/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_ #define ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_ #include "card_table.h" #include #include "base/atomic.h" #include "base/bit_utils.h" #include "base/mem_map.h" #include "space_bitmap.h" namespace art { namespace gc { namespace accounting { static inline bool byte_cas(uint8_t old_value, uint8_t new_value, uint8_t* address) { #if defined(__i386__) || defined(__x86_64__) Atomic* byte_atomic = reinterpret_cast*>(address); return byte_atomic->CompareAndSetWeakRelaxed(old_value, new_value); #else // Little endian means most significant byte is on the left. const size_t shift_in_bytes = reinterpret_cast(address) % sizeof(uintptr_t); // Align the address down. address -= shift_in_bytes; const size_t shift_in_bits = shift_in_bytes * kBitsPerByte; Atomic* word_atomic = reinterpret_cast*>(address); // Word with the byte we are trying to cas cleared. const uintptr_t cur_word = word_atomic->load(std::memory_order_relaxed) & ~(static_cast(0xFF) << shift_in_bits); const uintptr_t old_word = cur_word | (static_cast(old_value) << shift_in_bits); const uintptr_t new_word = cur_word | (static_cast(new_value) << shift_in_bits); return word_atomic->CompareAndSetWeakRelaxed(old_word, new_word); #endif } template inline size_t CardTable::Scan(ContinuousSpaceBitmap* bitmap, uint8_t* const scan_begin, uint8_t* const scan_end, const Visitor& visitor, const uint8_t minimum_age) { DCHECK_GE(scan_begin, reinterpret_cast(bitmap->HeapBegin())); // scan_end is the byte after the last byte we scan. DCHECK_LE(scan_end, reinterpret_cast(bitmap->HeapLimit())); uint8_t* const card_begin = CardFromAddr(scan_begin); uint8_t* const card_end = CardFromAddr(AlignUp(scan_end, kCardSize)); uint8_t* card_cur = card_begin; CheckCardValid(card_cur); CheckCardValid(card_end); size_t cards_scanned = 0; // Handle any unaligned cards at the start. while (!IsAligned(card_cur) && card_cur < card_end) { if (*card_cur >= minimum_age) { uintptr_t start = reinterpret_cast(AddrFromCard(card_cur)); bitmap->VisitMarkedRange(start, start + kCardSize, visitor); ++cards_scanned; } ++card_cur; } if (card_cur < card_end) { DCHECK_ALIGNED(card_cur, sizeof(intptr_t)); uint8_t* aligned_end = card_end - (reinterpret_cast(card_end) & (sizeof(uintptr_t) - 1)); DCHECK_LE(card_cur, aligned_end); uintptr_t* word_end = reinterpret_cast(aligned_end); for (uintptr_t* word_cur = reinterpret_cast(card_cur); word_cur < word_end; ++word_cur) { while (LIKELY(*word_cur == 0)) { ++word_cur; if (UNLIKELY(word_cur >= word_end)) { goto exit_for; } } // Find the first dirty card. uintptr_t start_word = *word_cur; uintptr_t start = reinterpret_cast(AddrFromCard(reinterpret_cast(word_cur))); // TODO: Investigate if processing continuous runs of dirty cards with // a single bitmap visit is more efficient. for (size_t i = 0; i < sizeof(uintptr_t); ++i) { if (static_cast(start_word) >= minimum_age) { auto* card = reinterpret_cast(word_cur) + i; DCHECK(*card == static_cast(start_word) || *card == kCardDirty) << "card " << static_cast(*card) << " intptr_t " << (start_word & 0xFF); bitmap->VisitMarkedRange(start, start + kCardSize, visitor); ++cards_scanned; } start_word >>= 8; start += kCardSize; } } exit_for: // Handle any unaligned cards at the end. card_cur = reinterpret_cast(word_end); while (card_cur < card_end) { if (*card_cur >= minimum_age) { uintptr_t start = reinterpret_cast(AddrFromCard(card_cur)); bitmap->VisitMarkedRange(start, start + kCardSize, visitor); ++cards_scanned; } ++card_cur; } } if (kClearCard) { ClearCardRange(scan_begin, scan_end); } return cards_scanned; } template inline void CardTable::ModifyCardsAtomic(uint8_t* scan_begin, uint8_t* scan_end, const Visitor& visitor, const ModifiedVisitor& modified) { uint8_t* card_cur = CardFromAddr(scan_begin); uint8_t* card_end = CardFromAddr(AlignUp(scan_end, kCardSize)); CheckCardValid(card_cur); CheckCardValid(card_end); DCHECK(visitor(kCardClean) == kCardClean); // Handle any unaligned cards at the start. while (!IsAligned(card_cur) && card_cur < card_end) { uint8_t expected, new_value; do { expected = *card_cur; new_value = visitor(expected); } while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_cur))); if (expected != new_value) { modified(card_cur, expected, new_value); } ++card_cur; } // Handle unaligned cards at the end. while (!IsAligned(card_end) && card_end > card_cur) { --card_end; uint8_t expected, new_value; do { expected = *card_end; new_value = visitor(expected); } while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_end))); if (expected != new_value) { modified(card_end, expected, new_value); } } // Now we have the words, we can process words in parallel. uintptr_t* word_cur = reinterpret_cast(card_cur); uintptr_t* word_end = reinterpret_cast(card_end); // TODO: This is not big endian safe. union { uintptr_t expected_word; uint8_t expected_bytes[sizeof(uintptr_t)]; }; union { uintptr_t new_word; uint8_t new_bytes[sizeof(uintptr_t)]; }; // TODO: Parallelize. while (word_cur < word_end) { while (true) { expected_word = *word_cur; static_assert(kCardClean == 0); if (LIKELY(expected_word == 0 /* All kCardClean */ )) { break; } for (size_t i = 0; i < sizeof(uintptr_t); ++i) { new_bytes[i] = visitor(expected_bytes[i]); } Atomic* atomic_word = reinterpret_cast*>(word_cur); if (LIKELY(atomic_word->CompareAndSetWeakRelaxed(expected_word, new_word))) { for (size_t i = 0; i < sizeof(uintptr_t); ++i) { const uint8_t expected_byte = expected_bytes[i]; const uint8_t new_byte = new_bytes[i]; if (expected_byte != new_byte) { modified(reinterpret_cast(word_cur) + i, expected_byte, new_byte); } } break; } } ++word_cur; } } inline void* CardTable::AddrFromCard(const uint8_t *card_addr) const { DCHECK(IsValidCard(card_addr)) << " card_addr: " << reinterpret_cast(card_addr) << " begin: " << reinterpret_cast(mem_map_.Begin() + offset_) << " end: " << reinterpret_cast(mem_map_.End()); uintptr_t offset = card_addr - biased_begin_; return reinterpret_cast(offset << kCardShift); } inline uint8_t* CardTable::CardFromAddr(const void *addr) const { uint8_t *card_addr = biased_begin_ + (reinterpret_cast(addr) >> kCardShift); // Check that the caller was asking for an address covered by the card table. DCHECK(IsValidCard(card_addr)) << "addr: " << addr << " card_addr: " << reinterpret_cast(card_addr); return card_addr; } inline bool CardTable::IsValidCard(const uint8_t* card_addr) const { uint8_t* begin = mem_map_.Begin() + offset_; uint8_t* end = mem_map_.End(); return card_addr >= begin && card_addr < end; } inline void CardTable::CheckCardValid(uint8_t* card) const { DCHECK(IsValidCard(card)) << " card_addr: " << reinterpret_cast(card) << " begin: " << reinterpret_cast(mem_map_.Begin() + offset_) << " end: " << reinterpret_cast(mem_map_.End()); } } // namespace accounting } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_