/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "image_space.h" #include #include #include #include #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "android-base/unique_fd.h" #include "arch/instruction_set.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/array_ref.h" #include "base/bit_memory_region.h" #include "base/callee_save_type.h" #include "base/enums.h" #include "base/file_utils.h" #include "base/macros.h" #include "base/memfd.h" #include "base/os.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/string_view_cpp20.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/utils.h" #include "class_root-inl.h" #include "dex/art_dex_file_loader.h" #include "dex/dex_file_loader.h" #include "exec_utils.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/task_processor.h" #include "image-inl.h" #include "intern_table-inl.h" #include "mirror/class-inl.h" #include "mirror/executable-inl.h" #include "mirror/object-inl.h" #include "mirror/object-refvisitor-inl.h" #include "oat.h" #include "oat_file.h" #include "profile/profile_compilation_info.h" #include "runtime.h" #include "space-inl.h" namespace art { namespace gc { namespace space { using android::base::Join; using android::base::StringAppendF; using android::base::StringPrintf; // We do not allow the boot image and extensions to take more than 1GiB. They are // supposed to be much smaller and allocating more that this would likely fail anyway. static constexpr size_t kMaxTotalImageReservationSize = 1 * GB; Atomic ImageSpace::bitmap_index_(0); ImageSpace::ImageSpace(const std::string& image_filename, const char* image_location, const char* profile_file, MemMap&& mem_map, accounting::ContinuousSpaceBitmap&& live_bitmap, uint8_t* end) : MemMapSpace(image_filename, std::move(mem_map), mem_map.Begin(), end, end, kGcRetentionPolicyNeverCollect), live_bitmap_(std::move(live_bitmap)), oat_file_non_owned_(nullptr), image_location_(image_location), profile_file_(profile_file) { DCHECK(live_bitmap_.IsValid()); } static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) { CHECK_ALIGNED(min_delta, kPageSize); CHECK_ALIGNED(max_delta, kPageSize); CHECK_LT(min_delta, max_delta); int32_t r = GetRandomNumber(min_delta, max_delta); if (r % 2 == 0) { r = RoundUp(r, kPageSize); } else { r = RoundDown(r, kPageSize); } CHECK_LE(min_delta, r); CHECK_GE(max_delta, r); CHECK_ALIGNED(r, kPageSize); return r; } static int32_t ChooseRelocationOffsetDelta() { return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA); } static bool FindImageFilenameImpl(const char* image_location, const InstructionSet image_isa, bool* has_system, std::string* system_filename) { *has_system = false; // image_location = /system/framework/boot.art // system_image_location = /system/framework//boot.art std::string system_image_filename(GetSystemImageFilename(image_location, image_isa)); if (OS::FileExists(system_image_filename.c_str())) { *system_filename = system_image_filename; *has_system = true; } return *has_system; } bool ImageSpace::FindImageFilename(const char* image_location, const InstructionSet image_isa, std::string* system_filename, bool* has_system) { std::string dalvik_cache_unused; return FindImageFilenameImpl(image_location, image_isa, has_system, system_filename); } static bool ReadSpecificImageHeader(File* image_file, const char* file_description, /*out*/ImageHeader* image_header, /*out*/std::string* error_msg) { if (!image_file->ReadFully(image_header, sizeof(ImageHeader))) { *error_msg = StringPrintf("Unable to read image header from \"%s\"", file_description); return false; } if (!image_header->IsValid()) { *error_msg = StringPrintf("Image header from \"%s\" is invalid", file_description); return false; } return true; } static bool ReadSpecificImageHeader(const char* filename, /*out*/ImageHeader* image_header, /*out*/std::string* error_msg) { std::unique_ptr image_file(OS::OpenFileForReading(filename)); if (image_file.get() == nullptr) { *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header", filename); return false; } return ReadSpecificImageHeader(image_file.get(), filename, image_header, error_msg); } static std::unique_ptr ReadSpecificImageHeader(const char* filename, std::string* error_msg) { std::unique_ptr hdr(new ImageHeader); if (!ReadSpecificImageHeader(filename, hdr.get(), error_msg)) { return nullptr; } return hdr; } void ImageSpace::VerifyImageAllocations() { uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment); while (current < End()) { CHECK_ALIGNED(current, kObjectAlignment); auto* obj = reinterpret_cast(current); CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class"; CHECK(live_bitmap_.Test(obj)) << obj->PrettyTypeOf(); if (kUseBakerReadBarrier) { obj->AssertReadBarrierState(); } current += RoundUp(obj->SizeOf(), kObjectAlignment); } } // Helper class for relocating from one range of memory to another. class RelocationRange { public: RelocationRange() = default; RelocationRange(const RelocationRange&) = default; RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length) : source_(source), dest_(dest), length_(length) {} bool InSource(uintptr_t address) const { return address - source_ < length_; } bool InDest(const void* dest) const { return InDest(reinterpret_cast(dest)); } bool InDest(uintptr_t address) const { return address - dest_ < length_; } // Translate a source address to the destination space. uintptr_t ToDest(uintptr_t address) const { DCHECK(InSource(address)); return address + Delta(); } template T* ToDest(T* src) const { return reinterpret_cast(ToDest(reinterpret_cast(src))); } // Returns the delta between the dest from the source. uintptr_t Delta() const { return dest_ - source_; } uintptr_t Source() const { return source_; } uintptr_t Dest() const { return dest_; } uintptr_t Length() const { return length_; } private: const uintptr_t source_; const uintptr_t dest_; const uintptr_t length_; }; std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) { return os << "(" << reinterpret_cast(reloc.Source()) << "-" << reinterpret_cast(reloc.Source() + reloc.Length()) << ")->(" << reinterpret_cast(reloc.Dest()) << "-" << reinterpret_cast(reloc.Dest() + reloc.Length()) << ")"; } template class ImageSpace::PatchObjectVisitor final { public: explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor) : heap_visitor_(heap_visitor), native_visitor_(native_visitor) {} void VisitClass(ObjPtr klass, ObjPtr class_class) REQUIRES_SHARED(Locks::mutator_lock_) { // A mirror::Class object consists of // - instance fields inherited from j.l.Object, // - instance fields inherited from j.l.Class, // - embedded tables (vtable, interface method table), // - static fields of the class itself. // The reference fields are at the start of each field section (this is how the // ClassLinker orders fields; except when that would create a gap between superclass // fields and the first reference of the subclass due to alignment, it can be filled // with smaller fields - but that's not the case for j.l.Object and j.l.Class). DCHECK_ALIGNED(klass.Ptr(), kObjectAlignment); static_assert(IsAligned(kObjectAlignment), "Object alignment check."); // First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class. // This should be the only reference field in j.l.Object and we assert that below. DCHECK_EQ(class_class, heap_visitor_(klass->GetClass())); klass->SetFieldObjectWithoutWriteBarrier< /*kTransactionActive=*/ false, /*kCheckTransaction=*/ true, kVerifyNone>(mirror::Object::ClassOffset(), class_class); // Then patch the reference instance fields described by j.l.Class.class. // Use the sizeof(Object) to determine where these reference fields start; // this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()` // after patching but the j.l.Class may not have been patched yet. size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields(); DCHECK_NE(num_reference_instance_fields, 0u); static_assert(IsAligned(sizeof(mirror::Object)), "Size alignment check."); MemberOffset instance_field_offset(sizeof(mirror::Object)); for (size_t i = 0; i != num_reference_instance_fields; ++i) { PatchReferenceField(klass, instance_field_offset); static_assert(sizeof(mirror::HeapReference) == kHeapReferenceSize, "Heap reference sizes equality check."); instance_field_offset = MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize); } // Now that we have patched the `super_class_`, if this is the j.l.Class.class, // we can get a reference to j.l.Object.class and assert that it has only one // reference instance field (the `klass_` patched above). if (kIsDebugBuild && klass == class_class) { ObjPtr object_class = klass->GetSuperClass(); CHECK_EQ(object_class->NumReferenceInstanceFields(), 1u); } // Then patch static fields. size_t num_reference_static_fields = klass->NumReferenceStaticFields(); if (num_reference_static_fields != 0u) { MemberOffset static_field_offset = klass->GetFirstReferenceStaticFieldOffset(kPointerSize); for (size_t i = 0; i != num_reference_static_fields; ++i) { PatchReferenceField(klass, static_field_offset); static_assert(sizeof(mirror::HeapReference) == kHeapReferenceSize, "Heap reference sizes equality check."); static_field_offset = MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize); } } // Then patch native pointers. klass->FixupNativePointers(klass.Ptr(), kPointerSize, *this); } template T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const { return (ptr != nullptr) ? native_visitor_(ptr) : nullptr; } void VisitPointerArray(ObjPtr pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) { // Fully patch the pointer array, including the `klass_` field. PatchReferenceField(pointer_array, mirror::Object::ClassOffset()); int32_t length = pointer_array->GetLength(); for (int32_t i = 0; i != length; ++i) { ArtMethod** method_entry = reinterpret_cast( pointer_array->ElementAddress(i, kPointerSize)); PatchNativePointer(method_entry); } } void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) { // Visit all reference fields. object->VisitReferences(*this, *this); // This function should not be called for classes. DCHECK(!object->IsClass()); } // Visitor for VisitReferences(). ALWAYS_INLINE void operator()(ObjPtr object, MemberOffset field_offset, bool is_static) const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!is_static); PatchReferenceField(object, field_offset); } // Visitor for VisitReferences(), java.lang.ref.Reference case. ALWAYS_INLINE void operator()(ObjPtr klass, ObjPtr ref) const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(klass->IsTypeOfReferenceClass()); this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false); } // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false. void VisitRootIfNonNull(mirror::CompressedReference* root ATTRIBUTE_UNUSED) const {} void VisitRoot(mirror::CompressedReference* root ATTRIBUTE_UNUSED) const {} template ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot* root) const REQUIRES_SHARED(Locks::mutator_lock_) { static_assert(sizeof(GcRoot) == sizeof(uint32_t), "GcRoot size check"); T* old_value = root->template Read(); DCHECK(kMayBeNull || old_value != nullptr); if (!kMayBeNull || old_value != nullptr) { *root = GcRoot(heap_visitor_(old_value)); } } template ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const { if (kPointerSize == PointerSize::k64) { uint64_t* raw_entry = reinterpret_cast(entry); T* old_value = reinterpret_cast64(*raw_entry); DCHECK(kMayBeNull || old_value != nullptr); if (!kMayBeNull || old_value != nullptr) { T* new_value = native_visitor_(old_value); *raw_entry = reinterpret_cast64(new_value); } } else { uint32_t* raw_entry = reinterpret_cast(entry); T* old_value = reinterpret_cast32(*raw_entry); DCHECK(kMayBeNull || old_value != nullptr); if (!kMayBeNull || old_value != nullptr) { T* new_value = native_visitor_(old_value); *raw_entry = reinterpret_cast32(new_value); } } } template ALWAYS_INLINE void PatchReferenceField(ObjPtr object, MemberOffset offset) const REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr old_value = object->GetFieldObject(offset); DCHECK(kMayBeNull || old_value != nullptr); if (!kMayBeNull || old_value != nullptr) { ObjPtr new_value = heap_visitor_(old_value.Ptr()); object->SetFieldObjectWithoutWriteBarrier(offset, new_value); } } private: // Heap objects visitor. HeapVisitor heap_visitor_; // Native objects visitor. NativeVisitor native_visitor_; }; template class ImageSpace::ClassTableVisitor final { public: explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor) : reference_visitor_(reference_visitor) {} void VisitRoot(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(root->AsMirrorPtr() != nullptr); root->Assign(reference_visitor_(root->AsMirrorPtr())); } private: ReferenceVisitor reference_visitor_; }; class ImageSpace::RemapInternedStringsVisitor { public: explicit RemapInternedStringsVisitor( const SafeMap& intern_remap) REQUIRES_SHARED(Locks::mutator_lock_) : intern_remap_(intern_remap), string_class_(GetStringClass()) {} // Visitor for VisitReferences(). ALWAYS_INLINE void operator()(ObjPtr object, MemberOffset field_offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr old_value = object->GetFieldObject(field_offset); if (old_value != nullptr && old_value->GetClass() == string_class_) { auto it = intern_remap_.find(old_value->AsString().Ptr()); if (it != intern_remap_.end()) { mirror::String* new_value = it->second; object->SetFieldObjectWithoutWriteBarrier(field_offset, new_value); } } } // Visitor for VisitReferences(), java.lang.ref.Reference case. ALWAYS_INLINE void operator()(ObjPtr klass, ObjPtr ref) const REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(klass->IsTypeOfReferenceClass()); this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false); } // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false. void