ = default_oat_header.GetQuickResolutionTrampoline(); quick_imt_conflict_trampoline_ = default_oat_header.GetQuickImtConflictTrampoline(); quick_generic_jni_trampoline_ = default_oat_header.GetQuickGenericJniTrampoline(); quick_to_interpreter_bridge_trampoline_ = default_oat_header.GetQuickToInterpreterBridge(); nterp_trampoline_ = default_oat_header.GetNterpTrampoline(); if (kIsDebugBuild) { // Check that the other images use the same trampoline. for (size_t i = 1; i < oat_files.size(); ++i) { const OatHeader& ith_oat_header = oat_files[i]->GetOatHeader(); const void* ith_jni_dlsym_lookup_trampoline_ = ith_oat_header.GetJniDlsymLookupTrampoline(); const void* ith_jni_dlsym_lookup_critical_trampoline_ = ith_oat_header.GetJniDlsymLookupCriticalTrampoline(); const void* ith_quick_resolution_trampoline = ith_oat_header.GetQuickResolutionTrampoline(); const void* ith_quick_imt_conflict_trampoline = ith_oat_header.GetQuickImtConflictTrampoline(); const void* ith_quick_generic_jni_trampoline = ith_oat_header.GetQuickGenericJniTrampoline(); const void* ith_quick_to_interpreter_bridge_trampoline = ith_oat_header.GetQuickToInterpreterBridge(); const void* ith_nterp_trampoline = ith_oat_header.GetNterpTrampoline(); if (ith_jni_dlsym_lookup_trampoline_ != jni_dlsym_lookup_trampoline_ || ith_jni_dlsym_lookup_critical_trampoline_ != jni_dlsym_lookup_critical_trampoline_ || ith_quick_resolution_trampoline != quick_resolution_trampoline_ || ith_quick_imt_conflict_trampoline != quick_imt_conflict_trampoline_ || ith_quick_generic_jni_trampoline != quick_generic_jni_trampoline_ || ith_quick_to_interpreter_bridge_trampoline != quick_to_interpreter_bridge_trampoline_ || ith_nterp_trampoline != nterp_trampoline_) { // Make sure that all methods in this image do not contain those trampolines as // entrypoints. Otherwise the class-linker won't be able to work with a single set. TrampolineCheckData data; data.error = false; data.pointer_size = GetImagePointerSize(); data.quick_resolution_trampoline = ith_quick_resolution_trampoline; data.quick_imt_conflict_trampoline = ith_quick_imt_conflict_trampoline; data.quick_generic_jni_trampoline = ith_quick_generic_jni_trampoline; data.quick_to_interpreter_bridge_trampoline = ith_quick_to_interpreter_bridge_trampoline; data.nterp_trampoline = ith_nterp_trampoline; ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { if (obj->IsClass()) { ObjPtr klass = obj->AsClass(); for (ArtMethod& m : klass->GetMethods(data.pointer_size)) { const void* entrypoint = m.GetEntryPointFromQuickCompiledCodePtrSize(data.pointer_size); if (entrypoint == data.quick_resolution_trampoline || entrypoint == data.quick_imt_conflict_trampoline || entrypoint == data.quick_generic_jni_trampoline || entrypoint == data.quick_to_interpreter_bridge_trampoline) { data.m = &m; data.error = true; return; } } } }; spaces[i]->GetLiveBitmap()->Walk(visitor); if (data.error) { ArtMethod* m = data.m; LOG(ERROR) << "Found a broken ArtMethod: " << ArtMethod::PrettyMethod(m); *error_msg = "Found an ArtMethod with a bad entrypoint"; return false; } } } } class_roots_ = GcRoot>( ObjPtr>::DownCast( image_header.GetImageRoot(ImageHeader::kClassRoots))); DCHECK_EQ(GetClassRoot(this)->GetClassFlags(), mirror::kClassFlagClass); DCHECK_EQ(GetClassRoot(this)->GetObjectSize(), sizeof(mirror::Object)); ObjPtr> boot_image_live_objects = ObjPtr>::DownCast( image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects)); runtime->SetSentinel(boot_image_live_objects->Get(ImageHeader::kClearedJniWeakSentinel)); DCHECK(runtime->GetSentinel().Read()->GetClass() == GetClassRoot(this)); for (size_t i = 0u, size = spaces.size(); i != size; ++i) { // Boot class loader, use a null handle. std::vector> dex_files; if (!AddImageSpace(spaces[i], ScopedNullHandle(), /*out*/&dex_files, error_msg)) { return false; } // Append opened dex files at the end. boot_dex_files_.insert(boot_dex_files_.end(), std::make_move_iterator(dex_files.begin()), std::make_move_iterator(dex_files.end())); } for (const std::unique_ptr& dex_file : boot_dex_files_) { OatDexFile::MadviseDexFile(*dex_file, MadviseState::kMadviseStateAtLoad); } InitializeObjectVirtualMethodHashes(GetClassRoot(this), image_pointer_size_, ArrayRef(object_virtual_method_hashes_)); FinishInit(self); VLOG(startup) << __FUNCTION__ << " exiting"; return true; } void ClassLinker::AddExtraBootDexFiles( Thread* self, std::vector>&& additional_dex_files) { for (std::unique_ptr& dex_file : additional_dex_files) { AppendToBootClassPath(self, dex_file.get()); if (kIsDebugBuild) { for (const auto& boot_dex_file : boot_dex_files_) { DCHECK_NE(boot_dex_file->GetLocation(), dex_file->GetLocation()); } } boot_dex_files_.push_back(std::move(dex_file)); } } bool ClassLinker::IsBootClassLoader(ScopedObjectAccessAlreadyRunnable& soa, ObjPtr class_loader) { return class_loader == nullptr || soa.Decode(WellKnownClasses::java_lang_BootClassLoader) == class_loader->GetClass(); } class CHAOnDeleteUpdateClassVisitor { public: explicit CHAOnDeleteUpdateClassVisitor(LinearAlloc* alloc) : allocator_(alloc), cha_(Runtime::Current()->GetClassLinker()->GetClassHierarchyAnalysis()), pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()), self_(Thread::Current()) {} bool operator()(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { // This class is going to be unloaded. Tell CHA about it. cha_->ResetSingleImplementationInHierarchy(klass, allocator_, pointer_size_); return true; } private: const LinearAlloc* allocator_; const ClassHierarchyAnalysis* cha_; const PointerSize pointer_size_; const Thread* self_; }; /* * A class used to ensure that all references to strings interned in an AppImage have been * properly recorded in the interned references list, and is only ever run in debug mode. */ class CountInternedStringReferencesVisitor { public: CountInternedStringReferencesVisitor(const gc::space::ImageSpace& space, const InternTable::UnorderedSet& image_interns) : space_(space), image_interns_(image_interns), count_(0u) {} void TestObject(ObjPtr referred_obj) const REQUIRES_SHARED(Locks::mutator_lock_) { if (referred_obj != nullptr && space_.HasAddress(referred_obj.Ptr()) && referred_obj->IsString()) { ObjPtr referred_str = referred_obj->AsString(); auto it = image_interns_.find(GcRoot(referred_str)); if (it != image_interns_.end() && it->Read() == referred_str) { ++count_; } } } void VisitRootIfNonNull( mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { TestObject(root->AsMirrorPtr()); } // Visit Class Fields void operator()(ObjPtr obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { // References within image or across images don't need a read barrier. ObjPtr referred_obj = obj->GetFieldObject(offset); TestObject(referred_obj); } void operator()(ObjPtr klass ATTRIBUTE_UNUSED, ObjPtr ref) const REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false); } size_t GetCount() const { return count_; } private: const gc::space::ImageSpace& space_; const InternTable::UnorderedSet& image_interns_; mutable size_t count_; // Modified from the `const` callbacks. }; /* * This function counts references to strings interned in the AppImage. * This is used in debug build to check against the number of the recorded references. */ size_t CountInternedStringReferences(gc::space::ImageSpace& space, const InternTable::UnorderedSet& image_interns) REQUIRES_SHARED(Locks::mutator_lock_) { const gc::accounting::ContinuousSpaceBitmap* bitmap = space.GetMarkBitmap(); const ImageHeader& image_header = space.GetImageHeader(); const uint8_t* target_base = space.GetMemMap()->Begin(); const ImageSection& objects_section = image_header.GetObjectsSection(); auto objects_begin = reinterpret_cast(target_base + objects_section.Offset()); auto objects_end = reinterpret_cast(target_base + objects_section.End()); CountInternedStringReferencesVisitor visitor(space, image_interns); bitmap->VisitMarkedRange(objects_begin, objects_end, [&space, &visitor](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { if (space.HasAddress(obj)) { if (obj->IsDexCache()) { obj->VisitReferences(visitor, visitor); } else { // Don't visit native roots for non-dex-cache as they can't contain // native references to strings. This is verified during compilation // by ImageWriter::VerifyNativeGCRootInvariants. obj->VisitReferences(visitor, visitor); } } }); return visitor.GetCount(); } template static void VisitInternedStringReferences( gc::space::ImageSpace* space, const Visitor& visitor) REQUIRES_SHARED(Locks::mutator_lock_) { const uint8_t* target_base = space->Begin(); const ImageSection& sro_section = space->GetImageHeader().GetImageStringReferenceOffsetsSection(); const size_t num_string_offsets = sro_section.Size() / sizeof(AppImageReferenceOffsetInfo); VLOG(image) << "ClassLinker:AppImage:InternStrings:imageStringReferenceOffsetCount = " << num_string_offsets; const auto* sro_base = reinterpret_cast(target_base + sro_section.Offset()); for (size_t offset_index = 0; offset_index < num_string_offsets; ++offset_index) { uint32_t base_offset = sro_base[offset_index].first; uint32_t raw_member_offset = sro_base[offset_index].second; DCHECK_ALIGNED(base_offset, 2); DCHECK_ALIGNED(raw_member_offset, 2); ObjPtr obj_ptr = reinterpret_cast(space->Begin() + base_offset); MemberOffset member_offset(raw_member_offset); ObjPtr referred_string = obj_ptr->GetFieldObject(member_offset); DCHECK(referred_string != nullptr); ObjPtr visited = visitor(referred_string); if (visited != referred_string) { obj_ptr->SetFieldObject(member_offset, visited); } } } static void VerifyInternedStringReferences(gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) { InternTable::UnorderedSet image_interns; const ImageSection& section = space->GetImageHeader().GetInternedStringsSection(); if (section.Size() > 0) { size_t read_count; const uint8_t* data = space->Begin() + section.Offset(); InternTable::UnorderedSet image_set(data, /*make_copy_of_data=*/ false, &read_count); image_set.swap(image_interns); } size_t num_recorded_refs = 0u; VisitInternedStringReferences( space, [&image_interns, &num_recorded_refs](ObjPtr str) REQUIRES_SHARED(Locks::mutator_lock_) { auto it = image_interns.find(GcRoot(str)); CHECK(it != image_interns.end()); CHECK(it->Read() == str); ++num_recorded_refs; return str; }); size_t num_found_refs = CountInternedStringReferences(*space, image_interns); CHECK_EQ(num_recorded_refs, num_found_refs); } // new_class_set is the set of classes that were read from the class table section in the image. // If there was no class table section, it is null. // Note: using a class here to avoid having to make ClassLinker internals public. class AppImageLoadingHelper { public: static void Update( ClassLinker* class_linker, gc::space::ImageSpace* space, Handle class_loader, Handle> dex_caches) REQUIRES(!Locks::dex_lock_) REQUIRES_SHARED(Locks::mutator_lock_); static void HandleAppImageStrings(gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_); }; void AppImageLoadingHelper::Update( ClassLinker* class_linker, gc::space::ImageSpace* space, Handle class_loader, Handle> dex_caches) REQUIRES(!Locks::dex_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedTrace app_image_timing("AppImage:Updating"); if (kIsDebugBuild && ClassLinker::kAppImageMayContainStrings) { // In debug build, verify the string references before applying // the Runtime::LoadAppImageStartupCache() option. VerifyInternedStringReferences(space); } Thread* const self = Thread::Current(); Runtime* const runtime = Runtime::Current(); gc::Heap* const heap = runtime->GetHeap(); const ImageHeader& header = space->GetImageHeader(); { // Register dex caches with the class loader. WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); for (auto dex_cache : dex_caches.Iterate()) { const DexFile* const dex_file = dex_cache->GetDexFile(); { WriterMutexLock mu2(self, *Locks::dex_lock_); CHECK(class_linker->FindDexCacheDataLocked(*dex_file) == nullptr); class_linker->RegisterDexFileLocked(*dex_file, dex_cache, class_loader.Get()); } } } if (ClassLinker::kAppImageMayContainStrings) { HandleAppImageStrings(space); } if (kVerifyArtMethodDeclaringClasses) { ScopedTrace timing("AppImage:VerifyDeclaringClasses"); ReaderMutexLock rmu(self, *Locks::heap_bitmap_lock_); gc::accounting::HeapBitmap* live_bitmap = heap->GetLiveBitmap(); header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { ObjPtr klass = method.GetDeclaringClassUnchecked(); if (klass != nullptr) { CHECK(live_bitmap->Test(klass.Ptr())) << "Image method has unmarked declaring class"; } }, space->Begin(), kRuntimePointerSize); } } void AppImageLoadingHelper::HandleAppImageStrings(gc::space::ImageSpace* space) { // Iterate over the string reference offsets stored in the image and intern // the strings they point to. ScopedTrace timing("AppImage:InternString"); Runtime* const runtime = Runtime::Current(); InternTable* const intern_table = runtime->GetInternTable(); // Add the intern table, removing any conflicts. For conflicts, store the new address in a map // for faster lookup. // TODO: Optimize with a bitmap or bloom filter SafeMap intern_remap; auto func = [&](InternTable::UnorderedSet& interns) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::intern_table_lock_) { const size_t non_boot_image_strings = intern_table->CountInterns( /*visit_boot_images=*/false, /*visit_non_boot_images=*/true); VLOG(image) << "AppImage:stringsInInternTableSize = " << interns.size(); VLOG(image) << "AppImage:nonBootImageInternStrings = " << non_boot_image_strings; // Visit the smaller of the two sets to compute the intersection. if (interns.size() < non_boot_image_strings) { for (auto it = interns.begin(); it != interns.end(); ) { ObjPtr string = it->Read(); ObjPtr existing = intern_table->LookupWeakLocked(string); if (existing == nullptr) { existing = intern_table->LookupStrongLocked(string); } if (existing != nullptr) { intern_remap.Put(string.Ptr(), existing.Ptr()); it = interns.erase(it); } else { ++it; } } } else { intern_table->VisitInterns([&](const GcRoot& root) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::intern_table_lock_) { auto it = interns.find(root); if (it != interns.end()) { ObjPtr existing = root.Read(); intern_remap.Put(it->Read(), existing.Ptr()); it = interns.erase(it); } }, /*visit_boot_images=*/false, /*visit_non_boot_images=*/true); } // Consistency check to ensure correctness. if (kIsDebugBuild) { for (GcRoot& root : interns) { ObjPtr string = root.Read(); CHECK(intern_table->LookupWeakLocked(string) == nullptr) << string->ToModifiedUtf8(); CHECK(intern_table->LookupStrongLocked(string) == nullptr) << string->ToModifiedUtf8(); } } }; intern_table->AddImageStringsToTable(space, func); if (!intern_remap.empty()) { VLOG(image) << "AppImage:conflictingInternStrings = " << intern_remap.size(); VisitInternedStringReferences( space, [&intern_remap](ObjPtr str) REQUIRES_SHARED(Locks::mutator_lock_) { auto it = intern_remap.find(str.Ptr()); if (it != intern_remap.end()) { return ObjPtr(it->second); } return str; }); } } static std::unique_ptr OpenOatDexFile(const OatFile* oat_file, const char* location, std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(error_msg != nullptr); std::unique_ptr dex_file; const OatDexFile* oat_dex_file = oat_file->GetOatDexFile(location, nullptr, error_msg); if (oat_dex_file == nullptr) { return std::unique_ptr(); } std::string inner_error_msg; dex_file = oat_dex_file->OpenDexFile(&inner_error_msg); if (dex_file == nullptr) { *error_msg = StringPrintf("Failed to open dex file %s from within oat file %s error '%s'", location, oat_file->GetLocation().c_str(), inner_error_msg.c_str()); return std::unique_ptr(); } if (dex_file->GetLocationChecksum() != oat_dex_file->GetDexFileLocationChecksum()) { *error_msg = StringPrintf("Checksums do not match for %s: %x vs %x", location, dex_file->GetLocationChecksum(), oat_dex_file->GetDexFileLocationChecksum()); return std::unique_ptr(); } return dex_file; } bool ClassLinker::OpenImageDexFiles(gc::space::ImageSpace* space, std::vector>* out_dex_files, std::string* error_msg) { ScopedAssertNoThreadSuspension nts(__FUNCTION__); const ImageHeader& header = space->GetImageHeader(); ObjPtr dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches); DCHECK(dex_caches_object != nullptr); ObjPtr> dex_caches = dex_caches_object->AsObjectArray(); const OatFile* oat_file = space->GetOatFile(); for (auto dex_cache : dex_caches->Iterate()) { std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8()); std::unique_ptr dex_file = OpenOatDexFile(oat_file, dex_file_location.c_str(), error_msg); if (dex_file == nullptr) { return false; } dex_cache->SetDexFile(dex_file.get()); out_dex_files->push_back(std::move(dex_file)); } return true; } // Helper class for ArtMethod checks when adding an image. Keeps all required functionality // together and caches some intermediate results. class ImageChecker final { public: static void CheckObjects(gc::Heap* heap, ClassLinker* class_linker) REQUIRES_SHARED(Locks::mutator_lock_) { ImageChecker ic(heap, class_linker); auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(obj != nullptr); CHECK(obj->GetClass() != nullptr) << "Null class in object " << obj; CHECK(obj->GetClass()->GetClass() != nullptr) << "Null class class " << obj; if (obj->IsClass()) { auto klass = obj->AsClass(); for (ArtField& field : klass->GetIFields()) { CHECK_EQ(field.GetDeclaringClass(), klass); } for (ArtField& field : klass->GetSFields()) { CHECK_EQ(field.GetDeclaringClass(), klass); } const PointerSize pointer_size = ic.pointer_size_; for (ArtMethod& m : klass->GetMethods(pointer_size)) { ic.CheckArtMethod(&m, klass); } ObjPtr vtable = klass->GetVTable(); if (vtable != nullptr) { ic.CheckArtMethodPointerArray(vtable, nullptr); } if (klass->ShouldHaveImt()) { ImTable* imt = klass->GetImt(pointer_size); for (size_t i = 0; i < ImTable::kSize; ++i) { ic.CheckArtMethod(imt->Get(i, pointer_size), nullptr); } } if (klass->ShouldHaveEmbeddedVTable()) { for (int32_t i = 0; i < klass->GetEmbeddedVTableLength(); ++i) { ic.CheckArtMethod(klass->GetEmbeddedVTableEntry(i, pointer_size), nullptr); } } ObjPtr iftable = klass->GetIfTable(); for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { if (iftable->GetMethodArrayCount(i) > 0) { ic.CheckArtMethodPointerArray(iftable->GetMethodArray(i), nullptr); } } } }; heap->VisitObjects(visitor); } private: ImageChecker(gc::Heap* heap, ClassLinker* class_linker) : spaces_(heap->GetBootImageSpaces()), pointer_size_(class_linker->GetImagePointerSize()) { space_begin_.reserve(spaces_.size()); method_sections_.reserve(spaces_.size()); runtime_method_sections_.reserve(spaces_.size()); for (gc::space::ImageSpace* space : spaces_) { space_begin_.push_back(space->Begin()); auto& header = space->GetImageHeader(); method_sections_.push_back(&header.GetMethodsSection()); runtime_method_sections_.push_back(&header.GetRuntimeMethodsSection()); } } void CheckArtMethod(ArtMethod* m, ObjPtr expected_class) REQUIRES_SHARED(Locks::mutator_lock_) { if (m->IsRuntimeMethod()) { ObjPtr declaring_class = m->GetDeclaringClassUnchecked(); CHECK(declaring_class == nullptr) << declaring_class << " " << m->PrettyMethod(); } else if (m->IsCopied()) { CHECK(m->GetDeclaringClass() != nullptr) << m->PrettyMethod(); } else if (expected_class != nullptr) { CHECK_EQ(m->GetDeclaringClassUnchecked(), expected_class) << m->PrettyMethod(); } if (!spaces_.empty()) { bool contains = false; for (size_t i = 0; !contains && i != space_begin_.size(); ++i) { const size_t offset = reinterpret_cast(m) - space_begin_[i]; contains = method_sections_[i]->Contains(offset) || runtime_method_sections_[i]->Contains(offset); } CHECK(contains) << m << " not found"; } } void CheckArtMethodPointerArray(ObjPtr arr, ObjPtr expected_class) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(arr != nullptr); for (int32_t j = 0; j < arr->GetLength(); ++j) { auto* method = arr->GetElementPtrSize(j, pointer_size_); // expected_class == null means we are a dex cache. if (expected_class != nullptr) { CHECK(method != nullptr); } if (method != nullptr) { CheckArtMethod(method, expected_class); } } } const std::vector& spaces_; const PointerSize pointer_size_; // Cached sections from the spaces. std::vector space_begin_; std::vector method_sections_; std::vector runtime_method_sections_; }; static void VerifyAppImage(const ImageHeader& header, const Handle& class_loader, ClassTable* class_table, gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) { header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr klass = method.GetDeclaringClass(); if (klass != nullptr && !Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) { CHECK_EQ(class_table->LookupByDescriptor(klass), klass) << mirror::Class::PrettyClass(klass); } }, space->Begin(), kRuntimePointerSize); { // Verify that all direct interfaces of classes in the class table are also resolved. std::vector> classes; auto verify_direct_interfaces_in_table = [&](ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { if (!klass->IsPrimitive() && klass->GetClassLoader() == class_loader.Get()) { classes.push_back(klass); } return true; }; class_table->Visit(verify_direct_interfaces_in_table); Thread* self = Thread::Current(); for (ObjPtr klass : classes) { for (uint32_t i = 0, num = klass->NumDirectInterfaces(); i != num; ++i) { CHECK(klass->GetDirectInterface(self, klass, i) != nullptr) << klass->PrettyDescriptor() << " iface #" << i; } } } } bool ClassLinker::AddImageSpace( gc::space::ImageSpace* space, Handle class_loader, std::vector>* out_dex_files, std::string* error_msg) { DCHECK(out_dex_files != nullptr); DCHECK(error_msg != nullptr); const uint64_t start_time = NanoTime(); const bool app_image = class_loader != nullptr; const ImageHeader& header = space->GetImageHeader(); ObjPtr dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches); DCHECK(dex_caches_object != nullptr); Runtime* const runtime = Runtime::Current(); gc::Heap* const heap = runtime->GetHeap(); Thread* const self = Thread::Current(); // Check that the image is what we are expecting. if (image_pointer_size_ != space->GetImageHeader().GetPointerSize()) { *error_msg = StringPrintf("Application image pointer size does not match runtime: %zu vs %zu", static_cast(space->GetImageHeader().GetPointerSize()), image_pointer_size_); return false; } size_t expected_image_roots = ImageHeader::NumberOfImageRoots(app_image); if (static_cast(header.GetImageRoots()->GetLength()) != expected_image_roots) { *error_msg = StringPrintf("Expected %zu image roots but got %d", expected_image_roots, header.GetImageRoots()->GetLength()); return false; } StackHandleScope<3> hs(self); Handle> dex_caches( hs.NewHandle(dex_caches_object->AsObjectArray())); Handle> class_roots(hs.NewHandle( header.GetImageRoot(ImageHeader::kClassRoots)->AsObjectArray())); MutableHandle image_class_loader(hs.NewHandle( app_image ? header.GetImageRoot(ImageHeader::kAppImageClassLoader)->AsClassLoader() : nullptr)); DCHECK(class_roots != nullptr); if (class_roots->GetLength() != static_cast(ClassRoot::kMax)) { *error_msg = StringPrintf("Expected %d class roots but got %d", class_roots->GetLength(), static_cast(ClassRoot::kMax)); return false; } // Check against existing class roots to make sure they match the ones in the boot image. ObjPtr> existing_class_roots = GetClassRoots(); for (size_t i = 0; i < static_cast(ClassRoot::kMax); i++) { if (class_roots->Get(i) != GetClassRoot(static_cast(i), existing_class_roots)) { *error_msg = "App image class roots must have pointer equality with runtime ones."; return false; } } const OatFile* oat_file = space->GetOatFile(); if (oat_file->GetOatHeader().GetDexFileCount() != static_cast(dex_caches->GetLength())) { *error_msg = "Dex cache count and dex file count mismatch while trying to initialize from " "image"; return false; } for (auto dex_cache : dex_caches.Iterate()) { std::string dex_file_location = dex_cache->GetLocation()->ToModifiedUtf8(); std::unique_ptr dex_file = OpenOatDexFile(oat_file, dex_file_location.c_str(), error_msg); if (dex_file == nullptr) { return false; } LinearAlloc* linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader.Get()); DCHECK(linear_alloc != nullptr); DCHECK_EQ(linear_alloc == Runtime::Current()->GetLinearAlloc(), !app_image); { // Native fields are all null. Initialize them and allocate native memory. WriterMutexLock mu(self, *Locks::dex_lock_); dex_cache->InitializeNativeFields(dex_file.get(), linear_alloc); } if (!app_image) { // Register dex files, keep track of existing ones that are conflicts. AppendToBootClassPath(dex_file.get(), dex_cache); } out_dex_files->push_back(std::move(dex_file)); } if (app_image) { ScopedObjectAccessUnchecked soa(Thread::Current()); ScopedAssertNoThreadSuspension sants("Checking app image", soa.Self()); if (IsBootClassLoader(soa, image_class_loader.Get())) { *error_msg = "Unexpected BootClassLoader in app image"; return false; } } if (kCheckImageObjects) { if (!app_image) { ImageChecker::CheckObjects(heap, this); } } // Set entry point to interpreter if in InterpretOnly mode. if (!runtime->IsAotCompiler() && runtime->GetInstrumentation()->InterpretOnly()) { // Set image methods' entry point to interpreter. header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) { if (!method.IsRuntimeMethod()) { DCHECK(method.GetDeclaringClass() != nullptr); if (!method.IsNative() && !method.IsResolutionMethod()) { method.SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(), image_pointer_size_); } } }, space->Begin(), image_pointer_size_); } if (!runtime->IsAotCompiler()) { ScopedTrace trace("AppImage:UpdateCodeItemAndNterp"); bool can_use_nterp = interpreter::CanRuntimeUseNterp(); header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) { // In the image, the `data` pointer field of the ArtMethod contains the code // item offset. Change this to the actual pointer to the code item. if (method.HasCodeItem()) { const dex::CodeItem* code_item = method.GetDexFile()->GetCodeItem( reinterpret_cast32(method.GetDataPtrSize(image_pointer_size_))); method.SetCodeItem(code_item); } // Set image methods' entry point that point to the interpreter bridge to the // nterp entry point. if (method.GetEntryPointFromQuickCompiledCode() == nterp_trampoline_) { if (can_use_nterp) { DCHECK(!NeedsClinitCheckBeforeCall(&method) || method.GetDeclaringClass()->IsVisiblyInitialized()); method.SetEntryPointFromQuickCompiledCode(interpreter::GetNterpEntryPoint()); } else { method.SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); } } }, space->Begin(), image_pointer_size_); } if (runtime->IsVerificationSoftFail()) { header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) { if (!method.IsNative() && method.IsInvokable()) { method.ClearSkipAccessChecks(); } }, space->Begin(), image_pointer_size_); } ClassTable* class_table = nullptr; { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); class_table = InsertClassTableForClassLoader(class_loader.Get()); } // If we have a class table section, read it and use it for verification in // UpdateAppImageClassLoadersAndDexCaches. ClassTable::ClassSet temp_set; const ImageSection& class_table_section = header.GetClassTableSection(); const bool added_class_table = class_table_section.Size() > 0u; if (added_class_table) { const uint64_t start_time2 = NanoTime(); size_t read_count = 0; temp_set = ClassTable::ClassSet(space->Begin() + class_table_section.Offset(), /*make copy*/false, &read_count); VLOG(image) << "Adding class table classes took " << PrettyDuration(NanoTime() - start_time2); } if (app_image) { AppImageLoadingHelper::Update(this, space, class_loader, dex_caches); { ScopedTrace trace("AppImage:UpdateClassLoaders"); // Update class loader and resolved strings. If added_class_table is false, the resolved // strings were forwarded UpdateAppImageClassLoadersAndDexCaches. ObjPtr loader(class_loader.Get()); for (const ClassTable::TableSlot& root : temp_set) { // Note: We probably don't need the read barrier unless we copy the app image objects into // the region space. ObjPtr klass(root.Read()); // Do not update class loader for boot image classes where the app image // class loader is only the initiating loader but not the defining loader. // Avoid read barrier since we are comparing against null. if (klass->GetClassLoader() != nullptr) { klass->SetClassLoader(loader); } } } if (kBitstringSubtypeCheckEnabled) { // Every class in the app image has initially SubtypeCheckInfo in the // Uninitialized state. // // The SubtypeCheck invariants imply that a SubtypeCheckInfo is at least Initialized // after class initialization is complete. The app image ClassStatus as-is // are almost all ClassStatus::Initialized, and being in the // SubtypeCheckInfo::kUninitialized state is violating that invariant. // // Force every app image class's SubtypeCheck to be at least kIninitialized. // // See also ImageWriter::FixupClass. ScopedTrace trace("AppImage:RecacluateSubtypeCheckBitstrings"); MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); for (const ClassTable::TableSlot& root : temp_set) { SubtypeCheck>::EnsureInitialized(root.Read()); } } } if (!oat_file->GetBssGcRoots().empty()) { // Insert oat file to class table for visiting .bss GC roots. class_table->InsertOatFile(oat_file); } if (added_class_table) { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); class_table->AddClassSet(std::move(temp_set)); } if (kIsDebugBuild && app_image) { // This verification needs to happen after the classes have been added to the class loader. // Since it ensures classes are in the class table. ScopedTrace trace("AppImage:Verify"); VerifyAppImage(header, class_loader, class_table, space); } VLOG(class_linker) << "Adding image space took " << PrettyDuration(NanoTime() - start_time); return true; } void ClassLinker::VisitClassRoots(RootVisitor* visitor, VisitRootFlags flags) { // Acquire tracing_enabled before locking class linker lock to prevent lock order violation. Since // enabling tracing requires the mutator lock, there are no race conditions here. const bool tracing_enabled = Trace::IsTracingEnabled(); Thread* const self = Thread::Current(); WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); if (kUseReadBarrier) { // We do not track new roots for CC. DCHECK_EQ(0, flags & (kVisitRootFlagNewRoots | kVisitRootFlagClearRootLog | kVisitRootFlagStartLoggingNewRoots | kVisitRootFlagStopLoggingNewRoots)); } if ((flags & kVisitRootFlagAllRoots) != 0) { // Argument for how root visiting deals with ArtField and ArtMethod roots. // There is 3 GC cases to handle: // Non moving concurrent: // This case is easy to handle since the reference members of ArtMethod and ArtFields are held // live by the class and class roots. // // Moving non-concurrent: // This case needs to call visit VisitNativeRoots in case the classes or dex cache arrays move. // To prevent missing roots, this case needs to ensure that there is no // suspend points between the point which we allocate ArtMethod arrays and place them in a // class which is in the class table. // // Moving concurrent: // Need to make sure to not copy ArtMethods without doing read barriers since the roots are // marked concurrently and we don't hold the classlinker_classes_lock_ when we do the copy. // // Use an unbuffered visitor since the class table uses a temporary GcRoot for holding decoded // ClassTable::TableSlot. The buffered root visiting would access a stale stack location for // these objects. UnbufferedRootVisitor root_visitor(visitor, RootInfo(kRootStickyClass)); boot_class_table_->VisitRoots(root_visitor); // If tracing is enabled, then mark all the class loaders to prevent unloading. if ((flags & kVisitRootFlagClassLoader) != 0 || tracing_enabled) { for (const ClassLoaderData& data : class_loaders_) { GcRoot root(GcRoot(self->DecodeJObject(data.weak_root))); root.VisitRoot(visitor, RootInfo(kRootVMInternal)); } } } else if (!kUseReadBarrier && (flags & kVisitRootFlagNewRoots) != 0) { for (auto& root : new_class_roots_) { ObjPtr old_ref = root.Read(); root.VisitRoot(visitor, RootInfo(kRootStickyClass)); ObjPtr new_ref = root.Read(); // Concurrent moving GC marked new roots through the to-space invariant. CHECK_EQ(new_ref, old_ref); } for (const OatFile* oat_file : new_bss_roots_boot_oat_files_) { for (GcRoot& root : oat_file->GetBssGcRoots()) { ObjPtr old_ref = root.Read(); if (old_ref != nullptr) { DCHECK(old_ref->IsClass()); root.VisitRoot(visitor, RootInfo(kRootStickyClass)); ObjPtr new_ref = root.Read(); // Concurrent moving GC marked new roots through the to-space invariant. CHECK_EQ(new_ref, old_ref); } } } } if (!kUseReadBarrier && (flags & kVisitRootFlagClearRootLog) != 0) { new_class_roots_.clear(); new_bss_roots_boot_oat_files_.clear(); } if (!kUseReadBarrier && (flags & kVisitRootFlagStartLoggingNewRoots) != 0) { log_new_roots_ = true; } else if (!kUseReadBarrier && (flags & kVisitRootFlagStopLoggingNewRoots) != 0) { log_new_roots_ = false; } // We deliberately ignore the class roots in the image since we // handle image roots by using the MS/CMS rescanning of dirty cards. } // Keep in sync with InitCallback. Anything we visit, we need to // reinit references to when reinitializing a ClassLinker from a // mapped image. void ClassLinker::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { class_roots_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); VisitClassRoots(visitor, flags); // Instead of visiting the find_array_class_cache_ drop it so that it doesn't prevent class // unloading if we are marking roots. DropFindArrayClassCache(); } class VisitClassLoaderClassesVisitor : public ClassLoaderVisitor { public: explicit VisitClassLoaderClassesVisitor(ClassVisitor* visitor) : visitor_(visitor), done_(false) {} void Visit(ObjPtr class_loader) REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) override { ClassTable* const class_table = class_loader->GetClassTable(); if (!done_ && class_table != nullptr) { DefiningClassLoaderFilterVisitor visitor(class_loader, visitor_); if (!class_table->Visit(visitor)) { // If the visitor ClassTable returns false it means that we don't need to continue. done_ = true; } } } private: // Class visitor that limits the class visits from a ClassTable to the classes with // the provided defining class loader. This filter is used to avoid multiple visits // of the same class which can be recorded for multiple initiating class loaders. class DefiningClassLoaderFilterVisitor : public ClassVisitor { public: DefiningClassLoaderFilterVisitor(ObjPtr defining_class_loader, ClassVisitor* visitor) : defining_class_loader_(defining_class_loader), visitor_(visitor) { } bool operator()(ObjPtr klass) override REQUIRES_SHARED(Locks::mutator_lock_) { if (klass->GetClassLoader() != defining_class_loader_) { return true; } return (*visitor_)(klass); } const ObjPtr defining_class_loader_; ClassVisitor* const visitor_; }; ClassVisitor* const visitor_; // If done is true then we don't need to do any more visiting. bool done_; }; void ClassLinker::VisitClassesInternal(ClassVisitor* visitor) { if (boot_class_table_->Visit(*visitor)) { VisitClassLoaderClassesVisitor loader_visitor(visitor); VisitClassLoaders(&loader_visitor); } } void ClassLinker::VisitClasses(ClassVisitor* visitor) { Thread* const self = Thread::Current(); ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); // Not safe to have thread suspension when we are holding a lock. if (self != nullptr) { ScopedAssertNoThreadSuspension nts(__FUNCTION__); VisitClassesInternal(visitor); } else { VisitClassesInternal(visitor); } } class GetClassesInToVector : public ClassVisitor { public: bool operator()(ObjPtr klass) override { classes_.push_back(klass); return true; } std::vector> classes_; }; class GetClassInToObjectArray : public ClassVisitor { public: explicit GetClassInToObjectArray(mirror::ObjectArray* arr) : arr_(arr), index_(0) {} bool operator()(ObjPtr klass) override REQUIRES_SHARED(Locks::mutator_lock_) { ++index_; if (index_ <= arr_->GetLength()) { arr_->Set(index_ - 1, klass); return true; } return false; } bool Succeeded() const REQUIRES_SHARED(Locks::mutator_lock_) { return index_ <= arr_->GetLength(); } private: mirror::ObjectArray* const arr_; int32_t index_; }; void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor) { // TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem // is avoiding duplicates. if (!kMovingClasses) { ScopedAssertNoThreadSuspension nts(__FUNCTION__); GetClassesInToVector accumulator; VisitClasses(&accumulator); for (ObjPtr klass : accumulator.classes_) { if (!visitor->operator()(klass)) { return; } } } else { Thread* const self = Thread::Current(); StackHandleScope<1> hs(self); auto classes = hs.NewHandle>(nullptr); // We size the array assuming classes won't be added to the class table during the visit. // If this assumption fails we iterate again. while (true) { size_t class_table_size; { ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); // Add 100 in case new classes get loaded when we are filling in the object array. class_table_size = NumZygoteClasses() + NumNonZygoteClasses() + 100; } ObjPtr array_of_class = GetClassRoot>(this); classes.Assign( mirror::ObjectArray::Alloc(self, array_of_class, class_table_size)); CHECK(classes != nullptr); // OOME. GetClassInToObjectArray accumulator(classes.Get()); VisitClasses(&accumulator); if (accumulator.Succeeded()) { break; } } for (int32_t i = 0; i < classes->GetLength(); ++i) { // If the class table shrank during creation of the clases array we expect null elements. If // the class table grew then the loop repeats. If classes are created after the loop has // finished then we don't visit. ObjPtr klass = classes->Get(i); if (klass != nullptr && !visitor->operator()(klass)) { return; } } } } ClassLinker::~ClassLinker() { Thread* const self = Thread::Current(); for (const ClassLoaderData& data : class_loaders_) { // CHA unloading analysis is not needed. No negative consequences are expected because // all the classloaders are deleted at the same time. DeleteClassLoader(self, data, /*cleanup_cha=*/ false); } class_loaders_.clear(); while (!running_visibly_initialized_callbacks_.empty()) { std::unique_ptr callback( std::addressof(running_visibly_initialized_callbacks_.front())); running_visibly_initialized_callbacks_.pop_front(); } } void ClassLinker::DeleteClassLoader(Thread* self, const ClassLoaderData& data, bool cleanup_cha) { Runtime* const runtime = Runtime::Current(); JavaVMExt* const vm = runtime->GetJavaVM(); vm->DeleteWeakGlobalRef(self, data.weak_root); // Notify the JIT that we need to remove the methods and/or profiling info. if (runtime->GetJit() != nullptr) { jit::JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache(); if (code_cache != nullptr) { // For the JIT case, RemoveMethodsIn removes the CHA dependencies. code_cache->RemoveMethodsIn(self, *data.allocator); } } else if (cha_ != nullptr) { // If we don't have a JIT, we need to manually remove the CHA dependencies manually. cha_->RemoveDependenciesForLinearAlloc(data.allocator); } // Cleanup references to single implementation ArtMethods that will be deleted. if (cleanup_cha) { CHAOnDeleteUpdateClassVisitor visitor(data.allocator); data.class_table->Visit(visitor); } { MutexLock lock(self, critical_native_code_with_clinit_check_lock_); auto end = critical_native_code_with_clinit_check_.end(); for (auto it = critical_native_code_with_clinit_check_.begin(); it != end; ) { if (data.allocator->ContainsUnsafe(it->first)) { it = critical_native_code_with_clinit_check_.erase(it); } else { ++it; } } } delete data.allocator; delete data.class_table; } ObjPtr ClassLinker::AllocPointerArray(Thread* self, size_t length) { return ObjPtr::DownCast( image_pointer_size_ == PointerSize::k64 ? ObjPtr(mirror::LongArray::Alloc(self, length)) : ObjPtr(mirror::IntArray::Alloc(self, length))); } ObjPtr ClassLinker::AllocDexCache(Thread* self, const DexFile& dex_file) { StackHandleScope<1> hs(self); auto dex_cache(hs.NewHandle(ObjPtr::DownCast( GetClassRoot(this)->AllocObject(self)))); if (dex_cache == nullptr) { self->AssertPendingOOMException(); return nullptr; } // Use InternWeak() so that the location String can be collected when the ClassLoader // with this DexCache is collected. ObjPtr location = intern_table_->InternWeak(dex_file.GetLocation().c_str()); if (location == nullptr) { self->AssertPendingOOMException(); return nullptr; } dex_cache->SetLocation(location); return dex_cache.Get(); } ObjPtr ClassLinker::AllocAndInitializeDexCache(Thread* self, const DexFile& dex_file, LinearAlloc* linear_alloc) { ObjPtr dex_cache = AllocDexCache(self, dex_file); if (dex_cache != nullptr) { WriterMutexLock mu(self, *Locks::dex_lock_); dex_cache->InitializeNativeFields(&dex_file, linear_alloc); } return dex_cache; } template ObjPtr ClassLinker::AllocClass(Thread* self, ObjPtr java_lang_Class, uint32_t class_size, const PreFenceVisitor& pre_fence_visitor) { DCHECK_GE(class_size, sizeof(mirror::Class)); gc::Heap* heap = Runtime::Current()->GetHeap(); ObjPtr k = (kMovingClasses && kMovable) ? heap->AllocObject(self, java_lang_Class, class_size, pre_fence_visitor) : heap->AllocNonMovableObject(self, java_lang_Class, class_size, pre_fence_visitor); if (UNLIKELY(k == nullptr)) { self->AssertPendingOOMException(); return nullptr; } return k->AsClass(); } template ObjPtr ClassLinker::AllocClass(Thread* self, ObjPtr java_lang_Class, uint32_t class_size) { mirror::Class::InitializeClassVisitor visitor(class_size); return AllocClass(self, java_lang_Class, class_size, visitor); } ObjPtr ClassLinker::AllocClass(Thread* self, uint32_t class_size) { return AllocClass(self, GetClassRoot(this), class_size); } void ClassLinker::AllocPrimitiveArrayClass(Thread* self, ClassRoot primitive_root, ClassRoot array_root) { // We make this class non-movable for the unlikely case where it were to be // moved by a sticky-bit (minor) collection when using the Generational // Concurrent Copying (CC) collector, potentially creating a stale reference // in the `klass_` field of one of its instances allocated in the Large-Object // Space (LOS) -- see the comment about the dirty card scanning logic in // art::gc::collector::ConcurrentCopying::MarkingPhase. ObjPtr array_class = AllocClass( self, GetClassRoot(this), mirror::Array::ClassSize(image_pointer_size_)); ObjPtr component_type = GetClassRoot(primitive_root, this); DCHECK(component_type->IsPrimitive()); array_class->SetComponentType(component_type); SetClassRoot(array_root, array_class); } void ClassLinker::FinishArrayClassSetup(ObjPtr array_class) { ObjPtr java_lang_Object = GetClassRoot(this); array_class->SetSuperClass(java_lang_Object); array_class->SetVTable(java_lang_Object->GetVTable()); array_class->SetPrimitiveType(Primitive::kPrimNot); ObjPtr component_type = array_class->GetComponentType(); array_class->SetClassFlags(component_type->IsPrimitive() ? mirror::kClassFlagNoReferenceFields : mirror::kClassFlagObjectArray); array_class->SetClassLoader(component_type->GetClassLoader()); array_class->SetStatusForPrimitiveOrArray(ClassStatus::kLoaded); array_class->PopulateEmbeddedVTable(image_pointer_size_); ImTable* object_imt = java_lang_Object->GetImt(image_pointer_size_); array_class->SetImt(object_imt, image_pointer_size_); // Skip EnsureSkipAccessChecksMethods(). We can skip the verified status, // the kAccVerificationAttempted flag is added below, and there are no // methods that need the kAccSkipAccessChecks flag. DCHECK_EQ(array_class->NumMethods(), 0u); // don't need to set new_class->SetObjectSize(..) // because Object::SizeOf delegates to Array::SizeOf // All arrays have java/lang/Cloneable and java/io/Serializable as // interfaces. We need to set that up here, so that stuff like // "instanceof" works right. // Use the single, global copies of "interfaces" and "iftable" // (remember not to free them for arrays). { ObjPtr array_iftable = GetArrayIfTable(); CHECK(array_iftable != nullptr); array_class->SetIfTable(array_iftable); } // Inherit access flags from the component type. int access_flags = component_type->GetAccessFlags(); // Lose any implementation detail flags; in particular, arrays aren't finalizable. access_flags &= kAccJavaFlagsMask; // Arrays can't be used as a superclass or interface, so we want to add "abstract final" // and remove "interface". access_flags |= kAccAbstract | kAccFinal; access_flags &= ~kAccInterface; // Arrays are access-checks-clean and preverified. access_flags |= kAccVerificationAttempted; array_class->SetAccessFlagsDuringLinking(access_flags); // Array classes are fully initialized either during single threaded startup, // or from a pre-fence visitor, so visibly initialized. array_class->SetStatusForPrimitiveOrArray(ClassStatus::kVisiblyInitialized); } void ClassLinker::FinishCoreArrayClassSetup(ClassRoot array_root) { // Do not hold lock on the array class object, the initialization of // core array classes is done while the process is still single threaded. ObjPtr array_class = GetClassRoot(array_root, this); FinishArrayClassSetup(array_class); std::string temp; const char* descriptor = array_class->GetDescriptor(&temp); size_t hash = ComputeModifiedUtf8Hash(descriptor); ObjPtr existing = InsertClass(descriptor, array_class, hash); CHECK(existing == nullptr); } ObjPtr> ClassLinker::AllocStackTraceElementArray( Thread* self, size_t length) { return mirror::ObjectArray::Alloc( self, GetClassRoot>(this), length); } ObjPtr ClassLinker::EnsureResolved(Thread* self, const char* descriptor, ObjPtr klass) { DCHECK(klass != nullptr); if (kIsDebugBuild) { StackHandleScope<1> hs(self); HandleWrapperObjPtr h = hs.NewHandleWrapper(&klass); Thread::PoisonObjectPointersIfDebug(); } // For temporary classes we must wait for them to be retired. if (init_done_ && klass->IsTemp()) { CHECK(!klass->IsResolved()); if (klass->IsErroneousUnresolved()) { ThrowEarlierClassFailure(klass); return nullptr; } StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(klass)); ObjectLock lock(self, h_class); // Loop and wait for the resolving thread to retire this class. while (!h_class->IsRetired() && !h_class->IsErroneousUnresolved()) { lock.WaitIgnoringInterrupts(); } if (h_class->IsErroneousUnresolved()) { ThrowEarlierClassFailure(h_class.Get()); return nullptr; } CHECK(h_class->IsRetired()); // Get the updated class from class table. klass = LookupClass(self, descriptor, h_class.Get()->GetClassLoader()); } // Wait for the class if it has not already been linked. size_t index = 0; // Maximum number of yield iterations until we start sleeping. static const size_t kNumYieldIterations = 1000; // How long each sleep is in us. static const size_t kSleepDurationUS = 1000; // 1 ms. while (!klass->IsResolved() && !klass->IsErroneousUnresolved()) { StackHandleScope<1> hs(self); HandleWrapperObjPtr h_class(hs.NewHandleWrapper(&klass)); { ObjectTryLock lock(self, h_class); // Can not use a monitor wait here since it may block when returning and deadlock if another // thread has locked klass. if (lock.Acquired()) { // Check for circular dependencies between classes, the lock is required for SetStatus. if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) { ThrowClassCircularityError(h_class.Get()); mirror::Class::SetStatus(h_class, ClassStatus::kErrorUnresolved, self); return nullptr; } } } { // Handle wrapper deals with klass moving. ScopedThreadSuspension sts(self, kSuspended); if (index < kNumYieldIterations) { sched_yield(); } else { usleep(kSleepDurationUS); } } ++index; } if (klass->IsErroneousUnresolved()) { ThrowEarlierClassFailure(klass); return nullptr; } // Return the loaded class. No exceptions should be pending. CHECK(klass->IsResolved()) << klass->PrettyClass(); self->AssertNoPendingException(); return klass; } using ClassPathEntry = std::pair; // Search a collection of DexFiles for a descriptor ClassPathEntry FindInClassPath(const char* descriptor, size_t hash, const std::vector& class_path) { for (const DexFile* dex_file : class_path) { DCHECK(dex_file != nullptr); const dex::ClassDef* dex_class_def = OatDexFile::FindClassDef(*dex_file, descriptor, hash); if (dex_class_def != nullptr) { return ClassPathEntry(dex_file, dex_class_def); } } return ClassPathEntry(nullptr, nullptr); } // Helper macro to make sure each class loader lookup call handles the case the // class loader is not recognized, or the lookup threw an exception. #define RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION(call_, result_, thread_) \ do { \ auto local_call = call_; \ if (!local_call) { \ return false; \ } \ auto local_result = result_; \ if (local_result != nullptr) { \ return true; \ } \ auto local_thread = thread_; \ if (local_thread->IsExceptionPending()) { \ /* Pending exception means there was an error other than */ \ /* ClassNotFound that must be returned to the caller. */ \ return false; \ } \ } while (0) bool ClassLinker::FindClassInSharedLibraries(ScopedObjectAccessAlreadyRunnable& soa, Thread* self, const char* descriptor, size_t hash, Handle class_loader, /*out*/ ObjPtr* result) { ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoaders); ObjPtr raw_shared_libraries = field->GetObject(class_loader.Get()); if (raw_shared_libraries == nullptr) { return true; } StackHandleScope<2> hs(self); Handle> shared_libraries( hs.NewHandle(raw_shared_libraries->AsObjectArray())); MutableHandle temp_loader = hs.NewHandle(nullptr); for (auto loader : shared_libraries.Iterate()) { temp_loader.Assign(loader); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBaseDexClassLoader(soa, self, descriptor, hash, temp_loader, result), *result, self); } return true; } bool ClassLinker::FindClassInBaseDexClassLoader(ScopedObjectAccessAlreadyRunnable& soa, Thread* self, const char* descriptor, size_t hash, Handle class_loader, /*out*/ ObjPtr* result) { // Termination case: boot class loader. if (IsBootClassLoader(soa, class_loader.Get())) { RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBootClassLoaderClassPath(self, descriptor, hash, result), *result, self); return true; } if (IsPathOrDexClassLoader(soa, class_loader) || IsInMemoryDexClassLoader(soa, class_loader)) { // For regular path or dex class loader the search order is: // - parent // - shared libraries // - class loader dex files // Create a handle as RegisterDexFile may allocate dex caches (and cause thread suspension). StackHandleScope<1> hs(self); Handle h_parent(hs.NewHandle(class_loader->GetParent())); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBaseDexClassLoader(soa, self, descriptor, hash, h_parent, result), *result, self); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInSharedLibraries(soa, self, descriptor, hash, class_loader, result), *result, self); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBaseDexClassLoaderClassPath(soa, descriptor, hash, class_loader, result), *result, self); // We did not find a class, but the class loader chain was recognized, so we // return true. return true; } if (IsDelegateLastClassLoader(soa, class_loader)) { // For delegate last, the search order is: // - boot class path // - shared libraries // - class loader dex files // - parent RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBootClassLoaderClassPath(self, descriptor, hash, result), *result, self); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInSharedLibraries(soa, self, descriptor, hash, class_loader, result), *result, self); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBaseDexClassLoaderClassPath(soa, descriptor, hash, class_loader, result), *result, self); // Create a handle as RegisterDexFile may allocate dex caches (and cause thread suspension). StackHandleScope<1> hs(self); Handle h_parent(hs.NewHandle(class_loader->GetParent())); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBaseDexClassLoader(soa, self, descriptor, hash, h_parent, result), *result, self); // We did not find a class, but the class loader chain was recognized, so we // return true. return true; } // Unsupported class loader. *result = nullptr; return false; } #undef RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION namespace { // Matches exceptions caught in DexFile.defineClass. ALWAYS_INLINE bool MatchesDexFileCaughtExceptions(ObjPtr throwable, ClassLinker* class_linker) REQUIRES_SHARED(Locks::mutator_lock_) { return // ClassNotFoundException. throwable->InstanceOf(GetClassRoot(ClassRoot::kJavaLangClassNotFoundException, class_linker)) || // NoClassDefFoundError. TODO: Reconsider this. b/130746382. throwable->InstanceOf(Runtime::Current()->GetPreAllocatedNoClassDefFoundError()->GetClass()); } // Clear exceptions caught in DexFile.defineClass. ALWAYS_INLINE void FilterDexFileCaughtExceptions(Thread* self, ClassLinker* class_linker) REQUIRES_SHARED(Locks::mutator_lock_) { if (MatchesDexFileCaughtExceptions(self->GetException(), class_linker)) { self->ClearException(); } } } // namespace // Finds the class in the boot class loader. // If the class is found the method returns the resolved class. Otherwise it returns null. bool ClassLinker::FindClassInBootClassLoaderClassPath(Thread* self, const char* descriptor, size_t hash, /*out*/ ObjPtr* result) { ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_); if (pair.second != nullptr) { ObjPtr klass = LookupClass(self, descriptor, hash, nullptr); if (klass != nullptr) { *result = EnsureResolved(self, descriptor, klass); } else { *result = DefineClass(self, descriptor, hash, ScopedNullHandle(), *pair.first, *pair.second); } if (*result == nullptr) { CHECK(self->IsExceptionPending()) << descriptor; FilterDexFileCaughtExceptions(self, this); } } // The boot classloader is always a known lookup. return true; } bool ClassLinker::FindClassInBaseDexClassLoaderClassPath( ScopedObjectAccessAlreadyRunnable& soa, const char* descriptor, size_t hash, Handle class_loader, /*out*/ ObjPtr* result) { DCHECK(IsPathOrDexClassLoader(soa, class_loader) || IsInMemoryDexClassLoader(soa, class_loader) || IsDelegateLastClassLoader(soa, class_loader)) << "Unexpected class loader for descriptor " << descriptor; const DexFile* dex_file = nullptr; const dex::ClassDef* class_def = nullptr; ObjPtr ret; auto find_class_def = [&](const DexFile* cp_dex_file) REQUIRES_SHARED(Locks::mutator_lock_) { const dex::ClassDef* cp_class_def = OatDexFile::FindClassDef(*cp_dex_file, descriptor, hash); if (cp_class_def != nullptr) { dex_file = cp_dex_file; class_def = cp_class_def; return false; // Found a class definition, stop visit. } return true; // Continue with the next DexFile. }; VisitClassLoaderDexFiles(soa, class_loader, find_class_def); if (class_def != nullptr) { *result = DefineClass(soa.Self(), descriptor, hash, class_loader, *dex_file, *class_def); if (UNLIKELY(*result == nullptr)) { CHECK(soa.Self()->IsExceptionPending()) << descriptor; FilterDexFileCaughtExceptions(soa.Self(), this); } else { DCHECK(!soa.Self()->IsExceptionPending()); } } // A BaseDexClassLoader is always a known lookup. return true; } ObjPtr ClassLinker::FindClass(Thread* self, const char* descriptor, Handle class_loader) { DCHECK_NE(*descriptor, '\0') << "descriptor is empty string"; DCHECK(self != nullptr); self->AssertNoPendingException(); self->PoisonObjectPointers(); // For DefineClass, CreateArrayClass, etc... if (descriptor[1] == '\0') { // only the descriptors of primitive types should be 1 character long, also avoid class lookup // for primitive classes that aren't backed by dex files. return FindPrimitiveClass(descriptor[0]); } const size_t hash = ComputeModifiedUtf8Hash(descriptor); // Find the class in the loaded classes table. ObjPtr klass = LookupClass(self, descriptor, hash, class_loader.Get()); if (klass != nullptr) { return EnsureResolved(self, descriptor, klass); } // Class is not yet loaded. if (descriptor[0] != '[' && class_loader == nullptr) { // Non-array class and the boot class loader, search the boot class path. ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_); if (pair.second != nullptr) { return DefineClass(self, descriptor, hash, ScopedNullHandle(), *pair.first, *pair.second); } else { // The boot class loader is searched ahead of the application class loader, failures are // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to // trigger the chaining with a proper stack trace. ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return nullptr; } } ObjPtr result_ptr; bool descriptor_equals; if (descriptor[0] == '[') { result_ptr = CreateArrayClass(self, descriptor, hash, class_loader); DCHECK_EQ(result_ptr == nullptr, self->IsExceptionPending()); DCHECK(result_ptr == nullptr || result_ptr->DescriptorEquals(descriptor)); descriptor_equals = true; } else { ScopedObjectAccessUnchecked soa(self); bool known_hierarchy = FindClassInBaseDexClassLoader(soa, self, descriptor, hash, class_loader, &result_ptr); if (result_ptr != nullptr) { // The chain was understood and we found the class. We still need to add the class to // the class table to protect from racy programs that can try and redefine the path list // which would change the Class returned for subsequent evaluation of const-class. DCHECK(known_hierarchy); DCHECK(result_ptr->DescriptorEquals(descriptor)); descriptor_equals = true; } else if (!self->IsExceptionPending()) { // Either the chain wasn't understood or the class wasn't found. // If there is a pending exception we didn't clear, it is a not a ClassNotFoundException and // we should return it instead of silently clearing and retrying. // // If the chain was understood but we did not find the class, let the Java-side // rediscover all this and throw the exception with the right stack trace. Note that // the Java-side could still succeed for racy programs if another thread is actively // modifying the class loader's path list. // The runtime is not allowed to call into java from a runtime-thread so just abort. if (self->IsRuntimeThread()) { // Oops, we can't call into java so we can't run actual class-loader code. // This is true for e.g. for the compiler (jit or aot). ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return nullptr; } // Inlined DescriptorToDot(descriptor) with extra validation. // // Throw NoClassDefFoundError early rather than potentially load a class only to fail // the DescriptorEquals() check below and give a confusing error message. For example, // when native code erroneously calls JNI GetFieldId() with signature "java/lang/String" // instead of "Ljava/lang/String;", the message below using the "dot" names would be // "class loader [...] returned class java.lang.String instead of java.lang.String". size_t descriptor_length = strlen(descriptor); if (UNLIKELY(descriptor[0] != 'L') || UNLIKELY(descriptor[descriptor_length - 1] != ';') || UNLIKELY(memchr(descriptor + 1, '.', descriptor_length - 2) != nullptr)) { ThrowNoClassDefFoundError("Invalid descriptor: %s.", descriptor); return nullptr; } std::string class_name_string(descriptor + 1, descriptor_length - 2); std::replace(class_name_string.begin(), class_name_string.end(), '/', '.'); if (known_hierarchy && fast_class_not_found_exceptions_ && !Runtime::Current()->IsJavaDebuggable()) { // For known hierarchy, we know that the class is going to throw an exception. If we aren't // debuggable, optimize this path by throwing directly here without going back to Java // language. This reduces how many ClassNotFoundExceptions happen. self->ThrowNewExceptionF("Ljava/lang/ClassNotFoundException;", "%s", class_name_string.c_str()); } else { ScopedLocalRef class_loader_object( soa.Env(), soa.AddLocalReference(class_loader.Get())); ScopedLocalRef result(soa.Env(), nullptr); { ScopedThreadStateChange tsc(self, kNative); ScopedLocalRef class_name_object( soa.Env(), soa.Env()->NewStringUTF(class_name_string.c_str())); if (class_name_object.get() == nullptr) { DCHECK(self->IsExceptionPending()); // OOME. return nullptr; } CHECK(class_loader_object.get() != nullptr); result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(), WellKnownClasses::java_lang_ClassLoader_loadClass, class_name_object.get())); } if (result.get() == nullptr && !self->IsExceptionPending()) { // broken loader - throw NPE to be compatible with Dalvik ThrowNullPointerException(StringPrintf("ClassLoader.loadClass returned null for %s", class_name_string.c_str()).c_str()); return nullptr; } result_ptr = soa.Decode(result.get()); // Check the name of the returned class. descriptor_equals = (result_ptr != nullptr) && result_ptr->DescriptorEquals(descriptor); } } else { DCHECK(!MatchesDexFileCaughtExceptions(self->GetException(), this)); } } if (self->IsExceptionPending()) { // If the ClassLoader threw or array class allocation failed, pass that exception up. // However, to comply with the RI behavior, first check if another thread succeeded. result_ptr = LookupClass(self, descriptor, hash, class_loader.Get()); if (result_ptr != nullptr && !result_ptr->IsErroneous()) { self->ClearException(); return EnsureResolved(self, descriptor, result_ptr); } return nullptr; } // Try to insert the class to the class table, checking for mismatch. ObjPtr old; { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); ClassTable* const class_table = InsertClassTableForClassLoader(class_loader.Get()); old = class_table->Lookup(descriptor, hash); if (old == nullptr) { old = result_ptr; // For the comparison below, after releasing the lock. if (descriptor_equals) { class_table->InsertWithHash(result_ptr, hash); WriteBarrier::ForEveryFieldWrite(class_loader.Get()); } // else throw below, after releasing the lock. } } if (UNLIKELY(old != result_ptr)) { // Return `old` (even if `!descriptor_equals`) to mimic the RI behavior for parallel // capable class loaders. (All class loaders are considered parallel capable on Android.) ObjPtr loader_class = class_loader->GetClass(); const char* loader_class_name = loader_class->GetDexFile().StringByTypeIdx(loader_class->GetDexTypeIndex()); LOG(WARNING) << "Initiating class loader of type " << DescriptorToDot(loader_class_name) << " is not well-behaved; it returned a different Class for racing loadClass(\"" << DescriptorToDot(descriptor) << "\")."; return EnsureResolved(self, descriptor, old); } if (UNLIKELY(!descriptor_equals)) { std::string result_storage; const char* result_name = result_ptr->GetDescriptor(&result_storage); std::string loader_storage; const char* loader_class_name = class_loader->GetClass()->GetDescriptor(&loader_storage); ThrowNoClassDefFoundError( "Initiating class loader of type %s returned class %s instead of %s.", DescriptorToDot(loader_class_name).c_str(), DescriptorToDot(result_name).c_str(), DescriptorToDot(descriptor).c_str()); return nullptr; } // Success. return result_ptr; } // Helper for maintaining DefineClass counting. We need to notify callbacks when we start/end a // define-class and how many recursive DefineClasses we are at in order to allow for doing things // like pausing class definition. struct ScopedDefiningClass { public: explicit ScopedDefiningClass(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) : self_(self), returned_(false) { Locks::mutator_lock_->AssertSharedHeld(self_); Runtime::Current()->GetRuntimeCallbacks()->BeginDefineClass(); self_->IncrDefineClassCount(); } ~ScopedDefiningClass() REQUIRES_SHARED(Locks::mutator_lock_) { Locks::mutator_lock_->AssertSharedHeld(self_); CHECK(returned_); } ObjPtr Finish(Handle h_klass) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(!returned_); self_->DecrDefineClassCount(); Runtime::Current()->GetRuntimeCallbacks()->EndDefineClass(); Thread::PoisonObjectPointersIfDebug(); returned_ = true; return h_klass.Get(); } ObjPtr Finish(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self_); Handle h_klass(hs.NewHandle(klass)); return Finish(h_klass); } ObjPtr Finish(nullptr_t np ATTRIBUTE_UNUSED) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedNullHandle snh; return Finish(snh); } private: Thread* self_; bool returned_; }; ObjPtr ClassLinker::DefineClass(Thread* self, const char* descriptor, size_t hash, Handle class_loader, const DexFile& dex_file, const dex::ClassDef& dex_class_def) { ScopedDefiningClass sdc(self); StackHandleScope<3> hs(self); metrics::AutoTimer timer{GetMetrics()->ClassLoadingTotalTime()}; auto klass = hs.NewHandle(nullptr); // Load the class from the dex file. if (UNLIKELY(!init_done_)) { // finish up init of hand crafted class_roots_ if (strcmp(descriptor, "Ljava/lang/Object;") == 0) { klass.Assign(GetClassRoot(this)); } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) { klass.Assign(GetClassRoot(this)); } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) { klass.Assign(GetClassRoot(this)); } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) { klass.Assign(GetClassRoot(this)); } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) { klass.Assign(GetClassRoot(this)); } else if (strcmp(descriptor, "Ldalvik/system/ClassExt;") == 0) { klass.Assign(GetClassRoot(this)); } } // For AOT-compilation of an app, we may use a shortened boot class path that excludes // some runtime modules. Prevent definition of classes in app class loader that could clash // with these modules as these classes could be resolved differently during execution. if (class_loader != nullptr && Runtime::Current()->IsAotCompiler() && IsUpdatableBootClassPathDescriptor(descriptor)) { ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return sdc.Finish(nullptr); } // For AOT-compilation of an app, we may use only a public SDK to resolve symbols. If the SDK // checks are configured (a non null SdkChecker) and the descriptor is not in the provided // public class path then we prevent the definition of the class. // // NOTE that we only do the checks for the boot classpath APIs. Anything else, like the app // classpath is not checked. if (class_loader == nullptr && Runtime::Current()->IsAotCompiler() && DenyAccessBasedOnPublicSdk(descriptor)) { ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return sdc.Finish(nullptr); } // This is to prevent the calls to ClassLoad and ClassPrepare which can cause java/user-supplied // code to be executed. We put it up here so we can avoid all the allocations associated with // creating the class. This can happen with (eg) jit threads. if (!self->CanLoadClasses()) { // Make sure we don't try to load anything, potentially causing an infinite loop. ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return sdc.Finish(nullptr); } if (klass == nullptr) { // Allocate a class with the status of not ready. // Interface object should get the right size here. Regular class will // figure out the right size later and be replaced with one of the right // size when the class becomes resolved. if (CanAllocClass()) { klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def))); } else { return sdc.Finish(nullptr); } } if (UNLIKELY(klass == nullptr)) { self->AssertPendingOOMException(); return sdc.Finish(nullptr); } // Get the real dex file. This will return the input if there aren't any callbacks or they do // nothing. DexFile const* new_dex_file = nullptr; dex::ClassDef const* new_class_def = nullptr; // TODO We should ideally figure out some way to move this after we get a lock on the klass so it // will only be called once. Runtime::Current()->GetRuntimeCallbacks()->ClassPreDefine(descriptor, klass, class_loader, dex_file, dex_class_def, &new_dex_file, &new_class_def); // Check to see if an exception happened during runtime callbacks. Return if so. if (self->IsExceptionPending()) { return sdc.Finish(nullptr); } ObjPtr dex_cache = RegisterDexFile(*new_dex_file, class_loader.Get()); if (dex_cache == nullptr) { self->AssertPendingException(); return sdc.Finish(nullptr); } klass->SetDexCache(dex_cache); SetupClass(*new_dex_file, *new_class_def, klass, class_loader.Get()); // Mark the string class by setting its access flag. if (UNLIKELY(!init_done_)) { if (strcmp(descriptor, "Ljava/lang/String;") == 0) { klass->SetStringClass(); } } ObjectLock lock(self, klass); klass->SetClinitThreadId(self->GetTid()); // Make sure we have a valid empty iftable even if there are errors. klass->SetIfTable(GetClassRoot(this)->GetIfTable()); // Add the newly loaded class to the loaded classes table. ObjPtr existing = InsertClass(descriptor, klass.Get(), hash); if (existing != nullptr) { // We failed to insert because we raced with another thread. Calling EnsureResolved may cause // this thread to block. return sdc.Finish(EnsureResolved(self, descriptor, existing)); } // Load the fields and other things after we are inserted in the table. This is so that we don't // end up allocating unfree-able linear alloc resources and then lose the race condition. The // other reason is that the field roots are only visited from the class table. So we need to be // inserted before we allocate / fill in these fields. LoadClass(self, *new_dex_file, *new_class_def, klass); if (self->IsExceptionPending()) { VLOG(class_linker) << self->GetException()->Dump(); // An exception occured during load, set status to erroneous while holding klass' lock in case // notification is necessary. if (!klass->IsErroneous()) { mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self); } return sdc.Finish(nullptr); } // Finish loading (if necessary) by finding parents CHECK(!klass->IsLoaded()); if (!LoadSuperAndInterfaces(klass, *new_dex_file)) { // Loading failed. if (!klass->IsErroneous()) { mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self); } return sdc.Finish(nullptr); } CHECK(klass->IsLoaded()); // At this point the class is loaded. Publish a ClassLoad event. // Note: this may be a temporary class. It is a listener's responsibility to handle this. Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(klass); // Link the class (if necessary) CHECK(!klass->IsResolved()); // TODO: Use fast jobjects? auto interfaces = hs.NewHandle>(nullptr); MutableHandle h_new_class = hs.NewHandle(nullptr); if (!LinkClass(self, descriptor, klass, interfaces, &h_new_class)) { // Linking failed. if (!klass->IsErroneous()) { mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self); } return sdc.Finish(nullptr); } self->AssertNoPendingException(); CHECK(h_new_class != nullptr) << descriptor; CHECK(h_new_class->IsResolved() && !h_new_class->IsErroneousResolved()) << descriptor; // Instrumentation may have updated entrypoints for all methods of all // classes. However it could not update methods of this class while we // were loading it. Now the class is resolved, we can update entrypoints // as required by instrumentation. if (Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()) { // We must be in the kRunnable state to prevent instrumentation from // suspending all threads to update entrypoints while we are doing it // for this class. DCHECK_EQ(self->GetState(), kRunnable); Runtime::Current()->GetInstrumentation()->InstallStubsForClass(h_new_class.Get()); } /* * We send CLASS_PREPARE events to the debugger from here. The * definition of "preparation" is creating the static fields for a * class and initializing them to the standard default values, but not * executing any code (that comes later, during "initialization"). * * We did the static preparation in LinkClass. * * The class has been prepared and resolved but possibly not yet verified * at this point. */ Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(klass, h_new_class); // Notify native debugger of the new class and its layout. jit::Jit::NewTypeLoadedIfUsingJit(h_new_class.Get()); return sdc.Finish(h_new_class); } uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file, const dex::ClassDef& dex_class_def) { size_t num_ref = 0; size_t num_8 = 0; size_t num_16 = 0; size_t num_32 = 0; size_t num_64 = 0; ClassAccessor accessor(dex_file, dex_class_def); // We allow duplicate definitions of the same field in a class_data_item // but ignore the repeated indexes here, b/21868015. uint32_t last_field_idx = dex::kDexNoIndex; for (const ClassAccessor::Field& field : accessor.GetStaticFields()) { uint32_t field_idx = field.GetIndex(); // Ordering enforced by DexFileVerifier. DCHECK(last_field_idx == dex::kDexNoIndex || last_field_idx <= field_idx); if (UNLIKELY(field_idx == last_field_idx)) { continue; } last_field_idx = field_idx; const dex::FieldId& field_id = dex_file.GetFieldId(field_idx); const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id); char c = descriptor[0]; switch (c) { case 'L': case '[': num_ref++; break; case 'J': case 'D': num_64++; break; case 'I': case 'F': num_32++; break; case 'S': case 'C': num_16++; break; case 'B': case 'Z': num_8++; break; default: LOG(FATAL) << "Unknown descriptor: " << c; UNREACHABLE(); } } return mirror::Class::ComputeClassSize(false, 0, num_8, num_16, num_32, num_64, num_ref, image_pointer_size_); } // Special case to get oat code without overwriting a trampoline. const void* ClassLinker::GetQuickOatCodeFor(ArtMethod* method) { CHECK(method->IsInvokable()) << method->PrettyMethod(); if (method->IsProxyMethod()) { return GetQuickProxyInvokeHandler(); } const void* code = method->GetOatMethodQuickCode(GetImagePointerSize()); if (code != nullptr) { return code; } jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { code = jit->GetCodeCache()->GetSavedEntryPointOfPreCompiledMethod(method); if (code != nullptr) { return code; } } if (method->IsNative()) { // No code and native? Use generic trampoline. return GetQuickGenericJniStub(); } if (interpreter::CanRuntimeUseNterp() && CanMethodUseNterp(method)) { return interpreter::GetNterpEntryPoint(); } return GetQuickToInterpreterBridge(); } bool ClassLinker::ShouldUseInterpreterEntrypoint(ArtMethod* method, const void* quick_code) { ScopedAssertNoThreadSuspension sants(__FUNCTION__); if (UNLIKELY(method->IsNative() || method->IsProxyMethod())) { return false; } if (quick_code == nullptr) { return true; } Runtime* runtime = Runtime::Current(); instrumentation::Instrumentation* instr = runtime->GetInstrumentation(); if (instr->InterpretOnly()) { return true; } if (runtime->GetClassLinker()->IsQuickToInterpreterBridge(quick_code)) { // Doing this check avoids doing compiled/interpreter transitions. return true; } if (Thread::Current()->IsForceInterpreter()) { // Force the use of interpreter when it is required by the debugger. return true; } if (Thread::Current()->IsAsyncExceptionPending()) { // Force use of interpreter to handle async-exceptions return true; } if (quick_code == GetQuickInstrumentationEntryPoint()) { const void* instr_target = instr->GetCodeForInvoke(method); DCHECK_NE(instr_target, GetQuickInstrumentationEntryPoint()) << method->PrettyMethod(); return ShouldUseInterpreterEntrypoint(method, instr_target); } if (runtime->IsJavaDebuggable()) { // For simplicity, we ignore precompiled code and go to the interpreter // assuming we don't already have jitted code. // We could look at the oat file where `quick_code` is being defined, // and check whether it's been compiled debuggable, but we decided to // only rely on the JIT for debuggable apps. jit::Jit* jit = Runtime::Current()->GetJit(); return (jit == nullptr) || !jit->GetCodeCache()->ContainsPc(quick_code); } if (runtime->IsNativeDebuggable()) { DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse()); // If we are doing native debugging, ignore application's AOT code, // since we want to JIT it (at first use) with extra stackmaps for native // debugging. We keep however all AOT code from the boot image, // since the JIT-at-first-use is blocking and would result in non-negligible // startup performance impact. return !runtime->GetHeap()->IsInBootImageOatFile(quick_code); } return false; } void ClassLinker::FixupStaticTrampolines(Thread* self, ObjPtr klass) { ScopedAssertNoThreadSuspension sants(__FUNCTION__); DCHECK(klass->IsVisiblyInitialized()) << klass->PrettyDescriptor(); size_t num_direct_methods = klass->NumDirectMethods(); if (num_direct_methods == 0) { return; // No direct methods => no static methods. } if (UNLIKELY(klass->IsProxyClass())) { return; } PointerSize pointer_size = image_pointer_size_; if (std::any_of(klass->GetDirectMethods(pointer_size).begin(), klass->GetDirectMethods(pointer_size).end(), [](const ArtMethod& m) { return m.IsCriticalNative(); })) { // Store registered @CriticalNative methods, if any, to JNI entrypoints. // Direct methods are a contiguous chunk of memory, so use the ordering of the map. ArtMethod* first_method = klass->GetDirectMethod(0u, pointer_size); ArtMethod* last_method = klass->GetDirectMethod(num_direct_methods - 1u, pointer_size); MutexLock lock(self, critical_native_code_with_clinit_check_lock_); auto lb = critical_native_code_with_clinit_check_.lower_bound(first_method); while (lb != critical_native_code_with_clinit_check_.end() && lb->first <= last_method) { lb->first->SetEntryPointFromJni(lb->second); lb = critical_native_code_with_clinit_check_.erase(lb); } } Runtime* runtime = Runtime::Current(); if (!runtime->IsStarted()) { if (runtime->IsAotCompiler() || runtime->GetHeap()->HasBootImageSpace()) { return; // OAT file unavailable. } } const DexFile& dex_file = klass->GetDexFile(); bool has_oat_class; OatFile::OatClass oat_class = OatFile::FindOatClass(dex_file, klass->GetDexClassDefIndex(), &has_oat_class); // Link the code of methods skipped by LinkCode. for (size_t method_index = 0; method_index < num_direct_methods; ++method_index) { ArtMethod* method = klass->GetDirectMethod(method_index, pointer_size); if (!method->IsStatic()) { // Only update static methods. continue; } const void* quick_code = nullptr; // In order: // 1) Check if we have AOT Code. // 2) Check if we have JIT Code. // 3) Check if we can use Nterp. if (has_oat_class) { OatFile::OatMethod oat_method = oat_class.GetOatMethod(method_index); quick_code = oat_method.GetQuickCode(); } jit::Jit* jit = runtime->GetJit(); if (quick_code == nullptr && jit != nullptr) { quick_code = jit->GetCodeCache()->GetSavedEntryPointOfPreCompiledMethod(method); } if (quick_code == nullptr && interpreter::CanRuntimeUseNterp() && CanMethodUseNterp(method)) { quick_code = interpreter::GetNterpEntryPoint(); } // Check whether the method is native, in which case it's generic JNI. if (quick_code == nullptr && method->IsNative()) { quick_code = GetQuickGenericJniStub(); } else if (ShouldUseInterpreterEntrypoint(method, quick_code)) { // Use interpreter entry point. if (IsQuickToInterpreterBridge(method->GetEntryPointFromQuickCompiledCode())) { // If we have the trampoline or the bridge already, no need to update. // This saves in not dirtying boot image memory. continue; } quick_code = GetQuickToInterpreterBridge(); } CHECK(quick_code != nullptr); runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code); } // Ignore virtual methods on the iterator. } // Does anything needed to make sure that the compiler will not generate a direct invoke to this // method. Should only be called on non-invokable methods. inline void EnsureThrowsInvocationError(ClassLinker* class_linker, ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(method != nullptr); DCHECK(!method->IsInvokable()); method->SetEntryPointFromQuickCompiledCodePtrSize( class_linker->GetQuickToInterpreterBridgeTrampoline(), class_linker->GetImagePointerSize()); } static void LinkCode(ClassLinker* class_linker, ArtMethod* method, const OatFile::OatClass* oat_class, uint32_t class_def_method_index) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension sants(__FUNCTION__); Runtime* const runtime = Runtime::Current(); if (runtime->IsAotCompiler()) { // The following code only applies to a non-compiler runtime. return; } // Method shouldn't have already been linked. DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr); if (!method->IsInvokable()) { EnsureThrowsInvocationError(class_linker, method); return; } const void* quick_code = nullptr; if (oat_class != nullptr) { // Every kind of method should at least get an invoke stub from the oat_method. // non-abstract methods also get their code pointers. const OatFile::OatMethod oat_method = oat_class->GetOatMethod(class_def_method_index); quick_code = oat_method.GetQuickCode(); } bool enter_interpreter = class_linker->ShouldUseInterpreterEntrypoint(method, quick_code); // Note: this mimics the logic in image_writer.cc that installs the resolution // stub only if we have compiled code and the method needs a class initialization // check. if (quick_code == nullptr) { method->SetEntryPointFromQuickCompiledCode( method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge()); } else if (enter_interpreter) { method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); } else if (NeedsClinitCheckBeforeCall(method)) { DCHECK(!method->GetDeclaringClass()->IsVisiblyInitialized()); // Actually ClassStatus::Idx. // If we do have code but the method needs a class initialization check before calling // that code, install the resolution stub that will perform the check. // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines // after initializing class (see ClassLinker::InitializeClass method). method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub()); } else { method->SetEntryPointFromQuickCompiledCode(quick_code); } if (method->IsNative()) { // Set up the dlsym lookup stub. Do not go through `UnregisterNative()` // as the extra processing for @CriticalNative is not needed yet. method->SetEntryPointFromJni( method->IsCriticalNative() ? GetJniDlsymLookupCriticalStub() : GetJniDlsymLookupStub()); if (enter_interpreter || quick_code == nullptr) { // We have a native method here without code. Then it should have the generic JNI // trampoline as entrypoint. // TODO: this doesn't handle all the cases where trampolines may be installed. DCHECK(class_linker->IsQuickGenericJniStub(method->GetEntryPointFromQuickCompiledCode())); } } } void ClassLinker::SetupClass(const DexFile& dex_file, const dex::ClassDef& dex_class_def, Handle klass, ObjPtr class_loader) { CHECK(klass != nullptr); CHECK(klass->GetDexCache() != nullptr); CHECK_EQ(ClassStatus::kNotReady, klass->GetStatus()); const char* descriptor = dex_file.GetClassDescriptor(dex_class_def); CHECK(descriptor != nullptr); klass->SetClass(GetClassRoot(this)); uint32_t access_flags = dex_class_def.GetJavaAccessFlags(); CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U); klass->SetAccessFlagsDuringLinking(access_flags); klass->SetClassLoader(class_loader); DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot); mirror::Class::SetStatus(klass, ClassStatus::kIdx, nullptr); klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def)); klass->SetDexTypeIndex(dex_class_def.class_idx_); } LengthPrefixedArray* ClassLinker::AllocArtFieldArray(Thread* self, LinearAlloc* allocator, size_t length) { if (length == 0) { return nullptr; } // If the ArtField alignment changes, review all uses of LengthPrefixedArray. static_assert(alignof(ArtField) == 4, "ArtField alignment is expected to be 4."); size_t storage_size = LengthPrefixedArray::ComputeSize(length); void* array_storage = allocator->Alloc(self, storage_size); auto* ret = new(array_storage) LengthPrefixedArray(length); CHECK(ret != nullptr); std::uninitialized_fill_n(&ret->At(0), length, ArtField()); return ret; } LengthPrefixedArray* ClassLinker::AllocArtMethodArray(Thread* self, LinearAlloc* allocator, size_t length) { if (length == 0) { return nullptr; } const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_); const size_t method_size = ArtMethod::Size(image_pointer_size_); const size_t storage_size = LengthPrefixedArray::ComputeSize(length, method_size, method_alignment); void* array_storage = allocator->Alloc(self, storage_size); auto* ret = new (array_storage) LengthPrefixedArray(length); CHECK(ret != nullptr); for (size_t i = 0; i < length; ++i) { new(reinterpret_cast(&ret->At(i, method_size, method_alignment))) ArtMethod; } return ret; } LinearAlloc* ClassLinker::GetAllocatorForClassLoader(ObjPtr class_loader) { if (class_loader == nullptr) { return Runtime::Current()->GetLinearAlloc(); } LinearAlloc* allocator = class_loader->GetAllocator(); DCHECK(allocator != nullptr); return allocator; } LinearAlloc* ClassLinker::GetOrCreateAllocatorForClassLoader(ObjPtr class_loader) { if (class_loader == nullptr) { return Runtime::Current()->GetLinearAlloc(); } WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); LinearAlloc* allocator = class_loader->GetAllocator(); if (allocator == nullptr) { RegisterClassLoader(class_loader); allocator = class_loader->GetAllocator(); CHECK(allocator != nullptr); } return allocator; } void ClassLinker::LoadClass(Thread* self, const DexFile& dex_file, const dex::ClassDef& dex_class_def, Handle klass) { ClassAccessor accessor(dex_file, dex_class_def, /* parse_hiddenapi_class_data= */ klass->IsBootStrapClassLoaded()); if (!accessor.HasClassData()) { return; } Runtime* const runtime = Runtime::Current(); { // Note: We cannot have thread suspension until the field and method arrays are setup or else // Class::VisitFieldRoots may miss some fields or methods. ScopedAssertNoThreadSuspension nts(__FUNCTION__); // Load static fields. // We allow duplicate definitions of the same field in a class_data_item // but ignore the repeated indexes here, b/21868015. LinearAlloc* const allocator = GetAllocatorForClassLoader(klass->GetClassLoader()); LengthPrefixedArray* sfields = AllocArtFieldArray(self, allocator, accessor.NumStaticFields()); LengthPrefixedArray* ifields = AllocArtFieldArray(self, allocator, accessor.NumInstanceFields()); size_t num_sfields = 0u; size_t num_ifields = 0u; uint32_t last_static_field_idx = 0u; uint32_t last_instance_field_idx = 0u; // Methods bool has_oat_class = false; const OatFile::OatClass oat_class = (runtime->IsStarted() && !runtime->IsAotCompiler()) ? OatFile::FindOatClass(dex_file, klass->GetDexClassDefIndex(), &has_oat_class) : OatFile::OatClass::Invalid(); const OatFile::OatClass* oat_class_ptr = has_oat_class ? &oat_class : nullptr; klass->SetMethodsPtr( AllocArtMethodArray(self, allocator, accessor.NumMethods()), accessor.NumDirectMethods(), accessor.NumVirtualMethods()); size_t class_def_method_index = 0; uint32_t last_dex_method_index = dex::kDexNoIndex; size_t last_class_def_method_index = 0; // Use the visitor since the ranged based loops are bit slower from seeking. Seeking to the // methods needs to decode all of the fields. accessor.VisitFieldsAndMethods([&]( const ClassAccessor::Field& field) REQUIRES_SHARED(Locks::mutator_lock_) { uint32_t field_idx = field.GetIndex(); DCHECK_GE(field_idx, last_static_field_idx); // Ordering enforced by DexFileVerifier. if (num_sfields == 0 || LIKELY(field_idx > last_static_field_idx)) { LoadField(field, klass, &sfields->At(num_sfields)); ++num_sfields; last_static_field_idx = field_idx; } }, [&](const ClassAccessor::Field& field) REQUIRES_SHARED(Locks::mutator_lock_) { uint32_t field_idx = field.GetIndex(); DCHECK_GE(field_idx, last_instance_field_idx); // Ordering enforced by DexFileVerifier. if (num_ifields == 0 || LIKELY(field_idx > last_instance_field_idx)) { LoadField(field, klass, &ifields->At(num_ifields)); ++num_ifields; last_instance_field_idx = field_idx; } }, [&](const ClassAccessor::Method& method) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* art_method = klass->GetDirectMethodUnchecked(class_def_method_index, image_pointer_size_); LoadMethod(dex_file, method, klass, art_method); LinkCode(this, art_method, oat_class_ptr, class_def_method_index); uint32_t it_method_index = method.GetIndex(); if (last_dex_method_index == it_method_index) { // duplicate case art_method->SetMethodIndex(last_class_def_method_index); } else { art_method->SetMethodIndex(class_def_method_index); last_dex_method_index = it_method_index; last_class_def_method_index = class_def_method_index; } ++class_def_method_index; }, [&](const ClassAccessor::Method& method) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* art_method = klass->GetVirtualMethodUnchecked( class_def_method_index - accessor.NumDirectMethods(), image_pointer_size_); LoadMethod(dex_file, method, klass, art_method); LinkCode(this, art_method, oat_class_ptr, class_def_method_index); ++class_def_method_index; }); if (UNLIKELY(num_ifields + num_sfields != accessor.NumFields())) { LOG(WARNING) << "Duplicate fields in class " << klass->PrettyDescriptor() << " (unique static fields: " << num_sfields << "/" << accessor.NumStaticFields() << ", unique instance fields: " << num_ifields << "/" << accessor.NumInstanceFields() << ")"; // NOTE: Not shrinking the over-allocated sfields/ifields, just setting size. if (sfields != nullptr) { sfields->SetSize(num_sfields); } if (ifields != nullptr) { ifields->SetSize(num_ifields); } } // Set the field arrays. klass->SetSFieldsPtr(sfields); DCHECK_EQ(klass->NumStaticFields(), num_sfields); klass->SetIFieldsPtr(ifields); DCHECK_EQ(klass->NumInstanceFields(), num_ifields); } // Ensure that the card is marked so that remembered sets pick up native roots. WriteBarrier::ForEveryFieldWrite(klass.Get()); self->AllowThreadSuspension(); } void ClassLinker::LoadField(const ClassAccessor::Field& field, Handle klass, ArtField* dst) { const uint32_t field_idx = field.GetIndex(); dst->SetDexFieldIndex(field_idx); dst->SetDeclaringClass(klass.Get()); // Get access flags from the DexFile and set hiddenapi runtime access flags. dst->SetAccessFlags(field.GetAccessFlags() | hiddenapi::CreateRuntimeFlags(field)); } void ClassLinker::LoadMethod(const DexFile& dex_file, const ClassAccessor::Method& method, Handle klass, ArtMethod* dst) { const uint32_t dex_method_idx = method.GetIndex(); const dex::MethodId& method_id = dex_file.GetMethodId(dex_method_idx); const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_); ScopedAssertNoThreadSuspension ants("LoadMethod"); dst->SetDexMethodIndex(dex_method_idx); dst->SetDeclaringClass(klass.Get()); // Get access flags from the DexFile and set hiddenapi runtime access flags. uint32_t access_flags = method.GetAccessFlags() | hiddenapi::CreateRuntimeFlags(method); if (UNLIKELY(strcmp("finalize", method_name) == 0)) { // Set finalizable flag on declaring class. if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) { // Void return type. if (klass->GetClassLoader() != nullptr) { // All non-boot finalizer methods are flagged. klass->SetFinalizable(); } else { std::string temp; const char* klass_descriptor = klass->GetDescriptor(&temp); // The Enum class declares a "final" finalize() method to prevent subclasses from // introducing a finalizer. We don't want to set the finalizable flag for Enum or its // subclasses, so we exclude it here. // We also want to avoid setting the flag on Object, where we know that finalize() is // empty. if (strcmp(klass_descriptor, "Ljava/lang/Object;") != 0 && strcmp(klass_descriptor, "Ljava/lang/Enum;") != 0) { klass->SetFinalizable(); } } } } else if (method_name[0] == '<') { // Fix broken access flags for initializers. Bug 11157540. bool is_init = (strcmp("", method_name) == 0); bool is_clinit = !is_init && (strcmp("", method_name) == 0); if (UNLIKELY(!is_init && !is_clinit)) { LOG(WARNING) << "Unexpected '<' at start of method name " << method_name; } else { if (UNLIKELY((access_flags & kAccConstructor) == 0)) { LOG(WARNING) << method_name << " didn't have expected constructor access flag in class " << klass->PrettyDescriptor() << " in dex file " << dex_file.GetLocation(); access_flags |= kAccConstructor; } } } if (UNLIKELY((access_flags & kAccNative) != 0u)) { // Check if the native method is annotated with @FastNative or @CriticalNative. access_flags |= annotations::GetNativeMethodAnnotationAccessFlags( dex_file, dst->GetClassDef(), dex_method_idx); } dst->SetAccessFlags(access_flags); // Must be done after SetAccessFlags since IsAbstract depends on it. if (klass->IsInterface() && dst->IsAbstract()) { dst->CalculateAndSetImtIndex(); } if (dst->HasCodeItem()) { DCHECK_NE(method.GetCodeItemOffset(), 0u); if (Runtime::Current()->IsAotCompiler()) { dst->SetDataPtrSize(reinterpret_cast32(method.GetCodeItemOffset()), image_pointer_size_); } else { dst->SetCodeItem(dst->GetDexFile()->GetCodeItem(method.GetCodeItemOffset())); } } else { dst->SetDataPtrSize(nullptr, image_pointer_size_); DCHECK_EQ(method.GetCodeItemOffset(), 0u); } // Set optimization flags related to the shorty. const char* shorty = dst->GetShorty(); bool all_parameters_are_reference = true; bool all_parameters_are_reference_or_int = true; bool return_type_is_fp = (shorty[0] == 'F' || shorty[0] == 'D'); for (size_t i = 1, e = strlen(shorty); i < e; ++i) { if (shorty[i] != 'L') { all_parameters_are_reference = false; if (shorty[i] == 'F' || shorty[i] == 'D' || shorty[i] == 'J') { all_parameters_are_reference_or_int = false; break; } } } if (!dst->IsNative() && all_parameters_are_reference) { dst->SetNterpEntryPointFastPathFlag(); } if (!return_type_is_fp && all_parameters_are_reference_or_int) { dst->SetNterpInvokeFastPathFlag(); } } void ClassLinker::AppendToBootClassPath(Thread* self, const DexFile* dex_file) { ObjPtr dex_cache = AllocAndInitializeDexCache( self, *dex_file, Runtime::Current()->GetLinearAlloc()); CHECK(dex_cache != nullptr) << "Failed to allocate dex cache for " << dex_file->GetLocation(); AppendToBootClassPath(dex_file, dex_cache); } void ClassLinker::AppendToBootClassPath(const DexFile* dex_file, ObjPtr dex_cache) { CHECK(dex_file != nullptr); CHECK(dex_cache != nullptr) << dex_file->GetLocation(); boot_class_path_.push_back(dex_file); WriterMutexLock mu(Thread::Current(), *Locks::dex_lock_); RegisterDexFileLocked(*dex_file, dex_cache, /* class_loader= */ nullptr); } void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file, ObjPtr dex_cache, ObjPtr class_loader) { Thread* const self = Thread::Current(); Locks::dex_lock_->AssertExclusiveHeld(self); CHECK(dex_cache != nullptr) << dex_file.GetLocation(); CHECK_EQ(dex_cache->GetDexFile(), &dex_file) << dex_file.GetLocation(); // For app images, the dex cache location may be a suffix of the dex file location since the // dex file location is an absolute path. const std::string dex_cache_location = dex_cache->GetLocation()->ToModifiedUtf8(); const size_t dex_cache_length = dex_cache_location.length(); CHECK_GT(dex_cache_length, 0u) << dex_file.GetLocation(); std::string dex_file_location = dex_file.GetLocation(); // The following paths checks don't work on preopt when using boot dex files, where the dex // cache location is the one on device, and the dex_file's location is the one on host. if (!(Runtime::Current()->IsAotCompiler() && class_loader == nullptr && !kIsTargetBuild)) { CHECK_GE(dex_file_location.length(), dex_cache_length) << dex_cache_location << " " << dex_file.GetLocation(); const std::string dex_file_suffix = dex_file_location.substr( dex_file_location.length() - dex_cache_length, dex_cache_length); // Example dex_cache location is SettingsProvider.apk and // dex file location is /system/priv-app/SettingsProvider/SettingsProvider.apk CHECK_EQ(dex_cache_location, dex_file_suffix); } const OatFile* oat_file = (dex_file.GetOatDexFile() != nullptr) ? dex_file.GetOatDexFile()->GetOatFile() : nullptr; // Clean up pass to remove null dex caches; null dex caches can occur due to class unloading // and we are lazily removing null entries. Also check if we need to initialize OatFile data // (.data.bimg.rel.ro and .bss sections) needed for code execution. bool initialize_oat_file_data = (oat_file != nullptr) && oat_file->IsExecutable(); JavaVMExt* const vm = self->GetJniEnv()->GetVm(); for (auto it = dex_caches_.begin(); it != dex_caches_.end(); ) { DexCacheData data = *it; if (self->IsJWeakCleared(data.weak_root)) { vm->DeleteWeakGlobalRef(self, data.weak_root); it = dex_caches_.erase(it); } else { if (initialize_oat_file_data && it->dex_file->GetOatDexFile() != nullptr && it->dex_file->GetOatDexFile()->GetOatFile() == oat_file) { initialize_oat_file_data = false; // Already initialized. } ++it; } } if (initialize_oat_file_data) { oat_file->InitializeRelocations(); } // Let hiddenapi assign a domain to the newly registered dex file. hiddenapi::InitializeDexFileDomain(dex_file, class_loader); jweak dex_cache_jweak = vm->AddWeakGlobalRef(self, dex_cache); DexCacheData data; data.weak_root = dex_cache_jweak; data.dex_file = dex_cache->GetDexFile(); data.class_table = ClassTableForClassLoader(class_loader); AddNativeDebugInfoForDex(self, data.dex_file); DCHECK(data.class_table != nullptr); // Make sure to hold the dex cache live in the class table. This case happens for the boot class // path dex caches without an image. data.class_table->InsertStrongRoot(dex_cache); // Make sure that the dex cache holds the classloader live. dex_cache->SetClassLoader(class_loader); if (class_loader != nullptr) { // Since we added a strong root to the class table, do the write barrier as required for // remembered sets and generational GCs. WriteBarrier::ForEveryFieldWrite(class_loader); } dex_caches_.push_back(data); } ObjPtr ClassLinker::DecodeDexCacheLocked(Thread* self, const DexCacheData* data) { return data != nullptr ? ObjPtr::DownCast(self->DecodeJObject(data->weak_root)) : nullptr; } bool ClassLinker::IsSameClassLoader( ObjPtr dex_cache, const DexCacheData* data, ObjPtr class_loader) { CHECK(data != nullptr); DCHECK_EQ(dex_cache->GetDexFile(), data->dex_file); return data->class_table == ClassTableForClassLoader(class_loader); } void ClassLinker::RegisterExistingDexCache(ObjPtr dex_cache, ObjPtr class_loader) { SCOPED_TRACE << __FUNCTION__ << " " << dex_cache->GetDexFile()->GetLocation(); Thread* self = Thread::Current(); StackHandleScope<2> hs(self); Handle h_dex_cache(hs.NewHandle(dex_cache)); Handle h_class_loader(hs.NewHandle(class_loader)); const DexFile* dex_file = dex_cache->GetDexFile(); DCHECK(dex_file != nullptr) << "Attempt to register uninitialized dex_cache object!"; if (kIsDebugBuild) { ReaderMutexLock mu(self, *Locks::dex_lock_); const DexCacheData* old_data = FindDexCacheDataLocked(*dex_file); ObjPtr old_dex_cache = DecodeDexCacheLocked(self, old_data); DCHECK(old_dex_cache.IsNull()) << "Attempt to manually register a dex cache thats already " << "been registered on dex file " << dex_file->GetLocation(); } ClassTable* table; { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); table = InsertClassTableForClassLoader(h_class_loader.Get()); } // Avoid a deadlock between a garbage collecting thread running a checkpoint, // a thread holding the dex lock and blocking on a condition variable regarding // weak references access, and a thread blocking on the dex lock. gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseClassLinker, gc::kCollectorTypeClassLinker); WriterMutexLock mu(self, *Locks::dex_lock_); RegisterDexFileLocked(*dex_file, h_dex_cache.Get(), h_class_loader.Get()); table->InsertStrongRoot(h_dex_cache.Get()); if (h_class_loader.Get() != nullptr) { // Since we added a strong root to the class table, do the write barrier as required for // remembered sets and generational GCs. WriteBarrier::ForEveryFieldWrite(h_class_loader.Get()); } } static void ThrowDexFileAlreadyRegisteredError(Thread* self, const DexFile& dex_file) REQUIRES_SHARED(Locks::mutator_lock_) { self->ThrowNewExceptionF("Ljava/lang/InternalError;", "Attempt to register dex file %s with multiple class loaders", dex_file.GetLocation().c_str()); } ObjPtr ClassLinker::RegisterDexFile(const DexFile& dex_file, ObjPtr class_loader) { Thread* self = Thread::Current(); ObjPtr old_dex_cache; bool registered_with_another_class_loader = false; { ReaderMutexLock mu(self, *Locks::dex_lock_); const DexCacheData* old_data = FindDexCacheDataLocked(dex_file); old_dex_cache = DecodeDexCacheLocked(self, old_data); if (old_dex_cache != nullptr) { if (IsSameClassLoader(old_dex_cache, old_data, class_loader)) { return old_dex_cache; } else { // TODO This is not very clean looking. Should maybe try to make a way to request exceptions // be thrown when it's safe to do so to simplify this. registered_with_another_class_loader = true; } } } // We need to have released the dex_lock_ to allocate safely. if (registered_with_another_class_loader) { ThrowDexFileAlreadyRegisteredError(self, dex_file); return nullptr; } SCOPED_TRACE << __FUNCTION__ << " " << dex_file.GetLocation(); LinearAlloc* const linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader); DCHECK(linear_alloc != nullptr); ClassTable* table; { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); table = InsertClassTableForClassLoader(class_loader); } // Don't alloc while holding the lock, since allocation may need to // suspend all threads and another thread may need the dex_lock_ to // get to a suspend point. StackHandleScope<3> hs(self); Handle h_class_loader(hs.NewHandle(class_loader)); Handle h_dex_cache(hs.NewHandle(AllocDexCache(self, dex_file))); { // Avoid a deadlock between a garbage collecting thread running a checkpoint, // a thread holding the dex lock and blocking on a condition variable regarding // weak references access, and a thread blocking on the dex lock. gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseClassLinker, gc::kCollectorTypeClassLinker); WriterMutexLock mu(self, *Locks::dex_lock_); const DexCacheData* old_data = FindDexCacheDataLocked(dex_file); old_dex_cache = DecodeDexCacheLocked(self, old_data); if (old_dex_cache == nullptr && h_dex_cache != nullptr) { // Do InitializeNativeFields while holding dex lock to make sure two threads don't call it // at the same time with the same dex cache. Since the .bss is shared this can cause failing // DCHECK that the arrays are null. h_dex_cache->InitializeNativeFields(&dex_file, linear_alloc); RegisterDexFileLocked(dex_file, h_dex_cache.Get(), h_class_loader.Get()); } if (old_dex_cache != nullptr) { // Another thread managed to initialize the dex cache faster, so use that DexCache. // If this thread encountered OOME, ignore it. DCHECK_EQ(h_dex_cache == nullptr, self->IsExceptionPending()); self->ClearException(); // We cannot call EnsureSameClassLoader() or allocate an exception while holding the // dex_lock_. if (IsSameClassLoader(old_dex_cache, old_data, h_class_loader.Get())) { return old_dex_cache; } else { registered_with_another_class_loader = true; } } } if (registered_with_another_class_loader) { ThrowDexFileAlreadyRegisteredError(self, dex_file); return nullptr; } if (h_dex_cache == nullptr) { self->AssertPendingOOMException(); return nullptr; } table->InsertStrongRoot(h_dex_cache.Get()); if (h_class_loader.Get() != nullptr) { // Since we added a strong root to the class table, do the write barrier as required for // remembered sets and generational GCs. WriteBarrier::ForEveryFieldWrite(h_class_loader.Get()); } VLOG(class_linker) << "Registered dex file " << dex_file.GetLocation(); PaletteNotifyDexFileLoaded(dex_file.GetLocation().c_str()); return h_dex_cache.Get(); } bool ClassLinker::IsDexFileRegistered(Thread* self, const DexFile& dex_file) { ReaderMutexLock mu(self, *Locks::dex_lock_); return DecodeDexCacheLocked(self, FindDexCacheDataLocked(dex_file)) != nullptr; } ObjPtr ClassLinker::FindDexCache(Thread* self, const DexFile& dex_file) { ReaderMutexLock mu(self, *Locks::dex_lock_); const DexCacheData* dex_cache_data = FindDexCacheDataLocked(dex_file); ObjPtr dex_cache = DecodeDexCacheLocked(self, dex_cache_data); if (dex_cache != nullptr) { return dex_cache; } // Failure, dump diagnostic and abort. for (const DexCacheData& data : dex_caches_) { if (DecodeDexCacheLocked(self, &data) != nullptr) { LOG(FATAL_WITHOUT_ABORT) << "Registered dex file " << data.dex_file->GetLocation(); } } LOG(FATAL) << "Failed to find DexCache for DexFile " << dex_file.GetLocation() << " " << &dex_file << " " << dex_cache_data->dex_file; UNREACHABLE(); } ClassTable* ClassLinker::FindClassTable(Thread* self, ObjPtr dex_cache) { const DexFile* dex_file = dex_cache->GetDexFile(); DCHECK(dex_file != nullptr); ReaderMutexLock mu(self, *Locks::dex_lock_); // Search assuming unique-ness of dex file. for (const DexCacheData& data : dex_caches_) { // Avoid decoding (and read barriers) other unrelated dex caches. if (data.dex_file == dex_file) { ObjPtr registered_dex_cache = DecodeDexCacheLocked(self, &data); if (registered_dex_cache != nullptr) { CHECK_EQ(registered_dex_cache, dex_cache) << dex_file->GetLocation(); return data.class_table; } } } return nullptr; } const ClassLinker::DexCacheData* ClassLinker::FindDexCacheDataLocked(const DexFile& dex_file) { // Search assuming unique-ness of dex file. for (const DexCacheData& data : dex_caches_) { // Avoid decoding (and read barriers) other unrelated dex caches. if (data.dex_file == &dex_file) { return &data; } } return nullptr; } void ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type, ClassRoot primitive_root) { ObjPtr primitive_class = AllocClass(self, mirror::Class::PrimitiveClassSize(image_pointer_size_)); CHECK(primitive_class != nullptr) << "OOM for primitive class " << type; // Do not hold lock on the primitive class object, the initialization of // primitive classes is done while the process is still single threaded. primitive_class->SetAccessFlagsDuringLinking( kAccPublic | kAccFinal | kAccAbstract | kAccVerificationAttempted); primitive_class->SetPrimitiveType(type); primitive_class->SetIfTable(GetClassRoot(this)->GetIfTable()); // Skip EnsureSkipAccessChecksMethods(). We can skip the verified status, // the kAccVerificationAttempted flag was added above, and there are no // methods that need the kAccSkipAccessChecks flag. DCHECK_EQ(primitive_class->NumMethods(), 0u); // Primitive classes are initialized during single threaded startup, so visibly initialized. primitive_class->SetStatusForPrimitiveOrArray(ClassStatus::kVisiblyInitialized); const char* descriptor = Primitive::Descriptor(type); ObjPtr existing = InsertClass(descriptor, primitive_class, ComputeModifiedUtf8Hash(descriptor)); CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed"; SetClassRoot(primitive_root, primitive_class); } inline ObjPtr ClassLinker::GetArrayIfTable() { return GetClassRoot>(this)->GetIfTable(); } // Create an array class (i.e. the class object for the array, not the // array itself). "descriptor" looks like "[C" or "[[[[B" or // "[Ljava/lang/String;". // // If "descriptor" refers to an array of primitives, look up the // primitive type's internally-generated class object. // // "class_loader" is the class loader of the class that's referring to // us. It's used to ensure that we're looking for the element type in // the right context. It does NOT become the class loader for the // array class; that always comes from the base element class. // // Returns null with an exception raised on failure. ObjPtr ClassLinker::CreateArrayClass(Thread* self, const char* descriptor, size_t hash, Handle class_loader) { // Identify the underlying component type CHECK_EQ('[', descriptor[0]); StackHandleScope<2> hs(self); // This is to prevent the calls to ClassLoad and ClassPrepare which can cause java/user-supplied // code to be executed. We put it up here so we can avoid all the allocations associated with // creating the class. This can happen with (eg) jit threads. if (!self->CanLoadClasses()) { // Make sure we don't try to load anything, potentially causing an infinite loop. ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return nullptr; } MutableHandle component_type(hs.NewHandle(FindClass(self, descriptor + 1, class_loader))); if (component_type == nullptr) { DCHECK(self->IsExceptionPending()); // We need to accept erroneous classes as component types. const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1); component_type.Assign(LookupClass(self, descriptor + 1, component_hash, class_loader.Get())); if (component_type == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; } else { self->ClearException(); } } if (UNLIKELY(component_type->IsPrimitiveVoid())) { ThrowNoClassDefFoundError("Attempt to create array of void primitive type"); return nullptr; } // See if the component type is already loaded. Array classes are // always associated with the class loader of their underlying // element type -- an array of Strings goes with the loader for // java/lang/String -- so we need to look for it there. (The // caller should have checked for the existence of the class // before calling here, but they did so with *their* class loader, // not the component type's loader.) // // If we find it, the caller adds "loader" to the class' initiating // loader list, which should prevent us from going through this again. // // This call is unnecessary if "loader" and "component_type->GetClassLoader()" // are the same, because our caller (FindClass) just did the // lookup. (Even if we get this wrong we still have correct behavior, // because we effectively do this lookup again when we add the new // class to the hash table --- necessary because of possible races with // other threads.) if (class_loader.Get() != component_type->GetClassLoader()) { ObjPtr new_class = LookupClass(self, descriptor, hash, component_type->GetClassLoader()); if (new_class != nullptr) { return new_class; } } // Core array classes, i.e. Object[], Class[], String[] and primitive // arrays, have special initialization and they should be found above. DCHECK(!component_type->IsObjectClass() || // Guard from false positives for errors before setting superclass. component_type->IsErroneousUnresolved()); DCHECK(!component_type->IsStringClass()); DCHECK(!component_type->IsClassClass()); DCHECK(!component_type->IsPrimitive()); // Fill out the fields in the Class. // // It is possible to execute some methods against arrays, because // all arrays are subclasses of java_lang_Object_, so we need to set // up a vtable. We can just point at the one in java_lang_Object_. // // Array classes are simple enough that we don't need to do a full // link step. size_t array_class_size = mirror::Array::ClassSize(image_pointer_size_); auto visitor = [this, array_class_size, component_type](ObjPtr obj, size_t usable_size) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoNewTransactionRecords sanntr("CreateArrayClass"); mirror::Class::InitializeClassVisitor init_class(array_class_size); init_class(obj, usable_size); ObjPtr klass = ObjPtr::DownCast(obj); klass->SetComponentType(component_type.Get()); // Do not hold lock for initialization, the fence issued after the visitor // returns ensures memory visibility together with the implicit consume // semantics (for all supported architectures) for any thread that loads // the array class reference from any memory locations afterwards. FinishArrayClassSetup(klass); }; auto new_class = hs.NewHandle( AllocClass(self, GetClassRoot(this), array_class_size, visitor)); if (new_class == nullptr) { self->AssertPendingOOMException(); return nullptr; } ObjPtr existing = InsertClass(descriptor, new_class.Get(), hash); if (existing == nullptr) { // We postpone ClassLoad and ClassPrepare events to this point in time to avoid // duplicate events in case of races. Array classes don't really follow dedicated // load and prepare, anyways. Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(new_class); Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(new_class, new_class); jit::Jit::NewTypeLoadedIfUsingJit(new_class.Get()); return new_class.Get(); } // Another thread must have loaded the class after we // started but before we finished. Abandon what we've // done. // // (Yes, this happens.) return existing; } ObjPtr ClassLinker::LookupPrimitiveClass(char type) { ClassRoot class_root; switch (type) { case 'B': class_root = ClassRoot::kPrimitiveByte; break; case 'C': class_root = ClassRoot::kPrimitiveChar; break; case 'D': class_root = ClassRoot::kPrimitiveDouble; break; case 'F': class_root = ClassRoot::kPrimitiveFloat; break; case 'I': class_root = ClassRoot::kPrimitiveInt; break; case 'J': class_root = ClassRoot::kPrimitiveLong; break; case 'S': class_root = ClassRoot::kPrimitiveShort; break; case 'Z': class_root = ClassRoot::kPrimitiveBoolean; break; case 'V': class_root = ClassRoot::kPrimitiveVoid; break; default: return nullptr; } return GetClassRoot(class_root, this); } ObjPtr ClassLinker::FindPrimitiveClass(char type) { ObjPtr result = LookupPrimitiveClass(type); if (UNLIKELY(result == nullptr)) { std::string printable_type(PrintableChar(type)); ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str()); } return result; } ObjPtr ClassLinker::InsertClass(const char* descriptor, ObjPtr klass, size_t hash) { DCHECK(Thread::Current()->CanLoadClasses()); if (VLOG_IS_ON(class_linker)) { ObjPtr dex_cache = klass->GetDexCache(); std::string source; if (dex_cache != nullptr) { source += " from "; source += dex_cache->GetLocation()->ToModifiedUtf8(); } LOG(INFO) << "Loaded class " << descriptor << source; } { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); const ObjPtr class_loader = klass->GetClassLoader(); ClassTable* const class_table = InsertClassTableForClassLoader(class_loader); ObjPtr existing = class_table->Lookup(descriptor, hash); if (existing != nullptr) { return existing; } VerifyObject(klass); class_table->InsertWithHash(klass, hash); if (class_loader != nullptr) { // This is necessary because we need to have the card dirtied for remembered sets. WriteBarrier::ForEveryFieldWrite(class_loader); } if (log_new_roots_) { new_class_roots_.push_back(GcRoot(klass)); } } if (kIsDebugBuild) { // Test that copied methods correctly can find their holder. for (ArtMethod& method : klass->GetCopiedMethods(image_pointer_size_)) { CHECK_EQ(GetHoldingClassOfCopiedMethod(&method), klass); } } return nullptr; } void ClassLinker::WriteBarrierForBootOatFileBssRoots(const OatFile* oat_file) { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); DCHECK(!oat_file->GetBssGcRoots().empty()) << oat_file->GetLocation(); if (log_new_roots_ && !ContainsElement(new_bss_roots_boot_oat_files_, oat_file)) { new_bss_roots_boot_oat_files_.push_back(oat_file); } } // TODO This should really be in mirror::Class. void ClassLinker::UpdateClassMethods(ObjPtr klass, LengthPrefixedArray* new_methods) { klass->SetMethodsPtrUnchecked(new_methods, klass->NumDirectMethods(), klass->NumDeclaredVirtualMethods()); // Need to mark the card so that the remembered sets and mod union tables get updated. WriteBarrier::ForEveryFieldWrite(klass); } ObjPtr ClassLinker::LookupClass(Thread* self, const char* descriptor, ObjPtr class_loader) { return LookupClass(self, descriptor, ComputeModifiedUtf8Hash(descriptor), class_loader); } ObjPtr ClassLinker::LookupClass(Thread* self, const char* descriptor, size_t hash, ObjPtr class_loader) { ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); ClassTable* const class_table = ClassTableForClassLoader(class_loader); if (class_table != nullptr) { ObjPtr result = class_table->Lookup(descriptor, hash); if (result != nullptr) { return result; } } return nullptr; } class MoveClassTableToPreZygoteVisitor : public ClassLoaderVisitor { public: MoveClassTableToPreZygoteVisitor() {} void Visit(ObjPtr class_loader) REQUIRES(Locks::classlinker_classes_lock_) REQUIRES_SHARED(Locks::mutator_lock_) override { ClassTable* const class_table = class_loader->GetClassTable(); if (class_table != nullptr) { class_table->FreezeSnapshot(); } } }; void ClassLinker::MoveClassTableToPreZygote() { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); boot_class_table_->FreezeSnapshot(); MoveClassTableToPreZygoteVisitor visitor; VisitClassLoaders(&visitor); } // Look up classes by hash and descriptor and put all matching ones in the result array. class LookupClassesVisitor : public ClassLoaderVisitor { public: LookupClassesVisitor(const char* descriptor, size_t hash, std::vector>* result) : descriptor_(descriptor), hash_(hash), result_(result) {} void Visit(ObjPtr class_loader) REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) override { ClassTable* const class_table = class_loader->GetClassTable(); ObjPtr klass = class_table->Lookup(descriptor_, hash_); // Add `klass` only if `class_loader` is its defining (not just initiating) class loader. if (klass != nullptr && klass->GetClassLoader() == class_loader) { result_->push_back(klass); } } private: const char* const descriptor_; const size_t hash_; std::vector>* const result_; }; void ClassLinker::LookupClasses(const char* descriptor, std::vector>& result) { result.clear(); Thread* const self = Thread::Current(); ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); const size_t hash = ComputeModifiedUtf8Hash(descriptor); ObjPtr klass = boot_class_table_->Lookup(descriptor, hash); if (klass != nullptr) { DCHECK(klass->GetClassLoader() == nullptr); result.push_back(klass); } LookupClassesVisitor visitor(descriptor, hash, &result); VisitClassLoaders(&visitor); } bool ClassLinker::AttemptSupertypeVerification(Thread* self, verifier::VerifierDeps* verifier_deps, Handle klass, Handle supertype) { DCHECK(self != nullptr); DCHECK(klass != nullptr); DCHECK(supertype != nullptr); if (!supertype->IsVerified() && !supertype->IsErroneous()) { VerifyClass(self, verifier_deps, supertype); } if (supertype->IsVerified() || supertype->ShouldVerifyAtRuntime() || supertype->IsVerifiedNeedsAccessChecks()) { // The supertype is either verified, or we soft failed at AOT time. DCHECK(supertype->IsVerified() || Runtime::Current()->IsAotCompiler()); return true; } // If we got this far then we have a hard failure. std::string error_msg = StringPrintf("Rejecting class %s that attempts to sub-type erroneous class %s", klass->PrettyDescriptor().c_str(), supertype->PrettyDescriptor().c_str()); LOG(WARNING) << error_msg << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8(); StackHandleScope<1> hs(self); Handle cause(hs.NewHandle(self->GetException())); if (cause != nullptr) { // Set during VerifyClass call (if at all). self->ClearException(); } // Change into a verify error. ThrowVerifyError(klass.Get(), "%s", error_msg.c_str()); if (cause != nullptr) { self->GetException()->SetCause(cause.Get()); } ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex()); if (Runtime::Current()->IsAotCompiler()) { Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref); } // Need to grab the lock to change status. ObjectLock super_lock(self, klass); mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); return false; } verifier::FailureKind ClassLinker::VerifyClass(Thread* self, verifier::VerifierDeps* verifier_deps, Handle klass, verifier::HardFailLogMode log_level) { { // TODO: assert that the monitor on the Class is held ObjectLock lock(self, klass); // Is somebody verifying this now? ClassStatus old_status = klass->GetStatus(); while (old_status == ClassStatus::kVerifying) { lock.WaitIgnoringInterrupts(); // WaitIgnoringInterrupts can still receive an interrupt and return early, in this // case we may see the same status again. b/62912904. This is why the check is // greater or equal. CHECK(klass->IsErroneous() || (klass->GetStatus() >= old_status)) << "Class '" << klass->PrettyClass() << "' performed an illegal verification state transition from " << old_status << " to " << klass->GetStatus(); old_status = klass->GetStatus(); } // The class might already be erroneous, for example at compile time if we attempted to verify // this class as a parent to another. if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass.Get()); return verifier::FailureKind::kHardFailure; } // Don't attempt to re-verify if already verified. if (klass->IsVerified()) { EnsureSkipAccessChecksMethods(klass, image_pointer_size_); if (verifier_deps != nullptr && verifier_deps->ContainsDexFile(klass->GetDexFile()) && !verifier_deps->HasRecordedVerifiedStatus(klass->GetDexFile(), *klass->GetClassDef()) && !Runtime::Current()->IsAotCompiler()) { // If the klass is verified, but `verifier_deps` did not record it, this // means we are running background verification of a secondary dex file. // Re-run the verifier to populate `verifier_deps`. // No need to run the verification when running on the AOT Compiler, as // the driver handles those multithreaded cases already. std::string error_msg; verifier::FailureKind failure = PerformClassVerification(self, verifier_deps, klass, log_level, &error_msg); // We could have soft failures, so just check that we don't have a hard // failure. DCHECK_NE(failure, verifier::FailureKind::kHardFailure) << error_msg; } return verifier::FailureKind::kNoFailure; } if (klass->IsVerifiedNeedsAccessChecks()) { if (!Runtime::Current()->IsAotCompiler()) { // Mark the class as having a verification attempt to avoid re-running // the verifier and avoid calling EnsureSkipAccessChecksMethods. klass->SetVerificationAttempted(); mirror::Class::SetStatus(klass, ClassStatus::kVerified, self); } return verifier::FailureKind::kAccessChecksFailure; } // For AOT, don't attempt to re-verify if we have already found we should // verify at runtime. if (klass->ShouldVerifyAtRuntime()) { CHECK(Runtime::Current()->IsAotCompiler()); return verifier::FailureKind::kSoftFailure; } DCHECK_EQ(klass->GetStatus(), ClassStatus::kResolved); mirror::Class::SetStatus(klass, ClassStatus::kVerifying, self); // Skip verification if disabled. if (!Runtime::Current()->IsVerificationEnabled()) { mirror::Class::SetStatus(klass, ClassStatus::kVerified, self); EnsureSkipAccessChecksMethods(klass, image_pointer_size_); return verifier::FailureKind::kNoFailure; } } VLOG(class_linker) << "Beginning verification for class: " << klass->PrettyDescriptor() << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8(); // Verify super class. StackHandleScope<2> hs(self); MutableHandle supertype(hs.NewHandle(klass->GetSuperClass())); // If we have a superclass and we get a hard verification failure we can return immediately. if (supertype != nullptr && !AttemptSupertypeVerification(self, verifier_deps, klass, supertype)) { CHECK(self->IsExceptionPending()) << "Verification error should be pending."; return verifier::FailureKind::kHardFailure; } // Verify all default super-interfaces. // // (1) Don't bother if the superclass has already had a soft verification failure. // // (2) Interfaces shouldn't bother to do this recursive verification because they cannot cause // recursive initialization by themselves. This is because when an interface is initialized // directly it must not initialize its superinterfaces. We are allowed to verify regardless // but choose not to for an optimization. If the interfaces is being verified due to a class // initialization (which would need all the default interfaces to be verified) the class code // will trigger the recursive verification anyway. if ((supertype == nullptr || supertype->IsVerified()) // See (1) && !klass->IsInterface()) { // See (2) int32_t iftable_count = klass->GetIfTableCount(); MutableHandle iface(hs.NewHandle(nullptr)); // Loop through all interfaces this class has defined. It doesn't matter the order. for (int32_t i = 0; i < iftable_count; i++) { iface.Assign(klass->GetIfTable()->GetInterface(i)); DCHECK(iface != nullptr); // We only care if we have default interfaces and can skip if we are already verified... if (LIKELY(!iface->HasDefaultMethods() || iface->IsVerified())) { continue; } else if (UNLIKELY(!AttemptSupertypeVerification(self, verifier_deps, klass, iface))) { // We had a hard failure while verifying this interface. Just return immediately. CHECK(self->IsExceptionPending()) << "Verification error should be pending."; return verifier::FailureKind::kHardFailure; } else if (UNLIKELY(!iface->IsVerified())) { // We softly failed to verify the iface. Stop checking and clean up. // Put the iface into the supertype handle so we know what caused us to fail. supertype.Assign(iface.Get()); break; } } } // At this point if verification failed, then supertype is the "first" supertype that failed // verification (without a specific order). If verification succeeded, then supertype is either // null or the original superclass of klass and is verified. DCHECK(supertype == nullptr || supertype.Get() == klass->GetSuperClass() || !supertype->IsVerified()); // Try to use verification information from the oat file, otherwise do runtime verification. const DexFile& dex_file = *klass->GetDexCache()->GetDexFile(); ClassStatus oat_file_class_status(ClassStatus::kNotReady); bool preverified = VerifyClassUsingOatFile(self, dex_file, klass, oat_file_class_status); VLOG(class_linker) << "Class preverified status for class " << klass->PrettyDescriptor() << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() << ": " << preverified << "( " << oat_file_class_status << ")"; // If the oat file says the class had an error, re-run the verifier. That way we will get a // precise error message. To ensure a rerun, test: // mirror::Class::IsErroneous(oat_file_class_status) => !preverified DCHECK(!mirror::Class::IsErroneous(oat_file_class_status) || !preverified); std::string error_msg; verifier::FailureKind verifier_failure = verifier::FailureKind::kNoFailure; if (!preverified) { verifier_failure = PerformClassVerification(self, verifier_deps, klass, log_level, &error_msg); } // Verification is done, grab the lock again. ObjectLock lock(self, klass); if (preverified || verifier_failure != verifier::FailureKind::kHardFailure) { if (!preverified && verifier_failure != verifier::FailureKind::kNoFailure) { VLOG(class_linker) << "Soft verification failure in class " << klass->PrettyDescriptor() << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() << " because: " << error_msg; } self->AssertNoPendingException(); // Make sure all classes referenced by catch blocks are resolved. ResolveClassExceptionHandlerTypes(klass); if (verifier_failure == verifier::FailureKind::kNoFailure) { // Even though there were no verifier failures we need to respect whether the super-class and // super-default-interfaces were verified or requiring runtime reverification. if (supertype == nullptr || supertype->IsVerified() || supertype->IsVerifiedNeedsAccessChecks()) { mirror::Class::SetStatus(klass, ClassStatus::kVerified, self); } else { CHECK(Runtime::Current()->IsAotCompiler()); CHECK_EQ(supertype->GetStatus(), ClassStatus::kRetryVerificationAtRuntime); mirror::Class::SetStatus(klass, ClassStatus::kRetryVerificationAtRuntime, self); // Pretend a soft failure occurred so that we don't consider the class verified below. verifier_failure = verifier::FailureKind::kSoftFailure; } } else { CHECK(verifier_failure == verifier::FailureKind::kSoftFailure || verifier_failure == verifier::FailureKind::kTypeChecksFailure || verifier_failure == verifier::FailureKind::kAccessChecksFailure); // Soft failures at compile time should be retried at runtime. Soft // failures at runtime will be handled by slow paths in the generated // code. Set status accordingly. if (Runtime::Current()->IsAotCompiler()) { if (verifier_failure == verifier::FailureKind::kSoftFailure || verifier_failure == verifier::FailureKind::kTypeChecksFailure) { mirror::Class::SetStatus(klass, ClassStatus::kRetryVerificationAtRuntime, self); } else { mirror::Class::SetStatus(klass, ClassStatus::kVerifiedNeedsAccessChecks, self); } } else { mirror::Class::SetStatus(klass, ClassStatus::kVerified, self); // As this is a fake verified status, make sure the methods are _not_ marked // kAccSkipAccessChecks later. klass->SetVerificationAttempted(); } } } else { VLOG(verifier) << "Verification failed on class " << klass->PrettyDescriptor() << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() << " because: " << error_msg; self->AssertNoPendingException(); ThrowVerifyError(klass.Get(), "%s", error_msg.c_str()); mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); } if (preverified || verifier_failure == verifier::FailureKind::kNoFailure) { if (oat_file_class_status == ClassStatus::kVerifiedNeedsAccessChecks || UNLIKELY(Runtime::Current()->IsVerificationSoftFail())) { // Never skip access checks if the verification soft fail is forced. // Mark the class as having a verification attempt to avoid re-running the verifier. klass->SetVerificationAttempted(); } else { // Class is verified so we don't need to do any access check on its methods. // Let the interpreter know it by setting the kAccSkipAccessChecks flag onto each // method. // Note: we're going here during compilation and at runtime. When we set the // kAccSkipAccessChecks flag when compiling image classes, the flag is recorded // in the image and is set when loading the image. EnsureSkipAccessChecksMethods(klass, image_pointer_size_); } } // Done verifying. Notify the compiler about the verification status, in case the class // was verified implicitly (eg super class of a compiled class). if (Runtime::Current()->IsAotCompiler()) { Runtime::Current()->GetCompilerCallbacks()->UpdateClassState( ClassReference(&klass->GetDexFile(), klass->GetDexClassDefIndex()), klass->GetStatus()); } return verifier_failure; } verifier::FailureKind ClassLinker::PerformClassVerification(Thread* self, verifier::VerifierDeps* verifier_deps, Handle klass, verifier::HardFailLogMode log_level, std::string* error_msg) { Runtime* const runtime = Runtime::Current(); return verifier::ClassVerifier::VerifyClass(self, verifier_deps, klass.Get(), runtime->GetCompilerCallbacks(), runtime->IsAotCompiler(), log_level, Runtime::Current()->GetTargetSdkVersion(), error_msg); } bool ClassLinker::VerifyClassUsingOatFile(Thread* self, const DexFile& dex_file, Handle klass, ClassStatus& oat_file_class_status) { // If we're compiling, we can only verify the class using the oat file if // we are not compiling the image or if the class we're verifying is not part of // the compilation unit (app - dependencies). We will let the compiler callback // tell us about the latter. if (Runtime::Current()->IsAotCompiler()) { CompilerCallbacks* callbacks = Runtime::Current()->GetCompilerCallbacks(); // We are compiling an app (not the image). if (!callbacks->CanUseOatStatusForVerification(klass.Get())) { return false; } } const OatDexFile* oat_dex_file = dex_file.GetOatDexFile(); // In case we run without an image there won't be a backing oat file. if (oat_dex_file == nullptr || oat_dex_file->GetOatFile() == nullptr) { return false; } uint16_t class_def_index = klass->GetDexClassDefIndex(); oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus(); if (oat_file_class_status >= ClassStatus::kVerified) { return true; } if (oat_file_class_status >= ClassStatus::kVerifiedNeedsAccessChecks) { // We return that the clas has already been verified, and the caller should // check the class status to ensure we run with access checks. return true; } // Check the class status with the vdex file. const OatFile* oat_file = oat_dex_file->GetOatFile(); if (oat_file != nullptr) { oat_file_class_status = oat_file->GetVdexFile()->ComputeClassStatus(self, klass); if (oat_file_class_status >= ClassStatus::kVerifiedNeedsAccessChecks) { return true; } } // If we only verified a subset of the classes at compile time, we can end up with classes that // were resolved by the verifier. if (oat_file_class_status == ClassStatus::kResolved) { return false; } // We never expect a .oat file to have kRetryVerificationAtRuntime statuses. CHECK_NE(oat_file_class_status, ClassStatus::kRetryVerificationAtRuntime) << klass->PrettyClass() << " " << dex_file.GetLocation(); if (mirror::Class::IsErroneous(oat_file_class_status)) { // Compile time verification failed with a hard error. This is caused by invalid instructions // in the class. These errors are unrecoverable. return false; } if (oat_file_class_status == ClassStatus::kNotReady) { // Status is uninitialized if we couldn't determine the status at compile time, for example, // not loading the class. // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy // isn't a problem and this case shouldn't occur return false; } std::string temp; LOG(FATAL) << "Unexpected class status: " << oat_file_class_status << " " << dex_file.GetLocation() << " " << klass->PrettyClass() << " " << klass->GetDescriptor(&temp); UNREACHABLE(); } void ClassLinker::ResolveClassExceptionHandlerTypes(Handle klass) { for (ArtMethod& method : klass->GetMethods(image_pointer_size_)) { ResolveMethodExceptionHandlerTypes(&method); } } void ClassLinker::ResolveMethodExceptionHandlerTypes(ArtMethod* method) { // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod. CodeItemDataAccessor accessor(method->DexInstructionData()); if (!accessor.HasCodeItem()) { return; // native or abstract method } if (accessor.TriesSize() == 0) { return; // nothing to process } const uint8_t* handlers_ptr = accessor.GetCatchHandlerData(0); uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); for (uint32_t idx = 0; idx < handlers_size; idx++) { CatchHandlerIterator iterator(handlers_ptr); for (; iterator.HasNext(); iterator.Next()) { // Ensure exception types are resolved so that they don't need resolution to be delivered, // unresolved exception types will be ignored by exception delivery if (iterator.GetHandlerTypeIndex().IsValid()) { ObjPtr exception_type = ResolveType(iterator.GetHandlerTypeIndex(), method); if (exception_type == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); Thread::Current()->ClearException(); } } } handlers_ptr = iterator.EndDataPointer(); } } ObjPtr ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa, jstring name, jobjectArray interfaces, jobject loader, jobjectArray methods, jobjectArray throws) { Thread* self = soa.Self(); // This is to prevent the calls to ClassLoad and ClassPrepare which can cause java/user-supplied // code to be executed. We put it up here so we can avoid all the allocations associated with // creating the class. This can happen with (eg) jit-threads. if (!self->CanLoadClasses()) { // Make sure we don't try to load anything, potentially causing an infinite loop. ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return nullptr; } StackHandleScope<12> hs(self); MutableHandle temp_klass(hs.NewHandle( AllocClass(self, GetClassRoot(this), sizeof(mirror::Class)))); if (temp_klass == nullptr) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } DCHECK(temp_klass->GetClass() != nullptr); temp_klass->SetObjectSize(sizeof(mirror::Proxy)); // Set the class access flags incl. VerificationAttempted, so we do not try to set the flag on // the methods. temp_klass->SetAccessFlagsDuringLinking( kAccClassIsProxy | kAccPublic | kAccFinal | kAccVerificationAttempted); temp_klass->SetClassLoader(soa.Decode(loader)); DCHECK_EQ(temp_klass->GetPrimitiveType(), Primitive::kPrimNot); temp_klass->SetName(soa.Decode(name)); temp_klass->SetDexCache(GetClassRoot(this)->GetDexCache()); // Object has an empty iftable, copy it for that reason. temp_klass->SetIfTable(GetClassRoot(this)->GetIfTable()); mirror::Class::SetStatus(temp_klass, ClassStatus::kIdx, self); std::string storage; const char* descriptor = temp_klass->GetDescriptor(&storage); const size_t hash = ComputeModifiedUtf8Hash(descriptor); // Needs to be before we insert the class so that the allocator field is set. LinearAlloc* const allocator = GetOrCreateAllocatorForClassLoader(temp_klass->GetClassLoader()); // Insert the class before loading the fields as the field roots // (ArtField::declaring_class_) are only visited from the class // table. There can't be any suspend points between inserting the // class and setting the field arrays below. ObjPtr existing = InsertClass(descriptor, temp_klass.Get(), hash); CHECK(existing == nullptr); // Instance fields are inherited, but we add a couple of static fields... const size_t num_fields = 2; LengthPrefixedArray* sfields = AllocArtFieldArray(self, allocator, num_fields); temp_klass->SetSFieldsPtr(sfields); // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by // our proxy, so Class.getInterfaces doesn't return the flattened set. ArtField& interfaces_sfield = sfields->At(0); interfaces_sfield.SetDexFieldIndex(0); interfaces_sfield.SetDeclaringClass(temp_klass.Get()); interfaces_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); // 2. Create a static field 'throws' that holds exceptions thrown by our methods. ArtField& throws_sfield = sfields->At(1); throws_sfield.SetDexFieldIndex(1); throws_sfield.SetDeclaringClass(temp_klass.Get()); throws_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); // Proxies have 1 direct method, the constructor const size_t num_direct_methods = 1; // The array we get passed contains all methods, including private and static // ones that aren't proxied. We need to filter those out since only interface // methods (non-private & virtual) are actually proxied. Handle> h_methods = hs.NewHandle(soa.Decode>(methods)); DCHECK_EQ(h_methods->GetClass(), GetClassRoot>()) << mirror::Class::PrettyClass(h_methods->GetClass()); // List of the actual virtual methods this class will have. std::vector proxied_methods; std::vector proxied_throws_idx; proxied_methods.reserve(h_methods->GetLength()); proxied_throws_idx.reserve(h_methods->GetLength()); // Filter out to only the non-private virtual methods. for (auto [mirror, idx] : ZipCount(h_methods.Iterate())) { ArtMethod* m = mirror->GetArtMethod(); if (!m->IsPrivate() && !m->IsStatic()) { proxied_methods.push_back(m); proxied_throws_idx.push_back(idx); } } const size_t num_virtual_methods = proxied_methods.size(); // We also need to filter out the 'throws'. The 'throws' are a Class[][] that // contains an array of all the classes each function is declared to throw. // This is used to wrap unexpected exceptions in a // UndeclaredThrowableException exception. This array is in the same order as // the methods array and like the methods array must be filtered to remove any // non-proxied methods. const bool has_filtered_methods = static_cast(num_virtual_methods) != h_methods->GetLength(); MutableHandle>> original_proxied_throws( hs.NewHandle(soa.Decode>>(throws))); MutableHandle>> proxied_throws( hs.NewHandle>>( (has_filtered_methods) ? mirror::ObjectArray>::Alloc( self, original_proxied_throws->GetClass(), num_virtual_methods) : original_proxied_throws.Get())); if (proxied_throws.IsNull() && !original_proxied_throws.IsNull()) { self->AssertPendingOOMException(); return nullptr; } if (has_filtered_methods) { for (auto [orig_idx, new_idx] : ZipCount(MakeIterationRange(proxied_throws_idx))) { DCHECK_LE(new_idx, orig_idx); proxied_throws->Set(new_idx, original_proxied_throws->Get(orig_idx)); } } // Create the methods array. LengthPrefixedArray* proxy_class_methods = AllocArtMethodArray( self, allocator, num_direct_methods + num_virtual_methods); // Currently AllocArtMethodArray cannot return null, but the OOM logic is left there in case we // want to throw OOM in the future. if (UNLIKELY(proxy_class_methods == nullptr)) { self->AssertPendingOOMException(); return nullptr; } temp_klass->SetMethodsPtr(proxy_class_methods, num_direct_methods, num_virtual_methods); // Create the single direct method. CreateProxyConstructor(temp_klass, temp_klass->GetDirectMethodUnchecked(0, image_pointer_size_)); // Create virtual method using specified prototypes. // TODO These should really use the iterators. for (size_t i = 0; i < num_virtual_methods; ++i) { auto* virtual_method = temp_klass->GetVirtualMethodUnchecked(i, image_pointer_size_); auto* prototype = proxied_methods[i]; CreateProxyMethod(temp_klass, prototype, virtual_method); DCHECK(virtual_method->GetDeclaringClass() != nullptr); DCHECK(prototype->GetDeclaringClass() != nullptr); } // The super class is java.lang.reflect.Proxy temp_klass->SetSuperClass(GetClassRoot(this)); // Now effectively in the loaded state. mirror::Class::SetStatus(temp_klass, ClassStatus::kLoaded, self); self->AssertNoPendingException(); // At this point the class is loaded. Publish a ClassLoad event. // Note: this may be a temporary class. It is a listener's responsibility to handle this. Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(temp_klass); MutableHandle klass = hs.NewHandle(nullptr); { // Must hold lock on object when resolved. ObjectLock resolution_lock(self, temp_klass); // Link the fields and virtual methods, creating vtable and iftables. // The new class will replace the old one in the class table. Handle> h_interfaces( hs.NewHandle(soa.Decode>(interfaces))); if (!LinkClass(self, descriptor, temp_klass, h_interfaces, &klass)) { if (!temp_klass->IsErroneous()) { mirror::Class::SetStatus(temp_klass, ClassStatus::kErrorUnresolved, self); } return nullptr; } } CHECK(temp_klass->IsRetired()); CHECK_NE(temp_klass.Get(), klass.Get()); CHECK_EQ(interfaces_sfield.GetDeclaringClass(), klass.Get()); interfaces_sfield.SetObject( klass.Get(), soa.Decode>(interfaces)); CHECK_EQ(throws_sfield.GetDeclaringClass(), klass.Get()); throws_sfield.SetObject( klass.Get(), proxied_throws.Get()); Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(temp_klass, klass); // SubtypeCheckInfo::Initialized must happen-before any new-instance for that type. // See also ClassLinker::EnsureInitialized(). if (kBitstringSubtypeCheckEnabled) { MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); SubtypeCheck>::EnsureInitialized(klass.Get()); // TODO: Avoid taking subtype_check_lock_ if SubtypeCheck for j.l.r.Proxy is already assigned. } VisiblyInitializedCallback* callback = nullptr; { // Lock on klass is released. Lock new class object. ObjectLock initialization_lock(self, klass); EnsureSkipAccessChecksMethods(klass, image_pointer_size_); // Conservatively go through the ClassStatus::kInitialized state. callback = MarkClassInitialized(self, klass); } if (callback != nullptr) { callback->MakeVisible(self); } // Consistency checks. if (kIsDebugBuild) { CHECK(klass->GetIFieldsPtr() == nullptr); CheckProxyConstructor(klass->GetDirectMethod(0, image_pointer_size_)); for (size_t i = 0; i < num_virtual_methods; ++i) { auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_); CheckProxyMethod(virtual_method, proxied_methods[i]); } StackHandleScope<1> hs2(self); Handle decoded_name = hs2.NewHandle(soa.Decode(name)); std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces", decoded_name->ToModifiedUtf8().c_str())); CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(0)), interfaces_field_name); std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws", decoded_name->ToModifiedUtf8().c_str())); CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(1)), throws_field_name); CHECK_EQ(klass.Get()->GetProxyInterfaces(), soa.Decode>(interfaces)); CHECK_EQ(klass.Get()->GetProxyThrows(), proxied_throws.Get()); } return klass.Get(); } void ClassLinker::CreateProxyConstructor(Handle klass, ArtMethod* out) { // Create constructor for Proxy that must initialize the method. ObjPtr proxy_class = GetClassRoot(this); CHECK_EQ(proxy_class->NumDirectMethods(), 21u); // Find the (InvocationHandler)V method. The exact method offset varies depending // on which front-end compiler was used to build the libcore DEX files. ArtMethod* proxy_constructor = jni::DecodeArtMethod(WellKnownClasses::java_lang_reflect_Proxy_init); DCHECK(proxy_constructor != nullptr) << "Could not find method in java.lang.reflect.Proxy"; // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its // code_ too) DCHECK(out != nullptr); out->CopyFrom(proxy_constructor, image_pointer_size_); // Make this constructor public and fix the class to be our Proxy version. // Mark kAccCompileDontBother so that we don't take JIT samples for the method. b/62349349 // Note that the compiler calls a ResolveMethod() overload that does not handle a Proxy referrer. out->SetAccessFlags((out->GetAccessFlags() & ~kAccProtected) | kAccPublic | kAccCompileDontBother); out->SetDeclaringClass(klass.Get()); // Set the original constructor method. out->SetDataPtrSize(proxy_constructor, image_pointer_size_); } void ClassLinker::CheckProxyConstructor(ArtMethod* constructor) const { CHECK(constructor->IsConstructor()); auto* np = constructor->GetInterfaceMethodIfProxy(image_pointer_size_); CHECK_STREQ(np->GetName(), ""); CHECK_STREQ(np->GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V"); DCHECK(constructor->IsPublic()); } void ClassLinker::CreateProxyMethod(Handle klass, ArtMethod* prototype, ArtMethod* out) { // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize // as necessary DCHECK(out != nullptr); out->CopyFrom(prototype, image_pointer_size_); // Set class to be the concrete proxy class. out->SetDeclaringClass(klass.Get()); // Clear the abstract and default flags to ensure that defaults aren't picked in // preference to the invocation handler. const uint32_t kRemoveFlags = kAccAbstract | kAccDefault; // Make the method final. // Mark kAccCompileDontBother so that we don't take JIT samples for the method. b/62349349 const uint32_t kAddFlags = kAccFinal | kAccCompileDontBother; out->SetAccessFlags((out->GetAccessFlags() & ~kRemoveFlags) | kAddFlags); // Set the original interface method. out->SetDataPtrSize(prototype, image_pointer_size_); // At runtime the method looks like a reference and argument saving method, clone the code // related parameters from this method. out->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler()); } void ClassLinker::CheckProxyMethod(ArtMethod* method, ArtMethod* prototype) const { // Basic consistency checks. CHECK(!prototype->IsFinal()); CHECK(method->IsFinal()); CHECK(method->IsInvokable()); // The proxy method doesn't have its own dex cache or dex file and so it steals those of its // interface prototype. The exception to this are Constructors and the Class of the Proxy itself. CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex()); CHECK_EQ(prototype, method->GetInterfaceMethodIfProxy(image_pointer_size_)); } bool ClassLinker::CanWeInitializeClass(ObjPtr klass, bool can_init_statics, bool can_init_parents) { if (can_init_statics && can_init_parents) { return true; } if (!can_init_statics) { // Check if there's a class initializer. ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_); if (clinit != nullptr) { return false; } // Check if there are encoded static values needing initialization. if (klass->NumStaticFields() != 0) { const dex::ClassDef* dex_class_def = klass->GetClassDef(); DCHECK(dex_class_def != nullptr); if (dex_class_def->static_values_off_ != 0) { return false; } } } // If we are a class we need to initialize all interfaces with default methods when we are // initialized. Check all of them. if (!klass->IsInterface()) { size_t num_interfaces = klass->GetIfTableCount(); for (size_t i = 0; i < num_interfaces; i++) { ObjPtr iface = klass->GetIfTable()->GetInterface(i); if (iface->HasDefaultMethods() && !iface->IsInitialized()) { if (!can_init_parents || !CanWeInitializeClass(iface, can_init_statics, can_init_parents)) { return false; } } } } if (klass->IsInterface() || !klass->HasSuperClass()) { return true; } ObjPtr super_class = klass->GetSuperClass(); if (super_class->IsInitialized()) { return true; } return can_init_parents && CanWeInitializeClass(super_class, can_init_statics, can_init_parents); } bool ClassLinker::InitializeClass(Thread* self, Handle klass, bool can_init_statics, bool can_init_parents) { // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol // Are we already initialized and therefore done? // Note: we differ from the JLS here as we don't do this under the lock, this is benign as // an initialized class will never change its state. if (klass->IsInitialized()) { return true; } // Fast fail if initialization requires a full runtime. Not part of the JLS. if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) { return false; } self->AllowThreadSuspension(); Runtime* const runtime = Runtime::Current(); const bool stats_enabled = runtime->HasStatsEnabled(); uint64_t t0; { ObjectLock lock(self, klass); // Re-check under the lock in case another thread initialized ahead of us. if (klass->IsInitialized()) { return true; } // Was the class already found to be erroneous? Done under the lock to match the JLS. if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass.Get(), true, /* log= */ true); VlogClassInitializationFailure(klass); return false; } CHECK(klass->IsResolved() && !klass->IsErroneousResolved()) << klass->PrettyClass() << ": state=" << klass->GetStatus(); if (!klass->IsVerified()) { VerifyClass(self, /*verifier_deps= */ nullptr, klass); if (!klass->IsVerified()) { // We failed to verify, expect either the klass to be erroneous or verification failed at // compile time. if (klass->IsErroneous()) { // The class is erroneous. This may be a verifier error, or another thread attempted // verification and/or initialization and failed. We can distinguish those cases by // whether an exception is already pending. if (self->IsExceptionPending()) { // Check that it's a VerifyError. DCHECK_EQ("java.lang.Class", mirror::Class::PrettyClass(self->GetException()->GetClass())); } else { // Check that another thread attempted initialization. DCHECK_NE(0, klass->GetClinitThreadId()); DCHECK_NE(self->GetTid(), klass->GetClinitThreadId()); // Need to rethrow the previous failure now. ThrowEarlierClassFailure(klass.Get(), true); } VlogClassInitializationFailure(klass); } else { CHECK(Runtime::Current()->IsAotCompiler()); CHECK(klass->ShouldVerifyAtRuntime() || klass->IsVerifiedNeedsAccessChecks()); self->AssertNoPendingException(); self->SetException(Runtime::Current()->GetPreAllocatedNoClassDefFoundError()); } self->AssertPendingException(); return false; } else { self->AssertNoPendingException(); } // A separate thread could have moved us all the way to initialized. A "simple" example // involves a subclass of the current class being initialized at the same time (which // will implicitly initialize the superclass, if scheduled that way). b/28254258 DCHECK(!klass->IsErroneous()) << klass->GetStatus(); if (klass->IsInitialized()) { return true; } } // If the class is ClassStatus::kInitializing, either this thread is // initializing higher up the stack or another thread has beat us // to initializing and we need to wait. Either way, this // invocation of InitializeClass will not be responsible for // running and will return. if (klass->GetStatus() == ClassStatus::kInitializing) { // Could have got an exception during verification. if (self->IsExceptionPending()) { VlogClassInitializationFailure(klass); return false; } // We caught somebody else in the act; was it us? if (klass->GetClinitThreadId() == self->GetTid()) { // Yes. That's fine. Return so we can continue initializing. return true; } // No. That's fine. Wait for another thread to finish initializing. return WaitForInitializeClass(klass, self, lock); } // Try to get the oat class's status for this class if the oat file is present. The compiler // tries to validate superclass descriptors, and writes the result into the oat file. // Runtime correctness is guaranteed by classpath checks done on loading. If the classpath // is different at runtime than it was at compile time, the oat file is rejected. So if the // oat file is present, the classpaths must match, and the runtime time check can be skipped. bool has_oat_class = false; const OatFile::OatClass oat_class = (runtime->IsStarted() && !runtime->IsAotCompiler()) ? OatFile::FindOatClass(klass->GetDexFile(), klass->GetDexClassDefIndex(), &has_oat_class) : OatFile::OatClass::Invalid(); if (oat_class.GetStatus() < ClassStatus::kSuperclassValidated && !ValidateSuperClassDescriptors(klass)) { mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); return false; } self->AllowThreadSuspension(); CHECK_EQ(klass->GetStatus(), ClassStatus::kVerified) << klass->PrettyClass() << " self.tid=" << self->GetTid() << " clinit.tid=" << klass->GetClinitThreadId(); // From here out other threads may observe that we're initializing and so changes of state // require the a notification. klass->SetClinitThreadId(self->GetTid()); mirror::Class::SetStatus(klass, ClassStatus::kInitializing, self); t0 = stats_enabled ? NanoTime() : 0u; } uint64_t t_sub = 0; // Initialize super classes, must be done while initializing for the JLS. if (!klass->IsInterface() && klass->HasSuperClass()) { ObjPtr super_class = klass->GetSuperClass(); if (!super_class->IsInitialized()) { CHECK(!super_class->IsInterface()); CHECK(can_init_parents); StackHandleScope<1> hs(self); Handle handle_scope_super(hs.NewHandle(super_class)); uint64_t super_t0 = stats_enabled ? NanoTime() : 0u; bool super_initialized = InitializeClass(self, handle_scope_super, can_init_statics, true); uint64_t super_t1 = stats_enabled ? NanoTime() : 0u; if (!super_initialized) { // The super class was verified ahead of entering initializing, we should only be here if // the super class became erroneous due to initialization. // For the case of aot compiler, the super class might also be initializing but we don't // want to process circular dependencies in pre-compile. CHECK(self->IsExceptionPending()) << "Super class initialization failed for " << handle_scope_super->PrettyDescriptor() << " that has unexpected status " << handle_scope_super->GetStatus() << "\nPending exception:\n" << (self->GetException() != nullptr ? self->GetException()->Dump() : ""); ObjectLock lock(self, klass); // Initialization failed because the super-class is erroneous. mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); return false; } t_sub = super_t1 - super_t0; } } if (!klass->IsInterface()) { // Initialize interfaces with default methods for the JLS. size_t num_direct_interfaces = klass->NumDirectInterfaces(); // Only setup the (expensive) handle scope if we actually need to. if (UNLIKELY(num_direct_interfaces > 0)) { StackHandleScope<1> hs_iface(self); MutableHandle handle_scope_iface(hs_iface.NewHandle(nullptr)); for (size_t i = 0; i < num_direct_interfaces; i++) { handle_scope_iface.Assign(mirror::Class::GetDirectInterface(self, klass.Get(), i)); CHECK(handle_scope_iface != nullptr) << klass->PrettyDescriptor() << " iface #" << i; CHECK(handle_scope_iface->IsInterface()); if (handle_scope_iface->HasBeenRecursivelyInitialized()) { // We have already done this for this interface. Skip it. continue; } // We cannot just call initialize class directly because we need to ensure that ALL // interfaces with default methods are initialized. Non-default interface initialization // will not affect other non-default super-interfaces. // This is not very precise, misses all walking. uint64_t inf_t0 = stats_enabled ? NanoTime() : 0u; bool iface_initialized = InitializeDefaultInterfaceRecursive(self, handle_scope_iface, can_init_statics, can_init_parents); uint64_t inf_t1 = stats_enabled ? NanoTime() : 0u; if (!iface_initialized) { ObjectLock lock(self, klass); // Initialization failed because one of our interfaces with default methods is erroneous. mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); return false; } t_sub += inf_t1 - inf_t0; } } } const size_t num_static_fields = klass->NumStaticFields(); if (num_static_fields > 0) { const dex::ClassDef* dex_class_def = klass->GetClassDef(); CHECK(dex_class_def != nullptr); StackHandleScope<3> hs(self); Handle class_loader(hs.NewHandle(klass->GetClassLoader())); Handle dex_cache(hs.NewHandle(klass->GetDexCache())); // Eagerly fill in static fields so that the we don't have to do as many expensive // Class::FindStaticField in ResolveField. for (size_t i = 0; i < num_static_fields; ++i) { ArtField* field = klass->GetStaticField(i); const uint32_t field_idx = field->GetDexFieldIndex(); ArtField* resolved_field = dex_cache->GetResolvedField(field_idx); if (resolved_field == nullptr) { // Populating cache of a dex file which defines `klass` should always be allowed. DCHECK(!hiddenapi::ShouldDenyAccessToMember( field, hiddenapi::AccessContext(class_loader.Get(), dex_cache.Get()), hiddenapi::AccessMethod::kNone)); dex_cache->SetResolvedField(field_idx, field); } else { DCHECK_EQ(field, resolved_field); } } annotations::RuntimeEncodedStaticFieldValueIterator value_it(dex_cache, class_loader, this, *dex_class_def); const DexFile& dex_file = *dex_cache->GetDexFile(); if (value_it.HasNext()) { ClassAccessor accessor(dex_file, *dex_class_def); CHECK(can_init_statics); for (const ClassAccessor::Field& field : accessor.GetStaticFields()) { if (!value_it.HasNext()) { break; } ArtField* art_field = ResolveField(field.GetIndex(), dex_cache, class_loader, /* is_static= */ true); if (Runtime::Current()->IsActiveTransaction()) { value_it.ReadValueToField(art_field); } else { value_it.ReadValueToField(art_field); } if (self->IsExceptionPending()) { break; } value_it.Next(); } DCHECK(self->IsExceptionPending() || !value_it.HasNext()); } } if (!self->IsExceptionPending()) { ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_); if (clinit != nullptr) { CHECK(can_init_statics); JValue result; clinit->Invoke(self, nullptr, 0, &result, "V"); } } self->AllowThreadSuspension(); uint64_t t1 = stats_enabled ? NanoTime() : 0u; VisiblyInitializedCallback* callback = nullptr; bool success = true; { ObjectLock lock(self, klass); if (self->IsExceptionPending()) { WrapExceptionInInitializer(klass); mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); success = false; } else if (Runtime::Current()->IsTransactionAborted()) { // The exception thrown when the transaction aborted has been caught and cleared // so we need to throw it again now. VLOG(compiler) << "Return from class initializer of " << mirror::Class::PrettyDescriptor(klass.Get()) << " without exception while transaction was aborted: re-throw it now."; runtime->ThrowTransactionAbortError(self); mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); success = false; } else { if (stats_enabled) { RuntimeStats* global_stats = runtime->GetStats(); RuntimeStats* thread_stats = self->GetStats(); ++global_stats->class_init_count; ++thread_stats->class_init_count; global_stats->class_init_time_ns += (t1 - t0 - t_sub); thread_stats->class_init_time_ns += (t1 - t0 - t_sub); } // Set the class as initialized except if failed to initialize static fields. callback = MarkClassInitialized(self, klass); if (VLOG_IS_ON(class_linker)) { std::string temp; LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " << klass->GetLocation(); } } } if (callback != nullptr) { callback->MakeVisible(self); } return success; } // We recursively run down the tree of interfaces. We need to do this in the order they are declared // and perform the initialization only on those interfaces that contain default methods. bool ClassLinker::InitializeDefaultInterfaceRecursive(Thread* self, Handle iface, bool can_init_statics, bool can_init_parents) { CHECK(iface->IsInterface()); size_t num_direct_ifaces = iface->NumDirectInterfaces(); // Only create the (expensive) handle scope if we need it. if (UNLIKELY(num_direct_ifaces > 0)) { StackHandleScope<1> hs(self); MutableHandle handle_super_iface(hs.NewHandle(nullptr)); // First we initialize all of iface's super-interfaces recursively. for (size_t i = 0; i < num_direct_ifaces; i++) { ObjPtr super_iface = mirror::Class::GetDirectInterface(self, iface.Get(), i); CHECK(super_iface != nullptr) << iface->PrettyDescriptor() << " iface #" << i; if (!super_iface->HasBeenRecursivelyInitialized()) { // Recursive step handle_super_iface.Assign(super_iface); if (!InitializeDefaultInterfaceRecursive(self, handle_super_iface, can_init_statics, can_init_parents)) { return false; } } } } bool result = true; // Then we initialize 'iface' if it has default methods. We do not need to (and in fact must not) // initialize if we don't have default methods. if (iface->HasDefaultMethods()) { result = EnsureInitialized(self, iface, can_init_statics, can_init_parents); } // Mark that this interface has undergone recursive default interface initialization so we know we // can skip it on any later class initializations. We do this even if we are not a default // interface since we can still avoid the traversal. This is purely a performance optimization. if (result) { // TODO This should be done in a better way // Note: Use a try-lock to avoid blocking when someone else is holding the lock on this // interface. It is bad (Java) style, but not impossible. Marking the recursive // initialization is a performance optimization (to avoid another idempotent visit // for other implementing classes/interfaces), and can be revisited later. ObjectTryLock lock(self, iface); if (lock.Acquired()) { iface->SetRecursivelyInitialized(); } } return result; } bool ClassLinker::WaitForInitializeClass(Handle klass, Thread* self, ObjectLock& lock) REQUIRES_SHARED(Locks::mutator_lock_) { while (true) { self->AssertNoPendingException(); CHECK(!klass->IsInitialized()); lock.WaitIgnoringInterrupts(); // When we wake up, repeat the test for init-in-progress. If // there's an exception pending (only possible if // we were not using WaitIgnoringInterrupts), bail out. if (self->IsExceptionPending()) { WrapExceptionInInitializer(klass); mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); return false; } // Spurious wakeup? Go back to waiting. if (klass->GetStatus() == ClassStatus::kInitializing) { continue; } if (klass->GetStatus() == ClassStatus::kVerified && Runtime::Current()->IsAotCompiler()) { // Compile time initialization failed. return false; } if (klass->IsErroneous()) { // The caller wants an exception, but it was thrown in a // different thread. Synthesize one here. ThrowNoClassDefFoundError(" failed for class %s; see exception in other thread", klass->PrettyDescriptor().c_str()); VlogClassInitializationFailure(klass); return false; } if (klass->IsInitialized()) { return true; } LOG(FATAL) << "Unexpected class status. " << klass->PrettyClass() << " is " << klass->GetStatus(); } UNREACHABLE(); } static void ThrowSignatureCheckResolveReturnTypeException(Handle klass, Handle super_klass, ArtMethod* method, ArtMethod* m) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(Thread::Current()->IsExceptionPending()); DCHECK(!m->IsProxyMethod()); const DexFile* dex_file = m->GetDexFile(); const dex::MethodId& method_id = dex_file->GetMethodId(m->GetDexMethodIndex()); const dex::ProtoId& proto_id = dex_file->GetMethodPrototype(method_id); dex::TypeIndex return_type_idx = proto_id.return_type_idx_; std::string return_type = dex_file->PrettyType(return_type_idx); std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader()); ThrowWrappedLinkageError(klass.Get(), "While checking class %s method %s signature against %s %s: " "Failed to resolve return type %s with %s", mirror::Class::PrettyDescriptor(klass.Get()).c_str(), ArtMethod::PrettyMethod(method).c_str(), super_klass->IsInterface() ? "interface" : "superclass", mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(), return_type.c_str(), class_loader.c_str()); } static void ThrowSignatureCheckResolveArgException(Handle klass, Handle super_klass, ArtMethod* method, ArtMethod* m, uint32_t index, dex::TypeIndex arg_type_idx) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(Thread::Current()->IsExceptionPending()); DCHECK(!m->IsProxyMethod()); const DexFile* dex_file = m->GetDexFile(); std::string arg_type = dex_file->PrettyType(arg_type_idx); std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader()); ThrowWrappedLinkageError(klass.Get(), "While checking class %s method %s signature against %s %s: " "Failed to resolve arg %u type %s with %s", mirror::Class::PrettyDescriptor(klass.Get()).c_str(), ArtMethod::PrettyMethod(method).c_str(), super_klass->IsInterface() ? "interface" : "superclass", mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(), index, arg_type.c_str(), class_loader.c_str()); } static void ThrowSignatureMismatch(Handle klass, Handle super_klass, ArtMethod* method, const std::string& error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { ThrowLinkageError(klass.Get(), "Class %s method %s resolves differently in %s %s: %s", mirror::Class::PrettyDescriptor(klass.Get()).c_str(), ArtMethod::PrettyMethod(method).c_str(), super_klass->IsInterface() ? "interface" : "superclass", mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(), error_msg.c_str()); } static bool HasSameSignatureWithDifferentClassLoaders(Thread* self, Handle klass, Handle super_klass, ArtMethod* method1, ArtMethod* method2) REQUIRES_SHARED(Locks::mutator_lock_) { { StackHandleScope<1> hs(self); Handle return_type(hs.NewHandle(method1->ResolveReturnType())); if (UNLIKELY(return_type == nullptr)) { ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method1); return false; } ObjPtr other_return_type = method2->ResolveReturnType(); if (UNLIKELY(other_return_type == nullptr)) { ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method2); return false; } if (UNLIKELY(other_return_type != return_type.Get())) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Return types mismatch: %s(%p) vs %s(%p)", return_type->PrettyClassAndClassLoader().c_str(), return_type.Get(), other_return_type->PrettyClassAndClassLoader().c_str(), other_return_type.Ptr())); return false; } } const dex::TypeList* types1 = method1->GetParameterTypeList(); const dex::TypeList* types2 = method2->GetParameterTypeList(); if (types1 == nullptr) { if (types2 != nullptr && types2->Size() != 0) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Type list mismatch with %s", method2->PrettyMethod(true).c_str())); return false; } return true; } else if (UNLIKELY(types2 == nullptr)) { if (types1->Size() != 0) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Type list mismatch with %s", method2->PrettyMethod(true).c_str())); return false; } return true; } uint32_t num_types = types1->Size(); if (UNLIKELY(num_types != types2->Size())) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Type list mismatch with %s", method2->PrettyMethod(true).c_str())); return false; } for (uint32_t i = 0; i < num_types; ++i) { StackHandleScope<1> hs(self); dex::TypeIndex param_type_idx = types1->GetTypeItem(i).type_idx_; Handle param_type(hs.NewHandle( method1->ResolveClassFromTypeIndex(param_type_idx))); if (UNLIKELY(param_type == nullptr)) { ThrowSignatureCheckResolveArgException(klass, super_klass, method1, method1, i, param_type_idx); return false; } dex::TypeIndex other_param_type_idx = types2->GetTypeItem(i).type_idx_; ObjPtr other_param_type = method2->ResolveClassFromTypeIndex(other_param_type_idx); if (UNLIKELY(other_param_type == nullptr)) { ThrowSignatureCheckResolveArgException(klass, super_klass, method1, method2, i, other_param_type_idx); return false; } if (UNLIKELY(param_type.Get() != other_param_type)) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Parameter %u type mismatch: %s(%p) vs %s(%p)", i, param_type->PrettyClassAndClassLoader().c_str(), param_type.Get(), other_param_type->PrettyClassAndClassLoader().c_str(), other_param_type.Ptr())); return false; } } return true; } bool ClassLinker::ValidateSuperClassDescriptors(Handle klass) { if (klass->IsInterface()) { return true; } // Begin with the methods local to the superclass. Thread* self = Thread::Current(); StackHandleScope<1> hs(self); MutableHandle super_klass(hs.NewHandle(nullptr)); if (klass->HasSuperClass() && klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) { super_klass.Assign(klass->GetSuperClass()); for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) { auto* m = klass->GetVTableEntry(i, image_pointer_size_); auto* super_m = klass->GetSuperClass()->GetVTableEntry(i, image_pointer_size_); if (m != super_m) { if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, klass, super_klass, m, super_m))) { self->AssertPendingException(); return false; } } } } for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { super_klass.Assign(klass->GetIfTable()->GetInterface(i)); if (klass->GetClassLoader() != super_klass->GetClassLoader()) { uint32_t num_methods = super_klass->NumVirtualMethods(); for (uint32_t j = 0; j < num_methods; ++j) { auto* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize( j, image_pointer_size_); auto* super_m = super_klass->GetVirtualMethod(j, image_pointer_size_); if (m != super_m) { if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, klass, super_klass, m, super_m))) { self->AssertPendingException(); return false; } } } } } return true; } bool ClassLinker::EnsureInitialized(Thread* self, Handle c, bool can_init_fields, bool can_init_parents) { DCHECK(c != nullptr); if (c->IsInitialized()) { // If we've seen an initialized but not visibly initialized class // many times, request visible initialization. if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) { // Thanks to the x86 memory model classes skip the initialized status. DCHECK(c->IsVisiblyInitialized()); } else if (UNLIKELY(!c->IsVisiblyInitialized())) { if (self->IncrementMakeVisiblyInitializedCounter()) { MakeInitializedClassesVisiblyInitialized(self, /*wait=*/ false); } } DCHECK(c->WasVerificationAttempted()) << c->PrettyClassAndClassLoader(); return true; } // SubtypeCheckInfo::Initialized must happen-before any new-instance for that type. // // Ensure the bitstring is initialized before any of the class initialization // logic occurs. Once a class initializer starts running, objects can // escape into the heap and use the subtype checking code. // // Note: A class whose SubtypeCheckInfo is at least Initialized means it // can be used as a source for the IsSubClass check, and that all ancestors // of the class are Assigned (can be used as a target for IsSubClass check) // or Overflowed (can be used as a source for IsSubClass check). if (kBitstringSubtypeCheckEnabled) { MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); SubtypeCheck>::EnsureInitialized(c.Get()); // TODO: Avoid taking subtype_check_lock_ if SubtypeCheck is already initialized. } const bool success = InitializeClass(self, c, can_init_fields, can_init_parents); if (!success) { if (can_init_fields && can_init_parents) { CHECK(self->IsExceptionPending()) << c->PrettyClass(); } else { // There may or may not be an exception pending. If there is, clear it. // We propagate the exception only if we can initialize fields and parents. self->ClearException(); } } else { self->AssertNoPendingException(); } return success; } void ClassLinker::FixupTemporaryDeclaringClass(ObjPtr temp_class, ObjPtr new_class) { DCHECK_EQ(temp_class->NumInstanceFields(), 0u); for (ArtField& field : new_class->GetIFields()) { if (field.GetDeclaringClass() == temp_class) { field.SetDeclaringClass(new_class); } } DCHECK_EQ(temp_class->NumStaticFields(), 0u); for (ArtField& field : new_class->GetSFields()) { if (field.GetDeclaringClass() == temp_class) { field.SetDeclaringClass(new_class); } } DCHECK_EQ(temp_class->NumDirectMethods(), 0u); DCHECK_EQ(temp_class->NumVirtualMethods(), 0u); for (auto& method : new_class->GetMethods(image_pointer_size_)) { if (method.GetDeclaringClass() == temp_class) { method.SetDeclaringClass(new_class); } } // Make sure the remembered set and mod-union tables know that we updated some of the native // roots. WriteBarrier::ForEveryFieldWrite(new_class); } void ClassLinker::RegisterClassLoader(ObjPtr class_loader) { CHECK(class_loader->GetAllocator() == nullptr); CHECK(class_loader->GetClassTable() == nullptr); Thread* const self = Thread::Current(); ClassLoaderData data; data.weak_root = self->GetJniEnv()->GetVm()->AddWeakGlobalRef(self, class_loader); // Create and set the class table. data.class_table = new ClassTable; class_loader->SetClassTable(data.class_table); // Create and set the linear allocator. data.allocator = Runtime::Current()->CreateLinearAlloc(); class_loader->SetAllocator(data.allocator); // Add to the list so that we know to free the data later. class_loaders_.push_back(data); } ClassTable* ClassLinker::InsertClassTableForClassLoader(ObjPtr class_loader) { if (class_loader == nullptr) { return boot_class_table_.get(); } ClassTable* class_table = class_loader->GetClassTable(); if (class_table == nullptr) { RegisterClassLoader(class_loader); class_table = class_loader->GetClassTable(); DCHECK(class_table != nullptr); } return class_table; } ClassTable* ClassLinker::ClassTableForClassLoader(ObjPtr class_loader) { return class_loader == nullptr ? boot_class_table_.get() : class_loader->GetClassTable(); } static ImTable* FindSuperImt(ObjPtr klass, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { while (klass->HasSuperClass()) { klass = klass->GetSuperClass(); if (klass->ShouldHaveImt()) { return klass->GetImt(pointer_size); } } return nullptr; } bool ClassLinker::LinkClass(Thread* self, const char* descriptor, Handle klass, Handle> interfaces, MutableHandle* h_new_class_out) { CHECK_EQ(ClassStatus::kLoaded, klass->GetStatus()); if (!LinkSuperClass(klass)) { return false; } ArtMethod* imt_data[ImTable::kSize]; // If there are any new conflicts compared to super class. bool new_conflict = false; std::fill_n(imt_data, arraysize(imt_data), Runtime::Current()->GetImtUnimplementedMethod()); if (!LinkMethods(self, klass, interfaces, &new_conflict, imt_data)) { return false; } if (!LinkInstanceFields(self, klass)) { return false; } size_t class_size; if (!LinkStaticFields(self, klass, &class_size)) { return false; } CreateReferenceInstanceOffsets(klass); CHECK_EQ(ClassStatus::kLoaded, klass->GetStatus()); ImTable* imt = nullptr; if (klass->ShouldHaveImt()) { // If there are any new conflicts compared to the super class we can not make a copy. There // can be cases where both will have a conflict method at the same slot without having the same // set of conflicts. In this case, we can not share the IMT since the conflict table slow path // will possibly create a table that is incorrect for either of the classes. // Same IMT with new_conflict does not happen very often. if (!new_conflict) { ImTable* super_imt = FindSuperImt(klass.Get(), image_pointer_size_); if (super_imt != nullptr) { bool imt_equals = true; for (size_t i = 0; i < ImTable::kSize && imt_equals; ++i) { imt_equals = imt_equals && (super_imt->Get(i, image_pointer_size_) == imt_data[i]); } if (imt_equals) { imt = super_imt; } } } if (imt == nullptr) { LinearAlloc* allocator = GetAllocatorForClassLoader(klass->GetClassLoader()); imt = reinterpret_cast( allocator->Alloc(self, ImTable::SizeInBytes(image_pointer_size_))); if (imt == nullptr) { return false; } imt->Populate(imt_data, image_pointer_size_); } } if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) { // We don't need to retire this class as it has no embedded tables or it was created the // correct size during class linker initialization. CHECK_EQ(klass->GetClassSize(), class_size) << klass->PrettyDescriptor(); if (klass->ShouldHaveEmbeddedVTable()) { klass->PopulateEmbeddedVTable(image_pointer_size_); } if (klass->ShouldHaveImt()) { klass->SetImt(imt, image_pointer_size_); } // Update CHA info based on whether we override methods. // Have to do this before setting the class as resolved which allows // instantiation of klass. if (LIKELY(descriptor != nullptr) && cha_ != nullptr) { cha_->UpdateAfterLoadingOf(klass); } // This will notify waiters on klass that saw the not yet resolved // class in the class_table_ during EnsureResolved. mirror::Class::SetStatus(klass, ClassStatus::kResolved, self); h_new_class_out->Assign(klass.Get()); } else { CHECK(!klass->IsResolved()); // Retire the temporary class and create the correctly sized resolved class. StackHandleScope<1> hs(self); Handle h_new_class = hs.NewHandle(mirror::Class::CopyOf(klass, self, class_size, imt, image_pointer_size_)); // Set arrays to null since we don't want to have multiple classes with the same ArtField or // ArtMethod array pointers. If this occurs, it causes bugs in remembered sets since the GC // may not see any references to the target space and clean the card for a class if another // class had the same array pointer. klass->SetMethodsPtrUnchecked(nullptr, 0, 0); klass->SetSFieldsPtrUnchecked(nullptr); klass->SetIFieldsPtrUnchecked(nullptr); if (UNLIKELY(h_new_class == nullptr)) { self->AssertPendingOOMException(); mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self); return false; } CHECK_EQ(h_new_class->GetClassSize(), class_size); ObjectLock lock(self, h_new_class); FixupTemporaryDeclaringClass(klass.Get(), h_new_class.Get()); if (LIKELY(descriptor != nullptr)) { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); const ObjPtr class_loader = h_new_class.Get()->GetClassLoader(); ClassTable* const table = InsertClassTableForClassLoader(class_loader); const ObjPtr existing = table->UpdateClass(descriptor, h_new_class.Get(), ComputeModifiedUtf8Hash(descriptor)); if (class_loader != nullptr) { // We updated the class in the class table, perform the write barrier so that the GC knows // about the change. WriteBarrier::ForEveryFieldWrite(class_loader); } CHECK_EQ(existing, klass.Get()); if (log_new_roots_) { new_class_roots_.push_back(GcRoot(h_new_class.Get())); } } // Update CHA info based on whether we override methods. // Have to do this before setting the class as resolved which allows // instantiation of klass. if (LIKELY(descriptor != nullptr) && cha_ != nullptr) { cha_->UpdateAfterLoadingOf(h_new_class); } // This will notify waiters on temp class that saw the not yet resolved class in the // class_table_ during EnsureResolved. mirror::Class::SetStatus(klass, ClassStatus::kRetired, self); CHECK_EQ(h_new_class->GetStatus(), ClassStatus::kResolving); // This will notify waiters on new_class that saw the not yet resolved // class in the class_table_ during EnsureResolved. mirror::Class::SetStatus(h_new_class, ClassStatus::kResolved, self); // Return the new class. h_new_class_out->Assign(h_new_class.Get()); } return true; } bool ClassLinker::LoadSuperAndInterfaces(Handle klass, const DexFile& dex_file) { CHECK_EQ(ClassStatus::kIdx, klass->GetStatus()); const dex::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex()); dex::TypeIndex super_class_idx = class_def.superclass_idx_; if (super_class_idx.IsValid()) { // Check that a class does not inherit from itself directly. // // TODO: This is a cheap check to detect the straightforward case // of a class extending itself (b/28685551), but we should do a // proper cycle detection on loaded classes, to detect all cases // of class circularity errors (b/28830038). if (super_class_idx == class_def.class_idx_) { ThrowClassCircularityError(klass.Get(), "Class %s extends itself", klass->PrettyDescriptor().c_str()); return false; } ObjPtr super_class = ResolveType(super_class_idx, klass.Get()); if (super_class == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Verify if (!klass->CanAccess(super_class)) { ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible", super_class->PrettyDescriptor().c_str(), klass->PrettyDescriptor().c_str()); return false; } CHECK(super_class->IsResolved()); klass->SetSuperClass(super_class); } const dex::TypeList* interfaces = dex_file.GetInterfacesList(class_def); if (interfaces != nullptr) { for (size_t i = 0; i < interfaces->Size(); i++) { dex::TypeIndex idx = interfaces->GetTypeItem(i).type_idx_; ObjPtr interface = ResolveType(idx, klass.Get()); if (interface == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Verify if (!klass->CanAccess(interface)) { // TODO: the RI seemed to ignore this in my testing. ThrowIllegalAccessError(klass.Get(), "Interface %s implemented by class %s is inaccessible", interface->PrettyDescriptor().c_str(), klass->PrettyDescriptor().c_str()); return false; } } } // Mark the class as loaded. mirror::Class::SetStatus(klass, ClassStatus::kLoaded, nullptr); return true; } bool ClassLinker::LinkSuperClass(Handle klass) { CHECK(!klass->IsPrimitive()); ObjPtr super = klass->GetSuperClass(); ObjPtr object_class = GetClassRoot(this); if (klass.Get() == object_class) { if (super != nullptr) { ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass"); return false; } return true; } if (super == nullptr) { ThrowLinkageError(klass.Get(), "No superclass defined for class %s", klass->PrettyDescriptor().c_str()); return false; } // Verify if (klass->IsInterface() && super != object_class) { ThrowClassFormatError(klass.Get(), "Interfaces must have java.lang.Object as superclass"); return false; } if (super->IsFinal()) { ThrowVerifyError(klass.Get(), "Superclass %s of %s is declared final", super->PrettyDescriptor().c_str(), klass->PrettyDescriptor().c_str()); return false; } if (super->IsInterface()) { ThrowIncompatibleClassChangeError(klass.Get(), "Superclass %s of %s is an interface", super->PrettyDescriptor().c_str(), klass->PrettyDescriptor().c_str()); return false; } if (!klass->CanAccess(super)) { ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s", super->PrettyDescriptor().c_str(), klass->PrettyDescriptor().c_str()); return false; } // Inherit kAccClassIsFinalizable from the superclass in case this // class doesn't override finalize. if (super->IsFinalizable()) { klass->SetFinalizable(); } // Inherit class loader flag form super class. if (super->IsClassLoaderClass()) { klass->SetClassLoaderClass(); } // Inherit reference flags (if any) from the superclass. uint32_t reference_flags = (super->GetClassFlags() & mirror::kClassFlagReference); if (reference_flags != 0) { CHECK_EQ(klass->GetClassFlags(), 0u); klass->SetClassFlags(klass->GetClassFlags() | reference_flags); } // Disallow custom direct subclasses of java.lang.ref.Reference. if (init_done_ && super == GetClassRoot(this)) { ThrowLinkageError(klass.Get(), "Class %s attempts to subclass java.lang.ref.Reference, which is not allowed", klass->PrettyDescriptor().c_str()); return false; } if (kIsDebugBuild) { // Ensure super classes are fully resolved prior to resolving fields.. while (super != nullptr) { CHECK(super->IsResolved()); super = super->GetSuperClass(); } } return true; } // A wrapper class representing the result of a method translation used for linking methods and // updating superclass default methods. For each method in a classes vtable there are 4 states it // could be in: // 1) No translation is necessary. In this case there is no MethodTranslation object for it. This // is the standard case and is true when the method is not overridable by a default method, // the class defines a concrete implementation of the method, the default method implementation // remains the same, or an abstract method stayed abstract. // 2) The method must be translated to a different default method. We note this with // CreateTranslatedMethod. // 3) The method must be replaced with a conflict method. This happens when a superclass // implements an interface with a default method and this class implements an unrelated // interface that also defines that default method. We note this with CreateConflictingMethod. // 4) The method must be replaced with an abstract miranda method. This happens when a superclass // implements an interface with a default method and this class implements a subinterface of // the superclass's interface which declares the default method abstract. We note this with // CreateAbstractMethod. // // When a method translation is unnecessary (case #1), we don't put it into the // default_translation maps. So an instance of MethodTranslation must be in one of #2-#4. class ClassLinker::MethodTranslation { public: MethodTranslation() : translation_(nullptr), type_(Type::kInvalid) {} // This slot must become a default conflict method. static MethodTranslation CreateConflictingMethod() { return MethodTranslation(Type::kConflict, /*translation=*/nullptr); } // This slot must become an abstract method. static MethodTranslation CreateAbstractMethod() { return MethodTranslation(Type::kAbstract, /*translation=*/nullptr); } // Use the given method as the current value for this vtable slot during translation. static MethodTranslation CreateTranslatedMethod(ArtMethod* new_method) { return MethodTranslation(Type::kTranslation, new_method); } // Returns true if this is a method that must become a conflict method. bool IsInConflict() const { return type_ == Type::kConflict; } // Returns true if this is a method that must become an abstract method. bool IsAbstract() const { return type_ == Type::kAbstract; } // Returns true if this is a method that must become a different method. bool IsTranslation() const { return type_ == Type::kTranslation; } // Get the translated version of this method. ArtMethod* GetTranslation() const { DCHECK(IsTranslation()); DCHECK(translation_ != nullptr); return translation_; } private: enum class Type { kInvalid, kTranslation, kConflict, kAbstract, }; MethodTranslation(Type type, ArtMethod* translation) : translation_(translation), type_(type) {} ArtMethod* translation_; Type type_; }; // Populate the class vtable and itable. Compute return type indices. bool ClassLinker::LinkMethods(Thread* self, Handle klass, Handle> interfaces, bool* out_new_conflict, ArtMethod** out_imt) { self->AllowThreadSuspension(); // A map from vtable indexes to the method they need to be updated to point to. Used because we // need to have default methods be in the virtuals array of each class but we don't set that up // until LinkInterfaceMethods. constexpr size_t kBufferSize = 8; // Avoid malloc/free for a few translations. std::pair buffer[kBufferSize]; HashMap default_translations(buffer, kBufferSize); // Link virtual methods then interface methods. // We set up the interface lookup table first because we need it to determine if we need to update // any vtable entries with new default method implementations. return SetupInterfaceLookupTable(self, klass, interfaces) && LinkVirtualMethods(self, klass, /*out*/ &default_translations) && LinkInterfaceMethods(self, klass, default_translations, out_new_conflict, out_imt); } // Comparator for name and signature of a method, used in finding overriding methods. Implementation // avoids the use of handles, if it didn't then rather than compare dex files we could compare dex // caches in the implementation below. class MethodNameAndSignatureComparator final : public ValueObject { public: explicit MethodNameAndSignatureComparator(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) : dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())), name_(nullptr), name_len_(0) { DCHECK(!method->IsProxyMethod()) << method->PrettyMethod(); } const char* GetName() { if (name_ == nullptr) { name_ = dex_file_->StringDataAndUtf16LengthByIdx(mid_->name_idx_, &name_len_); } return name_; } bool HasSameNameAndSignature(ArtMethod* other) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!other->IsProxyMethod()) << other->PrettyMethod(); const DexFile* other_dex_file = other->GetDexFile(); const dex::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex()); if (dex_file_ == other_dex_file) { return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_; } GetName(); // Only used to make sure its calculated. uint32_t other_name_len; const char* other_name = other_dex_file->StringDataAndUtf16LengthByIdx(other_mid.name_idx_, &other_name_len); if (name_len_ != other_name_len || strcmp(name_, other_name) != 0) { return false; } return dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid); } private: // Dex file for the method to compare against. const DexFile* const dex_file_; // MethodId for the method to compare against. const dex::MethodId* const mid_; // Lazily computed name from the dex file's strings. const char* name_; // Lazily computed name length. uint32_t name_len_; }; class LinkVirtualHashTable { public: LinkVirtualHashTable(Handle klass, size_t hash_size, uint32_t* hash_table, PointerSize image_pointer_size) : klass_(klass), hash_size_(hash_size), hash_table_(hash_table), image_pointer_size_(image_pointer_size) { std::fill(hash_table_, hash_table_ + hash_size_, invalid_index_); } void Add(uint32_t virtual_method_index) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* local_method = klass_->GetVirtualMethodDuringLinking( virtual_method_index, image_pointer_size_); const char* name = local_method->GetInterfaceMethodIfProxy(image_pointer_size_)->GetName(); uint32_t hash = ComputeModifiedUtf8Hash(name); uint32_t index = hash % hash_size_; // Linear probe until we have an empty slot. while (hash_table_[index] != invalid_index_) { if (++index == hash_size_) { index = 0; } } hash_table_[index] = virtual_method_index; } uint32_t FindAndRemove(MethodNameAndSignatureComparator* comparator, uint32_t hash) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_EQ(hash, ComputeModifiedUtf8Hash(comparator->GetName())); size_t index = hash % hash_size_; while (true) { const uint32_t value = hash_table_[index]; // Since linear probe makes continuous blocks, hitting an invalid index means we are done // the block and can safely assume not found. if (value == invalid_index_) { break; } if (value != removed_index_) { // This signifies not already overriden. ArtMethod* virtual_method = klass_->GetVirtualMethodDuringLinking(value, image_pointer_size_); if (comparator->HasSameNameAndSignature( virtual_method->GetInterfaceMethodIfProxy(image_pointer_size_))) { hash_table_[index] = removed_index_; return value; } } if (++index == hash_size_) { index = 0; } } return GetNotFoundIndex(); } static uint32_t GetNotFoundIndex() { return invalid_index_; } private: static const uint32_t invalid_index_; static const uint32_t removed_index_; Handle klass_; const size_t hash_size_; uint32_t* const hash_table_; const PointerSize image_pointer_size_; }; const uint32_t LinkVirtualHashTable::invalid_index_ = std::numeric_limits::max(); const uint32_t LinkVirtualHashTable::removed_index_ = std::numeric_limits::max() - 1; bool ClassLinker::LinkVirtualMethods( Thread* self, Handle klass, /*out*/HashMap* default_translations) { const size_t num_virtual_methods = klass->NumVirtualMethods(); if (klass->IsInterface()) { // No vtable. if (!IsUint<16>(num_virtual_methods)) { ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zu", num_virtual_methods); return false; } bool has_defaults = false; // Assign each method an IMT index and set the default flag. for (size_t i = 0; i < num_virtual_methods; ++i) { ArtMethod* m = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_); m->SetMethodIndex(i); if (!m->IsAbstract()) { // If the dex file does not support default methods, throw ClassFormatError. // This check is necessary to protect from odd cases, such as native default // methods, that the dex file verifier permits for old dex file versions. b/157170505 // FIXME: This should be `if (!m->GetDexFile()->SupportsDefaultMethods())` but we're // currently running CTS tests for default methods with dex file version 035 which // does not support default methods. So, we limit this to native methods. b/157718952 if (m->IsNative()) { DCHECK(!m->GetDexFile()->SupportsDefaultMethods()); ThrowClassFormatError(klass.Get(), "Dex file does not support default method '%s'", m->PrettyMethod().c_str()); return false; } m->SetAccessFlags(m->GetAccessFlags() | kAccDefault); has_defaults = true; } } // Mark that we have default methods so that we won't need to scan the virtual_methods_ array // during initialization. This is a performance optimization. We could simply traverse the // virtual_methods_ array again during initialization. if (has_defaults) { klass->SetHasDefaultMethods(); } return true; } else if (klass->HasSuperClass()) { const size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength(); const size_t max_count = num_virtual_methods + super_vtable_length; StackHandleScope<3> hs(self); Handle super_class(hs.NewHandle(klass->GetSuperClass())); MutableHandle vtable; if (super_class->ShouldHaveEmbeddedVTable()) { vtable = hs.NewHandle(AllocPointerArray(self, max_count)); if (UNLIKELY(vtable == nullptr)) { self->AssertPendingOOMException(); return false; } for (size_t i = 0; i < super_vtable_length; i++) { vtable->SetElementPtrSize( i, super_class->GetEmbeddedVTableEntry(i, image_pointer_size_), image_pointer_size_); } // We might need to change vtable if we have new virtual methods or new interfaces (since that // might give us new default methods). If no new interfaces then we can skip the rest since // the class cannot override any of the super-class's methods. This is required for // correctness since without it we might not update overridden default method vtable entries // correctly. if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) { klass->SetVTable(vtable.Get()); return true; } } else { DCHECK(super_class->IsAbstract() && !super_class->IsArrayClass()); Handle super_vtable = hs.NewHandle(super_class->GetVTable()); CHECK(super_vtable != nullptr) << super_class->PrettyClass(); // We might need to change vtable if we have new virtual methods or new interfaces (since that // might give us new default methods). See comment above. if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) { klass->SetVTable(super_vtable.Get()); return true; } vtable = hs.NewHandle(ObjPtr::DownCast( mirror::Array::CopyOf(super_vtable, self, max_count))); if (UNLIKELY(vtable == nullptr)) { self->AssertPendingOOMException(); return false; } } // How the algorithm works: // 1. Populate hash table by adding num_virtual_methods from klass. The values in the hash // table are: invalid_index for unused slots, index super_vtable_length + i for a virtual // method which has not been matched to a vtable method, and j if the virtual method at the // index overrode the super virtual method at index j. // 2. Loop through super virtual methods, if they overwrite, update hash table to j // (j < super_vtable_length) to avoid redundant checks. (TODO maybe use this info for reducing // the need for the initial vtable which we later shrink back down). // 3. Add non overridden methods to the end of the vtable. static constexpr size_t kMaxStackHash = 250; // + 1 so that even if we only have new default methods we will still be able to use this hash // table (i.e. it will never have 0 size). const size_t hash_table_size = num_virtual_methods * 3 + 1; uint32_t* hash_table_ptr; std::unique_ptr hash_heap_storage; if (hash_table_size <= kMaxStackHash) { hash_table_ptr = reinterpret_cast( alloca(hash_table_size * sizeof(*hash_table_ptr))); } else { hash_heap_storage.reset(new uint32_t[hash_table_size]); hash_table_ptr = hash_heap_storage.get(); } LinkVirtualHashTable hash_table(klass, hash_table_size, hash_table_ptr, image_pointer_size_); // Add virtual methods to the hash table. for (size_t i = 0; i < num_virtual_methods; ++i) { DCHECK(klass->GetVirtualMethodDuringLinking( i, image_pointer_size_)->GetDeclaringClass() != nullptr); hash_table.Add(i); } // Loop through each super vtable method and see if they are overridden by a method we added to // the hash table. for (size_t j = 0; j < super_vtable_length; ++j) { // Search the hash table to see if we are overridden by any method. ArtMethod* super_method = vtable->GetElementPtrSize(j, image_pointer_size_); if (!klass->CanAccessMember(super_method->GetDeclaringClass(), super_method->GetAccessFlags())) { // Continue on to the next method since this one is package private and canot be overridden. // Before Android 4.1, the package-private method super_method might have been incorrectly // overridden. continue; } MethodNameAndSignatureComparator super_method_name_comparator( super_method->GetInterfaceMethodIfProxy(image_pointer_size_)); // We remove the method so that subsequent lookups will be faster by making the hash-map // smaller as we go on. uint32_t hash = (j < mirror::Object::kVTableLength) ? object_virtual_method_hashes_[j] : ComputeModifiedUtf8Hash(super_method_name_comparator.GetName()); uint32_t hash_index = hash_table.FindAndRemove(&super_method_name_comparator, hash); if (hash_index != hash_table.GetNotFoundIndex()) { ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking( hash_index, image_pointer_size_); if (super_method->IsFinal()) { ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s", virtual_method->PrettyMethod().c_str(), super_method->GetDeclaringClassDescriptor()); return false; } vtable->SetElementPtrSize(j, virtual_method, image_pointer_size_); virtual_method->SetMethodIndex(j); } else if (super_method->IsOverridableByDefaultMethod()) { // We didn't directly override this method but we might through default methods... // Check for default method update. ArtMethod* default_method = nullptr; switch (FindDefaultMethodImplementation(self, super_method, klass, /*out*/&default_method)) { case DefaultMethodSearchResult::kDefaultConflict: { // A conflict was found looking for default methods. Note this (assuming it wasn't // pre-existing) in the translations map. if (UNLIKELY(!super_method->IsDefaultConflicting())) { // Don't generate another conflict method to reduce memory use as an optimization. default_translations->insert( {j, ClassLinker::MethodTranslation::CreateConflictingMethod()}); } break; } case DefaultMethodSearchResult::kAbstractFound: { // No conflict but method is abstract. // We note that this vtable entry must be made abstract. if (UNLIKELY(!super_method->IsAbstract())) { default_translations->insert( {j, ClassLinker::MethodTranslation::CreateAbstractMethod()}); } break; } case DefaultMethodSearchResult::kDefaultFound: { if (UNLIKELY(super_method->IsDefaultConflicting() || default_method->GetDeclaringClass() != super_method->GetDeclaringClass())) { // Found a default method implementation that is new. // TODO Refactor this add default methods to virtuals here and not in // LinkInterfaceMethods maybe. // The problem is default methods might override previously present // default-method or miranda-method vtable entries from the superclass. // Unfortunately we need these to be entries in this class's virtuals. We do not // give these entries there until LinkInterfaceMethods so we pass this map around // to let it know which vtable entries need to be updated. // Make a note that vtable entry j must be updated, store what it needs to be updated // to. We will allocate a virtual method slot in LinkInterfaceMethods and fix it up // then. default_translations->insert( {j, ClassLinker::MethodTranslation::CreateTranslatedMethod(default_method)}); VLOG(class_linker) << "Method " << super_method->PrettyMethod() << " overridden by default " << default_method->PrettyMethod() << " in " << mirror::Class::PrettyClass(klass.Get()); } break; } } } } size_t actual_count = super_vtable_length; // Add the non-overridden methods at the end. for (size_t i = 0; i < num_virtual_methods; ++i) { ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_); size_t method_idx = local_method->GetMethodIndexDuringLinking(); if (method_idx < super_vtable_length && local_method == vtable->GetElementPtrSize(method_idx, image_pointer_size_)) { continue; } vtable->SetElementPtrSize(actual_count, local_method, image_pointer_size_); local_method->SetMethodIndex(actual_count); ++actual_count; } if (!IsUint<16>(actual_count)) { ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count); return false; } // Shrink vtable if possible CHECK_LE(actual_count, max_count); if (actual_count < max_count) { vtable.Assign(ObjPtr::DownCast( mirror::Array::CopyOf(vtable, self, actual_count))); if (UNLIKELY(vtable == nullptr)) { self->AssertPendingOOMException(); return false; } } klass->SetVTable(vtable.Get()); } else { CHECK_EQ(klass.Get(), GetClassRoot(this)); if (!IsUint<16>(num_virtual_methods)) { ThrowClassFormatError(klass.Get(), "Too many methods: %d", static_cast(num_virtual_methods)); return false; } ObjPtr vtable = AllocPointerArray(self, num_virtual_methods); if (UNLIKELY(vtable == nullptr)) { self->AssertPendingOOMException(); return false; } for (size_t i = 0; i < num_virtual_methods; ++i) { ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_); vtable->SetElementPtrSize(i, virtual_method, image_pointer_size_); virtual_method->SetMethodIndex(i & 0xFFFF); } klass->SetVTable(vtable); InitializeObjectVirtualMethodHashes(klass.Get(), image_pointer_size_, ArrayRef(object_virtual_method_hashes_)); } return true; } // Determine if the given iface has any subinterface in the given list that declares the method // specified by 'target'. // // Arguments // - self: The thread we are running on // - target: A comparator that will match any method that overrides the method we are checking for // - iftable: The iftable we are searching for an overriding method on. // - ifstart: The index of the interface we are checking to see if anything overrides // - iface: The interface we are checking to see if anything overrides. // - image_pointer_size: // The image pointer size. // // Returns // - True: There is some method that matches the target comparator defined in an interface that // is a subtype of iface. // - False: There is no method that matches the target comparator in any interface that is a subtype // of iface. static bool ContainsOverridingMethodOf(Thread* self, MethodNameAndSignatureComparator& target, Handle iftable, size_t ifstart, Handle iface, PointerSize image_pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(self != nullptr); DCHECK(iface != nullptr); DCHECK(iftable != nullptr); DCHECK_GE(ifstart, 0u); DCHECK_LT(ifstart, iftable->Count()); DCHECK_EQ(iface.Get(), iftable->GetInterface(ifstart)); DCHECK(iface->IsInterface()); size_t iftable_count = iftable->Count(); StackHandleScope<1> hs(self); MutableHandle current_iface(hs.NewHandle(nullptr)); for (size_t k = ifstart + 1; k < iftable_count; k++) { // Skip ifstart since our current interface obviously cannot override itself. current_iface.Assign(iftable->GetInterface(k)); // Iterate through every method on this interface. The order does not matter. for (ArtMethod& current_method : current_iface->GetDeclaredVirtualMethods(image_pointer_size)) { if (UNLIKELY(target.HasSameNameAndSignature( current_method.GetInterfaceMethodIfProxy(image_pointer_size)))) { // Check if the i'th interface is a subtype of this one. if (iface->IsAssignableFrom(current_iface.Get())) { return true; } break; } } } return false; } // Find the default method implementation for 'interface_method' in 'klass'. Stores it into // out_default_method and returns kDefaultFound on success. If no default method was found return // kAbstractFound and store nullptr into out_default_method. If an error occurs (such as a // default_method conflict) it will return kDefaultConflict. ClassLinker::DefaultMethodSearchResult ClassLinker::FindDefaultMethodImplementation( Thread* self, ArtMethod* target_method, Handle klass, /*out*/ArtMethod** out_default_method) const { DCHECK(self != nullptr); DCHECK(target_method != nullptr); DCHECK(out_default_method != nullptr); *out_default_method = nullptr; // We organize the interface table so that, for interface I any subinterfaces J follow it in the // table. This lets us walk the table backwards when searching for default methods. The first one // we encounter is the best candidate since it is the most specific. Once we have found it we keep // track of it and then continue checking all other interfaces, since we need to throw an error if // we encounter conflicting default method implementations (one is not a subtype of the other). // // The order of unrelated interfaces does not matter and is not defined. size_t iftable_count = klass->GetIfTableCount(); if (iftable_count == 0) { // No interfaces. We have already reset out to null so just return kAbstractFound. return DefaultMethodSearchResult::kAbstractFound; } StackHandleScope<3> hs(self); MutableHandle chosen_iface(hs.NewHandle(nullptr)); MutableHandle iftable(hs.NewHandle(klass->GetIfTable())); MutableHandle iface(hs.NewHandle(nullptr)); MethodNameAndSignatureComparator target_name_comparator( target_method->GetInterfaceMethodIfProxy(image_pointer_size_)); // Iterates over the klass's iftable in reverse for (size_t k = iftable_count; k != 0; ) { --k; DCHECK_LT(k, iftable->Count()); iface.Assign(iftable->GetInterface(k)); // Iterate through every declared method on this interface. The order does not matter. for (auto& method_iter : iface->GetDeclaredVirtualMethods(image_pointer_size_)) { ArtMethod* current_method = &method_iter; // Skip abstract methods and methods with different names. if (current_method->IsAbstract() || !target_name_comparator.HasSameNameAndSignature( current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) { continue; } else if (!current_method->IsPublic()) { // The verifier should have caught the non-public method for dex version 37. Just warn and // skip it since this is from before default-methods so we don't really need to care that it // has code. LOG(WARNING) << "Interface method " << current_method->PrettyMethod() << " is not public! " << "This will be a fatal error in subsequent versions of android. " << "Continuing anyway."; } if (UNLIKELY(chosen_iface != nullptr)) { // We have multiple default impls of the same method. This is a potential default conflict. // We need to check if this possibly conflicting method is either a superclass of the chosen // default implementation or is overridden by a non-default interface method. In either case // there is no conflict. if (!iface->IsAssignableFrom(chosen_iface.Get()) && !ContainsOverridingMethodOf(self, target_name_comparator, iftable, k, iface, image_pointer_size_)) { VLOG(class_linker) << "Conflicting default method implementations found: " << current_method->PrettyMethod() << " and " << ArtMethod::PrettyMethod(*out_default_method) << " in class " << klass->PrettyClass() << " conflict."; *out_default_method = nullptr; return DefaultMethodSearchResult::kDefaultConflict; } else { break; // Continue checking at the next interface. } } else { // chosen_iface == null if (!ContainsOverridingMethodOf(self, target_name_comparator, iftable, k, iface, image_pointer_size_)) { // Don't set this as the chosen interface if something else is overriding it (because that // other interface would be potentially chosen instead if it was default). If the other // interface was abstract then we wouldn't select this interface as chosen anyway since // the abstract method masks it. *out_default_method = current_method; chosen_iface.Assign(iface.Get()); // We should now finish traversing the graph to find if we have default methods that // conflict. } else { VLOG(class_linker) << "A default method '" << current_method->PrettyMethod() << "' was " << "skipped because it was overridden by an abstract method in a " << "subinterface on class '" << klass->PrettyClass() << "'"; } } break; } } if (*out_default_method != nullptr) { VLOG(class_linker) << "Default method '" << (*out_default_method)->PrettyMethod() << "' selected " << "as the implementation for '" << target_method->PrettyMethod() << "' in '" << klass->PrettyClass() << "'"; return DefaultMethodSearchResult::kDefaultFound; } else { return DefaultMethodSearchResult::kAbstractFound; } } ArtMethod* ClassLinker::AddMethodToConflictTable(ObjPtr klass, ArtMethod* conflict_method, ArtMethod* interface_method, ArtMethod* method) { ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize); Runtime* const runtime = Runtime::Current(); LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader()); // Create a new entry if the existing one is the shared conflict method. ArtMethod* new_conflict_method = (conflict_method == runtime->GetImtConflictMethod()) ? runtime->CreateImtConflictMethod(linear_alloc) : conflict_method; // Allocate a new table. Note that we will leak this table at the next conflict, // but that's a tradeoff compared to making the table fixed size. void* data = linear_alloc->Alloc( Thread::Current(), ImtConflictTable::ComputeSizeWithOneMoreEntry(current_table, image_pointer_size_)); if (data == nullptr) { LOG(ERROR) << "Failed to allocate conflict table"; return conflict_method; } ImtConflictTable* new_table = new (data) ImtConflictTable(current_table, interface_method, method, image_pointer_size_); // Do a fence to ensure threads see the data in the table before it is assigned // to the conflict method. // Note that there is a race in the presence of multiple threads and we may leak // memory from the LinearAlloc, but that's a tradeoff compared to using // atomic operations. std::atomic_thread_fence(std::memory_order_release); new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_); return new_conflict_method; } bool ClassLinker::AllocateIfTableMethodArrays(Thread* self, Handle klass, Handle iftable) { DCHECK(!klass->IsInterface()); const bool has_superclass = klass->HasSuperClass(); const bool extend_super_iftable = has_superclass; const size_t ifcount = klass->GetIfTableCount(); const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U; for (size_t i = 0; i < ifcount; ++i) { size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods(); if (num_methods > 0) { const bool is_super = i < super_ifcount; // This is an interface implemented by a super-class. Therefore we can just copy the method // array from the superclass. const bool super_interface = is_super && extend_super_iftable; ObjPtr method_array; if (super_interface) { ObjPtr if_table = klass->GetSuperClass()->GetIfTable(); DCHECK(if_table != nullptr); DCHECK(if_table->GetMethodArray(i) != nullptr); // If we are working on a super interface, try extending the existing method array. StackHandleScope<1u> hs(self); Handle old_array = hs.NewHandle(if_table->GetMethodArray(i)); method_array = ObjPtr::DownCast(mirror::Object::Clone(old_array, self)); } else { method_array = AllocPointerArray(self, num_methods); } if (UNLIKELY(method_array == nullptr)) { self->AssertPendingOOMException(); return false; } iftable->SetMethodArray(i, method_array); } } return true; } void ClassLinker::SetIMTRef(ArtMethod* unimplemented_method, ArtMethod* imt_conflict_method, ArtMethod* current_method, /*out*/bool* new_conflict, /*out*/ArtMethod** imt_ref) { // Place method in imt if entry is empty, place conflict otherwise. if (*imt_ref == unimplemented_method) { *imt_ref = current_method; } else if (!