VisitRootIfNonNull(mirror::CompressedReference* root ATTRIBUTE_UNUSED) const {} void VisitRoot(mirror::CompressedReference* root ATTRIBUTE_UNUSED) const {} private: mirror::Class* GetStringClass() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!intern_remap_.empty()); return intern_remap_.begin()->first->GetClass(); } const SafeMap& intern_remap_; mirror::Class* const string_class_; }; // Helper class encapsulating loading, so we can access private ImageSpace members (this is a // nested class), but not declare functions in the header. class ImageSpace::Loader { public: static std::unique_ptr InitAppImage(const char* image_filename, const char* image_location, const OatFile* oat_file, ArrayRef boot_image_spaces, /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image)); std::unique_ptr space = Init(image_filename, image_location, &logger, /*image_reservation=*/ nullptr, error_msg); if (space != nullptr) { space->oat_file_non_owned_ = oat_file; const ImageHeader& image_header = space->GetImageHeader(); // Check the oat file checksum. const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); const uint32_t image_oat_checksum = image_header.GetOatChecksum(); if (oat_checksum != image_oat_checksum) { *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s", oat_checksum, image_oat_checksum, image_filename); return nullptr; } size_t boot_image_space_dependencies; if (!ValidateBootImageChecksum(image_filename, image_header, oat_file, boot_image_spaces, &boot_image_space_dependencies, error_msg)) { DCHECK(!error_msg->empty()); return nullptr; } uint32_t expected_reservation_size = RoundUp(image_header.GetImageSize(), kPageSize); if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) || !CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) { return nullptr; } { TimingLogger::ScopedTiming timing("RelocateImage", &logger); const PointerSize pointer_size = image_header.GetPointerSize(); uint32_t boot_image_begin = reinterpret_cast32(boot_image_spaces.front()->Begin()); bool result; if (pointer_size == PointerSize::k64) { result = RelocateInPlace(boot_image_begin, space->GetMemMap()->Begin(), space->GetLiveBitmap(), oat_file, error_msg); } else { result = RelocateInPlace(boot_image_begin, space->GetMemMap()->Begin(), space->GetLiveBitmap(), oat_file, error_msg); } if (!result) { return nullptr; } } DCHECK_LE(boot_image_space_dependencies, boot_image_spaces.size()); if (boot_image_space_dependencies != boot_image_spaces.size()) { TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", &logger); // There shall be no duplicates with boot image spaces this app image depends on. ArrayRef old_spaces = boot_image_spaces.SubArray(/*pos=*/ boot_image_space_dependencies); SafeMap intern_remap; RemoveInternTableDuplicates(old_spaces, space.get(), &intern_remap); if (!intern_remap.empty()) { RemapInternedStringDuplicates(intern_remap, space.get()); } } const ImageHeader& primary_header = boot_image_spaces.front()->GetImageHeader(); static_assert(static_cast(ImageHeader::kResolutionMethod) == 0u); for (size_t i = 0u; i != static_cast(ImageHeader::kImageMethodsCount); ++i) { ImageHeader::ImageMethod method = static_cast(i); CHECK_EQ(primary_header.GetImageMethod(method), image_header.GetImageMethod(method)) << method; } VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get(); } if (VLOG_IS_ON(image)) { logger.Dump(LOG_STREAM(INFO)); } return space; } static std::unique_ptr Init(const char* image_filename, const char* image_location, TimingLogger* logger, /*inout*/MemMap* image_reservation, /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(image_filename != nullptr); CHECK(image_location != nullptr); std::unique_ptr file; { TimingLogger::ScopedTiming timing("OpenImageFile", logger); file.reset(OS::OpenFileForReading(image_filename)); if (file == nullptr) { *error_msg = StringPrintf("Failed to open '%s'", image_filename); return nullptr; } } return Init(file.get(), image_filename, image_location, /* profile_file=*/ "", /*allow_direct_mapping=*/ true, logger, image_reservation, error_msg); } static std::unique_ptr Init(File* file, const char* image_filename, const char* image_location, const char* profile_file, bool allow_direct_mapping, TimingLogger* logger, /*inout*/MemMap* image_reservation, /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(image_filename != nullptr); CHECK(image_location != nullptr); VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename; ImageHeader image_header; { TimingLogger::ScopedTiming timing("ReadImageHeader", logger); bool success = file->PreadFully(&image_header, sizeof(image_header), /*offset=*/ 0u); if (!success || !image_header.IsValid()) { *error_msg = StringPrintf("Invalid image header in '%s'", image_filename); return nullptr; } } // Check that the file is larger or equal to the header size + data size. const uint64_t image_file_size = static_cast(file->GetLength()); if (image_file_size < sizeof(ImageHeader) + image_header.GetDataSize()) { *error_msg = StringPrintf( "Image file truncated: %" PRIu64 " vs. %" PRIu64 ".", image_file_size, static_cast(sizeof(ImageHeader) + image_header.GetDataSize())); return nullptr; } if (VLOG_IS_ON(startup)) { LOG(INFO) << "Dumping image sections"; for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { const auto section_idx = static_cast(i); auto& section = image_header.GetImageSection(section_idx); LOG(INFO) << section_idx << " start=" << reinterpret_cast(image_header.GetImageBegin() + section.Offset()) << " " << section; } } const auto& bitmap_section = image_header.GetImageBitmapSection(); // The location we want to map from is the first aligned page after the end of the stored // (possibly compressed) data. const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header.GetDataSize(), kPageSize); const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size(); if (end_of_bitmap != image_file_size) { *error_msg = StringPrintf( "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size, end_of_bitmap); return nullptr; } // GetImageBegin is the preferred address to map the image. If we manage to map the // image at the image begin, the amount of fixup work required is minimized. // If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to // avoid reading proc maps for a mapping failure and slowing everything down. // For the boot image, we have already reserved the memory and we load the image // into the `image_reservation`. MemMap map = LoadImageFile( image_filename, image_location, image_header, file->Fd(), allow_direct_mapping, logger, image_reservation, error_msg); if (!map.IsValid()) { DCHECK(!error_msg->empty()); return nullptr; } DCHECK_EQ(0, memcmp(&image_header, map.Begin(), sizeof(ImageHeader))); MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(), PROT_READ, MAP_PRIVATE, file->Fd(), image_bitmap_offset, /*low_4gb=*/ false, image_filename, error_msg); if (!image_bitmap_map.IsValid()) { *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str()); return nullptr; } const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1); std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u", image_filename, bitmap_index)); // Bitmap only needs to cover until the end of the mirror objects section. const ImageSection& image_objects = image_header.GetObjectsSection(); // We only want the mirror object, not the ArtFields and ArtMethods. uint8_t* const image_end = map.Begin() + image_objects.End(); accounting::ContinuousSpaceBitmap bitmap; { TimingLogger::ScopedTiming timing("CreateImageBitmap", logger); bitmap = accounting::ContinuousSpaceBitmap::CreateFromMemMap( bitmap_name, std::move(image_bitmap_map), reinterpret_cast(map.Begin()), // Make sure the bitmap is aligned to card size instead of just bitmap word size. RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize)); if (!bitmap.IsValid()) { *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str()); return nullptr; } } // We only want the mirror object, not the ArtFields and ArtMethods. std::unique_ptr space(new ImageSpace(image_filename, image_location, profile_file, std::move(map), std::move(bitmap), image_end)); return space; } static bool CheckImageComponentCount(const ImageSpace& space, uint32_t expected_component_count, /*out*/std::string* error_msg) { const ImageHeader& header = space.GetImageHeader(); if (header.GetComponentCount() != expected_component_count) { *error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u", space.GetImageFilename().c_str(), header.GetComponentCount(), expected_component_count); return false; } return true; } static bool CheckImageReservationSize(const ImageSpace& space, uint32_t expected_reservation_size, /*out*/std::string* error_msg) { const ImageHeader& header = space.GetImageHeader(); if (header.GetImageReservationSize() != expected_reservation_size) { *error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u", space.GetImageFilename().c_str(), header.GetImageReservationSize(), expected_reservation_size); return false; } return true; } template static void RemoveInternTableDuplicates( const Container& old_spaces, /*inout*/ImageSpace* new_space, /*inout*/SafeMap* intern_remap) REQUIRES_SHARED(Locks::mutator_lock_) { const ImageSection& new_interns = new_space->GetImageHeader().GetInternedStringsSection(); if (new_interns.Size() != 0u) { const uint8_t* new_data = new_space->Begin() + new_interns.Offset(); size_t new_read_count; InternTable::UnorderedSet new_set(new_data, /*make_copy_of_data=*/ false, &new_read_count); for (const auto& old_space : old_spaces) { const ImageSection& old_interns = old_space->GetImageHeader().GetInternedStringsSection(); if (old_interns.Size() != 0u) { const uint8_t* old_data = old_space->Begin() + old_interns.Offset(); size_t old_read_count; InternTable::UnorderedSet old_set( old_data, /*make_copy_of_data=*/ false, &old_read_count); RemoveDuplicates(old_set, &new_set, intern_remap); } } } } static void RemapInternedStringDuplicates( const SafeMap& intern_remap, ImageSpace* new_space) REQUIRES_SHARED(Locks::mutator_lock_) { RemapInternedStringsVisitor visitor(intern_remap); static_assert(IsAligned(sizeof(ImageHeader)), "Header alignment check"); uint32_t objects_end = new_space->GetImageHeader().GetObjectsSection().Size(); DCHECK_ALIGNED(objects_end, kObjectAlignment); for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) { mirror::Object* object = reinterpret_cast(new_space->Begin() + pos); object->VisitReferences(visitor, visitor); pos += RoundUp(object->SizeOf(), kObjectAlignment); } } private: // Remove duplicates found in the `old_set` from the `new_set`. // Record the removed Strings for remapping. No read barriers are needed as the // tables are either just being loaded and not yet a part of the heap, or boot // image intern tables with non-moveable Strings used when loading an app image. static void RemoveDuplicates(const InternTable::UnorderedSet& old_set, /*inout*/InternTable::UnorderedSet* new_set, /*inout*/SafeMap* intern_remap) REQUIRES_SHARED(Locks::mutator_lock_) { if (old_set.size() < new_set->size()) { for (const GcRoot& old_s : old_set) { auto new_it = new_set->find(old_s); if (UNLIKELY(new_it != new_set->end())) { intern_remap->Put(new_it->Read(), old_s.Read()); new_set->erase(new_it); } } } else { for (auto new_it = new_set->begin(), end = new_set->end(); new_it != end; ) { auto old_it = old_set.find(*new_it); if (UNLIKELY(old_it != old_set.end())) { intern_remap->Put(new_it->Read(), old_it->Read()); new_it = new_set->erase(new_it); } else { ++new_it; } } } } static bool ValidateBootImageChecksum(const char* image_filename, const ImageHeader& image_header, const OatFile* oat_file, ArrayRef boot_image_spaces, /*out*/size_t* boot_image_space_dependencies, /*out*/std::string* error_msg) { // Use the boot image component count to calculate the checksum from // the appropriate number of boot image chunks. uint32_t boot_image_component_count = image_header.GetBootImageComponentCount(); size_t expected_image_component_count = ImageSpace::GetNumberOfComponents(boot_image_spaces); if (boot_image_component_count > expected_image_component_count) { *error_msg = StringPrintf("Too many boot image dependencies (%u > %zu) in image %s", boot_image_component_count, expected_image_component_count, image_filename); return false; } uint32_t checksum = 0u; size_t chunk_count = 0u; size_t space_pos = 0u; uint64_t boot_image_size = 0u; for (size_t component_count = 0u; component_count != boot_image_component_count; ) { const ImageHeader& current_header = boot_image_spaces[space_pos]->GetImageHeader(); if (current_header.GetComponentCount() > boot_image_component_count - component_count) { *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, " "%u is between %zu and %zu", image_filename, boot_image_component_count, component_count, component_count + current_header.GetComponentCount()); return false; } component_count += current_header.GetComponentCount(); checksum ^= current_header.GetImageChecksum(); chunk_count += 1u; space_pos += current_header.GetImageSpaceCount(); boot_image_size += current_header.GetImageReservationSize(); } if (image_header.GetBootImageChecksum() != checksum) { *error_msg = StringPrintf("Boot image checksum mismatch (0x%08x != 0x%08x) in image %s", image_header.GetBootImageChecksum(), checksum, image_filename); return false; } if (image_header.GetBootImageSize() != boot_image_size) { *error_msg = StringPrintf("Boot image size mismatch (0x%08x != 0x%08" PRIx64 ") in image %s", image_header.GetBootImageSize(), boot_image_size, image_filename); return false; } // Oat checksums, if present, have already been validated, so we know that // they match the loaded image spaces. Therefore, we just verify that they // are consistent in the number of boot image chunks they list by looking // for the kImageChecksumPrefix at the start of each component. const char* oat_boot_class_path_checksums = oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey); if (oat_boot_class_path_checksums != nullptr) { size_t oat_bcp_chunk_count = 0u; while (*oat_boot_class_path_checksums == kImageChecksumPrefix) { oat_bcp_chunk_count += 1u; // Find the start of the next component if any. const char* separator = strchr(oat_boot_class_path_checksums, ':'); oat_boot_class_path_checksums = (separator != nullptr) ? separator + 1u : ""; } if (oat_bcp_chunk_count != chunk_count) { *error_msg = StringPrintf("Boot image chunk count mismatch (%zu != %zu) in image %s", oat_bcp_chunk_count, chunk_count, image_filename); return false; } } *boot_image_space_dependencies = space_pos; return true; } static MemMap LoadImageFile(const char* image_filename, const char* image_location, const ImageHeader& image_header, int fd, bool allow_direct_mapping, TimingLogger* logger, /*inout*/MemMap* image_reservation, /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { TimingLogger::ScopedTiming timing("MapImageFile", logger); std::string temp_error_msg; const bool is_compressed = image_header.HasCompressedBlock(); if (!is_compressed && allow_direct_mapping) { uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr; return MemMap::MapFileAtAddress(address, image_header.GetImageSize(), PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, /*start=*/ 0, /*low_4gb=*/ true, image_filename, /*reuse=*/ false, image_reservation, error_msg); } // Reserve output and copy/decompress into it. MemMap map = MemMap::MapAnonymous(image_location, image_header.GetImageSize(), PROT_READ | PROT_WRITE, /*low_4gb=*/ true, image_reservation, error_msg); if (map.IsValid()) { const size_t stored_size = image_header.GetDataSize(); MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size, PROT_READ, MAP_PRIVATE, fd, /*start=*/ 0, /*low_4gb=*/ false, image_filename, error_msg); if (!temp_map.IsValid()) { DCHECK(error_msg == nullptr || !error_msg->empty()); return MemMap::Invalid(); } Runtime* runtime = Runtime::Current(); // The runtime might not be available at this point if we're running // dex2oat or oatdump. if (runtime != nullptr) { size_t madvise_size_limit = runtime->GetMadviseWillNeedSizeArt(); Runtime::MadviseFileForRange(madvise_size_limit, temp_map.Size(), temp_map.Begin(), temp_map.End(), image_filename); } if (is_compressed) { memcpy(map.Begin(), &image_header, sizeof(ImageHeader)); Runtime::ScopedThreadPoolUsage stpu; ThreadPool* const pool = stpu.GetThreadPool(); const uint64_t start = NanoTime(); Thread* const self = Thread::Current(); static constexpr size_t kMinBlocks = 2u; const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks; for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) { auto function = [&](Thread*) { const uint64_t start2 = NanoTime(); ScopedTrace trace("LZ4 decompress block"); bool result = block.Decompress(/*out_ptr=*/map.Begin(), /*in_ptr=*/temp_map.Begin(), error_msg); if (!result && error_msg != nullptr) { *error_msg = "Failed to decompress image block " + *error_msg; } VLOG(image) << "Decompress block " << block.GetDataSize() << " -> " << block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2); }; if (use_parallel) { pool->AddTask(self, new FunctionTask(std::move(function))); } else { function(self); } } if (use_parallel) { ScopedTrace trace("Waiting for workers"); // Go to native since we don't want to suspend while holding the mutator lock. ScopedThreadSuspension sts(Thread::Current(), kNative); pool->Wait(self, true, false); } const uint64_t time = NanoTime() - start; // Add one 1 ns to prevent possible divide by 0. VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " (" << PrettySize(static_cast(map.Size()) * MsToNs(1000) / (time + 1)) << "/s)"; } else { DCHECK(!allow_direct_mapping); // We do not allow direct mapping for boot image extensions compiled to a memfd. // This prevents wasting memory by kernel keeping the contents of the file alive // despite these contents being unreachable once the file descriptor is closed // and mmapped memory is copied for all existing mappings. // // Most pages would be copied during relocation while there is only one mapping. // We could use MAP_SHARED for relocation and then msync() and remap MAP_PRIVATE // as required for forking from zygote, but there would still be some pages // wasted anyway and we want to avoid that. (For example, static synchronized // methods use the class object for locking and thus modify its lockword.) // No other process should race to overwrite the extension in memfd. DCHECK_EQ(memcmp(temp_map.Begin(), &image_header, sizeof(ImageHeader)), 0); memcpy(map.Begin(), temp_map.Begin(), temp_map.Size()); } } return map; } class EmptyRange { public: ALWAYS_INLINE bool InSource(uintptr_t) const { return false; } ALWAYS_INLINE bool InDest(uintptr_t) const { return false; } ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const { UNREACHABLE(); } }; template class ForwardAddress { public: explicit ForwardAddress(const Range0& range0 = Range0(), const Range1& range1 = Range1(), const Range2& range2 = Range2()) : range0_(range0), range1_(range1), range2_(range2) {} // Return the relocated address of a heap object. // Null checks must be performed in the caller (for performance reasons). template ALWAYS_INLINE T* operator()(T* src) const { DCHECK(src != nullptr); const uintptr_t uint_src = reinterpret_cast(src); if (range2_.InSource(uint_src)) { return reinterpret_cast(range2_.ToDest(uint_src)); } if (range1_.InSource(uint_src)) { return reinterpret_cast(range1_.ToDest(uint_src)); } CHECK(range0_.InSource(uint_src)) << reinterpret_cast(src) << " not in " << reinterpret_cast(range0_.Source()) << "-" << reinterpret_cast(range0_.Source() + range0_.Length()); return reinterpret_cast(range0_.ToDest(uint_src)); } private: const Range0 range0_; const Range1 range1_; const Range2 range2_; }; template class FixupRootVisitor { public: template explicit FixupRootVisitor(Args... args) : forward_(args...) {} ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } ALWAYS_INLINE void VisitRoot(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { mirror::Object* ref = root->AsMirrorPtr(); mirror::Object* new_ref = forward_(ref); if (ref != new_ref) { root->Assign(new_ref); } } private: Forward forward_; }; template class FixupObjectVisitor { public: explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited, const Forward& forward) : visited_(visited), forward_(forward) {} // Fix up separately since we also need to fix up method entrypoints. ALWAYS_INLINE void VisitRootIfNonNull( mirror::CompressedReference* root ATTRIBUTE_UNUSED) const {} ALWAYS_INLINE void VisitRoot(mirror::CompressedReference* root ATTRIBUTE_UNUSED) const {} ALWAYS_INLINE void operator()(ObjPtr obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const NO_THREAD_SAFETY_ANALYSIS { // Space is not yet added to the heap, don't do a read barrier. mirror::Object* ref = obj->GetFieldObject( offset); if (ref != nullptr) { // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the // image. obj->SetFieldObjectWithoutWriteBarrier(offset, forward_(ref)); } } // java.lang.ref.Reference visitor. ALWAYS_INLINE void operator()(ObjPtr klass, ObjPtr ref) const REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { DCHECK(klass->IsTypeOfReferenceClass()); this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false); } void operator()(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS { if (!visited_->Set(obj)) { // Not already visited. obj->VisitReferences( *this, *this); CHECK(!obj->IsClass()); } } private: gc::accounting::ContinuousSpaceBitmap* const visited_; Forward forward_; }; // Relocate an image space mapped at target_base which possibly used to be at a different base // address. In place means modifying a single ImageSpace in place rather than relocating from // one ImageSpace to another. template static bool RelocateInPlace(uint32_t boot_image_begin, uint8_t* target_base, accounting::ContinuousSpaceBitmap* bitmap, const OatFile* app_oat_file, std::string* error_msg) { DCHECK(error_msg != nullptr); // Set up sections. ImageHeader* image_header = reinterpret_cast(target_base); const uint32_t boot_image_size = image_header->GetBootImageSize(); const ImageSection& objects_section = image_header->GetObjectsSection(); // Where the app image objects are mapped to. uint8_t* objects_location = target_base + objects_section.Offset(); TimingLogger logger(__FUNCTION__, true, false); RelocationRange boot_image(image_header->GetBootImageBegin(), boot_image_begin, boot_image_size); // Metadata is everything after the objects section, use exclusion to be safe. RelocationRange app_image_metadata( reinterpret_cast(image_header->GetImageBegin()) + objects_section.End(), reinterpret_cast(target_base) + objects_section.End(), image_header->GetImageSize() - objects_section.End()); // App image heap objects, may be mapped in the heap. RelocationRange app_image_objects( reinterpret_cast(image_header->GetImageBegin()) + objects_section.Offset(), reinterpret_cast(objects_location), objects_section.Size()); // Use the oat data section since this is where the OatFile::Begin is. RelocationRange app_oat(reinterpret_cast(image_header->GetOatDataBegin()), // Not necessarily in low 4GB. reinterpret_cast(app_oat_file->Begin()), image_header->GetOatDataEnd() - image_header->GetOatDataBegin()); VLOG(image) << "App image metadata " << app_image_metadata; VLOG(image) << "App image objects " << app_image_objects; VLOG(image) << "App oat " << app_oat; VLOG(image) << "Boot image " << boot_image; // True if we need to fixup any heap pointers. const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 || app_image_objects.Delta() != 0; if (!fixup_image) { // Nothing to fix up. return true; } ScopedDebugDisallowReadBarriers sddrb(Thread::Current()); using ForwardObject = ForwardAddress; ForwardObject forward_object(boot_image, app_image_objects); ForwardObject forward_metadata(boot_image, app_image_metadata); using ForwardCode = ForwardAddress; ForwardCode forward_code(boot_image, app_oat); PatchObjectVisitor patch_object_visitor( forward_object, forward_metadata); if (fixup_image) { // Two pass approach, fix up all classes first, then fix up non class-objects. // The visited bitmap is used to ensure that pointer arrays are not forwarded twice. gc::accounting::ContinuousSpaceBitmap visited_bitmap( gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap", target_base, image_header->GetImageSize())); { TimingLogger::ScopedTiming timing("Fixup classes", &logger); ObjPtr class_class = [&]() NO_THREAD_SAFETY_ANALYSIS { ObjPtr> image_roots = app_image_objects.ToDest( image_header->GetImageRoots().Ptr()); int32_t class_roots_index = enum_cast(ImageHeader::kClassRoots); DCHECK_LT(class_roots_index, image_roots->GetLength()); ObjPtr> class_roots = ObjPtr>::DownCast(boot_image.ToDest( image_roots->GetWithoutChecks(class_roots_index).Ptr())); return GetClassRoot(class_roots); }(); const auto& class_table_section = image_header->GetClassTableSection(); if (class_table_section.Size() > 0u) { ScopedObjectAccess soa(Thread::Current()); ClassTableVisitor class_table_visitor(forward_object); size_t read_count = 0u; const uint8_t* data = target_base + class_table_section.Offset(); // We avoid making a copy of the data since we want modifications to be propagated to the // memory map. ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count); for (ClassTable::TableSlot& slot : temp_set) { slot.VisitRoot(class_table_visitor); ObjPtr klass = slot.Read(); if (!app_image_objects.InDest(klass.Ptr())) { continue; } const bool already_marked = visited_bitmap.Set(klass.Ptr()); CHECK(!already_marked) << "App image class already visited"; patch_object_visitor.VisitClass(klass, class_class); // Then patch the non-embedded vtable and iftable. ObjPtr vtable = klass->GetVTable(); if (vtable != nullptr && app_image_objects.InDest(vtable.Ptr()) && !visited_bitmap.Set(vtable.Ptr())) { patch_object_visitor.VisitPointerArray(vtable); } ObjPtr iftable = klass->GetIfTable(); if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) { // Avoid processing the fields of iftable since we will process them later anyways // below. int32_t ifcount = klass->GetIfTableCount(); for (int32_t i = 0; i != ifcount; ++i) { ObjPtr unpatched_ifarray = iftable->GetMethodArrayOrNull(i); if (unpatched_ifarray != nullptr) { // The iftable has not been patched, so we need to explicitly adjust the pointer. ObjPtr ifarray = forward_object(unpatched_ifarray.Ptr()); if (app_image_objects.InDest(ifarray.Ptr()) && !visited_bitmap.Set(ifarray.Ptr())) { patch_object_visitor.VisitPointerArray(ifarray); } } } } } } } // Fixup objects may read fields in the boot image so we hold the mutator lock (although it is // probably not required). TimingLogger::ScopedTiming timing("Fixup objects", &logger); ScopedObjectAccess soa(Thread::Current()); // Need to update the image to be at the target base. uintptr_t objects_begin = reinterpret_cast(target_base + objects_section.Offset()); uintptr_t objects_end = reinterpret_cast(target_base + objects_section.End()); FixupObjectVisitor fixup_object_visitor(&visited_bitmap, forward_object); bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor); // Fixup image roots. CHECK(app_image_objects.InSource(reinterpret_cast( image_header->GetImageRoots().Ptr()))); image_header->RelocateImageReferences(app_image_objects.Delta()); image_header->RelocateBootImageReferences(boot_image.Delta()); CHECK_EQ(image_header->GetImageBegin(), target_base); } { // Only touches objects in the app image, no need for mutator lock. TimingLogger::ScopedTiming timing("Fixup methods", &logger); image_header->VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS { // TODO: Consider a separate visitor for runtime vs normal methods. if (UNLIKELY(method.IsRuntimeMethod())) { ImtConflictTable* table = method.GetImtConflictTable(kPointerSize); if (table != nullptr) { ImtConflictTable* new_table = forward_metadata(table); if (table != new_table) { method.SetImtConflictTable(new_table, kPointerSize); } } const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize); const void* new_code = forward_code(old_code); if (old_code != new_code) { method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize); } } else { patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot()); method.UpdateEntrypoints(forward_code, kPointerSize); } }, target_base, kPointerSize); } if (fixup_image) { { // Only touches objects in the app image, no need for mutator lock. TimingLogger::ScopedTiming timing("Fixup fields", &logger); image_header->VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS { patch_object_visitor.template PatchGcRoot( &field.DeclaringClassRoot()); }, target_base); } { TimingLogger::ScopedTiming timing("Fixup imt", &logger); image_header->VisitPackedImTables(forward_metadata, target_base, kPointerSize); } { TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger); image_header->VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize); } // Fix up the intern table. const auto& intern_table_section = image_header->GetInternedStringsSection(); if (intern_table_section.Size() > 0u) { TimingLogger::ScopedTiming timing("Fixup intern table", &logger); ScopedObjectAccess soa(Thread::Current()); // Fixup the pointers in the newly written intern table to contain image addresses. InternTable temp_intern_table; // Note that we require that ReadFromMemory does not make an internal copy of the elements // so that the VisitRoots() will update the memory directly rather than the copies. temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(), [&](InternTable::UnorderedSet& strings) REQUIRES_SHARED(Locks::mutator_lock_) { for (GcRoot& root : strings) { root = GcRoot(forward_object(root.Read())); } }, /*is_boot_image=*/ false); } } if (VLOG_IS_ON(image)) { logger.Dump(LOG_STREAM(INFO)); } return true; } }; static void AppendImageChecksum(uint32_t component_count, uint32_t checksum, /*inout*/std::string* checksums) { static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check."); StringAppendF(checksums, "i;%u/%08x", component_count, checksum); } static bool CheckAndRemoveImageChecksum(uint32_t component_count, uint32_t checksum, /*inout*/std::string_view* oat_checksums, /*out*/std::string* error_msg) { std::string image_checksum; AppendImageChecksum(component_count, checksum, &image_checksum); if (!StartsWith(*oat_checksums, image_checksum)) { *error_msg = StringPrintf("Image checksum mismatch, expected %s to start with %s", std::string(*oat_checksums).c_str(), image_checksum.c_str()); return false; } oat_checksums->remove_prefix(image_checksum.size()); return true; } // Helper class to find the primary boot image and boot image extensions // and determine the boot image layout. class ImageSpace::BootImageLayout { public: // Description of a "chunk" of the boot image, i.e. either primary boot image // or a boot image extension, used in conjunction with the boot class path to // load boot image components. struct ImageChunk { std::string base_location; std::string base_filename; std::string profile_file; size_t start_index; uint32_t component_count; uint32_t image_space_count; uint32_t reservation_size; uint32_t checksum; uint32_t boot_image_component_count; uint32_t boot_image_checksum; uint32_t boot_image_size; // The following file descriptors hold the memfd files for extensions compiled // in memory and described by the above fields. We want to use them to mmap() // the contents and then close them while treating the ImageChunk description // as immutable (const), so make these fields explicitly mutable. mutable android::base::unique_fd art_fd; mutable android::base::unique_fd vdex_fd; mutable android::base::unique_fd oat_fd; }; BootImageLayout(const std::string& image_location, ArrayRef boot_class_path, ArrayRef boot_class_path_locations) : image_location_(image_location), boot_class_path_(boot_class_path), boot_class_path_locations_(boot_class_path_locations) {} std::string GetPrimaryImageLocation(); bool LoadFromSystem(InstructionSet image_isa, /*out*/std::string* error_msg) { return LoadOrValidateFromSystem(image_isa, /*oat_checksums=*/ nullptr, error_msg); } bool ValidateFromSystem(InstructionSet image_isa, /*inout*/std::string_view* oat_checksums, /*out*/std::string* error_msg) { DCHECK(oat_checksums != nullptr); return LoadOrValidateFromSystem(image_isa, oat_checksums, error_msg); } ArrayRef GetChunks() const { return ArrayRef(chunks_); } uint32_t GetBaseAddress() const { return base_address_; } size_t GetNextBcpIndex() const { return next_bcp_index_; } size_t GetTotalComponentCount() const { return total_component_count_; } size_t GetTotalReservationSize() const { return total_reservation_size_; } private: struct NamedComponentLocation { std::string base_location; size_t bcp_index; std::string profile_filename; }; std::string ExpandLocationImpl(const std::string& location, size_t bcp_index, bool boot_image_extension) { std::vector expanded = ExpandMultiImageLocations( ArrayRef(boot_class_path_).SubArray(bcp_index, 1u), location, boot_image_extension); DCHECK_EQ(expanded.size(), 1u); return expanded[0]; } std::string ExpandLocation(const std::string& location, size_t bcp_index) { if (bcp_index == 0u) { DCHECK_EQ(location, ExpandLocationImpl(location, bcp_index, /*boot_image_extension=*/ false)); return location; } else { return ExpandLocationImpl(location, bcp_index, /*boot_image_extension=*/ true); } } std::string GetBcpComponentPath(size_t bcp_index) { DCHECK_LE(bcp_index, boot_class_path_.size()); size_t bcp_slash_pos = boot_class_path_[bcp_index].rfind('/'); DCHECK_NE(bcp_slash_pos, std::string::npos); return boot_class_path_[bcp_index].substr(0u, bcp_slash_pos + 1u); } bool VerifyImageLocation(const std::vector& components, /*out*/size_t* named_components_count, /*out*/std::string* error_msg); bool MatchNamedComponents( ArrayRef named_components, /*out*/std::vector* named_component_locations, /*out*/std::string* error_msg); bool ValidateBootImageChecksum(const char* file_description, const ImageHeader& header, /*out*/std::string* error_msg); bool ValidateHeader(const ImageHeader& header, size_t bcp_index, const char* file_description, /*out*/std::string* error_msg); bool ReadHeader(const std::string& base_location, const std::string& base_filename, size_t bcp_index, /*out*/std::string* error_msg); bool CompileExtension(const std::string& base_location, const std::string& base_filename, size_t bcp_index, const std::string& profile_filename, ArrayRef dependencies, /*out*/std::string* error_msg); bool CheckAndRemoveLastChunkChecksum(/*inout*/std::string_view* oat_checksums, /*out*/std::string* error_msg); template bool LoadOrValidate(FilenameFn&& filename_fn, /*inout*/std::string_view* oat_checksums, /*out*/std::string* error_msg); bool LoadOrValidateFromSystem(InstructionSet image_isa, /*inout*/std::string_view* oat_checksums, /*out*/std::string* error_msg); const std::string& image_location_; ArrayRef boot_class_path_; ArrayRef boot_class_path_locations_; std::vector chunks_; uint32_t base_address_ = 0u; size_t next_bcp_index_ = 0u; size_t total_component_count_ = 0u; size_t total_reservation_size_ = 0u; }; std::string ImageSpace::BootImageLayout::GetPrimaryImageLocation() { size_t location_start = 0u; size_t location_end = image_location_.find(kComponentSeparator); while (location_end == location_start) { ++location_start; location_end = image_location_.find(location_start, kComponentSeparator); } std::string location = (location_end == std::string::npos) ? image_location_.substr(location_start) : image_location_.substr(location_start, location_end - location_start); if (location.find('/') == std::string::npos) { // No path, so use the path from the first boot class path component. size_t slash_pos = boot_class_path_.empty() ? std::string::npos : boot_class_path_[0].rfind('/'); if (slash_pos == std::string::npos) { return std::string(); } location.insert(0u, boot_class_path_[0].substr(0u, slash_pos + 1u)); } return location; } bool ImageSpace::BootImageLayout::VerifyImageLocation( const std::vector& components, /*out*/size_t* named_components_count, /*out*/std::string* error_msg) { DCHECK(named_components_count != nullptr); // Validate boot class path. Require a path and non-empty name in each component. for (const std::string& bcp_component : boot_class_path_) { size_t bcp_slash_pos = bcp_component.rfind('/'); if (bcp_slash_pos == std::string::npos || bcp_slash_pos == bcp_component.size() - 1u) { *error_msg = StringPrintf("Invalid boot class path component: %s", bcp_component.c_str()); return false; } } // Validate the format of image location components. size_t components_size = components.size(); if (components_size == 0u) { *error_msg = "Empty image location."; return false; } size_t wildcards_start = components_size; // No wildcards. for (size_t i = 0; i != components_size; ++i) { const std::string& component = components[i]; DCHECK(!component.empty()); // Guaranteed by Split(). const size_t profile_separator_pos = component.find(kProfileSeparator); size_t wildcard_pos = component.find('*'); if (wildcard_pos == std::string::npos) { if (wildcards_start != components.size()) { *error_msg = StringPrintf("Image component without wildcard after component with wildcard: %s", component.c_str()); return false; } if (profile_separator_pos != std::string::npos) { if (component.find(kProfileSeparator, profile_separator_pos + 1u) != std::string::npos) { *error_msg = StringPrintf("Multiple profile delimiters in %s", component.c_str()); return false; } if (profile_separator_pos == 0u || profile_separator_pos + 1u == component.size()) { *error_msg = StringPrintf("Missing component and/or profile name in %s", component.c_str()); return false; } if (component.back() == '/') { *error_msg = StringPrintf("Profile name ends with path separator: %s", component.c_str()); return false; } } size_t component_name_length = profile_separator_pos != std::string::npos ? profile_separator_pos : component.size(); if (component[component_name_length - 1u] == '/') { *error_msg = StringPrintf("Image component ends with path separator: %s", component.c_str()); return false; } } else { if (profile_separator_pos != std::string::npos) { *error_msg = StringPrintf("Unsupproted wildcard (*) and profile delimiter (!) in %s", component.c_str()); return false; } if (wildcards_start == components_size) { wildcards_start = i; } // Wildcard must be the last character. if (wildcard_pos != component.size() - 1u) { *error_msg = StringPrintf("Unsupported wildcard (*) position in %s", component.c_str()); return false; } // And it must be either plain wildcard or preceded by a path separator. if (component.size() != 1u && component[wildcard_pos - 1u] != '/') { *error_msg = StringPrintf("Non-plain wildcard (*) not preceded by path separator '/': %s", component.c_str()); return false; } if (i == 0) { *error_msg = StringPrintf("Primary component contains wildcard (*): %s", component.c_str()); return false; } } } *named_components_count = wildcards_start; return true; } bool ImageSpace::BootImageLayout::MatchNamedComponents( ArrayRef named_components, /*out*/std::vector* named_component_locations, /*out*/std::string* error_msg) { DCHECK(!named_components.empty()); DCHECK(named_component_locations->empty()); named_component_locations->reserve(named_components.size()); size_t bcp_component_count = boot_class_path_.size(); size_t bcp_pos = 0; std::string base_name; for (size_t i = 0, size = named_components.size(); i != size; ++i) { std::string component = named_components[i]; std::string profile_filename; // Empty. const size_t profile_separator_pos = component.find(kProfileSeparator); if (profile_separator_pos != std::string::npos) { profile_filename = component.substr(profile_separator_pos + 1u); DCHECK(!profile_filename.empty()); // Checked by VerifyImageLocation() component.resize(profile_separator_pos); DCHECK(!component.empty()); // Checked by VerifyImageLocation() } size_t slash_pos = component.rfind('/'); std::string base_location; if (i == 0u) { // The primary boot image name is taken as provided. It forms the base // for expanding the extension filenames. if (slash_pos != std::string::npos) { base_name = component.substr(slash_pos + 1u); base_location = component; } else { base_name = component; base_location = GetBcpComponentPath(0u) + component; } } else { std::string to_match; if (slash_pos != std::string::npos) { // If we have the full path, we just need to match the filename to the BCP component. base_location = component.substr(0u, slash_pos + 1u) + base_name; to_match = component; } while (true) { if (slash_pos == std::string::npos) { // If we do not have a full path, we need to update the path based on the BCP location. std::string path = GetBcpComponentPath(bcp_pos); to_match = path + component; base_location = path + base_name; } if (ExpandLocation(base_location, bcp_pos) == to_match) { break; } ++bcp_pos; if (bcp_pos == bcp_component_count) { *error_msg = StringPrintf("Image component %s does not match a boot class path component", component.c_str()); return false; } } } if (!profile_filename.empty() && profile_filename.find('/') == std::string::npos) { profile_filename.insert(/*pos*/ 0u, GetBcpComponentPath(bcp_pos)); } NamedComponentLocation location; location.base_location = base_location; location.bcp_index = bcp_pos; location.profile_filename = profile_filename; named_component_locations->push_back(location); ++bcp_pos; } return true; } bool