(*imt_ref)->IsRuntimeMethod()) { // If we are not a conflict and we have the same signature and name as the imt // entry, it must be that we overwrote a superclass vtable entry. // Note that we have checked IsRuntimeMethod, as there may be multiple different // conflict methods. MethodNameAndSignatureComparator imt_comparator( (*imt_ref)->GetInterfaceMethodIfProxy(image_pointer_size_)); if (imt_comparator.HasSameNameAndSignature( current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) { *imt_ref = current_method; } else { *imt_ref = imt_conflict_method; *new_conflict = true; } } else { // Place the default conflict method. Note that there may be an existing conflict // method in the IMT, but it could be one tailored to the super class, with a // specific ImtConflictTable. *imt_ref = imt_conflict_method; *new_conflict = true; } } void ClassLinker::FillIMTAndConflictTables(ObjPtr klass) { DCHECK(klass->ShouldHaveImt()) << klass->PrettyClass(); DCHECK(!klass->IsTemp()) << klass->PrettyClass(); ArtMethod* imt_data[ImTable::kSize]; Runtime* const runtime = Runtime::Current(); ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod(); ArtMethod* const conflict_method = runtime->GetImtConflictMethod(); std::fill_n(imt_data, arraysize(imt_data), unimplemented_method); if (klass->GetIfTable() != nullptr) { bool new_conflict = false; FillIMTFromIfTable(klass->GetIfTable(), unimplemented_method, conflict_method, klass, /*create_conflict_tables=*/true, /*ignore_copied_methods=*/false, &new_conflict, &imt_data[0]); } // Compare the IMT with the super class including the conflict methods. If they are equivalent, // we can just use the same pointer. ImTable* imt = nullptr; ObjPtr super_class = klass->GetSuperClass(); if (super_class != nullptr && super_class->ShouldHaveImt()) { ImTable* super_imt = super_class->GetImt(image_pointer_size_); bool same = true; for (size_t i = 0; same && i < ImTable::kSize; ++i) { ArtMethod* method = imt_data[i]; ArtMethod* super_method = super_imt->Get(i, image_pointer_size_); if (method != super_method) { bool is_conflict_table = method->IsRuntimeMethod() && method != unimplemented_method && method != conflict_method; // Verify conflict contents. bool super_conflict_table = super_method->IsRuntimeMethod() && super_method != unimplemented_method && super_method != conflict_method; if (!is_conflict_table || !super_conflict_table) { same = false; } else { ImtConflictTable* table1 = method->GetImtConflictTable(image_pointer_size_); ImtConflictTable* table2 = super_method->GetImtConflictTable(image_pointer_size_); same = same && table1->Equals(table2, image_pointer_size_); } } } if (same) { imt = super_imt; } } if (imt == nullptr) { imt = klass->GetImt(image_pointer_size_); DCHECK(imt != nullptr); imt->Populate(imt_data, image_pointer_size_); } else { klass->SetImt(imt, image_pointer_size_); } } ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc, PointerSize image_pointer_size) { void* data = linear_alloc->Alloc(Thread::Current(), ImtConflictTable::ComputeSize(count, image_pointer_size)); return (data != nullptr) ? new (data) ImtConflictTable(count, image_pointer_size) : nullptr; } ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc) { return CreateImtConflictTable(count, linear_alloc, image_pointer_size_); } void ClassLinker::FillIMTFromIfTable(ObjPtr if_table, ArtMethod* unimplemented_method, ArtMethod* imt_conflict_method, ObjPtr klass, bool create_conflict_tables, bool ignore_copied_methods, /*out*/bool* new_conflict, /*out*/ArtMethod** imt) { uint32_t conflict_counts[ImTable::kSize] = {}; for (size_t i = 0, length = if_table->Count(); i < length; ++i) { ObjPtr interface = if_table->GetInterface(i); const size_t num_virtuals = interface->NumVirtualMethods(); const size_t method_array_count = if_table->GetMethodArrayCount(i); // Virtual methods can be larger than the if table methods if there are default methods. DCHECK_GE(num_virtuals, method_array_count); if (kIsDebugBuild) { if (klass->IsInterface()) { DCHECK_EQ(method_array_count, 0u); } else { DCHECK_EQ(interface->NumDeclaredVirtualMethods(), method_array_count); } } if (method_array_count == 0) { continue; } ObjPtr method_array = if_table->GetMethodArray(i); for (size_t j = 0; j < method_array_count; ++j) { ArtMethod* implementation_method = method_array->GetElementPtrSize(j, image_pointer_size_); if (ignore_copied_methods && implementation_method->IsCopied()) { continue; } DCHECK(implementation_method != nullptr); // Miranda methods cannot be used to implement an interface method, but they are safe to put // in the IMT since their entrypoint is the interface trampoline. If we put any copied methods // or interface methods in the IMT here they will not create extra conflicts since we compare // names and signatures in SetIMTRef. ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_); const uint32_t imt_index = interface_method->GetImtIndex(); // There is only any conflicts if all of the interface methods for an IMT slot don't have // the same implementation method, keep track of this to avoid creating a conflict table in // this case. // Conflict table size for each IMT slot. ++conflict_counts[imt_index]; SetIMTRef(unimplemented_method, imt_conflict_method, implementation_method, /*out*/new_conflict, /*out*/&imt[imt_index]); } } if (create_conflict_tables) { // Create the conflict tables. LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader()); for (size_t i = 0; i < ImTable::kSize; ++i) { size_t conflicts = conflict_counts[i]; if (imt[i] == imt_conflict_method) { ImtConflictTable* new_table = CreateImtConflictTable(conflicts, linear_alloc); if (new_table != nullptr) { ArtMethod* new_conflict_method = Runtime::Current()->CreateImtConflictMethod(linear_alloc); new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_); imt[i] = new_conflict_method; } else { LOG(ERROR) << "Failed to allocate conflict table"; imt[i] = imt_conflict_method; } } else { DCHECK_NE(imt[i], imt_conflict_method); } } for (size_t i = 0, length = if_table->Count(); i < length; ++i) { ObjPtr interface = if_table->GetInterface(i); const size_t method_array_count = if_table->GetMethodArrayCount(i); // Virtual methods can be larger than the if table methods if there are default methods. if (method_array_count == 0) { continue; } ObjPtr method_array = if_table->GetMethodArray(i); for (size_t j = 0; j < method_array_count; ++j) { ArtMethod* implementation_method = method_array->GetElementPtrSize(j, image_pointer_size_); if (ignore_copied_methods && implementation_method->IsCopied()) { continue; } DCHECK(implementation_method != nullptr); ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_); const uint32_t imt_index = interface_method->GetImtIndex(); if (!imt[imt_index]->IsRuntimeMethod() || imt[imt_index] == unimplemented_method || imt[imt_index] == imt_conflict_method) { continue; } ImtConflictTable* table = imt[imt_index]->GetImtConflictTable(image_pointer_size_); const size_t num_entries = table->NumEntries(image_pointer_size_); table->SetInterfaceMethod(num_entries, image_pointer_size_, interface_method); table->SetImplementationMethod(num_entries, image_pointer_size_, implementation_method); } } } } // Simple helper function that checks that no subtypes of 'val' are contained within the 'classes' // set. static bool NotSubinterfaceOfAny( const HashSet& classes, ObjPtr val) REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(val != nullptr); for (ObjPtr c : classes) { if (val->IsAssignableFrom(c)) { return false; } } return true; } // Fills in and flattens the interface inheritance hierarchy. // // By the end of this function all interfaces in the transitive closure of to_process are added to // the iftable and every interface precedes all of its sub-interfaces in this list. // // all I, J: Interface | I <: J implies J precedes I // // (note A <: B means that A is a subtype of B) // // This returns the total number of items in the iftable. The iftable might be resized down after // this call. // // We order this backwards so that we do not need to reorder superclass interfaces when new // interfaces are added in subclass's interface tables. // // Upon entry into this function iftable is a copy of the superclass's iftable with the first // super_ifcount entries filled in with the transitive closure of the interfaces of the superclass. // The other entries are uninitialized. We will fill in the remaining entries in this function. The // iftable must be large enough to hold all interfaces without changing its size. static size_t FillIfTable(Thread* self, ObjPtr klass, ObjPtr> interfaces, ObjPtr iftable, size_t super_ifcount, size_t num_interfaces) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension nts(__FUNCTION__); // This is the set of all classes already in the iftable. Used to make checking // if a class has already been added quicker. constexpr size_t kBufferSize = 32; // 256 bytes on 64-bit architectures. mirror::Class* buffer[kBufferSize]; HashSet classes_in_iftable(buffer, kBufferSize); // The first super_ifcount elements are from the superclass. We note that they are already added. for (size_t i = 0; i < super_ifcount; i++) { ObjPtr iface = iftable->GetInterface(i); DCHECK(NotSubinterfaceOfAny(classes_in_iftable, iface)) << "Bad ordering."; classes_in_iftable.insert(iface.Ptr()); } size_t filled_ifcount = super_ifcount; const bool have_interfaces = interfaces != nullptr; for (size_t i = 0; i != num_interfaces; ++i) { ObjPtr interface = have_interfaces ? interfaces->Get(i) : mirror::Class::GetDirectInterface(self, klass, i); // Let us call the first filled_ifcount elements of iftable the current-iface-list. // At this point in the loop current-iface-list has the invariant that: // for every pair of interfaces I,J within it: // if index_of(I) < index_of(J) then I is not a subtype of J // If we have already seen this element then all of its super-interfaces must already be in the // current-iface-list so we can skip adding it. if (classes_in_iftable.find(interface.Ptr()) == classes_in_iftable.end()) { // We haven't seen this interface so add all of its super-interfaces onto the // current-iface-list, skipping those already on it. int32_t ifcount = interface->GetIfTableCount(); for (int32_t j = 0; j < ifcount; j++) { ObjPtr super_interface = interface->GetIfTable()->GetInterface(j); if (!ContainsElement(classes_in_iftable, super_interface)) { DCHECK(NotSubinterfaceOfAny(classes_in_iftable, super_interface)) << "Bad ordering."; classes_in_iftable.insert(super_interface.Ptr()); iftable->SetInterface(filled_ifcount, super_interface); filled_ifcount++; } } DCHECK(NotSubinterfaceOfAny(classes_in_iftable, interface)) << "Bad ordering"; // Place this interface onto the current-iface-list after all of its super-interfaces. classes_in_iftable.insert(interface.Ptr()); iftable->SetInterface(filled_ifcount, interface); filled_ifcount++; } else if (kIsDebugBuild) { // Check all super-interfaces are already in the list. int32_t ifcount = interface->GetIfTableCount(); for (int32_t j = 0; j < ifcount; j++) { ObjPtr super_interface = interface->GetIfTable()->GetInterface(j); DCHECK(ContainsElement(classes_in_iftable, super_interface)) << "Iftable does not contain " << mirror::Class::PrettyClass(super_interface) << ", a superinterface of " << interface->PrettyClass(); } } } if (kIsDebugBuild) { // Check that the iftable is ordered correctly. for (size_t i = 0; i < filled_ifcount; i++) { ObjPtr if_a = iftable->GetInterface(i); for (size_t j = i + 1; j < filled_ifcount; j++) { ObjPtr if_b = iftable->GetInterface(j); // !(if_a <: if_b) CHECK(!if_b->IsAssignableFrom(if_a)) << "Bad interface order: " << mirror::Class::PrettyClass(if_a) << " (index " << i << ") extends " << if_b->PrettyClass() << " (index " << j << ") and so should be after it in the " << "interface list."; } } } return filled_ifcount; } bool ClassLinker::SetupInterfaceLookupTable(Thread* self, Handle klass, Handle> interfaces) { StackHandleScope<1> hs(self); const bool has_superclass = klass->HasSuperClass(); const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U; const bool have_interfaces = interfaces != nullptr; const size_t num_interfaces = have_interfaces ? interfaces->GetLength() : klass->NumDirectInterfaces(); if (num_interfaces == 0) { if (super_ifcount == 0) { if (LIKELY(has_superclass)) { klass->SetIfTable(klass->GetSuperClass()->GetIfTable()); } // Class implements no interfaces. DCHECK_EQ(klass->GetIfTableCount(), 0); return true; } // Class implements same interfaces as parent, are any of these not marker interfaces? bool has_non_marker_interface = false; ObjPtr super_iftable = klass->GetSuperClass()->GetIfTable(); for (size_t i = 0; i < super_ifcount; ++i) { if (super_iftable->GetMethodArrayCount(i) > 0) { has_non_marker_interface = true; break; } } // Class just inherits marker interfaces from parent so recycle parent's iftable. if (!has_non_marker_interface) { klass->SetIfTable(super_iftable); return true; } } size_t ifcount = super_ifcount + num_interfaces; // Check that every class being implemented is an interface. for (size_t i = 0; i < num_interfaces; i++) { ObjPtr interface = have_interfaces ? interfaces->GetWithoutChecks(i) : mirror::Class::GetDirectInterface(self, klass.Get(), i); DCHECK(interface != nullptr); if (UNLIKELY(!interface->IsInterface())) { std::string temp; ThrowIncompatibleClassChangeError(klass.Get(), "Class %s implements non-interface class %s", klass->PrettyDescriptor().c_str(), PrettyDescriptor(interface->GetDescriptor(&temp)).c_str()); return false; } ifcount += interface->GetIfTableCount(); } // Create the interface function table. MutableHandle iftable(hs.NewHandle(AllocIfTable(self, ifcount))); if (UNLIKELY(iftable == nullptr)) { self->AssertPendingOOMException(); return false; } // Fill in table with superclass's iftable. if (super_ifcount != 0) { ObjPtr super_iftable = klass->GetSuperClass()->GetIfTable(); for (size_t i = 0; i < super_ifcount; i++) { ObjPtr super_interface = super_iftable->GetInterface(i); iftable->SetInterface(i, super_interface); } } // Note that AllowThreadSuspension is to thread suspension as pthread_testcancel is to pthread // cancellation. That is it will suspend if one has a pending suspend request but otherwise // doesn't really do anything. self->AllowThreadSuspension(); const size_t new_ifcount = FillIfTable( self, klass.Get(), interfaces.Get(), iftable.Get(), super_ifcount, num_interfaces); self->AllowThreadSuspension(); // Shrink iftable in case duplicates were found if (new_ifcount < ifcount) { DCHECK_NE(num_interfaces, 0U); iftable.Assign(ObjPtr::DownCast( mirror::IfTable::CopyOf(iftable, self, new_ifcount * mirror::IfTable::kMax))); if (UNLIKELY(iftable == nullptr)) { self->AssertPendingOOMException(); return false; } ifcount = new_ifcount; } else { DCHECK_EQ(new_ifcount, ifcount); } klass->SetIfTable(iftable.Get()); return true; } // Finds the method with a name/signature that matches cmp in the given lists of methods. The list // of methods must be unique. static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp ATTRIBUTE_UNUSED) { return nullptr; } template static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp, const ScopedArenaVector& list, const Types& ... rest) REQUIRES_SHARED(Locks::mutator_lock_) { for (ArtMethod* method : list) { if (cmp.HasSameNameAndSignature(method)) { return method; } } return FindSameNameAndSignature(cmp, rest...); } namespace { // Check that all vtable entries are present in this class's virtuals or are the same as a // superclasses vtable entry. void CheckClassOwnsVTableEntries(Thread* self, Handle klass, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<2> hs(self); Handle check_vtable(hs.NewHandle(klass->GetVTableDuringLinking())); ObjPtr super_temp = (klass->HasSuperClass()) ? klass->GetSuperClass() : nullptr; Handle superclass(hs.NewHandle(super_temp)); int32_t super_vtable_length = (superclass != nullptr) ? superclass->GetVTableLength() : 0; for (int32_t i = 0; i < check_vtable->GetLength(); ++i) { ArtMethod* m = check_vtable->GetElementPtrSize(i, pointer_size); CHECK(m != nullptr); if (m->GetMethodIndexDuringLinking() != i) { LOG(WARNING) << m->PrettyMethod() << " has an unexpected method index for its spot in the vtable for class" << klass->PrettyClass(); } ArraySlice virtuals = klass->GetVirtualMethodsSliceUnchecked(pointer_size); auto is_same_method = [m] (const ArtMethod& meth) { return &meth == m; }; if (!((super_vtable_length > i && superclass->GetVTableEntry(i, pointer_size) == m) || std::find_if(virtuals.begin(), virtuals.end(), is_same_method) != virtuals.end())) { LOG(WARNING) << m->PrettyMethod() << " does not seem to be owned by current class " << klass->PrettyClass() << " or any of its superclasses!"; } } } // Check to make sure the vtable does not have duplicates. Duplicates could cause problems when a // method is overridden in a subclass. template void CheckVTableHasNoDuplicates(Thread* self, Handle klass) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self); Handle vtable(hs.NewHandle(klass->GetVTableDuringLinking())); int32_t num_entries = vtable->GetLength(); // Observations: // * The older implementation was O(n^2) and got too expensive for apps with larger classes. // * Many classes do not override Object functions (e.g., equals/hashCode/toString). Thus, // for many classes outside of libcore a cross-dexfile check has to be run anyways. // * In the cross-dexfile case, with the O(n^2), in the best case O(n) cross checks would have // to be done. It is thus OK in a single-pass algorithm to read all data, anyways. // * The single-pass algorithm will trade memory for speed, but that is OK. CHECK_GT(num_entries, 0); auto log_fn = [&vtable, &klass](int32_t i, int32_t j) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* m1 = vtable->GetElementPtrSize(i); ArtMethod* m2 = vtable->GetElementPtrSize(j); LOG(WARNING) << "vtable entries " << i << " and " << j << " are identical for " << klass->PrettyClass() << " in method " << m1->PrettyMethod() << " (0x" << std::hex << reinterpret_cast(m2) << ") and " << m2->PrettyMethod() << " (0x" << std::hex << reinterpret_cast(m2) << ")"; }; struct BaseHashType { static size_t HashCombine(size_t seed, size_t val) { return seed ^ (val + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } }; // Check assuming all entries come from the same dex file. { // Find the first interesting method and its dex file. int32_t start = 0; for (; start < num_entries; ++start) { ArtMethod* vtable_entry = vtable->GetElementPtrSize(start); // Don't bother if we cannot 'see' the vtable entry (i.e. it is a package-private member // maybe). if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(), vtable_entry->GetAccessFlags())) { continue; } break; } if (start == num_entries) { return; } const DexFile* dex_file = vtable->GetElementPtrSize(start)-> GetInterfaceMethodIfProxy(kPointerSize)->GetDexFile(); // Helper function to avoid logging if we have to run the cross-file checks. auto check_fn = [&](bool log_warn) REQUIRES_SHARED(Locks::mutator_lock_) { // Use a map to store seen entries, as the storage space is too large for a bitvector. using PairType = std::pair; struct PairHash : BaseHashType { size_t operator()(const PairType& key) const { return BaseHashType::HashCombine(BaseHashType::HashCombine(0, key.first), key.second); } }; HashMap, PairHash> seen; seen.reserve(2 * num_entries); bool need_slow_path = false; bool found_dup = false; for (int i = start; i < num_entries; ++i) { // Can use Unchecked here as the start loop already ensured that the arrays are correct // wrt/ kPointerSize. ArtMethod* vtable_entry = vtable->GetElementPtrSizeUnchecked(i); if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(), vtable_entry->GetAccessFlags())) { continue; } ArtMethod* m = vtable_entry->GetInterfaceMethodIfProxy(kPointerSize); if (dex_file != m->GetDexFile()) { need_slow_path = true; break; } const dex::MethodId* m_mid = &dex_file->GetMethodId(m->GetDexMethodIndex()); PairType pair = std::make_pair(m_mid->name_idx_.index_, m_mid->proto_idx_.index_); auto it = seen.find(pair); if (it != seen.end()) { found_dup = true; if (log_warn) { log_fn(it->second, i); } } else { seen.insert(std::make_pair(pair, i)); } } return std::make_pair(need_slow_path, found_dup); }; std::pair result = check_fn(/* log_warn= */ false); if (!result.first) { if (result.second) { check_fn(/* log_warn= */ true); } return; } } // Need to check across dex files. struct Entry { size_t cached_hash = 0; uint32_t name_len = 0; const char* name = nullptr; Signature signature = Signature::NoSignature(); Entry() = default; Entry(const Entry& other) = default; Entry& operator=(const Entry& other) = default; Entry(const DexFile* dex_file, const dex::MethodId& mid) : name_len(0), // Explicit to enforce ordering with -Werror,-Wreorder-ctor. // This call writes `name_len` and it is therefore necessary that the // initializer for `name_len` comes before it, otherwise the value // from the call would be overwritten by that initializer. name(dex_file->StringDataAndUtf16LengthByIdx(mid.name_idx_, &name_len)), signature(dex_file->GetMethodSignature(mid)) { // The `name_len` has been initialized to the UTF16 length. Calculate length in bytes. if (name[name_len] != 0) { name_len += strlen(name + name_len); } } bool operator==(const Entry& other) const { return name_len == other.name_len && memcmp(name, other.name, name_len) == 0 && signature == other.signature; } }; struct EntryHash { size_t operator()(const Entry& key) const { return key.cached_hash; } }; HashMap, EntryHash> map; for (int32_t i = 0; i < num_entries; ++i) { // Can use Unchecked here as the first loop already ensured that the arrays are correct // wrt/ kPointerSize. ArtMethod* vtable_entry = vtable->GetElementPtrSizeUnchecked(i); // Don't bother if we cannot 'see' the vtable entry (i.e. it is a package-private member // maybe). if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(), vtable_entry->GetAccessFlags())) { continue; } ArtMethod* m = vtable_entry->GetInterfaceMethodIfProxy(kPointerSize); const DexFile* dex_file = m->GetDexFile(); const dex::MethodId& mid = dex_file->GetMethodId(m->GetDexMethodIndex()); Entry e(dex_file, mid); size_t string_hash = std::hash()(std::string_view(e.name, e.name_len)); size_t sig_hash = std::hash()(e.signature.ToString()); e.cached_hash = BaseHashType::HashCombine(BaseHashType::HashCombine(0u, string_hash), sig_hash); auto it = map.find(e); if (it != map.end()) { log_fn(it->second, i); } else { map.insert(std::make_pair(e, i)); } } } void CheckVTableHasNoDuplicates(Thread* self, Handle klass, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { switch (pointer_size) { case PointerSize::k64: CheckVTableHasNoDuplicates(self, klass); break; case PointerSize::k32: CheckVTableHasNoDuplicates(self, klass); break; } } static void CheckVTable(Thread* self, Handle klass, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { CheckClassOwnsVTableEntries(self, klass, pointer_size); CheckVTableHasNoDuplicates(self, klass, pointer_size); } } // namespace void ClassLinker::FillImtFromSuperClass(Handle klass, ArtMethod* unimplemented_method, ArtMethod* imt_conflict_method, bool* new_conflict, ArtMethod** imt) { DCHECK(klass->HasSuperClass()); ObjPtr super_class = klass->GetSuperClass(); if (super_class->ShouldHaveImt()) { ImTable* super_imt = super_class->GetImt(image_pointer_size_); for (size_t i = 0; i < ImTable::kSize; ++i) { imt[i] = super_imt->Get(i, image_pointer_size_); } } else { // No imt in the super class, need to reconstruct from the iftable. ObjPtr if_table = super_class->GetIfTable(); if (if_table->Count() != 0) { // Ignore copied methods since we will handle these in LinkInterfaceMethods. FillIMTFromIfTable(if_table, unimplemented_method, imt_conflict_method, klass.Get(), /*create_conflict_tables=*/false, /*ignore_copied_methods=*/true, /*out*/new_conflict, /*out*/imt); } } } class ClassLinker::LinkInterfaceMethodsHelper { public: LinkInterfaceMethodsHelper(ClassLinker* class_linker, Handle klass, Thread* self, Runtime* runtime) : class_linker_(class_linker), klass_(klass), method_alignment_(ArtMethod::Alignment(class_linker->GetImagePointerSize())), method_size_(ArtMethod::Size(class_linker->GetImagePointerSize())), self_(self), stack_(runtime->GetLinearAlloc()->GetArenaPool()), allocator_(&stack_), default_conflict_methods_(allocator_.Adapter()), overriding_default_conflict_methods_(allocator_.Adapter()), miranda_methods_(allocator_.Adapter()), default_methods_(allocator_.Adapter()), overriding_default_methods_(allocator_.Adapter()), move_table_(allocator_.Adapter()) { } ArtMethod* FindMethod(ArtMethod* interface_method, MethodNameAndSignatureComparator& interface_name_comparator, ArtMethod* vtable_impl) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* GetOrCreateMirandaMethod(ArtMethod* interface_method, MethodNameAndSignatureComparator& interface_name_comparator) REQUIRES_SHARED(Locks::mutator_lock_); bool HasNewVirtuals() const { return !(miranda_methods_.empty() && default_methods_.empty() && overriding_default_methods_.empty() && overriding_default_conflict_methods_.empty() && default_conflict_methods_.empty()); } void ReallocMethods() REQUIRES_SHARED(Locks::mutator_lock_); ObjPtr UpdateVtable( const HashMap& default_translations, Handle old_vtable) REQUIRES_SHARED(Locks::mutator_lock_); void UpdateIfTable(Handle iftable) REQUIRES_SHARED(Locks::mutator_lock_); void UpdateIMT(ArtMethod** out_imt); void CheckNoStaleMethodsInDexCache() REQUIRES_SHARED(Locks::mutator_lock_) { if (kIsDebugBuild) { PointerSize pointer_size = class_linker_->GetImagePointerSize(); // Check that there are no stale methods are in the dex cache array. auto* resolved_methods = klass_->GetDexCache()->GetResolvedMethods(); for (size_t i = 0, count = klass_->GetDexCache()->NumResolvedMethods(); i < count; ++i) { auto pair = mirror::DexCache::GetNativePair(resolved_methods, i); ArtMethod* m = pair.object; CHECK(move_table_.find(m) == move_table_.end() || // The original versions of copied methods will still be present so allow those too. // Note that if the first check passes this might fail to GetDeclaringClass(). std::find_if(m->GetDeclaringClass()->GetMethods(pointer_size).begin(), m->GetDeclaringClass()->GetMethods(pointer_size).end(), [m] (ArtMethod& meth) { return &meth == m; }) != m->GetDeclaringClass()->GetMethods(pointer_size).end()) << "Obsolete method " << m->PrettyMethod() << " is in dex cache!"; } } } void ClobberOldMethods(LengthPrefixedArray* old_methods, LengthPrefixedArray* methods) { if (kIsDebugBuild) { CHECK(methods != nullptr); // Put some random garbage in old methods to help find stale pointers. if (methods != old_methods && old_methods != nullptr) { // Need to make sure the GC is not running since it could be scanning the methods we are // about to overwrite. ScopedThreadStateChange tsc(self_, kSuspended); gc::ScopedGCCriticalSection gcs(self_, gc::kGcCauseClassLinker, gc::kCollectorTypeClassLinker); const size_t old_size = LengthPrefixedArray::ComputeSize(old_methods->size(), method_size_, method_alignment_); memset(old_methods, 0xFEu, old_size); } } } private: size_t NumberOfNewVirtuals() const { return miranda_methods_.size() + default_methods_.size() + overriding_default_conflict_methods_.size() + overriding_default_methods_.size() + default_conflict_methods_.size(); } bool FillTables() REQUIRES_SHARED(Locks::mutator_lock_) { return !klass_->IsInterface(); } void LogNewVirtuals() const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!klass_->IsInterface() || (default_methods_.empty() && miranda_methods_.empty())) << "Interfaces should only have default-conflict methods appended to them."; VLOG(class_linker) << mirror::Class::PrettyClass(klass_.Get()) << ": miranda_methods=" << miranda_methods_.size() << " default_methods=" << default_methods_.size() << " overriding_default_methods=" << overriding_default_methods_.size() << " default_conflict_methods=" << default_conflict_methods_.size() << " overriding_default_conflict_methods=" << overriding_default_conflict_methods_.size(); } ClassLinker* class_linker_; Handle klass_; size_t method_alignment_; size_t method_size_; Thread* const self_; // These are allocated on the heap to begin, we then transfer to linear alloc when we re-create // the virtual methods array. // Need to use low 4GB arenas for compiler or else the pointers wont fit in 32 bit method array // during cross compilation. // Use the linear alloc pool since this one is in the low 4gb for the compiler. ArenaStack stack_; ScopedArenaAllocator allocator_; ScopedArenaVector default_conflict_methods_; ScopedArenaVector overriding_default_conflict_methods_; ScopedArenaVector miranda_methods_; ScopedArenaVector default_methods_; ScopedArenaVector overriding_default_methods_; ScopedArenaUnorderedMap move_table_; }; ArtMethod* ClassLinker::LinkInterfaceMethodsHelper::FindMethod( ArtMethod* interface_method, MethodNameAndSignatureComparator& interface_name_comparator, ArtMethod* vtable_impl) { ArtMethod* current_method = nullptr; switch (class_linker_->FindDefaultMethodImplementation(self_, interface_method, klass_, /*out*/¤t_method)) { case DefaultMethodSearchResult::kDefaultConflict: { // Default method conflict. DCHECK(current_method == nullptr); ArtMethod* default_conflict_method = nullptr; if (vtable_impl != nullptr && vtable_impl->IsDefaultConflicting()) { // We can reuse the method from the superclass, don't bother adding it to virtuals. default_conflict_method = vtable_impl; } else { // See if we already have a conflict method for this method. ArtMethod* preexisting_conflict = FindSameNameAndSignature( interface_name_comparator, default_conflict_methods_, overriding_default_conflict_methods_); if (LIKELY(preexisting_conflict != nullptr)) { // We already have another conflict we can reuse. default_conflict_method = preexisting_conflict; } else { // Note that we do this even if we are an interface since we need to create this and // cannot reuse another classes. // Create a new conflict method for this to use. default_conflict_method = reinterpret_cast(allocator_.Alloc(method_size_)); new(default_conflict_method) ArtMethod(interface_method, class_linker_->GetImagePointerSize()); if (vtable_impl == nullptr) { // Save the conflict method. We need to add it to the vtable. default_conflict_methods_.push_back(default_conflict_method); } else { // Save the conflict method but it is already in the vtable. overriding_default_conflict_methods_.push_back(default_conflict_method); } } } current_method = default_conflict_method; break; } // case kDefaultConflict case DefaultMethodSearchResult::kDefaultFound: { DCHECK(current_method != nullptr); // Found a default method. if (vtable_impl != nullptr && current_method->GetDeclaringClass() == vtable_impl->GetDeclaringClass()) { // We found a default method but it was the same one we already have from our // superclass. Don't bother adding it to our vtable again. current_method = vtable_impl; } else if (LIKELY(FillTables())) { // Interfaces don't need to copy default methods since they don't have vtables. // Only record this default method if it is new to save space. // TODO It might be worthwhile to copy default methods on interfaces anyway since it // would make lookup for interface super much faster. (We would only need to scan // the iftable to find if there is a NSME or AME.) ArtMethod* old = FindSameNameAndSignature(interface_name_comparator, default_methods_, overriding_default_methods_); if (old == nullptr) { // We found a default method implementation and there were no conflicts. if (vtable_impl == nullptr) { // Save the default method. We need to add it to the vtable. default_methods_.push_back(current_method); } else { // Save the default method but it is already in the vtable. overriding_default_methods_.push_back(current_method); } } else { CHECK(old == current_method) << "Multiple default implementations selected!"; } } break; } // case kDefaultFound case DefaultMethodSearchResult::kAbstractFound: { DCHECK(current_method == nullptr); // Abstract method masks all defaults. if (vtable_impl != nullptr && vtable_impl->IsAbstract() && !vtable_impl->IsDefaultConflicting()) { // We need to make this an abstract method but the version in the vtable already is so // don't do anything. current_method = vtable_impl; } break; } // case kAbstractFound } return current_method; } ArtMethod* ClassLinker::LinkInterfaceMethodsHelper::GetOrCreateMirandaMethod( ArtMethod* interface_method, MethodNameAndSignatureComparator& interface_name_comparator) { // Find out if there is already a miranda method we can use. ArtMethod* miranda_method = FindSameNameAndSignature(interface_name_comparator, miranda_methods_); if (miranda_method == nullptr) { DCHECK(interface_method->IsAbstract()) << interface_method->PrettyMethod(); miranda_method = reinterpret_cast(allocator_.Alloc(method_size_)); CHECK(miranda_method != nullptr); // Point the interface table at a phantom slot. new(miranda_method) ArtMethod(interface_method, class_linker_->GetImagePointerSize()); miranda_methods_.push_back(miranda_method); } return miranda_method; } void ClassLinker::LinkInterfaceMethodsHelper::ReallocMethods() { LogNewVirtuals(); const size_t old_method_count = klass_->NumMethods(); const size_t new_method_count = old_method_count + NumberOfNewVirtuals(); DCHECK_NE(old_method_count, new_method_count); // Attempt to realloc to save RAM if possible. LengthPrefixedArray* old_methods = klass_->GetMethodsPtr(); // The Realloced virtual methods aren't visible from the class roots, so there is no issue // where GCs could attempt to mark stale pointers due to memcpy. And since we overwrite the // realloced memory with out->CopyFrom, we are guaranteed to have objects in the to space since // CopyFrom has internal read barriers. // // TODO We should maybe move some of this into mirror::Class or at least into another method. const size_t old_size = LengthPrefixedArray::ComputeSize(old_method_count, method_size_, method_alignment_); const size_t new_size = LengthPrefixedArray::ComputeSize(new_method_count, method_size_, method_alignment_); const size_t old_methods_ptr_size = (old_methods != nullptr) ? old_size : 0; auto* methods = reinterpret_cast*>( class_linker_->GetAllocatorForClassLoader(klass_->GetClassLoader())->Realloc( self_, old_methods, old_methods_ptr_size, new_size)); CHECK(methods != nullptr); // Native allocation failure aborts. PointerSize pointer_size = class_linker_->GetImagePointerSize(); if (methods != old_methods) { // Maps from heap allocated miranda method to linear alloc miranda method. StrideIterator out = methods->begin(method_size_, method_alignment_); // Copy over the old methods. for (auto& m : klass_->GetMethods(pointer_size)) { move_table_.emplace(&m, &*out); // The CopyFrom is only necessary to not miss read barriers since Realloc won't do read // barriers when it copies. out->CopyFrom(&m, pointer_size); ++out; } } StrideIterator out(methods->begin(method_size_, method_alignment_) + old_method_count); // Copy over miranda methods before copying vtable since CopyOf may cause thread suspension and // we want the roots of the miranda methods to get visited. for (size_t i = 0; i < miranda_methods_.size(); ++i) { ArtMethod* mir_method = miranda_methods_[i]; ArtMethod& new_method = *out; new_method.CopyFrom(mir_method, pointer_size); uint32_t access_flags = new_method.GetAccessFlags(); DCHECK_EQ(access_flags & kAccIntrinsic, 0u) << "Miranda method should not be an intrinsic!"; DCHECK_EQ(access_flags & kAccDefault, 0u) << "Miranda method should not be a default method!"; DCHECK_NE(access_flags & kAccAbstract, 0u) << "Miranda method should be abstract!"; new_method.SetAccessFlags(access_flags | kAccCopied); move_table_.emplace(mir_method, &new_method); // Update the entry in the method array, as the array will be used for future lookups, // where thread suspension is allowed. // As such, the array should not contain locally allocated ArtMethod, otherwise the GC // would not see them. miranda_methods_[i] = &new_method; ++out; } // We need to copy the default methods into our own method table since the runtime requires that // every method on a class's vtable be in that respective class's virtual method table. // NOTE This means that two classes might have the same implementation of a method from the same // interface but will have different ArtMethod*s for them. This also means we cannot compare a // default method found on a class with one found on the declaring interface directly and must // look at the declaring class to determine if they are the same. for (ScopedArenaVector* methods_vec : {&default_methods_, &overriding_default_methods_}) { for (size_t i = 0; i < methods_vec->size(); ++i) { ArtMethod* def_method = (*methods_vec)[i]; ArtMethod& new_method = *out; new_method.CopyFrom(def_method, pointer_size); // Clear the kAccSkipAccessChecks flag if it is present. Since this class hasn't been // verified yet it shouldn't have methods that are skipping access checks. // TODO This is rather arbitrary. We should maybe support classes where only some of its // methods are skip_access_checks. DCHECK_EQ(new_method.GetAccessFlags() & kAccNative, 