ImageSpace::BootImageLayout::ValidateBootImageChecksum(const char* file_description, const ImageHeader& header, /*out*/std::string* error_msg) { uint32_t boot_image_component_count = header.GetBootImageComponentCount(); if (chunks_.empty() != (boot_image_component_count == 0u)) { *error_msg = StringPrintf("Unexpected boot image component count in %s: %u, %s", file_description, boot_image_component_count, chunks_.empty() ? "should be 0" : "should not be 0"); return false; } uint32_t component_count = 0u; uint32_t composite_checksum = 0u; uint64_t boot_image_size = 0u; for (const ImageChunk& chunk : chunks_) { if (component_count == boot_image_component_count) { break; // Hit the component count. } if (chunk.start_index != component_count) { break; // End of contiguous chunks, fail below; same as reaching end of `chunks_`. } if (chunk.component_count > boot_image_component_count - component_count) { *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, " "%u is between %u and %u", file_description, boot_image_component_count, component_count, component_count + chunk.component_count); return false; } component_count += chunk.component_count; composite_checksum ^= chunk.checksum; boot_image_size += chunk.reservation_size; } DCHECK_LE(component_count, boot_image_component_count); if (component_count != boot_image_component_count) { *error_msg = StringPrintf("Missing boot image components for checksum in %s: %u > %u", file_description, boot_image_component_count, component_count); return false; } if (composite_checksum != header.GetBootImageChecksum()) { *error_msg = StringPrintf("Boot image checksum mismatch in %s: 0x%08x != 0x%08x", file_description, header.GetBootImageChecksum(), composite_checksum); return false; } if (boot_image_size != header.GetBootImageSize()) { *error_msg = StringPrintf("Boot image size mismatch in %s: 0x%08x != 0x%08" PRIx64, file_description, header.GetBootImageSize(), boot_image_size); return false; } return true; } bool ImageSpace::BootImageLayout::ValidateHeader(const ImageHeader& header, size_t bcp_index, const char* file_description, /*out*/std::string* error_msg) { size_t bcp_component_count = boot_class_path_.size(); DCHECK_LT(bcp_index, bcp_component_count); size_t allowed_component_count = bcp_component_count - bcp_index; DCHECK_LE(total_reservation_size_, kMaxTotalImageReservationSize); size_t allowed_reservation_size = kMaxTotalImageReservationSize - total_reservation_size_; if (header.GetComponentCount() == 0u || header.GetComponentCount() > allowed_component_count) { *error_msg = StringPrintf("Unexpected component count in %s, received %u, " "expected non-zero and <= %zu", file_description, header.GetComponentCount(), allowed_component_count); return false; } if (header.GetImageReservationSize() > allowed_reservation_size) { *error_msg = StringPrintf("Reservation size too big in %s: %u > %zu", file_description, header.GetImageReservationSize(), allowed_reservation_size); return false; } if (!ValidateBootImageChecksum(file_description, header, error_msg)) { return false; } return true; } bool ImageSpace::BootImageLayout::ReadHeader(const std::string& base_location, const std::string& base_filename, size_t bcp_index, /*out*/std::string* error_msg) { DCHECK_LE(next_bcp_index_, bcp_index); DCHECK_LT(bcp_index, boot_class_path_.size()); std::string actual_filename = ExpandLocation(base_filename, bcp_index); ImageHeader header; if (!ReadSpecificImageHeader(actual_filename.c_str(), &header, error_msg)) { return false; } const char* file_description = actual_filename.c_str(); if (!ValidateHeader(header, bcp_index, file_description, error_msg)) { return false; } if (chunks_.empty()) { base_address_ = reinterpret_cast32(header.GetImageBegin()); } ImageChunk chunk; chunk.base_location = base_location; chunk.base_filename = base_filename; chunk.start_index = bcp_index; chunk.component_count = header.GetComponentCount(); chunk.image_space_count = header.GetImageSpaceCount(); chunk.reservation_size = header.GetImageReservationSize(); chunk.checksum = header.GetImageChecksum(); chunk.boot_image_component_count = header.GetBootImageComponentCount(); chunk.boot_image_checksum = header.GetBootImageChecksum(); chunk.boot_image_size = header.GetBootImageSize(); chunks_.push_back(std::move(chunk)); next_bcp_index_ = bcp_index + header.GetComponentCount(); total_component_count_ += header.GetComponentCount(); total_reservation_size_ += header.GetImageReservationSize(); return true; } bool ImageSpace::BootImageLayout::CompileExtension(const std::string& base_location, const std::string& base_filename, size_t bcp_index, const std::string& profile_filename, ArrayRef dependencies, /*out*/std::string* error_msg) { DCHECK_LE(total_component_count_, next_bcp_index_); DCHECK_LE(next_bcp_index_, bcp_index); size_t bcp_component_count = boot_class_path_.size(); DCHECK_LT(bcp_index, bcp_component_count); DCHECK(!profile_filename.empty()); if (total_component_count_ != bcp_index) { // We require all previous BCP components to have a boot image space (primary or extension). *error_msg = "Cannot compile extension because of missing dependencies."; return false; } Runtime* runtime = Runtime::Current(); if (!runtime->IsImageDex2OatEnabled()) { *error_msg = "Cannot compile extension because dex2oat for image compilation is disabled."; return false; } // Check dependencies. DCHECK(!dependencies.empty()); size_t dependency_component_count = 0; for (size_t i = 0, size = dependencies.size(); i != size; ++i) { if (chunks_.size() == i || chunks_[i].start_index != dependency_component_count) { *error_msg = StringPrintf("Missing extension dependency \"%s\"", dependencies[i].c_str()); return false; } dependency_component_count += chunks_[i].component_count; } // Collect locations from the profile. std::set dex_locations; { std::unique_ptr profile_file(OS::OpenFileForReading(profile_filename.c_str())); if (profile_file == nullptr) { *error_msg = StringPrintf("Failed to open profile file \"%s\" for reading, error: %s", profile_filename.c_str(), strerror(errno)); return false; } // TODO: Rewrite ProfileCompilationInfo to provide a better interface and // to store the dex locations in uncompressed section of the file. auto collect_fn = [&dex_locations](const std::string& dex_location, uint32_t checksum ATTRIBUTE_UNUSED) { dex_locations.insert(dex_location); // Just collect locations. return false; // Do not read the profile data. }; ProfileCompilationInfo info(/*for_boot_image=*/ true); if (!info.Load(profile_file->Fd(), /*merge_classes=*/ true, collect_fn)) { *error_msg = StringPrintf("Failed to scan profile from %s", profile_filename.c_str()); return false; } } // Match boot class path components to locations from profile. // Note that the profile records only filenames without paths. size_t bcp_end = bcp_index; for (; bcp_end != bcp_component_count; ++bcp_end) { const std::string& bcp_component = boot_class_path_locations_[bcp_end]; size_t slash_pos = bcp_component.rfind('/'); DCHECK_NE(slash_pos, std::string::npos); std::string bcp_component_name = bcp_component.substr(slash_pos + 1u); if (dex_locations.count(bcp_component_name) == 0u) { break; // Did not find the current location in dex file. } } if (bcp_end == bcp_index) { // No data for the first (requested) component. *error_msg = StringPrintf("The profile does not contain data for %s", boot_class_path_locations_[bcp_index].c_str()); return false; } // Create in-memory files. std::string art_filename = ExpandLocation(base_filename, bcp_index); std::string vdex_filename = ImageHeader::GetVdexLocationFromImageLocation(art_filename); std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename); android::base::unique_fd art_fd(memfd_create_compat(art_filename.c_str(), /*flags=*/ 0)); android::base::unique_fd vdex_fd(memfd_create_compat(vdex_filename.c_str(), /*flags=*/ 0)); android::base::unique_fd oat_fd(memfd_create_compat(oat_filename.c_str(), /*flags=*/ 0)); if (art_fd.get() == -1 || vdex_fd.get() == -1 || oat_fd.get() == -1) { *error_msg = StringPrintf("Failed to create memfd handles for compiling extension for %s", boot_class_path_locations_[bcp_index].c_str()); return false; } // Construct the dex2oat command line. std::string dex2oat = runtime->GetCompilerExecutable(); ArrayRef head_bcp = boot_class_path_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count); ArrayRef head_bcp_locations = boot_class_path_locations_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count); ArrayRef extension_bcp = boot_class_path_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index); ArrayRef extension_bcp_locations = boot_class_path_locations_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index); std::string boot_class_path = Join(head_bcp, ':') + ':' + Join(extension_bcp, ':'); std::string boot_class_path_locations = Join(head_bcp_locations, ':') + ':' + Join(extension_bcp_locations, ':'); std::vector args; args.push_back(dex2oat); args.push_back("--runtime-arg"); args.push_back("-Xbootclasspath:" + boot_class_path); args.push_back("--runtime-arg"); args.push_back("-Xbootclasspath-locations:" + boot_class_path_locations); args.push_back("--boot-image=" + Join(dependencies, kComponentSeparator)); for (size_t i = bcp_index; i != bcp_end; ++i) { args.push_back("--dex-file=" + boot_class_path_[i]); args.push_back("--dex-location=" + boot_class_path_locations_[i]); } args.push_back("--image-fd=" + std::to_string(art_fd.get())); args.push_back("--output-vdex-fd=" + std::to_string(vdex_fd.get())); args.push_back("--oat-fd=" + std::to_string(oat_fd.get())); args.push_back("--oat-location=" + ImageHeader::GetOatLocationFromImageLocation(base_filename)); args.push_back("--single-image"); args.push_back("--image-format=uncompressed"); // We currently cannot guarantee that the boot class path has no verification failures. // And we do not want to compile anything, compilation should be done by JIT in zygote. args.push_back("--compiler-filter=verify"); // Pass the profile. args.push_back("--profile-file=" + profile_filename); // Do not let the file descriptor numbers change the compilation output. args.push_back("--avoid-storing-invocation"); runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(&args); if (!kIsTargetBuild) { args.push_back("--host"); } // Image compiler options go last to allow overriding above args, such as --compiler-filter. for (const std::string& compiler_option : runtime->GetImageCompilerOptions()) { args.push_back(compiler_option); } // Compile the extension. VLOG(image) << "Compiling boot image extension for " << (bcp_end - bcp_index) << " components, starting from " << boot_class_path_locations_[bcp_index]; if (!Exec(args, error_msg)) { return false; } // Read and validate the image header. ImageHeader header; { File image_file(art_fd.release(), /*check_usage=*/ false); if (!ReadSpecificImageHeader(&image_file, "compiled image file", &header, error_msg)) { return false; } art_fd.reset(image_file.Release()); } const char* file_description = "compiled image file"; if (!ValidateHeader(header, bcp_index, file_description, error_msg)) { return false; } DCHECK(!chunks_.empty()); ImageChunk chunk; chunk.base_location = base_location; chunk.base_filename = base_filename; chunk.profile_file = profile_filename; chunk.start_index = bcp_index; chunk.component_count = header.GetComponentCount(); chunk.image_space_count = header.GetImageSpaceCount(); chunk.reservation_size = header.GetImageReservationSize(); chunk.checksum = header.GetImageChecksum(); chunk.boot_image_component_count = header.GetBootImageComponentCount(); chunk.boot_image_checksum = header.GetBootImageChecksum(); chunk.boot_image_size = header.GetBootImageSize(); chunk.art_fd.reset(art_fd.release()); chunk.vdex_fd.reset(vdex_fd.release()); chunk.oat_fd.reset(oat_fd.release()); chunks_.push_back(std::move(chunk)); next_bcp_index_ = bcp_index + header.GetComponentCount(); total_component_count_ += header.GetComponentCount(); total_reservation_size_ += header.GetImageReservationSize(); return true; } bool ImageSpace::BootImageLayout::CheckAndRemoveLastChunkChecksum( /*inout*/std::string_view* oat_checksums, /*out*/std::string* error_msg) { DCHECK(oat_checksums != nullptr); DCHECK(!chunks_.empty()); const ImageChunk& chunk = chunks_.back(); size_t component_count = chunk.component_count; size_t checksum = chunk.checksum; if (!CheckAndRemoveImageChecksum(component_count, checksum, oat_checksums, error_msg)) { DCHECK(!error_msg->empty()); return false; } if (oat_checksums->empty()) { if (next_bcp_index_ != boot_class_path_.size()) { *error_msg = StringPrintf("Checksum too short, missing %zu components.", boot_class_path_.size() - next_bcp_index_); return false; } return true; } if (!StartsWith(*oat_checksums, ":")) { *error_msg = StringPrintf("Missing ':' separator at start of %s", std::string(*oat_checksums).c_str()); return false; } oat_checksums->remove_prefix(1u); if (oat_checksums->empty()) { *error_msg = "Missing checksums after the ':' separator."; return false; } return true; } template bool ImageSpace::BootImageLayout::LoadOrValidate(FilenameFn&& filename_fn, /*inout*/std::string_view* oat_checksums, /*out*/std::string* error_msg) { DCHECK(GetChunks().empty()); DCHECK_EQ(GetBaseAddress(), 0u); bool validate = (oat_checksums != nullptr); static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check."); DCHECK(!validate || StartsWith(*oat_checksums, "i")); std::vector components; Split(image_location_, kComponentSeparator, &components); size_t named_components_count = 0u; if (!VerifyImageLocation(components, &named_components_count, error_msg)) { return false; } ArrayRef named_components = ArrayRef(components).SubArray(/*pos=*/ 0u, named_components_count); std::vector named_component_locations; if (!MatchNamedComponents(named_components, &named_component_locations, error_msg)) { return