0u); constexpr uint32_t kSetFlags = kAccDefault | kAccCopied; constexpr uint32_t kMaskFlags = ~kAccSkipAccessChecks; new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags); move_table_.emplace(def_method, &new_method); // Update the entry in the method array, as the array will be used for future lookups, // where thread suspension is allowed. // As such, the array should not contain locally allocated ArtMethod, otherwise the GC // would not see them. (*methods_vec)[i] = &new_method; ++out; } } for (ScopedArenaVector* methods_vec : {&default_conflict_methods_, &overriding_default_conflict_methods_}) { for (size_t i = 0; i < methods_vec->size(); ++i) { ArtMethod* conf_method = (*methods_vec)[i]; ArtMethod& new_method = *out; new_method.CopyFrom(conf_method, pointer_size); // This is a type of default method (there are default method impls, just a conflict) so // mark this as a default. We use the `kAccAbstract` flag to distinguish it from invokable // copied default method without using a separate access flag but the default conflicting // method is technically not abstract and ArtMethod::IsAbstract() shall return false. // Also clear the kAccSkipAccessChecks bit since this class hasn't been verified yet it // shouldn't have methods that are skipping access checks. Also clear potential // kAccSingleImplementation to avoid CHA trying to inline the default method. uint32_t access_flags = new_method.GetAccessFlags(); DCHECK_EQ(access_flags & kAccNative, 0u); DCHECK_EQ(access_flags & kAccIntrinsic, 0u); constexpr uint32_t kSetFlags = kAccDefault | kAccAbstract | kAccCopied; constexpr uint32_t kMaskFlags = ~(kAccSkipAccessChecks | kAccSingleImplementation); new_method.SetAccessFlags((access_flags | kSetFlags) & kMaskFlags); DCHECK(new_method.IsDefaultConflicting()); DCHECK(!new_method.IsAbstract()); // The actual method might or might not be marked abstract since we just copied it from a // (possibly default) interface method. We need to set it entry point to be the bridge so // that the compiler will not invoke the implementation of whatever method we copied from. EnsureThrowsInvocationError(class_linker_, &new_method); move_table_.emplace(conf_method, &new_method); // Update the entry in the method array, as the array will be used for future lookups, // where thread suspension is allowed. // As such, the array should not contain locally allocated ArtMethod, otherwise the GC // would not see them. (*methods_vec)[i] = &new_method; ++out; } } methods->SetSize(new_method_count); class_linker_->UpdateClassMethods(klass_.Get(), methods); } ObjPtr ClassLinker::LinkInterfaceMethodsHelper::UpdateVtable( const HashMap& default_translations, Handle old_vtable) { // Update the vtable to the new method structures. We can skip this for interfaces since they // do not have vtables. const size_t old_vtable_count = old_vtable->GetLength(); const size_t new_vtable_count = old_vtable_count + miranda_methods_.size() + default_methods_.size() + default_conflict_methods_.size(); ObjPtr vtable = ObjPtr::DownCast( mirror::Array::CopyOf(old_vtable, self_, new_vtable_count)); if (UNLIKELY(vtable == nullptr)) { self_->AssertPendingOOMException(); return nullptr; } size_t vtable_pos = old_vtable_count; PointerSize pointer_size = class_linker_->GetImagePointerSize(); // Update all the newly copied method's indexes so they denote their placement in the vtable. for (const ScopedArenaVector& methods_vec : {default_methods_, default_conflict_methods_, miranda_methods_}) { // These are the functions that are not already in the vtable! for (ArtMethod* new_vtable_method : methods_vec) { // Leave the declaring class alone the method's dex_code_item_offset_ and dex_method_index_ // fields are references into the dex file the method was defined in. Since the ArtMethod // does not store that information it uses declaring_class_->dex_cache_. new_vtable_method->SetMethodIndex(0xFFFF & vtable_pos); vtable->SetElementPtrSize(vtable_pos, new_vtable_method, pointer_size); ++vtable_pos; } } DCHECK_EQ(vtable_pos, new_vtable_count); // Update old vtable methods. We use the default_translations map to figure out what each // vtable entry should be updated to, if they need to be at all. for (size_t i = 0; i < old_vtable_count; ++i) { ArtMethod* translated_method = vtable->GetElementPtrSize(i, pointer_size); // Try and find what we need to change this method to. auto translation_it = default_translations.find(i); if (translation_it != default_translations.end()) { if (translation_it->second.IsInConflict()) { // Find which conflict method we are to use for this method. MethodNameAndSignatureComparator old_method_comparator( translated_method->GetInterfaceMethodIfProxy(pointer_size)); // We only need to look through overriding_default_conflict_methods since this is an // overridden method we are fixing up here. ArtMethod* new_conflict_method = FindSameNameAndSignature( old_method_comparator, overriding_default_conflict_methods_); CHECK(new_conflict_method != nullptr) << "Expected a conflict method!"; translated_method = new_conflict_method; } else if (translation_it->second.IsAbstract()) { // Find which miranda method we are to use for this method. MethodNameAndSignatureComparator old_method_comparator( translated_method->GetInterfaceMethodIfProxy(pointer_size)); ArtMethod* miranda_method = FindSameNameAndSignature(old_method_comparator, miranda_methods_); DCHECK(miranda_method != nullptr); translated_method = miranda_method; } else { // Normal default method (changed from an older default or abstract interface method). DCHECK(translation_it->second.IsTranslation()); translated_method = translation_it->second.GetTranslation(); auto it = move_table_.find(translated_method); DCHECK(it != move_table_.end()); translated_method = it->second; } } else { auto it = move_table_.find(translated_method); translated_method = (it != move_table_.end()) ? it->second : nullptr; } if (translated_method != nullptr) { // Make sure the new_methods index is set. if (translated_method->GetMethodIndexDuringLinking() != i) { if (kIsDebugBuild) { auto* methods = klass_->GetMethodsPtr(); CHECK_LE(reinterpret_cast(&*methods->begin(method_size_, method_alignment_)), reinterpret_cast(translated_method)); CHECK_LT(reinterpret_cast(translated_method), reinterpret_cast(&*methods->end(method_size_, method_alignment_))); } translated_method->SetMethodIndex(0xFFFF & i); } vtable->SetElementPtrSize(i, translated_method, pointer_size); } } klass_->SetVTable(vtable); return vtable; } void ClassLinker::LinkInterfaceMethodsHelper::UpdateIfTable(Handle iftable) { PointerSize pointer_size = class_linker_->GetImagePointerSize(); const size_t ifcount = klass_->GetIfTableCount(); // Go fix up all the stale iftable pointers. for (size_t i = 0; i < ifcount; ++i) { for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) { ObjPtr method_array = iftable->GetMethodArray(i); ArtMethod* m = method_array->GetElementPtrSize(j, pointer_size); DCHECK(m != nullptr) << klass_->PrettyClass(); auto it = move_table_.find(m); if (it != move_table_.end()) { auto* new_m = it->second; DCHECK(new_m != nullptr) << klass_->PrettyClass(); method_array->SetElementPtrSize(j, new_m, pointer_size); } } } } void ClassLinker::LinkInterfaceMethodsHelper::UpdateIMT(ArtMethod** out_imt) { // Fix up IMT next. for (size_t i = 0; i < ImTable::kSize; ++i) { auto it = move_table_.find(out_imt[i]); if (it != move_table_.end()) { out_imt[i] = it->second; } } } // TODO This method needs to be split up into several smaller methods. bool ClassLinker::LinkInterfaceMethods( Thread* self, Handle klass, const HashMap& default_translations, bool* out_new_conflict, ArtMethod** out_imt) { StackHandleScope<3> hs(self); Runtime* const runtime = Runtime::Current(); const bool is_interface = klass->IsInterface(); const bool has_superclass = klass->HasSuperClass(); const bool fill_tables = !is_interface; const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U; const size_t ifcount = klass->GetIfTableCount(); Handle iftable(hs.NewHandle(klass->GetIfTable())); MutableHandle vtable(hs.NewHandle(klass->GetVTableDuringLinking())); ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod(); ArtMethod* const imt_conflict_method = runtime->GetImtConflictMethod(); // Copy the IMT from the super class if possible. const bool extend_super_iftable = has_superclass; if (has_superclass && fill_tables) { FillImtFromSuperClass(klass, unimplemented_method, imt_conflict_method, out_new_conflict, out_imt); } // Allocate method arrays before since we don't want miss visiting miranda method roots due to // thread suspension. if (fill_tables) { if (!AllocateIfTableMethodArrays(self, klass, iftable)) { return false; } } LinkInterfaceMethodsHelper helper(this, klass, self, runtime); auto* old_cause = self->StartAssertNoThreadSuspension( "Copying ArtMethods for LinkInterfaceMethods"); // Going in reverse to ensure that we will hit abstract methods that override defaults before the // defaults. This means we don't need to do any trickery when creating the Miranda methods, since // they will already be null. This has the additional benefit that the declarer of a miranda // method will actually declare an abstract method. for (size_t i = ifcount; i != 0u; ) { --i; DCHECK_LT(i, ifcount); size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods(); if (num_methods > 0) { StackHandleScope<2> hs2(self); const bool is_super = i < super_ifcount; const bool super_interface = is_super && extend_super_iftable; // We don't actually create or fill these tables for interfaces, we just copy some methods for // conflict methods. Just set this as nullptr in those cases. Handle method_array(fill_tables ? hs2.NewHandle(iftable->GetMethodArray(i)) : hs2.NewHandle(nullptr)); ArraySlice input_virtual_methods; ScopedNullHandle null_handle; Handle input_vtable_array(null_handle); int32_t input_array_length = 0; // TODO Cleanup Needed: In the presence of default methods this optimization is rather dirty // and confusing. Default methods should always look through all the superclasses // because they are the last choice of an implementation. We get around this by looking // at the super-classes iftable methods (copied into method_array previously) when we are // looking for the implementation of a super-interface method but that is rather dirty. bool using_virtuals; if (super_interface || is_interface) { // If we are overwriting a super class interface, try to only virtual methods instead of the // whole vtable. using_virtuals = true; input_virtual_methods = klass->GetDeclaredVirtualMethodsSlice(image_pointer_size_); input_array_length = input_virtual_methods.size(); } else { // For a new interface, however, we need the whole vtable in case a new // interface method is implemented in the whole superclass. using_virtuals = false; DCHECK(vtable != nullptr); input_vtable_array = vtable; input_array_length = input_vtable_array->GetLength(); } // For each method in interface for (size_t j = 0; j < num_methods; ++j) { auto* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j, image_pointer_size_); MethodNameAndSignatureComparator interface_name_comparator( interface_method->GetInterfaceMethodIfProxy(image_pointer_size_)); uint32_t imt_index = interface_method->GetImtIndex(); ArtMethod** imt_ptr = &out_imt[imt_index]; // For each method listed in the interface's method list, find the // matching method in our class's method list. We want to favor the // subclass over the superclass, which just requires walking // back from the end of the vtable. (This only matters if the // superclass defines a private method and this class redefines // it -- otherwise it would use the same vtable slot. In .dex files // those don't end up in the virtual method table, so it shouldn't // matter which direction we go. We walk it backward anyway.) // // To find defaults we need to do the same but also go over interfaces. bool found_impl = false; ArtMethod* vtable_impl = nullptr; for (int32_t k = input_array_length - 1; k >= 0; --k) { ArtMethod* vtable_method = using_virtuals ? &input_virtual_methods[k] : input_vtable_array->GetElementPtrSize(k, image_pointer_size_); ArtMethod* vtable_method_for_name_comparison = vtable_method->GetInterfaceMethodIfProxy(image_pointer_size_); DCHECK(!vtable_method->IsStatic()) << vtable_method->PrettyMethod(); if (interface_name_comparator.HasSameNameAndSignature( vtable_method_for_name_comparison)) { if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) { // Must do EndAssertNoThreadSuspension before throw since the throw can cause // allocations. self->EndAssertNoThreadSuspension(old_cause); ThrowIllegalAccessError(klass.Get(), "Method '%s' implementing interface method '%s' is not public", vtable_method->PrettyMethod().c_str(), interface_method->PrettyMethod().c_str()); return false; } else if (UNLIKELY(vtable_method->IsOverridableByDefaultMethod())) { // We might have a newer, better, default method for this, so we just skip it. If we // are still using this we will select it again when scanning for default methods. To // obviate the need to copy the method again we will make a note that we already found // a default here. // TODO This should be much cleaner. vtable_impl = vtable_method; break; } else { found_impl = true; if (LIKELY(fill_tables)) { method_array->SetElementPtrSize(j, vtable_method, image_pointer_size_); // Place method in imt if entry is empty, place conflict otherwise. SetIMTRef(unimplemented_method, imt_conflict_method, vtable_method, /*out*/out_new_conflict, /*out*/imt_ptr); } break; } } } // Continue on to the next method if we are done. if (LIKELY(found_impl)) { continue; } else if (LIKELY(super_interface)) { // Don't look for a default implementation when the super-method is implemented directly // by the class. // // See if we can use the superclasses method and skip searching everything else. // Note: !found_impl && super_interface CHECK(extend_super_iftable); // If this is a super_interface method it is possible we shouldn't override it because a // superclass could have implemented it directly. We get the method the superclass used // to implement this to know if we can override it with a default method. Doing this is // safe since we know that the super_iftable is filled in so we can simply pull it from // there. We don't bother if this is not a super-classes interface since in that case we // have scanned the entire vtable anyway and would have found it. // TODO This is rather dirty but it is faster than searching through the entire vtable // every time. ArtMethod* supers_method = method_array->GetElementPtrSize(j, image_pointer_size_); DCHECK(supers_method != nullptr); DCHECK(interface_name_comparator.HasSameNameAndSignature(supers_method)); if (LIKELY(!supers_method->IsOverridableByDefaultMethod())) { // The method is not overridable by a default method (i.e. it is directly implemented // in some class). Therefore move onto the next interface method. continue; } else { // If the super-classes method is override-able by a default method we need to keep // track of it since though it is override-able it is not guaranteed to be 'overridden'. // If it turns out not to be overridden and we did not keep track of it we might add it // to the vtable twice, causing corruption (vtable entries having inconsistent and // illegal states, incorrect vtable size, and incorrect or inconsistent iftable entries) // in this class and any subclasses. DCHECK(vtable_impl == nullptr || vtable_impl == supers_method) << "vtable_impl was " << ArtMethod::PrettyMethod(vtable_impl) << " and not 'nullptr' or " << supers_method->PrettyMethod() << " as expected. IFTable appears to be corrupt!"; vtable_impl = supers_method; } } // If we haven't found it yet we should search through the interfaces for default methods. ArtMethod* current_method = helper.FindMethod(interface_method, interface_name_comparator, vtable_impl); if (LIKELY(fill_tables)) { if (current_method == nullptr && !super_interface) { // We could not find an implementation for this method and since it is a brand new // interface we searched the entire vtable (and all default methods) for an // implementation but couldn't find one. We therefore need to make a miranda method. current_method = helper.GetOrCreateMirandaMethod(interface_method, interface_name_comparator); } if (current_method != nullptr) { // We found a default method implementation. Record it in the iftable and IMT. method_array->SetElementPtrSize(j, current_method, image_pointer_size_); SetIMTRef(unimplemented_method, imt_conflict_method, current_method, /*out*/out_new_conflict, /*out*/imt_ptr); } } } // For each method in interface end. } // if (num_methods > 0) } // For each interface. // TODO don't extend virtuals of interface unless necessary (when is it?). if (helper.HasNewVirtuals()) { LengthPrefixedArray* old_methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr; helper.ReallocMethods(); // No return value to check. Native allocation failure aborts. LengthPrefixedArray* methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr; // Done copying methods, they are all roots in the class now, so we can end the no thread // suspension assert. self->EndAssertNoThreadSuspension(old_cause); if (fill_tables) { vtable.Assign(helper.UpdateVtable(default_translations, vtable)); if (UNLIKELY(vtable == nullptr)) { // The helper has already called self->AssertPendingOOMException(); return false; } helper.UpdateIfTable(iftable); helper.UpdateIMT(out_imt); } helper.CheckNoStaleMethodsInDexCache(); helper.ClobberOldMethods(old_methods, methods); } else { self->EndAssertNoThreadSuspension(old_cause); } if (kIsDebugBuild && !is_interface) { CheckVTable(self, klass, image_pointer_size_); } return true; } class ClassLinker::LinkFieldsHelper { public: static bool LinkFields(ClassLinker* class_linker, Thread* self, Handle klass, bool is_static, size_t* class_size) REQUIRES_SHARED(Locks::mutator_lock_); private: enum class FieldTypeOrder : uint16_t; class FieldGaps; struct FieldTypeOrderAndIndex { FieldTypeOrder field_type_order; uint16_t field_index; }; static FieldTypeOrder FieldTypeOrderFromFirstDescriptorCharacter(char first_char); template static MemberOffset AssignFieldOffset(ArtField* field, MemberOffset field_offset) REQUIRES_SHARED(Locks::mutator_lock_); }; // We use the following order of field types for assigning offsets. // Some fields can be shuffled forward to fill gaps, see `ClassLinker::LinkFields()`. enum class ClassLinker::LinkFieldsHelper::FieldTypeOrder : uint16_t { kReference = 0u, kLong, kDouble, kInt, kFloat, kChar, kShort, kBoolean, kByte, kLast64BitType = kDouble, kLast32BitType = kFloat, kLast16BitType = kShort, }; ALWAYS_INLINE ClassLinker::LinkFieldsHelper::FieldTypeOrder ClassLinker::LinkFieldsHelper::FieldTypeOrderFromFirstDescriptorCharacter(char first_char) { switch (first_char) { case 'J': return FieldTypeOrder::kLong; case 'D': return FieldTypeOrder::kDouble; case 'I': return FieldTypeOrder::kInt; case 'F': return FieldTypeOrder::kFloat; case 'C': return FieldTypeOrder::kChar; case 'S': return FieldTypeOrder::kShort; case 'Z': return FieldTypeOrder::kBoolean; case 'B': return FieldTypeOrder::kByte; default: DCHECK(first_char == 'L' || first_char == '[') << first_char; return FieldTypeOrder::kReference; } } // Gaps where we can insert fields in object layout. class ClassLinker::LinkFieldsHelper::FieldGaps { public: template ALWAYS_INLINE MemberOffset AlignFieldOffset(MemberOffset field_offset) { static_assert(kSize == 2u || kSize == 4u || kSize == 8u); if (!IsAligned(field_offset.Uint32Value())) { uint32_t gap_start = field_offset.Uint32Value(); field_offset = MemberOffset(RoundUp(gap_start, kSize)); AddGaps(gap_start, field_offset.Uint32Value()); } return field_offset; } template bool HasGap() const { static_assert(kSize == 1u || kSize == 2u || kSize == 4u); return (kSize == 1u && gap1_offset_ != kNoOffset) || (kSize <= 2u && gap2_offset_ != kNoOffset) || gap4_offset_ != kNoOffset; } template MemberOffset ReleaseGap() { static_assert(kSize == 1u || kSize == 2u || kSize == 4u); uint32_t result; if (kSize == 1u && gap1_offset_ != kNoOffset) { DCHECK(gap2_offset_ == kNoOffset || gap2_offset_ > gap1_offset_); DCHECK(gap4_offset_ == kNoOffset || gap4_offset_ > gap1_offset_); result = gap1_offset_; gap1_offset_ = kNoOffset; } else if (kSize <= 2u && gap2_offset_ != kNoOffset) { DCHECK(gap4_offset_ == kNoOffset || gap4_offset_ > gap2_offset_); result = gap2_offset_; gap2_offset_ = kNoOffset; if (kSize < 2u) { AddGaps<1u>(result + kSize, result + 2u); } } else { DCHECK_NE(gap4_offset_, kNoOffset); result = gap4_offset_; gap4_offset_ = kNoOffset; if (kSize < 4u) { AddGaps(result + kSize, result + 4u); } } return MemberOffset(result); } private: template void AddGaps(uint32_t gap_start, uint32_t gap_end) { if ((kGapsToCheck & 1u) != 0u) { DCHECK_LT(gap_start, gap_end); DCHECK_ALIGNED(gap_end, 2u); if ((gap_start & 1u) != 0u) { DCHECK_EQ(gap1_offset_, kNoOffset); gap1_offset_ = gap_start; gap_start += 1u; if (kGapsToCheck == 1u || gap_start == gap_end) { DCHECK_EQ(gap_start, gap_end); return; } } } if ((kGapsToCheck & 2u) != 0u) { DCHECK_LT(gap_start, gap_end); DCHECK_ALIGNED(gap_start, 2u); DCHECK_ALIGNED(gap_end, 4u); if ((gap_start & 2u) != 0u) { DCHECK_EQ(gap2_offset_, kNoOffset); gap2_offset_ = gap_start; gap_start += 2u; if (kGapsToCheck <= 3u || gap_start == gap_end) { DCHECK_EQ(gap_start, gap_end); return; } } } if ((kGapsToCheck & 4u) != 0u) { DCHECK_LT(gap_start, gap_end); DCHECK_ALIGNED(gap_start, 4u); DCHECK_ALIGNED(gap_end, 8u); DCHECK_EQ(gap_start + 4u, gap_end); DCHECK_EQ(gap4_offset_, kNoOffset); gap4_offset_ = gap_start; return; } DCHECK(false) << "Remaining gap: " << gap_start << " to " << gap_end << " after checking " << kGapsToCheck; } static constexpr uint32_t kNoOffset = static_cast(-1); uint32_t gap4_offset_ = kNoOffset; uint32_t gap2_offset_ = kNoOffset; uint32_t gap1_offset_ = kNoOffset; }; template ALWAYS_INLINE MemberOffset ClassLinker::LinkFieldsHelper::AssignFieldOffset(ArtField* field, MemberOffset field_offset) { DCHECK_ALIGNED(field_offset.Uint32Value(), kSize); DCHECK_EQ(Primitive::ComponentSize(field->GetTypeAsPrimitiveType()), kSize); field->SetOffset(field_offset); return MemberOffset(field_offset.Uint32Value() + kSize); } bool ClassLinker::LinkFieldsHelper::LinkFields(ClassLinker* class_linker, Thread* self, Handle klass, bool is_static, size_t* class_size) { self->AllowThreadSuspension(); const size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields(); LengthPrefixedArray* const fields = is_static ? klass->GetSFieldsPtr() : klass->GetIFieldsPtr(); // Initialize field_offset MemberOffset field_offset(0); if (is_static) { field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking( class_linker->GetImagePointerSize()); } else { ObjPtr super_class = klass->GetSuperClass(); if (super_class != nullptr) { CHECK(super_class->IsResolved()) << klass->PrettyClass() << " " << super_class->PrettyClass(); field_offset = MemberOffset(super_class->GetObjectSize()); } } CHECK_EQ(num_fields == 0, fields == nullptr) << klass->PrettyClass(); // we want a relatively stable order so that adding new fields // minimizes disruption of C++ version such as Class and Method. // // The overall sort order order is: // 1) All object reference fields, sorted alphabetically. // 2) All java long (64-bit) integer fields, sorted alphabetically. // 3) All java double (64-bit) floating point fields, sorted alphabetically. // 4) All java int (32-bit) integer fields, sorted alphabetically. // 5) All java float (32-bit) floating point fields, sorted alphabetically. // 6) All java char (16-bit) integer fields, sorted alphabetically. // 7) All java short (16-bit) integer fields, sorted alphabetically. // 8) All java boolean (8-bit) integer fields, sorted alphabetically. // 9) All java byte (8-bit) integer fields, sorted alphabetically. // // (References are first to increase the chance of reference visiting // being able to take a fast path using a bitmap of references at the // start of the object, see `Class::reference_instance_offsets_`.) // // Once the fields are sorted in this order we will attempt to fill any gaps // that might be present in the memory layout of the structure. // Note that we shall not fill gaps between the superclass fields. // Collect fields and their "type order index" (see numbered points above). const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension( "Using plain ArtField references"); constexpr size_t kStackBufferEntries = 64; // Avoid allocations for small number of fields. FieldTypeOrderAndIndex stack_buffer[kStackBufferEntries]; std::vector heap_buffer; ArrayRef sorted_fields; if (num_fields <= kStackBufferEntries) { sorted_fields = ArrayRef(stack_buffer, num_fields); } else { heap_buffer.resize(num_fields); sorted_fields = ArrayRef(heap_buffer); } size_t num_reference_fields = 0; size_t primitive_fields_start = num_fields; DCHECK_LE(num_fields, 1u << 16); for (size_t i = 0; i != num_fields; ++i) { ArtField* field = &fields->At(i); const char* descriptor = field->GetTypeDescriptor(); FieldTypeOrder field_type_order = FieldTypeOrderFromFirstDescriptorCharacter(descriptor[0]); uint16_t field_index = dchecked_integral_cast(i); // Insert references to the start, other fields to the end. DCHECK_LT(num_reference_fields, primitive_fields_start); if (field_type_order == FieldTypeOrder::kReference) { sorted_fields[num_reference_fields] = { field_type_order, field_index }; ++num_reference_fields; } else { --primitive_fields_start; sorted_fields[primitive_fields_start] = { field_type_order, field_index }; } } DCHECK_EQ(num_reference_fields, primitive_fields_start); // Reference fields are already sorted by field index (and dex field index). DCHECK(std::is_sorted( sorted_fields.begin(), sorted_fields.begin() + num_reference_fields, [fields](const auto& lhs, const auto& rhs) REQUIRES_SHARED(Locks::mutator_lock_) { ArtField* lhs_field = &fields->At(lhs.field_index); ArtField* rhs_field = &fields->At(rhs.field_index); CHECK_EQ(lhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot); CHECK_EQ(rhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot); CHECK_EQ(lhs_field->GetDexFieldIndex() < rhs_field->GetDexFieldIndex(), lhs.field_index < rhs.field_index); return lhs_field->GetDexFieldIndex() < rhs_field->GetDexFieldIndex(); })); // Primitive fields were stored in reverse order of their field index (and dex field index). DCHECK(std::is_sorted( sorted_fields.begin() + primitive_fields_start, sorted_fields.end(), [fields](const auto& lhs, const auto& rhs) REQUIRES_SHARED(Locks::mutator_lock_) { ArtField* lhs_field = &fields->At(lhs.field_index); ArtField* rhs_field = &fields->At(rhs.field_index); CHECK_NE(lhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot); CHECK_NE(rhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot); CHECK_EQ(lhs_field->GetDexFieldIndex() > rhs_field->GetDexFieldIndex(), lhs.field_index > rhs.field_index); return lhs.field_index > rhs.field_index; })); // Sort the primitive fields by the field type order, then field index. std::sort(sorted_fields.begin() + primitive_fields_start, sorted_fields.end(), [](const auto& lhs, const auto& rhs) { if (lhs.field_type_order != rhs.field_type_order) { return lhs.field_type_order < rhs.field_type_order; } else { return lhs.field_index < rhs.field_index; } }); // Primitive fields are now sorted by field size (descending), then type, then field index. DCHECK(std::is_sorted( sorted_fields.begin() + primitive_fields_start, sorted_fields.end(), [fields](const auto& lhs, const auto& rhs) REQUIRES_SHARED(Locks::mutator_lock_) { ArtField* lhs_field = &fields->At(lhs.field_index); ArtField* rhs_field = &fields->At(rhs.field_index); Primitive::Type lhs_type = lhs_field->GetTypeAsPrimitiveType(); CHECK_NE(lhs_type, Primitive::kPrimNot); Primitive::Type rhs_type = rhs_field->GetTypeAsPrimitiveType(); CHECK_NE(rhs_type, Primitive::kPrimNot); if (lhs_type != rhs_type) { size_t lhs_size = Primitive::ComponentSize(lhs_type); size_t rhs_size = Primitive::ComponentSize(rhs_type); return (lhs_size != rhs_size) ? (lhs_size > rhs_size) : (lhs_type < rhs_type); } else { return lhs_field->GetDexFieldIndex() < rhs_field->GetDexFieldIndex(); } })); // Process reference fields. FieldGaps field_gaps; size_t index = 0u; if (num_reference_fields != 0u) { constexpr size_t kReferenceSize = sizeof(mirror::HeapReference); field_offset = field_gaps.AlignFieldOffset(field_offset); for (; index != num_reference_fields; ++index) { ArtField* field = &fields->At(sorted_fields[index].field_index); field_offset = AssignFieldOffset(field, field_offset); } } // Process 64-bit fields. if (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast64BitType) { field_offset = field_gaps.AlignFieldOffset<8u>(field_offset); while (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast64BitType) { ArtField* field = &fields->At(sorted_fields[index].field_index); field_offset = AssignFieldOffset<8u>(field, field_offset); ++index; } } // Process 32-bit fields. if (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast32BitType) { field_offset = field_gaps.AlignFieldOffset<4u>(field_offset); if (field_gaps.HasGap<4u>()) { ArtField* field = &fields->At(sorted_fields[index].field_index); AssignFieldOffset<4u>(field, field_gaps.ReleaseGap<4u>()); // Ignore return value. ++index; DCHECK(!field_gaps.HasGap<4u>()); // There can be only one gap for a 32-bit field. } while (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast32BitType) { ArtField* field = &fields->At(sorted_fields[index].field_index); field_offset = AssignFieldOffset<4u>(field, field_offset); ++index; } } // Process 16-bit fields. if (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast16BitType) { field_offset = field_gaps.AlignFieldOffset<2u>(field_offset); while (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast16BitType && field_gaps.HasGap<2u>()) { ArtField* field = &fields->At(sorted_fields[index].field_index); AssignFieldOffset<2u>(field, field_gaps.ReleaseGap<2u>()); // Ignore return value. ++index; } while (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast16BitType) { ArtField* field = &fields->At(sorted_fields[index].field_index); field_offset = AssignFieldOffset<2u>(field, field_offset); ++index; } } // Process 8-bit fields. for (; index != num_fields && field_gaps.HasGap<1u>(); ++index) { ArtField* field = &fields->At(sorted_fields[index].field_index); AssignFieldOffset<1u>(field, field_gaps.ReleaseGap<1u>()); // Ignore return value. } for (; index != num_fields; ++index) { ArtField* field = &fields->At(sorted_fields[index].field_index); field_offset = AssignFieldOffset<1u>(field, field_offset); } self->EndAssertNoThreadSuspension(old_no_suspend_cause); // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it. DCHECK(!class_linker->init_done_ || !klass->DescriptorEquals("Ljava/lang/ref/Reference;")); if (!is_static && UNLIKELY(!class_linker->init_done_) && klass->DescriptorEquals("Ljava/lang/ref/Reference;")) { // We know there are no non-reference fields in the Reference classes, and we know // that 'referent' is alphabetically last, so this is easy... CHECK_EQ(num_reference_fields, num_fields) << klass->PrettyClass(); CHECK_STREQ(fields->At(num_fields - 1).GetName(), "referent") << klass->PrettyClass(); --num_reference_fields; } size_t size = field_offset.Uint32Value(); // Update klass if (is_static) { klass->SetNumReferenceStaticFields(num_reference_fields); *class_size = size; } else { klass->SetNumReferenceInstanceFields(num_reference_fields); ObjPtr super_class = klass->GetSuperClass(); if (num_reference_fields == 0 || super_class == nullptr) { // object has one reference field, klass, but we ignore it since we always visit the class. // super_class is null iff the class is java.lang.Object. if (super_class == nullptr || (super_class->GetClassFlags() & mirror::kClassFlagNoReferenceFields) != 0) { klass->SetClassFlags(klass->GetClassFlags() | mirror::kClassFlagNoReferenceFields); } } if (kIsDebugBuild) { DCHECK_EQ(super_class == nullptr, klass->DescriptorEquals("Ljava/lang/Object;")); size_t total_reference_instance_fields = 0; ObjPtr cur_super = klass.Get(); while (cur_super != nullptr) { total_reference_instance_fields += cur_super->NumReferenceInstanceFieldsDuringLinking(); cur_super = cur_super->GetSuperClass(); } if (super_class == nullptr) { CHECK_EQ(total_reference_instance_fields, 1u) << klass->PrettyDescriptor(); } else { // Check that there is at least num_reference_fields other than Object.class. CHECK_GE(total_reference_instance_fields, 1u + num_reference_fields) << klass->PrettyClass(); } } if (!klass->IsVariableSize()) { std::string temp; DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp); size_t previous_size = klass->GetObjectSize(); if (previous_size != 0) { // Make sure that we didn't originally have an incorrect size. CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp); } klass->SetObjectSize(size); } } if (kIsDebugBuild) { // Make sure that the fields array is ordered by name but all reference // offsets are at the beginning as far as alignment allows. MemberOffset start_ref_offset = is_static ? klass->GetFirstReferenceStaticFieldOffsetDuringLinking(class_linker->image_pointer_size_) : klass->GetFirstReferenceInstanceFieldOffset(); MemberOffset end_ref_offset(start_ref_offset.Uint32Value() + num_reference_fields * sizeof(mirror::HeapReference)); MemberOffset current_ref_offset = start_ref_offset; for (size_t i = 0; i < num_fields; i++) { ArtField* field = &fields->At(i); VLOG(class_linker) << "LinkFields: " << (is_static ? "static" : "instance") << " class=" << klass->PrettyClass() << " field=" << field->PrettyField() << " offset=" << field->GetOffsetDuringLinking(); if (i != 0) { ArtField* const prev_field = &fields->At(i - 1); // NOTE: The field names can be the same. This is not possible in the Java language // but it's valid Java/dex bytecode and for example proguard can generate such bytecode. DCHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0); } Primitive::Type type = field->GetTypeAsPrimitiveType(); bool is_primitive = type != Primitive::kPrimNot; if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") && strcmp("referent", field->GetName()) == 0) { is_primitive = true; // We lied above, so we have to expect a lie here. } MemberOffset offset = field->GetOffsetDuringLinking(); if (is_primitive) { if (offset.Uint32Value() < end_ref_offset.Uint32Value()) { // Shuffled before references. size_t type_size = Primitive::ComponentSize(type); CHECK_LT(type_size, sizeof(mirror::HeapReference)); CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value()); CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value()); CHECK(!IsAligned)>(offset.Uint32Value())); } } else { CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value()); current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() + sizeof(mirror::HeapReference)); } } CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value()); } return true; } bool ClassLinker::LinkInstanceFields(Thread* self, Handle klass) { CHECK(klass != nullptr); return LinkFieldsHelper::LinkFields(this, self, klass, false, nullptr); } bool ClassLinker::LinkStaticFields(Thread* self, Handle klass, size_t* class_size) { CHECK(klass != nullptr); return LinkFieldsHelper::LinkFields(this, self, klass, true, class_size); } // Set the bitmap of reference instance field offsets. void ClassLinker::CreateReferenceInstanceOffsets(Handle klass) { uint32_t reference_offsets = 0; ObjPtr super_class = klass->GetSuperClass(); // Leave the reference offsets as 0 for mirror::Object (the class field is handled specially). if (super_class != nullptr) { reference_offsets = super_class->GetReferenceInstanceOffsets(); // Compute reference offsets unless our superclass overflowed. if (reference_offsets != mirror::Class::kClassWalkSuper) { size_t num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking(); if (num_reference_fields != 0u) { // All of the fields that contain object references are guaranteed be grouped in memory // starting at an appropriately aligned address after super class object data. uint32_t start_offset = RoundUp(super_class->GetObjectSize(), sizeof(mirror::HeapReference)); uint32_t start_bit = (start_offset - mirror::kObjectHeaderSize) / sizeof(mirror::HeapReference); if (start_bit + num_reference_fields > 32) { reference_offsets = mirror::Class::kClassWalkSuper; } else { reference_offsets |= (0xffffffffu << start_bit) & (0xffffffffu >> (32 - (start_bit + num_reference_fields))); } } } } klass->SetReferenceInstanceOffsets(reference_offsets); } ObjPtr ClassLinker::DoResolveString(dex::StringIndex string_idx, ObjPtr dex_cache) { StackHandleScope<1> hs(Thread::Current()); Handle h_dex_cache(hs.NewHandle(dex_cache)); return DoResolveString(string_idx, h_dex_cache); } ObjPtr ClassLinker::DoResolveString(dex::StringIndex string_idx, Handle dex_cache) { const DexFile& dex_file = *dex_cache->GetDexFile(); uint32_t utf16_length; const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length); ObjPtr string = intern_table_->InternStrong(utf16_length, utf8_data); if (string != nullptr) { dex_cache->SetResolvedString(string_idx, string); } return string; } ObjPtr ClassLinker::DoLookupString(dex::StringIndex string_idx, ObjPtr dex_cache) { DCHECK(dex_cache != nullptr); const DexFile& dex_file = *dex_cache->GetDexFile(); uint32_t utf16_length; const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length); ObjPtr string = intern_table_->LookupStrong(Thread::Current(), utf16_length, utf8_data); if (string != nullptr) { dex_cache->SetResolvedString(string_idx, string); } return string; } ObjPtr ClassLinker::DoLookupResolvedType(dex::TypeIndex type_idx, ObjPtr referrer) { return DoLookupResolvedType(type_idx, referrer->GetDexCache(), referrer->GetClassLoader()); } ObjPtr ClassLinker::DoLookupResolvedType(dex::TypeIndex type_idx, ObjPtr dex_cache, ObjPtr class_loader) { const DexFile& dex_file = *dex_cache->GetDexFile(); const char* descriptor = dex_file.StringByTypeIdx(type_idx); ObjPtr type = LookupResolvedType(descriptor, class_loader); if (type != nullptr) { DCHECK(type->IsResolved()); dex_cache->SetResolvedType(type_idx, type); } return type; } ObjPtr ClassLinker::LookupResolvedType(const char* descriptor, ObjPtr class_loader) { DCHECK_NE(*descriptor, '\0') << "descriptor is empty string"; ObjPtr type = nullptr; if (descriptor[1] == '\0') { // only the descriptors of primitive types should be 1 character long, also avoid class lookup // for primitive classes that aren't backed by dex files. type = LookupPrimitiveClass(descriptor[0]); } else { Thread* const self = Thread::Current(); DCHECK(self != nullptr); const size_t hash = ComputeModifiedUtf8Hash(descriptor); // Find the class in the loaded classes table. type = LookupClass(self, descriptor, hash, class_loader); } return (type != nullptr && type->IsResolved()) ? type : nullptr; } template ObjPtr ClassLinker::DoResolveType(dex::TypeIndex type_idx, RefType referrer) { StackHandleScope<2> hs(Thread::Current()); Handle dex_cache(hs.NewHandle(referrer->GetDexCache())); Handle class_loader(hs.NewHandle(referrer->GetClassLoader())); return DoResolveType(type_idx, dex_cache, class_loader); } // Instantiate the above. template ObjPtr ClassLinker::DoResolveType(dex::TypeIndex type_idx, ArtField* referrer); template ObjPtr ClassLinker::DoResolveType(dex::TypeIndex type_idx, ArtMethod* referrer); template ObjPtr ClassLinker::DoResolveType(dex::TypeIndex type_idx, ObjPtr referrer); ObjPtr ClassLinker::DoResolveType(dex::TypeIndex type_idx, Handle dex_cache, Handle class_loader) { Thread* self = Thread::Current(); const char* descriptor = dex_cache->GetDexFile()->StringByTypeIdx(type_idx); ObjPtr resolved = FindClass(self, descriptor, class_loader); if (resolved != nullptr) { // TODO: we used to throw here if resolved's class loader was not the // boot class loader. This was to permit different classes with the // same name to be loaded simultaneously by different loaders dex_cache->SetResolvedType(type_idx, resolved); } else { CHECK(self->IsExceptionPending()) << "Expected pending exception for failed resolution of: " << descriptor; // Convert a ClassNotFoundException to a NoClassDefFoundError. StackHandleScope<1> hs(self); Handle cause(hs.NewHandle(self->GetException())); if (cause->InstanceOf(GetClassRoot(ClassRoot::kJavaLangClassNotFoundException, this))) { DCHECK(resolved == nullptr); // No Handle needed to preserve resolved. self->ClearException(); ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor); self->GetException()->SetCause(cause.Get()); } } DCHECK((resolved == nullptr) || resolved->IsResolved()) << resolved->PrettyDescriptor() << " " << resolved->GetStatus(); return resolved; } ArtMethod* ClassLinker::FindResolvedMethod(ObjPtr klass, ObjPtr dex_cache, ObjPtr class_loader, uint32_t method_idx) { // Search for the method using dex_cache and method_idx. The Class::Find*Method() // functions can optimize the search if the dex_cache is the same as the DexCache // of the class, with fall-back to name and signature search otherwise. ArtMethod* resolved = nullptr; if (klass->IsInterface()) { resolved = klass->FindInterfaceMethod(dex_cache, method_idx, image_pointer_size_); } else { resolved = klass->FindClassMethod(dex_cache, method_idx, image_pointer_size_); } DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr); if (resolved != nullptr && // We pass AccessMethod::kNone instead of kLinking to not warn yet on the // access, as we'll be looking if the method can be accessed through an // interface. hiddenapi::ShouldDenyAccessToMember(resolved, hiddenapi::AccessContext(class_loader, dex_cache), hiddenapi::AccessMethod::kNone)) { // The resolved method that we have found cannot be accessed due to // hiddenapi (typically it is declared up the hierarchy and is not an SDK // method). Try to find an interface method from the implemented interfaces which is // part of the SDK. ArtMethod* itf_method = klass->FindAccessibleInterfaceMethod(resolved, image_pointer_size_); if (itf_method == nullptr) { // No interface method. Call ShouldDenyAccessToMember again but this time // with AccessMethod::kLinking to ensure that an appropriate warning is // logged. hiddenapi::ShouldDenyAccessToMember(resolved, hiddenapi::AccessContext(class_loader, dex_cache), hiddenapi::AccessMethod::kLinking); resolved = nullptr; } else { // We found an interface method that is accessible, continue with the resolved method. } } if (resolved != nullptr) { // In case of jmvti, the dex file gets verified before being registered, so first // check if it's registered before checking class tables. const DexFile& dex_file = *dex_cache->GetDexFile(); DCHECK(!IsDexFileRegistered(Thread::Current(), dex_file) || FindClassTable(Thread::Current(), dex_cache) == ClassTableForClassLoader(class_loader)) << "DexFile referrer: " << dex_file.GetLocation() << " ClassLoader: " << DescribeLoaders(class_loader, ""); // Be a good citizen and update the dex cache to speed subsequent calls. dex_cache->SetResolvedMethod(method_idx, resolved); // Disable the following invariant check as the verifier breaks it. b/73760543 // const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); // DCHECK(LookupResolvedType(method_id.class_idx_, dex_cache, class_loader) != nullptr) // << "Method: " << resolved->PrettyMethod() << ", " // << "Class: " << klass->PrettyClass() << " (" << klass->GetStatus() << "), " // << "DexFile referrer: " << dex_file.GetLocation(); } return resolved; } // Returns true if `method` is either null or hidden. // Does not print any warnings if it is hidden. static bool CheckNoSuchMethod(ArtMethod* method, ObjPtr dex_cache, ObjPtr class_loader) REQUIRES_SHARED(Locks::mutator_lock_) { return method == nullptr || hiddenapi::ShouldDenyAccessToMember(method, hiddenapi::AccessContext(class_loader, dex_cache), hiddenapi::AccessMethod::kNone); // no warnings } ArtMethod* ClassLinker::FindIncompatibleMethod(ObjPtr klass, ObjPtr dex_cache, ObjPtr class_loader, uint32_t method_idx) { if (klass->IsInterface()) { ArtMethod* method = klass->FindClassMethod(dex_cache, method_idx, image_pointer_size_); return CheckNoSuchMethod(method, dex_cache, class_loader) ? nullptr : method; } else { // If there was an interface method with the same signature, we would have // found it in the "copied" methods. Only DCHECK that the interface method // really does not exist. if (kIsDebugBuild) { ArtMethod* method = klass->FindInterfaceMethod(dex_cache, method_idx, image_pointer_size_); DCHECK(CheckNoSuchMethod(method, dex_cache, class_loader)); } return nullptr; } } template ArtMethod* ClassLinker::ResolveMethod(uint32_t method_idx, Handle dex_cache, Handle class_loader, ArtMethod* referrer, InvokeType type) { DCHECK(!Thread::Current()->IsExceptionPending()) << Thread::Current()->GetException()->Dump(); DCHECK(dex_cache != nullptr); DCHECK(referrer == nullptr || !referrer->IsProxyMethod()); // Check for hit in the dex cache. ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx); Thread::PoisonObjectPointersIfDebug(); DCHECK(resolved == nullptr || !resolved->IsRuntimeMethod()); bool valid_dex_cache_method = resolved != nullptr; if (kResolveMode == ResolveMode::kNoChecks && valid_dex_cache_method) { // We have a valid method from the DexCache and no checks to perform. DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex(); return resolved; } const DexFile& dex_file = *dex_cache->GetDexFile(); const dex::MethodId& method_id = dex_file.GetMethodId(method_idx); ObjPtr klass = nullptr; if (valid_dex_cache_method) { // We have a valid method from the DexCache but we need to perform ICCE and IAE checks. DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex(); klass = LookupResolvedType(method_id.class_idx_, dex_cache.Get(), class_loader.Get()); if (UNLIKELY(klass == nullptr)) { // We normaly should not end up here. However the verifier currently doesn't guarantee // the invariant of having the klass in the class table. b/73760543 klass = ResolveType(method_id.class_idx_, dex_cache, class_loader); if (klass == nullptr) { // This can only happen if the current thread is not allowed to load // classes. DCHECK(!Thread::Current()->CanLoadClasses()); DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } } } else { // The method was not in the DexCache, resolve the declaring class. klass = ResolveType(method_id.class_idx_, dex_cache, class_loader); if (klass == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } } // Check if the invoke type matches the class type. if (kResolveMode == ResolveMode::kCheckICCEAndIAE && CheckInvokeClassMismatch( dex_cache.Get(), type, [klass]() { return klass; })) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } if (!valid_dex_cache_method) { resolved = FindResolvedMethod(klass, dex_cache.Get(), class_loader.Get(), method_idx); } // Note: We can check for IllegalAccessError only if we have a referrer. if (kResolveMode == ResolveMode::kCheckICCEAndIAE && resolved != nullptr && referrer != nullptr) { ObjPtr methods_class = resolved->GetDeclaringClass(); ObjPtr referring_class = referrer->GetDeclaringClass(); if (!referring_class->CheckResolvedMethodAccess(methods_class, resolved, dex_cache.Get(), method_idx, type)) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } } // If we found a method, check for incompatible class changes. if (LIKELY(resolved != nullptr) && LIKELY(kResolveMode == ResolveMode::kNoChecks || !resolved->CheckIncompatibleClassChange(type))) { return resolved; } else { // If we had a method, or if we can find one with another lookup type, // it's an incompatible-class-change error. if (resolved == nullptr) { resolved = FindIncompatibleMethod(klass, dex_cache.Get(), class_loader.Get(), method_idx); } if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer); } else { // We failed to find the method (using all lookup types), so throw a NoSuchMethodError. const char* name = dex_file.StringDataByIdx(method_id.name_idx_); const Signature signature = dex_file.GetMethodSignature(method_id); ThrowNoSuchMethodError(type, klass, name, signature); } Thread::Current()->AssertPendingException(); return nullptr; } } ArtMethod* ClassLinker::ResolveMethodWithoutInvokeType(uint32_t method_idx, Handle dex_cache, Handle class_loader) { ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx); Thread::PoisonObjectPointersIfDebug(); if (resolved != nullptr) { DCHECK(!resolved->IsRuntimeMethod()); DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex(); return resolved; } // Fail, get the declaring class. const dex::MethodId& method_id = dex_cache->GetDexFile()->GetMethodId(method_idx); ObjPtr klass = ResolveType(method_id.class_idx_, dex_cache, class_loader); if (klass == nullptr) { Thread::Current()->AssertPendingException(); return nullptr; } if (klass->IsInterface()) { resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_); } else { resolved = klass->FindClassMethod(dex_cache.Get(), method_idx, image_pointer_size_); } if (resolved != nullptr && hiddenapi::ShouldDenyAccessToMember( resolved, hiddenapi::AccessContext(class_loader.Get(), dex_cache.Get()), hiddenapi::AccessMethod::kLinking)) { resolved = nullptr; } return resolved; } ArtField* ClassLinker::LookupResolvedField(uint32_t field_idx, ObjPtr dex_cache, ObjPtr class_loader, bool is_static) { const DexFile& dex_file = *dex_cache->GetDexFile(); const dex::FieldId& field_id = dex_file.GetFieldId(field_idx); ObjPtr klass = dex_cache->GetResolvedType(field_id.class_idx_); if (klass == nullptr) { klass = LookupResolvedType(field_id.class_idx_, dex_cache, class_loader); } if (klass == nullptr) { // The class has not been resolved yet, so the field is also unresolved. return nullptr; } DCHECK(klass->IsResolved()); return FindResolvedField(klass, dex_cache, class_loader, field_idx, is_static); } ArtField* ClassLinker::ResolveField(uint32_t field_idx, Handle dex_cache, Handle class_loader, bool is_static) { DCHECK(dex_cache != nullptr); DCHECK(!Thread::Current()->IsExceptionPending()) << Thread::Current()->GetException()->Dump(); ArtField* resolved = dex_cache->GetResolvedField(field_idx); Thread::PoisonObjectPointersIfDebug(); if (resolved != nullptr) { return resolved; } const DexFile& dex_file = *dex_cache->GetDexFile(); const dex::FieldId& field_id = dex_file.GetFieldId(field_idx); ObjPtr klass = ResolveType(field_id.class_idx_, dex_cache, class_loader); if (klass == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } resolved = FindResolvedField(klass, dex_cache.Get(), class_loader.Get(), field_idx, is_static); if (resolved == nullptr) { const char* name = dex_file.GetFieldName(field_id); const char* type = dex_file.GetFieldTypeDescriptor(field_id); ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass, type, name); } return resolved; } ArtField* ClassLinker::ResolveFieldJLS(uint32_t field_idx, Handle dex_cache, Handle class_loader) { DCHECK(dex_cache != nullptr); ArtField* resolved = dex_cache->GetResolvedField(field_idx); Thread::PoisonObjectPointersIfDebug(); if (resolved != nullptr) { return resolved; } const DexFile& dex_file = *dex_cache->GetDexFile(); const dex::FieldId& field_id = dex_file.GetFieldId(field_idx); ObjPtr klass = ResolveType(field_id.class_idx_, dex_cache, class_loader); if (klass == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } resolved = FindResolvedFieldJLS(klass, dex_cache.Get(), class_loader.Get(), field_idx); if (resolved == nullptr) { const char* name = dex_file.GetFieldName(field_id); const char* type = dex_file.GetFieldTypeDescriptor(field_id); ThrowNoSuchFieldError("", klass, type, name); } return resolved; } ArtField* ClassLinker::FindResolvedField(ObjPtr klass, ObjPtr dex_cache, ObjPtr class_loader, uint32_t field_idx, bool is_static) { ArtField* resolved = nullptr; Thread* self = is_static ? Thread::Current() : nullptr; const DexFile& dex_file = *dex_cache->GetDexFile(); resolved = is_static ? mirror::Class::FindStaticField(self, klass, dex_cache, field_idx) : klass->FindInstanceField(dex_cache, field_idx); if (resolved == nullptr) { const dex::FieldId& field_id = dex_file.GetFieldId(field_idx); const char* name = dex_file.GetFieldName(field_id); const char* type = dex_file.GetFieldTypeDescriptor(field_id); resolved = is_static ? mirror::Class::FindStaticField(self, klass, name, type) : klass->FindInstanceField(name, type); } if (resolved != nullptr && hiddenapi::ShouldDenyAccessToMember(resolved, hiddenapi::AccessContext(class_loader, dex_cache), hiddenapi::AccessMethod::kLinking)) { resolved = nullptr; } if (resolved != nullptr) { dex_cache->SetResolvedField(field_idx, resolved); } return resolved; } ArtField* ClassLinker::FindResolvedFieldJLS(ObjPtr klass, ObjPtr dex_cache, ObjPtr class_loader, uint32_t field_idx) { ArtField* resolved = nullptr; Thread* self = Thread::Current(); const DexFile& dex_file = *dex_cache->GetDexFile(); const dex::FieldId& field_id = dex_file.GetFieldId(field_idx); const char* name = dex_file.GetFieldName(field_id); const char* type = dex_file.GetFieldTypeDescriptor(field_id); resolved = mirror::Class::FindField(self, klass, name, type); if (resolved != nullptr && hiddenapi::ShouldDenyAccessToMember(resolved, hiddenapi::AccessContext(class_loader, dex_cache), hiddenapi::AccessMethod::kLinking)) { resolved = nullptr; } if (resolved != nullptr) { dex_cache->SetResolvedField(field_idx, resolved); } return resolved; } ObjPtr ClassLinker::ResolveMethodType( Thread* self, dex::ProtoIndex proto_idx, Handle dex_cache, Handle class_loader) { DCHECK(Runtime::Current()->IsMethodHandlesEnabled()); DCHECK(dex_cache != nullptr); ObjPtr resolved = dex_cache->GetResolvedMethodType(proto_idx); if (resolved != nullptr) { return resolved; } StackHandleScope<4> hs(self); // First resolve the return type. const DexFile& dex_file = *dex_cache->GetDexFile(); const dex::ProtoId& proto_id = dex_file.GetProtoId(proto_idx); Handle return_type(hs.NewHandle( ResolveType(proto_id.return_type_idx_, dex_cache, class_loader))); if (return_type == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; } // Then resolve the argument types. // // TODO: Is there a better way to figure out the number of method arguments // other than by looking at the shorty ? const size_t num_method_args = strlen(dex_file.StringDataByIdx(proto_id.shorty_idx_)) - 1; ObjPtr array_of_class = GetClassRoot>(this); Handle> method_params(hs.NewHandle( mirror::ObjectArray::Alloc(self, array_of_class, num_method_args))); if (method_params == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; } DexFileParameterIterator it(dex_file, proto_id); int32_t i = 0; MutableHandle param_class = hs.NewHandle(nullptr); for (; it.HasNext(); it.Next()) { const dex::TypeIndex type_idx = it.GetTypeIdx(); param_class.Assign(ResolveType(type_idx, dex_cache, class_loader)); if (param_class == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; } method_params->Set(i++, param_class.Get()); } DCHECK(!it.HasNext()); Handle type = hs.NewHandle( mirror::MethodType::Create(self, return_type, method_params)); dex_cache->SetResolvedMethodType(proto_idx, type.Get()); return type.Get(); } ObjPtr ClassLinker::ResolveMethodType(Thread* self, dex::ProtoIndex proto_idx, ArtMethod* referrer) { StackHandleScope<2> hs(self); Handle dex_cache(hs.NewHandle(referrer->GetDexCache())); Handle class_loader(hs.NewHandle(referrer->GetClassLoader())); return ResolveMethodType(self, proto_idx, dex_cache, class_loader); } ObjPtr ClassLinker::ResolveMethodHandleForField( Thread* self, const dex::MethodHandleItem& method_handle, ArtMethod* referrer) { DexFile::MethodHandleType handle_type = static_cast(method_handle.method_handle_type_); mirror::MethodHandle::Kind kind; bool is_put; bool is_static; int32_t num_params; switch (handle_type) { case DexFile::MethodHandleType::kStaticPut: { kind = mirror::MethodHandle::Kind::kStaticPut; is_put = true; is_static = true; num_params = 1; break; } case DexFile::MethodHandleType::kStaticGet: { kind = mirror::MethodHandle::Kind::kStaticGet; is_put = false; is_static = true; num_params = 0; break; } case DexFile::MethodHandleType::kInstancePut: { kind = mirror::MethodHandle::Kind::kInstancePut; is_put = true; is_static = false; num_params = 2; break; } case DexFile::MethodHandleType::kInstanceGet: { kind = mirror::MethodHandle::Kind::kInstanceGet; is_put = false; is_static = false; num_params = 1; break; } case DexFile::MethodHandleType::kInvokeStatic: case DexFile::MethodHandleType::kInvokeInstance: case DexFile::MethodHandleType::kInvokeConstructor: case DexFile::MethodHandleType::kInvokeDirect: case DexFile::MethodHandleType::kInvokeInterface: UNREACHABLE(); } ArtField* target_field = ResolveField(method_handle.field_or_method_idx_, referrer, is_static); if (LIKELY(target_field != nullptr)) { ObjPtr target_class = target_field->GetDeclaringClass(); ObjPtr referring_class = referrer->GetDeclaringClass(); if (UNLIKELY(!referring_class->CanAccessMember(target_class, target_field->GetAccessFlags()))) { ThrowIllegalAccessErrorField(referring_class, target_field); return nullptr; } if (UNLIKELY(is_put && target_field->IsFinal())) { ThrowIllegalAccessErrorField(referring_class, target_field); return nullptr; } } else { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } StackHandleScope<4> hs(self); ObjPtr array_of_class = GetClassRoot>(this); Handle> method_params(hs.NewHandle( mirror::ObjectArray::Alloc(self, array_of_class, num_params))); if (UNLIKELY(method_params == nullptr)) { DCHECK(self->IsExceptionPending()); return nullptr; } Handle constructor_class; Handle return_type; switch (handle_type) { case DexFile::MethodHandleType::kStaticPut: { method_params->Set(0, target_field->ResolveType()); return_type = hs.NewHandle(GetClassRoot(ClassRoot::kPrimitiveVoid, this)); break; } case DexFile::MethodHandleType::kStaticGet: { return_type = hs.NewHandle(target_field->ResolveType()); break; } case DexFile::MethodHandleType::kInstancePut: { method_params->Set(0, target_field->GetDeclaringClass()); method_params->Set(1, target_field->ResolveType()); return_type = hs.NewHandle(GetClassRoot(ClassRoot::kPrimitiveVoid, this)); break; } case DexFile::MethodHandleType::kInstanceGet: { method_params->Set(0, target_field->GetDeclaringClass()); return_type = hs.NewHandle(target_field->ResolveType()); break; } case DexFile::MethodHandleType::kInvokeStatic: case DexFile::MethodHandleType::kInvokeInstance: case DexFile::MethodHandleType::kInvokeConstructor: case DexFile::MethodHandleType::kInvokeDirect: case DexFile::MethodHandleType::kInvokeInterface: UNREACHABLE(); } for (int32_t i = 0; i < num_params; ++i) { if (UNLIKELY(method_params->Get(i) == nullptr)) { DCHECK(self->IsExceptionPending()); return nullptr; } } if (UNLIKELY(return_type.IsNull())) { DCHECK(self->IsExceptionPending()); return nullptr; } Handle method_type(hs.NewHandle(mirror::MethodType::Create(self, return_type, method_params))); if (UNLIKELY(method_type.IsNull())) { DCHECK(self->IsExceptionPending()); return nullptr; } uintptr_t target = reinterpret_cast(target_field); return mirror::MethodHandleImpl::Create(self, target, kind, method_type); } ObjPtr ClassLinker::ResolveMethodHandleForMethod( Thread* self, const dex::MethodHandleItem& method_handle, ArtMethod* referrer) { DexFile::MethodHandleType handle_type = static_cast(method_handle.method_handle_type_); mirror::MethodHandle::Kind kind; uint32_t receiver_count = 0; ArtMethod* target_method = nullptr; switch (handle_type) { case DexFile::MethodHandleType::kStaticPut: case DexFile::MethodHandleType::kStaticGet: case DexFile::MethodHandleType::kInstancePut: case DexFile::MethodHandleType::kInstanceGet: UNREACHABLE(); case DexFile::MethodHandleType::kInvokeStatic: { kind = mirror::MethodHandle::Kind::kInvokeStatic; receiver_count = 0; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kStatic); break; } case DexFile::MethodHandleType::kInvokeInstance: { kind = mirror::MethodHandle::Kind::kInvokeVirtual; receiver_count = 1; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kVirtual); break; } case DexFile::MethodHandleType::kInvokeConstructor: { // Constructors are currently implemented as a transform. They // are special cased later in this method. kind = mirror::MethodHandle::Kind::kInvokeTransform; receiver_count = 0; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kDirect); break; } case DexFile::MethodHandleType::kInvokeDirect: { kind = mirror::MethodHandle::Kind::kInvokeDirect; receiver_count = 1; StackHandleScope<2> hs(self); // A constant method handle with type kInvokeDirect can refer to // a method that is private or to a method in a super class. To // disambiguate the two options, we resolve the method ignoring // the invocation type to determine if the method is private. We // then resolve again specifying the intended invocation type to // force the appropriate checks. target_method = ResolveMethodWithoutInvokeType(method_handle.field_or_method_idx_, hs.NewHandle(referrer->GetDexCache()), hs.NewHandle(referrer->GetClassLoader())); if (UNLIKELY(target_method == nullptr)) { break; } if (target_method->IsPrivate()) { kind = mirror::MethodHandle::Kind::kInvokeDirect; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kDirect); } else { kind = mirror::MethodHandle::Kind::kInvokeSuper; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kSuper); if (UNLIKELY(target_method == nullptr)) { break; } // Find the method specified in the parent in referring class // so invoke-super invokes the method in the parent of the // referrer. target_method = referrer->GetDeclaringClass()->FindVirtualMethodForVirtual(target_method, kRuntimePointerSize); } break; } case DexFile::MethodHandleType::kInvokeInterface: { kind = mirror::MethodHandle::Kind::kInvokeInterface; receiver_count = 1; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kInterface); break; } } if (UNLIKELY(target_method == nullptr)) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } ObjPtr target_class = target_method->GetDeclaringClass(); ObjPtr referring_class = referrer->GetDeclaringClass(); uint32_t access_flags = target_method->GetAccessFlags(); if (UNLIKELY(!referring_class->CanAccessMember(target_class, access_flags))) { ThrowIllegalAccessErrorMethod(referring_class, target_method); return nullptr; } // Calculate the number of parameters from the method shorty. We add the // receiver count (0 or 1) and deduct one for the return value. uint32_t shorty_length; target_method->GetShorty(&shorty_length); int32_t num_params = static_cast(shorty_length + receiver_count - 1); StackHandleScope<5> hs(self); ObjPtr array_of_class = GetClassRoot>(this); Handle> method_params(hs.NewHandle( mirror::ObjectArray::Alloc(self, array_of_class, num_params))); if (method_params.Get() == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; } const DexFile* dex_file = referrer->GetDexFile(); const dex::MethodId& method_id = dex_file->GetMethodId(method_handle.field_or_method_idx_); int32_t index = 0; if (receiver_count != 0) { // Insert receiver. Use the class identified in the method handle rather than the declaring // class of the resolved method which may be super class or default interface method // (b/115964401). ObjPtr receiver_class = LookupResolvedType(method_id.class_idx_, referrer); // receiver_class should have been resolved when resolving the target method. DCHECK(receiver_class != nullptr); method_params->Set(index++, receiver_class); } const dex::ProtoId& proto_id = dex_file->GetProtoId(method_id.proto_idx_); DexFileParameterIterator it(*dex_file, proto_id); while (it.HasNext()) { DCHECK_LT(index, num_params); const dex::TypeIndex type_idx = it.GetTypeIdx(); ObjPtr klass = ResolveType(type_idx, referrer); if (nullptr == klass) { DCHECK(self->IsExceptionPending()); return nullptr; } method_params->Set(index++, klass); it.Next(); } Handle return_type = hs.NewHandle(ResolveType(proto_id.return_type_idx_, referrer)); if (UNLIKELY(return_type.IsNull())) { DCHECK(self->IsExceptionPending()); return nullptr; } Handle method_type(hs.NewHandle(mirror::MethodType::Create(self, return_type, method_params))); if (UNLIKELY(method_type.IsNull())) { DCHECK(self->IsExceptionPending()); return nullptr; } if (UNLIKELY(handle_type == DexFile::MethodHandleType::kInvokeConstructor)) { Handle constructor_class = hs.NewHandle(target_method->GetDeclaringClass()); Handle lookup = hs.NewHandle(mirror::MethodHandlesLookup::GetDefault(self)); return lookup->FindConstructor(self, constructor_class, method_type); } uintptr_t target = reinterpret_cast(target_method); return mirror::MethodHandleImpl::Create(self, target, kind, method_type); } ObjPtr ClassLinker::ResolveMethodHandle(Thread* self, uint32_t method_handle_idx, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { const DexFile* const dex_file = referrer->GetDexFile(); const dex::MethodHandleItem& method_handle = dex_file->GetMethodHandle(method_handle_idx); switch (static_cast(method_handle.method_handle_type_)) { case DexFile::MethodHandleType::kStaticPut: case DexFile::MethodHandleType::kStaticGet: case DexFile::MethodHandleType::kInstancePut: case DexFile::MethodHandleType::kInstanceGet: return ResolveMethodHandleForField(self, method_handle, referrer); case DexFile::MethodHandleType::kInvokeStatic: case DexFile::MethodHandleType::kInvokeInstance: case DexFile::MethodHandleType::kInvokeConstructor: case DexFile::MethodHandleType::kInvokeDirect: case DexFile::MethodHandleType::kInvokeInterface: return ResolveMethodHandleForMethod(self, method_handle, referrer); } } bool ClassLinker::IsQuickResolutionStub(const void* entry_point) const { return (entry_point == GetQuickResolutionStub()) || (quick_resolution_trampoline_ == entry_point); } bool ClassLinker::IsQuickToInterpreterBridge(const void* entry_point) const { return (entry_point == GetQuickToInterpreterBridge()) || (quick_to_interpreter_bridge_trampoline_ == entry_point); } bool ClassLinker::IsQuickGenericJniStub(const void* entry_point) const { return (entry_point == GetQuickGenericJniStub()) || (quick_generic_jni_trampoline_ == entry_point); } bool ClassLinker::IsJniDlsymLookupStub(const void* entry_point) const { return entry_point == GetJniDlsymLookupStub() || (jni_dlsym_lookup_trampoline_ == entry_point); } bool ClassLinker::IsJniDlsymLookupCriticalStub(const void* entry_point) const { return entry_point == GetJniDlsymLookupCriticalStub() || (jni_dlsym_lookup_critical_trampoline_ == entry_point); } const void* ClassLinker::GetRuntimeQuickGenericJniStub() const { return GetQuickGenericJniStub(); } void ClassLinker::SetEntryPointsToInterpreter(ArtMethod* method) const { if (!method->IsNative()) { method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); } else { method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub()); } } void ClassLinker::SetEntryPointsForObsoleteMethod(ArtMethod* method) const { DCHECK(method->IsObsolete()); // We cannot mess with the entrypoints of native methods because they are used to determine how // large the method's quick stack frame is. Without this information we cannot walk the stacks. if (!method->IsNative()) { method->SetEntryPointFromQuickCompiledCode(GetInvokeObsoleteMethodStub()); } } void ClassLinker::DumpForSigQuit(std::ostream& os) { ScopedObjectAccess soa(Thread::Current()); ReaderMutexLock mu(soa.Self(), *Locks::classlinker_classes_lock_); os << "Zygote loaded classes=" << NumZygoteClasses() << " post zygote classes=" << NumNonZygoteClasses() << "\n"; ReaderMutexLock mu2(soa.Self(), *Locks::dex_lock_); os << "Dumping registered class loaders\n"; size_t class_loader_index = 0; for (const ClassLoaderData& class_loader : class_loaders_) { ObjPtr loader = ObjPtr::DownCast(soa.Self()->DecodeJObject(class_loader.weak_root)); if (loader != nullptr) { os << "#" << class_loader_index++ << " " << loader->GetClass()->PrettyDescriptor() << ": ["; bool saw_one_dex_file = false; for (const DexCacheData& dex_cache : dex_caches_) { if (dex_cache.IsValid() && dex_cache.class_table == class_loader.class_table) { if (saw_one_dex_file) { os << ":"; } saw_one_dex_file = true; os << dex_cache.dex_file->GetLocation(); } } os << "]"; bool found_parent = false; if (loader->GetParent() != nullptr) { size_t parent_index = 0; for (const ClassLoaderData& class_loader2 : class_loaders_) { ObjPtr loader2 = ObjPtr::DownCast( soa.Self()->DecodeJObject(class_loader2.weak_root)); if (loader2 == loader->GetParent()) { os << ", parent #" << parent_index; found_parent = true; break; } parent_index++; } if (!found_parent) { os << ", unregistered parent of type " << loader->GetParent()->GetClass()->PrettyDescriptor(); } } else { os << ", no parent"; } os << "\n"; } } os << "Done dumping class loaders\n"; Runtime* runtime = Runtime::Current(); os << "Classes initialized: " << runtime->GetStat(KIND_GLOBAL_CLASS_INIT_COUNT) << " in " << PrettyDuration(runtime->GetStat(KIND_GLOBAL_CLASS_INIT_TIME)) << "\n"; } class CountClassesVisitor : public ClassLoaderVisitor { public: CountClassesVisitor() : num_zygote_classes(0), num_non_zygote_classes(0) {} void Visit(ObjPtr class_loader) REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) override { ClassTable* const class_table = class_loader->GetClassTable(); if (class_table != nullptr) { num_zygote_classes += class_table->NumZygoteClasses(class_loader); num_non_zygote_classes += class_table->NumNonZygoteClasses(class_loader); } } size_t num_zygote_classes; size_t num_non_zygote_classes; }; size_t ClassLinker::NumZygoteClasses() const { CountClassesVisitor visitor; VisitClassLoaders(&visitor); return visitor.num_zygote_classes + boot_class_table_->NumZygoteClasses(nullptr); } size_t ClassLinker::NumNonZygoteClasses() const { CountClassesVisitor visitor; VisitClassLoaders(&visitor); return visitor.num_non_zygote_classes + boot_class_table_->NumNonZygoteClasses(nullptr); } size_t ClassLinker::NumLoadedClasses() { ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); // Only return non zygote classes since these are the ones which apps which care about. return NumNonZygoteClasses(); } pid_t ClassLinker::GetClassesLockOwner() { return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid(); } pid_t ClassLinker::GetDexLockOwner() { return Locks::dex_lock_->GetExclusiveOwnerTid(); } void ClassLinker::SetClassRoot(ClassRoot class_root, ObjPtr klass) { DCHECK(!init_done_); DCHECK(klass != nullptr); DCHECK(klass->GetClassLoader() == nullptr); mirror::ObjectArray* class_roots = class_roots_.Read(); DCHECK(class_roots != nullptr); DCHECK_LT(static_cast(class_root), static_cast(ClassRoot::kMax)); int32_t index = static_cast(class_root); DCHECK(class_roots->Get(index) == nullptr); class_roots->Set(index, klass); } ObjPtr ClassLinker::CreateWellKnownClassLoader( Thread* self, const std::vector& dex_files, Handle loader_class, Handle parent_loader, Handle> shared_libraries) { StackHandleScope<5> hs(self); ArtField* dex_elements_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList_dexElements); Handle dex_elements_class(hs.NewHandle(dex_elements_field->ResolveType())); DCHECK(dex_elements_class != nullptr); DCHECK(dex_elements_class->IsArrayClass()); Handle> h_dex_elements(hs.NewHandle( mirror::ObjectArray::Alloc(self, dex_elements_class.Get(), dex_files.size()))); Handle h_dex_element_class = hs.NewHandle(dex_elements_class->GetComponentType()); ArtField* element_file_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile); DCHECK_EQ(h_dex_element_class.Get(), element_file_field->GetDeclaringClass()); ArtField* cookie_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie); DCHECK_EQ(cookie_field->GetDeclaringClass(), element_file_field->LookupResolvedType()); ArtField* file_name_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_fileName); DCHECK_EQ(file_name_field->GetDeclaringClass(), element_file_field->LookupResolvedType()); // Fill the elements array. int32_t index = 0; for (const DexFile* dex_file : dex_files) { StackHandleScope<4> hs2(self); // CreateWellKnownClassLoader is only used by gtests and compiler. // Index 0 of h_long_array is supposed to be the oat file but we can leave it null. Handle h_long_array = hs2.NewHandle(mirror::LongArray::Alloc( self, kDexFileIndexStart + 1)); DCHECK(h_long_array != nullptr); h_long_array->Set(kDexFileIndexStart, reinterpret_cast64(dex_file)); // Note that this creates a finalizable dalvik.system.DexFile object and a corresponding // FinalizerReference which will never get cleaned up without a started runtime. Handle h_dex_file = hs2.NewHandle( cookie_field->GetDeclaringClass()->AllocObject(self)); DCHECK(h_dex_file != nullptr); cookie_field->SetObject(h_dex_file.Get(), h_long_array.Get()); Handle h_file_name = hs2.NewHandle( mirror::String::AllocFromModifiedUtf8(self, dex_file->GetLocation().c_str())); DCHECK(h_file_name != nullptr); file_name_field->SetObject(h_dex_file.Get(), h_file_name.Get()); Handle h_element = hs2.NewHandle(h_dex_element_class->AllocObject(self)); DCHECK(h_element != nullptr); element_file_field->SetObject(h_element.Get(), h_dex_file.Get()); h_dex_elements->Set(index, h_element.Get()); index++; } DCHECK_EQ(index, h_dex_elements->GetLength()); // Create DexPathList. Handle h_dex_path_list = hs.NewHandle( dex_elements_field->GetDeclaringClass()->AllocObject(self)); DCHECK(h_dex_path_list != nullptr); // Set elements. dex_elements_field->SetObject(h_dex_path_list.Get(), h_dex_elements.Get()); // Create an empty List for the "nativeLibraryDirectories," required for native tests. // Note: this code is uncommon(oatdump)/testing-only, so don't add further WellKnownClasses // elements. { ArtField* native_lib_dirs = dex_elements_field->GetDeclaringClass()-> FindDeclaredInstanceField("nativeLibraryDirectories", "Ljava/util/List;"); DCHECK(native_lib_dirs != nullptr); ObjPtr list_class = FindSystemClass(self, "Ljava/util/ArrayList;"); DCHECK(list_class != nullptr); { StackHandleScope<1> h_list_scope(self); Handle h_list_class(h_list_scope.NewHandle(list_class)); bool list_init = EnsureInitialized(self, h_list_class, true, true); DCHECK(list_init); list_class = h_list_class.Get(); } ObjPtr list_object = list_class->AllocObject(self); // Note: we leave the object uninitialized. This must never leak into any non-testing code, but // is fine for testing. While it violates a Java-code invariant (the elementData field is // normally never null), as long as one does not try to add elements, this will still // work. native_lib_dirs->SetObject(h_dex_path_list.Get(), list_object); } // Create the class loader.. Handle h_class_loader = hs.NewHandle( ObjPtr::DownCast(loader_class->AllocObject(self))); DCHECK(h_class_loader != nullptr); // Set DexPathList. ArtField* path_list_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList); DCHECK(path_list_field != nullptr); path_list_field->SetObject(h_class_loader.Get(), h_dex_path_list.Get()); // Make a pretend boot-classpath. // TODO: Should we scan the image? ArtField* const parent_field = mirror::Class::FindField(self, h_class_loader->GetClass(), "parent", "Ljava/lang/ClassLoader;"); DCHECK(parent_field != nullptr); if (parent_loader.Get() == nullptr) { ScopedObjectAccessUnchecked soa(self); ObjPtr boot_loader(soa.Decode( WellKnownClasses::java_lang_BootClassLoader)->AllocObject(self)); parent_field->SetObject(h_class_loader.Get(), boot_loader); } else { parent_field->SetObject(h_class_loader.Get(), parent_loader.Get()); } ArtField* shared_libraries_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoaders); DCHECK(shared_libraries_field != nullptr); shared_libraries_field->SetObject(h_class_loader.Get(), shared_libraries.Get()); return h_class_loader.Get(); } jobject ClassLinker::CreateWellKnownClassLoader(Thread* self, const std::vector& dex_files, jclass loader_class, jobject parent_loader, jobject shared_libraries) { CHECK(self->GetJniEnv()->IsSameObject(loader_class, WellKnownClasses::dalvik_system_PathClassLoader) || self->GetJniEnv()->IsSameObject(loader_class, WellKnownClasses::dalvik_system_DelegateLastClassLoader) || self->GetJniEnv()->IsSameObject(loader_class, WellKnownClasses::dalvik_system_InMemoryDexClassLoader)); // SOAAlreadyRunnable is protected, and we need something to add a global reference. // We could move the jobject to the callers, but all call-sites do this... ScopedObjectAccessUnchecked soa(self); // For now, create a libcore-level DexFile for each ART DexFile. This "explodes" multidex. StackHandleScope<4> hs(self); Handle h_loader_class = hs.NewHandle(soa.Decode(loader_class)); Handle h_parent = hs.NewHandle(soa.Decode(parent_loader)); Handle> h_shared_libraries = hs.NewHandle(soa.Decode>(shared_libraries)); ObjPtr loader = CreateWellKnownClassLoader( self, dex_files, h_loader_class, h_parent, h_shared_libraries); // Make it a global ref and return. ScopedLocalRef local_ref( soa.Env(), soa.Env()->AddLocalReference(loader)); return soa.Env()->NewGlobalRef(local_ref.get()); } jobject ClassLinker::CreatePathClassLoader(Thread* self, const std::vector& dex_files) { return CreateWellKnownClassLoader(self, dex_files, WellKnownClasses::dalvik_system_PathClassLoader, nullptr); } void ClassLinker::DropFindArrayClassCache() { std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot(nullptr)); find_array_class_cache_next_victim_ = 0; } void ClassLinker::VisitClassLoaders(ClassLoaderVisitor* visitor) const { Thread* const self = Thread::Current(); for (const ClassLoaderData& data : class_loaders_) { // Need to use DecodeJObject so that we get null for cleared JNI weak globals. ObjPtr class_loader = ObjPtr::DownCast( self->DecodeJObject(data.weak_root)); if (class_loader != nullptr) { visitor->Visit(class_loader); } } } void ClassLinker::VisitAllocators(AllocatorVisitor* visitor) const { for (const ClassLoaderData& data : class_loaders_) { LinearAlloc* alloc = data.allocator; if (alloc != nullptr && !visitor->Visit(alloc)) { break; } } } void ClassLinker::InsertDexFileInToClassLoader(ObjPtr dex_file, ObjPtr class_loader) { DCHECK(dex_file != nullptr); Thread* const self = Thread::Current(); WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); ClassTable* const table = ClassTableForClassLoader(class_loader); DCHECK(table != nullptr); if (table->InsertStrongRoot(dex_file) && class_loader != nullptr) { // It was not already inserted, perform the write barrier to let the GC know the class loader's // class table was modified. WriteBarrier::ForEveryFieldWrite(class_loader); } } void ClassLinker::CleanupClassLoaders() { Thread* const self = Thread::Current(); std::vector to_delete; // Do the delete outside the lock to avoid lock violation in jit code cache. { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); for (auto it = class_loaders_.begin(); it != class_loaders_.end(); ) { const ClassLoaderData& data = *it; // Need to use DecodeJObject so that we get null for cleared JNI weak globals. ObjPtr class_loader = ObjPtr::DownCast(self->DecodeJObject(data.weak_root)); if (class_loader != nullptr) { ++it; } else { VLOG(class_linker) << "Freeing class loader"; to_delete.push_back(data); it = class_loaders_.erase(it); } } } for (ClassLoaderData& data : to_delete) { // CHA unloading analysis and SingleImplementaion cleanups are required. DeleteClassLoader(self, data, /*cleanup_cha=*/ true); } } class ClassLinker::FindVirtualMethodHolderVisitor : public ClassVisitor { public: FindVirtualMethodHolderVisitor(const ArtMethod* method, PointerSize pointer_size) : method_(method), pointer_size_(pointer_size) {} bool operator()(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) override { if (klass->GetVirtualMethodsSliceUnchecked(pointer_size_).Contains(method_)) { holder_ = klass; } // Return false to stop searching if holder_ is not null. return holder_ == nullptr; } ObjPtr holder_ = nullptr; const ArtMethod* const method_; const PointerSize pointer_size_; }; ObjPtr ClassLinker::GetHoldingClassOfCopiedMethod(ArtMethod* method) { ScopedTrace trace(__FUNCTION__); // Since this function is slow, have a trace to notify people. CHECK(method->IsCopied()); FindVirtualMethodHolderVisitor visitor(method, image_pointer_size_); VisitClasses(&visitor); return visitor.holder_; } ObjPtr ClassLinker::AllocIfTable(Thread* self, size_t ifcount) { return ObjPtr::DownCast(ObjPtr>( mirror::IfTable::Alloc(self, GetClassRoot>(this), ifcount * mirror::IfTable::kMax))); } bool ClassLinker::IsUpdatableBootClassPathDescriptor(const char* descriptor ATTRIBUTE_UNUSED) { // Should not be called on ClassLinker, only on AotClassLinker that overrides this. LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } bool ClassLinker::DenyAccessBasedOnPublicSdk(ArtMethod* art_method ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { // Should not be called on ClassLinker, only on AotClassLinker that overrides this. LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } bool ClassLinker::DenyAccessBasedOnPublicSdk(ArtField* art_field ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { // Should not be called on ClassLinker, only on AotClassLinker that overrides this. LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } bool ClassLinker::DenyAccessBasedOnPublicSdk(const char* type_descriptor ATTRIBUTE_UNUSED) const { // Should not be called on ClassLinker, only on AotClassLinker that overrides this. LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } void ClassLinker::SetEnablePublicSdkChecks(bool enabled ATTRIBUTE_UNUSED) { // Should not be called on ClassLinker, only on AotClassLinker that overrides this. LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } // Instantiate ClassLinker::ResolveMethod. template ArtMethod* ClassLinker::ResolveMethod( uint32_t method_idx, Handle dex_cache, Handle class_loader, ArtMethod* referrer, InvokeType type); template ArtMethod* ClassLinker::ResolveMethod( uint32_t method_idx, Handle dex_cache, Handle class_loader, ArtMethod* referrer, InvokeType type); // Instantiate ClassLinker::AllocClass. template ObjPtr ClassLinker::AllocClass( Thread* self, ObjPtr java_lang_Class, uint32_t class_size); template ObjPtr ClassLinker::AllocClass( Thread* self, ObjPtr java_lang_Class, uint32_t class_size); } // namespace art