false; } // Load the image headers of named components. DCHECK_EQ(named_component_locations.size(), named_components.size()); const size_t bcp_component_count = boot_class_path_.size(); size_t bcp_pos = 0u; ArrayRef extension_dependencies; for (size_t i = 0, size = named_components.size(); i != size; ++i) { const std::string& base_location = named_component_locations[i].base_location; size_t bcp_index = named_component_locations[i].bcp_index; const std::string& profile_filename = named_component_locations[i].profile_filename; if (extension_dependencies.empty() && !profile_filename.empty()) { // Each extension is compiled against the same dependencies, namely the leading // named components that were specified without providing the profile filename. extension_dependencies = ArrayRef(components).SubArray(/*pos=*/ 0, /*length=*/ i); } if (bcp_index < bcp_pos) { DCHECK_NE(i, 0u); LOG(ERROR) << "Named image component already covered by previous image: " << base_location; continue; } if (validate && bcp_index > bcp_pos) { *error_msg = StringPrintf("End of contiguous boot class path images, remaining checksum: %s", std::string(*oat_checksums).c_str()); return false; } std::string local_error_msg; std::string* err_msg = (i == 0 || validate) ? error_msg : &local_error_msg; std::string base_filename; if (!filename_fn(base_location, &base_filename, err_msg) || !ReadHeader(base_location, base_filename, bcp_index, err_msg)) { if (i == 0u || validate) { return false; } VLOG(image) << "Error reading named image component header for " << base_location << ", error: " << local_error_msg; if (profile_filename.empty() || !CompileExtension(base_location, base_filename, bcp_index, profile_filename, extension_dependencies, &local_error_msg)) { if (!profile_filename.empty()) { VLOG(image) << "Error compiling extension for " << boot_class_path_[bcp_index] << " error: " << local_error_msg; } bcp_pos = bcp_index + 1u; // Skip at least this component. DCHECK_GT(bcp_pos, GetNextBcpIndex()); continue; } } if (validate) { if (!CheckAndRemoveLastChunkChecksum(oat_checksums, error_msg)) { return false; } if (oat_checksums->empty() || !StartsWith(*oat_checksums, "i")) { return true; // Let the caller deal with the dex file checksums if any. } } bcp_pos = GetNextBcpIndex(); } // Look for remaining components if there are any wildcard specifications. ArrayRef search_paths = ArrayRef(components).SubArray(/*pos=*/ named_components_count); if (!search_paths.empty()) { const std::string& primary_base_location = named_component_locations[0].base_location; size_t base_slash_pos = primary_base_location.rfind('/'); DCHECK_NE(base_slash_pos, std::string::npos); std::string base_name = primary_base_location.substr(base_slash_pos + 1u); DCHECK(!base_name.empty()); while (bcp_pos != bcp_component_count) { const std::string& bcp_component = boot_class_path_[bcp_pos]; bool found = false; for (const std::string& path : search_paths) { std::string base_location; if (path.size() == 1u) { DCHECK_EQ(path, "*"); size_t slash_pos = bcp_component.rfind('/'); DCHECK_NE(slash_pos, std::string::npos); base_location = bcp_component.substr(0u, slash_pos + 1u) + base_name; } else { DCHECK(EndsWith(path, "/*")); base_location = path.substr(0u, path.size() - 1u) + base_name; } std::string err_msg; // Ignored. std::string base_filename; if (filename_fn(base_location, &base_filename, &err_msg) && ReadHeader(base_location, base_filename, bcp_pos, &err_msg)) { VLOG(image) << "Found image extension for " << ExpandLocation(base_location, bcp_pos); bcp_pos = GetNextBcpIndex(); found = true; if (validate) { if (!CheckAndRemoveLastChunkChecksum(oat_checksums, error_msg)) { return false; } if (oat_checksums->empty() || !StartsWith(*oat_checksums, "i")) { return true; // Let the caller deal with the dex file checksums if any. } } break; } } if (!found) { if (validate) { *error_msg = StringPrintf("Missing extension for %s, remaining checksum: %s", bcp_component.c_str(), std::string(*oat_checksums).c_str()); return false; } ++bcp_pos; } } } return true; } bool ImageSpace::BootImageLayout::LoadOrValidateFromSystem(InstructionSet image_isa, /*inout*/std::string_view* oat_checksums, /*out*/std::string* error_msg) { auto filename_fn = [image_isa](const std::string& location, /*out*/std::string* filename, /*out*/std::string* err_msg ATTRIBUTE_UNUSED) { *filename = GetSystemImageFilename(location.c_str(), image_isa); return true; }; return LoadOrValidate(filename_fn, oat_checksums, error_msg); } class ImageSpace::BootImageLoader { public: BootImageLoader(const std::vector& boot_class_path, const std::vector& boot_class_path_locations, const std::string& image_location, InstructionSet image_isa, bool relocate, bool executable) : boot_class_path_(boot_class_path), boot_class_path_locations_(boot_class_path_locations), image_location_(image_location), image_isa_(image_isa), relocate_(relocate), executable_(executable), has_system_(false) { } void FindImageFiles() { BootImageLayout layout(image_location_, boot_class_path_, boot_class_path_locations_); std::string image_location = layout.GetPrimaryImageLocation(); std::string system_filename; bool found_image = FindImageFilenameImpl(image_location.c_str(), image_isa_, &has_system_, &system_filename); DCHECK_EQ(found_image, has_system_); } bool HasSystem() const { return has_system_; } bool LoadFromSystem(size_t extra_reservation_size, /*out*/std::vector>* boot_image_spaces, /*out*/MemMap* extra_reservation, /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_); private: bool LoadImage( const BootImageLayout& layout, bool validate_oat_file, size_t extra_reservation_size, TimingLogger* logger, /*out*/std::vector>* boot_image_spaces, /*out*/MemMap* extra_reservation, /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { ArrayRef chunks = layout.GetChunks(); DCHECK(!chunks.empty()); const uint32_t base_address = layout.GetBaseAddress(); const size_t image_component_count = layout.GetTotalComponentCount(); const size_t image_reservation_size = layout.GetTotalReservationSize(); DCHECK_LE(image_reservation_size, kMaxTotalImageReservationSize); static_assert(kMaxTotalImageReservationSize < std::numeric_limits::max()); if (extra_reservation_size > std::numeric_limits::max() - image_reservation_size) { // Since the `image_reservation_size` is limited to kMaxTotalImageReservationSize, // the `extra_reservation_size` would have to be really excessive to fail this check. *error_msg = StringPrintf("Excessive extra reservation size: %zu", extra_reservation_size); return false; } // Reserve address space. If relocating, choose a random address for ALSR. uint8_t* addr = reinterpret_cast( relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : base_address); MemMap image_reservation = ReserveBootImageMemory(addr, image_reservation_size + extra_reservation_size, error_msg); if (!image_reservation.IsValid()) { return false; } // Load components. std::vector> spaces; spaces.reserve(image_component_count); size_t max_image_space_dependencies = 0u; for (size_t i = 0, num_chunks = chunks.size(); i != num_chunks; ++i) { const BootImageLayout::ImageChunk& chunk = chunks[i]; std::string extension_error_msg; uint8_t* old_reservation_begin = image_reservation.Begin(); size_t old_reservation_size = image_reservation.Size(); DCHECK_LE(chunk.reservation_size, old_reservation_size); if (!LoadComponents(chunk, validate_oat_file, max_image_space_dependencies, logger, &spaces, &image_reservation, (i == 0) ? error_msg : &extension_error_msg)) { // Failed to load the chunk. If this is the primary boot image, report the error. if (i == 0) { return false; } // For extension, shrink the reservation (and remap if needed, see below). size_t new_reservation_size = old_reservation_size - chunk.reservation_size; if (new_reservation_size == 0u) { DCHECK_EQ(extra_reservation_size, 0u); DCHECK_EQ(i + 1u, num_chunks); image_reservation.Reset(); } else if (old_reservation_begin != image_reservation.Begin()) { // Part of the image reservation has been used and then unmapped when // rollling back the partial boot image extension load. Try to remap // the image reservation. As this should be running single-threaded, // the address range should still be available to mmap(). image_reservation.Reset(); std::string remap_error_msg; image_reservation = ReserveBootImageMemory(old_reservation_begin, new_reservation_size, &remap_error_msg); if (!image_reservation.IsValid()) { *error_msg = StringPrintf("Failed to remap boot image reservation after failing " "to load boot image extension (%s: %s): %s", boot_class_path_locations_[chunk.start_index].c_str(), extension_error_msg.c_str(), remap_error_msg.c_str()); return false; } } else { DCHECK_EQ(old_reservation_size, image_reservation.Size()); image_reservation.SetSize(new_reservation_size); } LOG(ERROR) << "Failed to load boot image extension " << boot_class_path_locations_[chunk.start_index] << ": " << extension_error_msg; } // Update `max_image_space_dependencies` if all previous BCP components // were covered and loading the current chunk succeeded. if (max_image_space_dependencies == chunk.start_index && spaces.size() == chunk.start_index + chunk.component_count) { max_image_space_dependencies = chunk.start_index + chunk.component_count; } } MemMap local_extra_reservation; if (!RemapExtraReservation(extra_reservation_size, &image_reservation, &local_extra_reservation, error_msg)) { return false; } MaybeRelocateSpaces(spaces, logger); DeduplicateInternedStrings(ArrayRef>(spaces), logger); boot_image_spaces->swap(spaces); *extra_reservation = std::move(local_extra_reservation); return true; } private: class SimpleRelocateVisitor { public: SimpleRelocateVisitor(uint32_t diff, uint32_t begin, uint32_t size) : diff_(diff), begin_(begin), size_(size) {} // Adapter taking the same arguments as SplitRangeRelocateVisitor // to simplify constructing the various visitors in DoRelocateSpaces(). SimpleRelocateVisitor(uint32_t base_diff, uint32_t current_diff, uint32_t bound, uint32_t begin, uint32_t size) : SimpleRelocateVisitor(base_diff, begin, size) { // Check arguments unused by this class. DCHECK_EQ(base_diff, current_diff); DCHECK_EQ(bound, begin); } template ALWAYS_INLINE T* operator()(T* src) const { DCHECK(InSource(src)); uint32_t raw_src = reinterpret_cast32(src); return reinterpret_cast32(raw_src + diff_); } template ALWAYS_INLINE bool InSource(T* ptr) const { uint32_t raw_ptr = reinterpret_cast32(ptr); return raw_ptr - begin_ < size_; } template ALWAYS_INLINE bool InDest(T* ptr) const { uint32_t raw_ptr = reinterpret_cast32(ptr); uint32_t src_ptr = raw_ptr - diff_; return src_ptr - begin_ < size_; } private: const uint32_t diff_; const uint32_t begin_; const uint32_t size_; }; class SplitRangeRelocateVisitor { public: SplitRangeRelocateVisitor(uint32_t base_diff, uint32_t current_diff, uint32_t bound, uint32_t begin, uint32_t size) : base_diff_(base_diff), current_diff_(current_diff), bound_(bound), begin_(begin), size_(size) { DCHECK_NE(begin_, bound_); // The bound separates the boot image range and the extension range. DCHECK_LT(bound_ - begin_, size_); } template ALWAYS_INLINE T* operator()(T* src) const { DCHECK(InSource(src)); uint32_t raw_src = reinterpret_cast32(src); uint32_t diff = (raw_src < bound_) ? base_diff_ : current_diff_; return reinterpret_cast32(raw_src + diff); } template ALWAYS_INLINE bool InSource(T* ptr) const { uint32_t raw_ptr = reinterpret_cast32(ptr); return raw_ptr - begin_ < size_; } private: const uint32_t base_diff_; const uint32_t current_diff_; const uint32_t bound_; const uint32_t begin_; const uint32_t size_; }; static void** PointerAddress(ArtMethod* method, MemberOffset offset) { return reinterpret_cast(reinterpret_cast(method) + offset.Uint32Value()); } template static void DoRelocateSpaces(ArrayRef>& spaces, int64_t base_diff64) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!spaces.empty()); gc::accounting::ContinuousSpaceBitmap patched_objects( gc::accounting::ContinuousSpaceBitmap::Create( "Marked objects", spaces.front()->Begin(), spaces.back()->End() - spaces.front()->Begin())); const ImageHeader& base_header = spaces[0]->GetImageHeader(); size_t base_image_space_count = base_header.GetImageSpaceCount(); DCHECK_LE(base_image_space_count, spaces.size()); DoRelocateSpaces( spaces.SubArray(/*pos=*/ 0u, base_image_space_count), base_diff64, &patched_objects); for (size_t i = base_image_space_count, size = spaces.size(); i != size; ) { const ImageHeader& ext_header = spaces[i]->GetImageHeader(); size_t ext_image_space_count = ext_header.GetImageSpaceCount(); DCHECK_LE(ext_image_space_count, size - i); DoRelocateSpaces( spaces.SubArray(/*pos=*/ i, ext_image_space_count), base_diff64, &patched_objects); i += ext_image_space_count; } } template static void DoRelocateSpaces(ArrayRef> spaces, int64_t base_diff64, gc::accounting::ContinuousSpaceBitmap* patched_objects) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!spaces.empty()); const ImageHeader& first_header = spaces.front()->GetImageHeader(); uint32_t image_begin = reinterpret_cast32(first_header.GetImageBegin()); uint32_t image_size = first_header.GetImageReservationSize(); DCHECK_NE(image_size, 0u); uint32_t source_begin = kExtension ? first_header.GetBootImageBegin() : image_begin; uint32_t source_size = kExtension ? first_header.GetBootImageSize() + image_size : image_size; if (kExtension) { DCHECK_EQ(first_header.GetBootImageBegin() + first_header.GetBootImageSize(), image_begin); } int64_t current_diff64 = kExtension ? static_cast(reinterpret_cast32(spaces.front()->Begin())) - static_cast(image_begin) : base_diff64; if (base_diff64 == 0 && current_diff64 == 0) { return; } uint32_t base_diff = static_cast(base_diff64); uint32_t current_diff = static_cast(current_diff64); // For boot image the main visitor is a SimpleRelocateVisitor. For the boot image extension we // mostly use a SplitRelocationVisitor but some work can still use the SimpleRelocationVisitor. using MainRelocateVisitor = typename std::conditional< kExtension, SplitRangeRelocateVisitor, SimpleRelocateVisitor>::type; SimpleRelocateVisitor simple_relocate_visitor(current_diff, image_begin, image_size); MainRelocateVisitor main_relocate_visitor( base_diff, current_diff, /*bound=*/ image_begin, source_begin, source_size); using MainPatchRelocateVisitor = PatchObjectVisitor; using SimplePatchRelocateVisitor = PatchObjectVisitor; MainPatchRelocateVisitor main_patch_object_visitor(main_relocate_visitor, main_relocate_visitor); SimplePatchRelocateVisitor simple_patch_object_visitor(simple_relocate_visitor, simple_relocate_visitor); // Retrieve the Class.class, Method.class and Constructor.class needed in the loops below. ObjPtr> class_roots; ObjPtr class_class; ObjPtr method_class; ObjPtr constructor_class; { ObjPtr> image_roots = simple_relocate_visitor(first_header.GetImageRoots().Ptr()); DCHECK(!patched_objects->Test(image_roots.Ptr())); SimpleRelocateVisitor base_relocate_visitor( base_diff, source_begin, kExtension ? source_size - image_size : image_size); int32_t class_roots_index = enum_cast(ImageHeader::kClassRoots); DCHECK_LT(class_roots_index, image_roots->GetLength()); class_roots = ObjPtr>::DownCast(base_relocate_visitor( image_roots->GetWithoutChecks(class_roots_index).Ptr())); if (kExtension) { // Class roots must have been visited if we relocated the primary boot image. DCHECK(base_diff == 0 || patched_objects->Test(class_roots.Ptr())); class_class = GetClassRoot(class_roots); method_class = GetClassRoot(class_roots); constructor_class = GetClassRoot(class_roots); } else { DCHECK(!patched_objects->Test(class_roots.Ptr())); class_class = simple_relocate_visitor( GetClassRoot(class_roots).Ptr()); method_class = simple_relocate_visitor( GetClassRoot(class_roots).Ptr()); constructor_class = simple_relocate_visitor( GetClassRoot(class_roots).Ptr()); } } for (const std::unique_ptr& space : spaces) { // First patch the image header. reinterpret_cast(space->Begin())->RelocateImageReferences(current_diff64); reinterpret_cast(space->Begin())->RelocateBootImageReferences(base_diff64); // Patch fields and methods. const ImageHeader& image_header = space->GetImageHeader(); image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) { // Fields always reference class in the current image. simple_patch_object_visitor.template PatchGcRoot( &field.DeclaringClassRoot()); }, space->Begin()); image_header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) { main_patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot()); if (!method.HasCodeItem()) { void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize)); main_patch_object_visitor.PatchNativePointer(data_address); } void** entrypoint_address = PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize)); main_patch_object_visitor.PatchNativePointer(entrypoint_address); }, space->Begin(), kPointerSize); auto method_table_visitor = [&](ArtMethod* method) { DCHECK(method != nullptr); return main_relocate_visitor(method); }; image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize); image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize); // Patch the intern table. if (image_header.GetInternedStringsSection().Size() != 0u) { const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset(); size_t read_count; InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count); for (GcRoot& slot : temp_set) { // The intern table contains only strings in the current image. simple_patch_object_visitor.template PatchGcRoot(&slot); } } // Patch the class table and classes, so that we can traverse class hierarchy to // determine the types of other objects when we visit them later. if (image_header.GetClassTableSection().Size() != 0u) { uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset(); size_t read_count; ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count); DCHECK(!temp_set.empty()); // The class table contains only classes in the current image. ClassTableVisitor class_table_visitor(simple_relocate_visitor); for (ClassTable::TableSlot& slot : temp_set) { slot.VisitRoot(class_table_visitor); ObjPtr klass = slot.Read(); DCHECK(klass != nullptr); DCHECK(!patched_objects->Test(klass.Ptr())); patched_objects->Set(klass.Ptr()); main_patch_object_visitor.VisitClass(klass, class_class); // Then patch the non-embedded vtable and iftable. ObjPtr vtable = klass->GetVTable(); if ((kExtension ? simple_relocate_visitor.InDest(vtable.Ptr()) : vtable != nullptr) && !patched_objects->Set(vtable.Ptr())) { main_patch_object_visitor.VisitPointerArray(vtable); } ObjPtr iftable = klass->GetIfTable(); if (iftable != nullptr) { int32_t ifcount = klass->GetIfTableCount(); for (int32_t i = 0; i != ifcount; ++i) { ObjPtr unpatched_ifarray = iftable->GetMethodArrayOrNull(i); if (kExtension ? simple_relocate_visitor.InSource(unpatched_ifarray.Ptr()) : unpatched_ifarray != nullptr) { // The iftable has not been patched, so we need to explicitly adjust the pointer. ObjPtr ifarray = simple_relocate_visitor(unpatched_ifarray.Ptr()); if (!patched_objects->Set(ifarray.Ptr())) { main_patch_object_visitor.VisitPointerArray(ifarray); } } } } } } } for (const std::unique_ptr& space : spaces) { const ImageHeader& image_header = space->GetImageHeader(); static_assert(IsAligned(sizeof(ImageHeader)), "Header alignment check"); uint32_t objects_end = image_header.GetObjectsSection().Size(); DCHECK_ALIGNED(objects_end, kObjectAlignment); for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) { mirror::Object* object = reinterpret_cast(space->Begin() + pos); // Note: use Test() rather than Set() as this is the last time we're checking this object. if (!patched_objects->Test(object)) { // This is the last pass over objects, so we do not need to Set(). main_patch_object_visitor.VisitObject(object); ObjPtr klass = object->GetClass(); if (klass == method_class || klass == constructor_class) { // Patch the ArtMethod* in the mirror::Executable subobject. ObjPtr as_executable = ObjPtr::DownCast(object); ArtMethod* unpatched_method = as_executable->GetArtMethod(); ArtMethod* patched_method = main_relocate_visitor(unpatched_method); as_executable->SetArtMethod(patched_method); } } pos += RoundUp(object->SizeOf(), kObjectAlignment); } } if (kIsDebugBuild && !kExtension) { // We used just Test() instead of Set() above but we need to use Set() // for class roots to satisfy a DCHECK() for extensions. DCHECK(!patched_objects->Test(class_roots.Ptr())); patched_objects->Set(class_roots.Ptr()); } } void MaybeRelocateSpaces(const std::vector>& spaces, TimingLogger* logger) REQUIRES_SHARED(Locks::mutator_lock_) { TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger); ImageSpace* first_space = spaces.front().get(); const ImageHeader& first_space_header = first_space->GetImageHeader(); int64_t base_diff64 = static_cast(reinterpret_cast32(first_space->Begin())) - static_cast(reinterpret_cast32(first_space_header.GetImageBegin())); if (!relocate_) { DCHECK_EQ(base_diff64, 0); } ArrayRef> spaces_ref(spaces); PointerSize pointer_size = first_space_header.GetPointerSize(); if (pointer_size == PointerSize::k64) { DoRelocateSpaces(spaces_ref, base_diff64); } else { DoRelocateSpaces(spaces_ref, base_diff64); } } void DeduplicateInternedStrings(ArrayRef> spaces, TimingLogger* logger) REQUIRES_SHARED(Locks::mutator_lock_) { TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", logger); DCHECK(!spaces.empty()); size_t num_spaces = spaces.size(); const ImageHeader& primary_header = spaces.front()->GetImageHeader(); size_t primary_image_count = primary_header.GetImageSpaceCount(); DCHECK_LE(primary_image_count, num_spaces); DCHECK_EQ(primary_image_count, primary_header.GetComponentCount()); size_t component_count = primary_image_count; size_t space_pos = primary_image_count; while (space_pos != num_spaces) { const ImageHeader& current_header = spaces[space_pos]->GetImageHeader(); size_t image_space_count = current_header.GetImageSpaceCount(); DCHECK_LE(image_space_count, num_spaces - space_pos); size_t dependency_component_count = current_header.GetBootImageComponentCount(); DCHECK_LE(dependency_component_count, component_count); if (dependency_component_count < component_count) { // There shall be no duplicate strings with the components that this space depends on. // Find the end of the dependencies, i.e. start of non-dependency images. size_t start_component_count = primary_image_count; size_t start_pos = primary_image_count; while (start_component_count != dependency_component_count) { const ImageHeader& dependency_header = spaces[start_pos]->GetImageHeader(); DCHECK_LE(dependency_header.GetComponentCount(), dependency_component_count - start_component_count); start_component_count += dependency_header.GetComponentCount(); start_pos += dependency_header.GetImageSpaceCount(); } // Remove duplicates from all intern tables belonging to the chunk. ArrayRef> old_spaces = spaces.SubArray(/*pos=*/ start_pos, space_pos - start_pos); SafeMap intern_remap; for (size_t i = 0; i != image_space_count; ++i) { ImageSpace* new_space = spaces[space_pos + i].get(); Loader::RemoveInternTableDuplicates(old_spaces, new_space, &intern_remap); } // Remap string for all spaces belonging to the chunk. if (!intern_remap.empty()) { for (size_t i = 0; i != image_space_count; ++i) { ImageSpace* new_space = spaces[space_pos + i].get(); Loader::RemapInternedStringDuplicates(intern_remap, new_space); } } } component_count += current_header.GetComponentCount(); space_pos += image_space_count; } } std::unique_ptr Load(const std::string& image_location, const std::string& image_filename, const std::string& profile_file, android::base::unique_fd art_fd, TimingLogger* logger, /*inout*/MemMap* image_reservation, /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { if (art_fd.get() != -1) { // No need to lock memfd for which we hold the only file descriptor // (see locking with ScopedFlock for normal files below). VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location " << image_location << " for compiled extension"; File image_file(art_fd.release(), image_filename, /*check_usage=*/ false); std::unique_ptr result = Loader::Init(&image_file, image_filename.c_str(), image_location.c_str(), profile_file.c_str(), /*allow_direct_mapping=*/ false, logger, image_reservation, error_msg); // Note: We're closing the image file descriptor here when we destroy // the `image_file` as we no longer need it. return result; } // Note that we must not use the file descriptor associated with // ScopedFlock::GetFile to Init the image file. We want the file // descriptor (and the associated exclusive lock) to be released when // we leave Create. ScopedFlock image = LockedFile::Open(image_filename.c_str(), /*flags=*/ O_RDONLY, /*block=*/ true, error_msg); VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location " << image_location; // If we are in /system we can assume the image is good. We can also // assume this if we are using a relocated image (i.e. image checksum // matches) since this is only different by the offset. We need this to // make sure that host tests continue to work. // Since we are the boot image, pass null since we load the oat file from the boot image oat // file name. return Loader::Init(image_filename.c_str(), image_location.c_str(), logger, image_reservation, error_msg); } bool OpenOatFile(ImageSpace* space, android::base::unique_fd vdex_fd, android::base::unique_fd oat_fd, ArrayRef dex_filenames, bool validate_oat_file, ArrayRef> dependencies, TimingLogger* logger, /*inout*/MemMap* image_reservation, /*out*/std::string* error_msg) { // VerifyImageAllocations() will be called later in Runtime::Init() // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_ // and ArtField::java_lang_reflect_ArtField_, which are used from // Object::SizeOf() which VerifyImageAllocations() calls, are not // set yet at this point. DCHECK(image_reservation != nullptr); std::unique_ptr oat_file; { TimingLogger::ScopedTiming timing("OpenOatFile", logger); std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename()); std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation()); DCHECK_EQ(vdex_fd.get() != -1, oat_fd.get() != -1); if (vdex_fd.get() == -1) { oat_file.reset(OatFile::Open(/*zip_fd=*/ -1, oat_filename, oat_location, executable_, /*low_4gb=*/ false, dex_filenames, image_reservation, error_msg)); } else { oat_file.reset(OatFile::Open(/*zip_fd=*/ -1, vdex_fd.get(), oat_fd.get(), oat_location, executable_, /*low_4gb=*/ false, dex_filenames, image_reservation, error_msg)); // We no longer need the file descriptors and they will be closed by // the unique_fd destructor when we leave this function. } if (oat_file == nullptr) { *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s", oat_filename.c_str(), space->GetName(), error_msg->c_str()); return false; } const ImageHeader& image_header = space->GetImageHeader(); uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); uint32_t image_oat_checksum = image_header.GetOatChecksum(); if (oat_checksum != image_oat_checksum) { *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum" " 0x%x in image %s", oat_checksum, image_oat_checksum, space->GetName()); return false; } const char* oat_boot_class_path = oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey); oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : ""; const char* oat_boot_class_path_checksums = oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey); oat_boot_class_path_checksums = (oat_boot_class_path_checksums != nullptr) ? oat_boot_class_path_checksums : ""; size_t component_count = image_header.GetComponentCount(); if (component_count == 0u) { if (oat_boot_class_path[0] != 0 || oat_boot_class_path_checksums[0] != 0) { *error_msg = StringPrintf("Unexpected non-empty boot class path %s and/or checksums %s" " in image %s", oat_boot_class_path, oat_boot_class_path_checksums, space->GetName()); return false; } } else if (dependencies.empty()) { std::string expected_boot_class_path = Join(ArrayRef( boot_class_path_locations_).SubArray(0u, component_count), ':'); if (expected_boot_class_path != oat_boot_class_path) { *error_msg = StringPrintf("Failed to match oat boot class path %s to expected " "boot class path %s in image %s", oat_boot_class_path, expected_boot_class_path.c_str(), space->GetName()); return false; } } else { std::string local_error_msg; if (!VerifyBootClassPathChecksums( oat_boot_class_path_checksums, oat_boot_class_path, dependencies, ArrayRef(boot_class_path_locations_), ArrayRef(boot_class_path_), &local_error_msg)) { *error_msg = StringPrintf("Failed to verify BCP %s with checksums %s in image %s: %s", oat_boot_class_path, oat_boot_class_path_checksums, space->GetName(), local_error_msg.c_str()); return false; } } ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin(); CHECK(image_header.GetOatDataBegin() != nullptr); uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff; if (oat_file->Begin() != oat_data_begin) { *error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin" " %p v. %p", oat_filename.c_str(), space->GetName(), oat_file->Begin(), oat_data_begin); return false; } } if (validate_oat_file) { TimingLogger::ScopedTiming timing("ValidateOatFile", logger); if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) { DCHECK(!error_msg->empty()); return false; } } space->oat_file_ = std::move(oat_file); space->oat_file_non_owned_ = space->oat_file_.get(); return true; } bool LoadComponents(const BootImageLayout::ImageChunk& chunk, bool validate_oat_file, size_t max_image_space_dependencies, TimingLogger* logger, /*inout*/std::vector>* spaces, /*inout*/MemMap* image_reservation, /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { // Make sure we destroy the spaces we created if we're returning an error. // Note that this can unmap part of the original `image_reservation`. class Guard { public: explicit Guard(std::vector>* spaces_in) : spaces_(spaces_in), committed_(spaces_->size()) {} void Commit() { DCHECK_LT(committed_, spaces_->size()); committed_ = spaces_->size(); } ~Guard() { DCHECK_LE(committed_, spaces_->size()); spaces_->resize(committed_); } private: std::vector>* const spaces_; size_t committed_; }; Guard guard(spaces); bool is_extension = (chunk.start_index != 0u); DCHECK_NE(spaces->empty(), is_extension); if (max_image_space_dependencies < chunk.boot_image_component_count) { DCHECK(is_extension); *error_msg = StringPrintf("Missing dependencies for extension component %s, %zu < %u", boot_class_path_locations_[chunk.start_index].c_str(), max_image_space_dependencies, chunk.boot_image_component_count); return false; } ArrayRef requested_bcp_locations = ArrayRef(boot_class_path_locations_).SubArray( chunk.start_index, chunk.image_space_count); std::vector locations = ExpandMultiImageLocations(requested_bcp_locations, chunk.base_location, is_extension); std::vector filenames = ExpandMultiImageLocations(requested_bcp_locations, chunk.base_filename, is_extension); DCHECK_EQ(locations.size(), filenames.size()); for (size_t i = 0u, size = locations.size(); i != size; ++i) { spaces->push_back(Load(locations[i], filenames[i], chunk.profile_file, std::move(chunk.art_fd), logger, image_reservation, error_msg)); const ImageSpace* space = spaces->back().get(); if (space == nullptr) { return false; } uint32_t expected_component_count = (i == 0u) ? chunk.component_count : 0u; uint32_t expected_reservation_size = (i == 0u) ? chunk.reservation_size : 0u; if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) || !Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) { return false; } const ImageHeader& header = space->GetImageHeader(); if (i == 0 && (chunk.checksum != header.GetImageChecksum() || chunk.image_space_count != header.GetImageSpaceCount() || chunk.boot_image_component_count != header.GetBootImageComponentCount() || chunk.boot_image_checksum != header.GetBootImageChecksum() || chunk.boot_image_size != header.GetBootImageSize())) { *error_msg = StringPrintf("Image header modified since previously read from %s; " "checksum: 0x%08x -> 0x%08x," "image_space_count: %u -> %u" "boot_image_component_count: %u -> %u, " "boot_image_checksum: 0x%08x -> 0x%08x" "boot_image_size: 0x%08x -> 0x%08x", space->GetImageFilename().c_str(), chunk.checksum, chunk.image_space_count, header.GetImageSpaceCount(), header.GetImageChecksum(), chunk.boot_image_component_count, header.GetBootImageComponentCount(), chunk.boot_image_checksum, header.GetBootImageChecksum(), chunk.boot_image_size, header.GetBootImageSize()); return false; } } DCHECK_GE(max_image_space_dependencies, chunk.boot_image_component_count); ArrayRef> dependencies = ArrayRef>(*spaces).SubArray( /*pos=*/ 0u, chunk.boot_image_component_count); for (size_t i = 0u, size = locations.size(); i != size; ++i) { ImageSpace* space = (*spaces)[spaces->size() - chunk.image_space_count + i].get(); size_t bcp_chunk_size = (chunk.image_space_count == 1u) ? chunk.component_count : 1u; if (!OpenOatFile(space, std::move(chunk.vdex_fd), std::move(chunk.oat_fd), boot_class_path_.SubArray(/*pos=*/ chunk.start_index + i, bcp_chunk_size), validate_oat_file, dependencies, logger, image_reservation, error_msg)) { return false; } } guard.Commit(); return true; } MemMap ReserveBootImageMemory(uint8_t* addr, uint32_t reservation_size, /*out*/std::string* error_msg) { DCHECK_ALIGNED(reservation_size, kPageSize); DCHECK_ALIGNED(addr, kPageSize); return MemMap::MapAnonymous("Boot image reservation", addr, reservation_size, PROT_NONE, /*low_4gb=*/ true, /*reuse=*/ false, /*reservation=*/ nullptr, error_msg); } bool RemapExtraReservation(size_t extra_reservation_size, /*inout*/MemMap* image_reservation, /*out*/MemMap* extra_reservation, /*out*/std::string* error_msg) { DCHECK_ALIGNED(extra_reservation_size, kPageSize); DCHECK(!extra_reservation->IsValid()); size_t expected_size = image_reservation->IsValid() ? image_reservation->Size() : 0u; if (extra_reservation_size != expected_size) { *error_msg = StringPrintf("Image reservation mismatch after loading boot image: %zu != %zu", extra_reservation_size, expected_size); return false; } if (extra_reservation_size != 0u) { DCHECK(image_reservation->IsValid()); DCHECK_EQ(extra_reservation_size, image_reservation->Size()); *extra_reservation = image_reservation->RemapAtEnd(image_reservation->Begin(), "Boot image extra reservation", PROT_NONE, error_msg); if (!extra_reservation->IsValid()) { return false; } } DCHECK(!image_reservation->IsValid()); return true; } const ArrayRef boot_class_path_; const ArrayRef boot_class_path_locations_; const std::string image_location_; const InstructionSet image_isa_; const bool relocate_; const bool executable_; bool has_system_; }; bool ImageSpace::BootImageLoader::LoadFromSystem( size_t extra_reservation_size, /*out*/std::vector>* boot_image_spaces, /*out*/MemMap* extra_reservation, /*out*/std::string* error_msg) { TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image)); BootImageLayout layout(image_location_, boot_class_path_, boot_class_path_locations_); if (!layout.LoadFromSystem(image_isa_, error_msg)) { return false; } if (!LoadImage(layout, /*validate_oat_file=*/ false, extra_reservation_size, &logger, boot_image_spaces, extra_reservation, error_msg)) { return false; } if (VLOG_IS_ON(image)) { LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting " << *boot_image_spaces->front(); logger.Dump(LOG_STREAM(INFO)); } return true; } bool ImageSpace::IsBootClassPathOnDisk(InstructionSet image_isa) { Runtime* runtime = Runtime::Current(); BootImageLayout layout(runtime->GetImageLocation(), ArrayRef(runtime->GetBootClassPath()), ArrayRef(runtime->GetBootClassPathLocations())); const std::string image_location = layout.GetPrimaryImageLocation(); std::unique_ptr image_header; std::string error_msg; std::string system_filename; bool has_system = false; if (FindImageFilename(image_location.c_str(), image_isa, &system_filename, &has_system)) { DCHECK(has_system); image_header = ReadSpecificImageHeader(system_filename.c_str(), &error_msg); } return image_header != nullptr; } bool ImageSpace::LoadBootImage( const std::vector& boot_class_path, const std::vector& boot_class_path_locations, const std::string& image_location, const InstructionSet image_isa, bool relocate, bool executable, size_t extra_reservation_size, /*out*/std::vector>* boot_image_spaces, /*out*/MemMap* extra_reservation) { ScopedTrace trace(__FUNCTION__); DCHECK(boot_image_spaces != nullptr); DCHECK(boot_image_spaces->empty()); DCHECK_ALIGNED(extra_reservation_size, kPageSize); DCHECK(extra_reservation != nullptr); DCHECK_NE(image_isa, InstructionSet::kNone); if (image_location.empty()) { return false; } BootImageLoader loader(boot_class_path, boot_class_path_locations, image_location, image_isa, relocate, executable); loader.FindImageFiles(); // Collect all the errors. std::vector error_msgs; std::string error_msg; if (loader.HasSystem()) { if (loader.LoadFromSystem(extra_reservation_size, boot_image_spaces, extra_reservation, &error_msg)) { return true; } error_msgs.push_back(error_msg); } std::ostringstream oss; bool first = true; for (const auto& msg : error_msgs) { if (first) { first = false; } else { oss << "\n "; } oss << msg; } LOG(ERROR) << "Could not create image space with image file '" << image_location << "'. " << "Attempting to fall back to imageless running. Error was: " << oss.str(); return false; } ImageSpace::~ImageSpace() { // Everything done by member destructors. Classes forward-declared in header are now defined. } std::unique_ptr ImageSpace::CreateFromAppImage(const char* image, const OatFile* oat_file, std::string* error_msg) { // Note: The oat file has already been validated. const std::vector& boot_image_spaces = Runtime::Current()->GetHeap()->GetBootImageSpaces(); return CreateFromAppImage(image, oat_file, ArrayRef(boot_image_spaces), error_msg); } std::unique_ptr ImageSpace::CreateFromAppImage( const char* image, const OatFile* oat_file, ArrayRef boot_image_spaces, std::string* error_msg) { return Loader::InitAppImage(image, image, oat_file, boot_image_spaces, error_msg); } const OatFile* ImageSpace::GetOatFile() const { return oat_file_non_owned_; } std::unique_ptr ImageSpace::ReleaseOatFile() { CHECK(oat_file_ != nullptr); return std::move(oat_file_); } void ImageSpace::Dump(std::ostream& os) const { os << GetType() << " begin=" << reinterpret_cast(Begin()) << ",end=" << reinterpret_cast(End()) << ",size=" << PrettySize(Size()) << ",name=\"" << GetName() << "\"]"; } bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) { const ArtDexFileLoader dex_file_loader; for (const OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) { const std::string& dex_file_location = oat_dex_file->GetDexFileLocation(); // Skip multidex locations - These will be checked when we visit their // corresponding primary non-multidex location. if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) { continue; } std::vector checksums; std::vector dex_locations_ignored; if (!dex_file_loader.GetMultiDexChecksums( dex_file_location.c_str(), &checksums, &dex_locations_ignored, error_msg)) { *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' " "referenced by oat file %s: %s", dex_file_location.c_str(), oat_file.GetLocation().c_str(), error_msg->c_str()); return false; } CHECK(!checksums.empty()); if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) { *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " "'%s' and dex file '%s' (0x%x != 0x%x)", oat_file.GetLocation().c_str(), dex_file_location.c_str(), oat_dex_file->GetDexFileLocationChecksum(), checksums[0]); return false; } // Verify checksums for any related multidex entries. for (size_t i = 1; i < checksums.size(); i++) { std::string multi_dex_location = DexFileLoader::GetMultiDexLocation( i, dex_file_location.c_str()); const OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(), nullptr, error_msg); if (multi_dex == nullptr) { *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'", oat_file.GetLocation().c_str(), multi_dex_location.c_str()); return false; } if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) { *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " "'%s' and dex file '%s' (0x%x != 0x%x)", oat_file.GetLocation().c_str(), multi_dex_location.c_str(), multi_dex->GetDexFileLocationChecksum(), checksums[i]); return false; } } } return true; } std::string ImageSpace::GetBootClassPathChecksums( ArrayRef image_spaces, ArrayRef boot_class_path) { DCHECK(!boot_class_path.empty()); size_t bcp_pos = 0u; std::string boot_image_checksum; for (size_t image_pos = 0u, size = image_spaces.size(); image_pos != size; ) { const ImageSpace* main_space = image_spaces[image_pos]; // Caller must make sure that the image spaces correspond to the head of the BCP. DCHECK_NE(main_space->oat_file_non_owned_->GetOatDexFiles().size(), 0u); DCHECK_EQ(main_space->oat_file_non_owned_->GetOatDexFiles()[0]->GetDexFileLocation(), boot_class_path[bcp_pos]->GetLocation()); const ImageHeader& current_header = main_space->GetImageHeader(); uint32_t image_space_count = current_header.GetImageSpaceCount(); DCHECK_NE(image_space_count, 0u); DCHECK_LE(image_space_count, image_spaces.size() - image_pos); if (image_pos != 0u) { boot_image_checksum += ':'; } uint32_t component_count = current_header.GetComponentCount(); AppendImageChecksum(component_count, current_header.GetImageChecksum(), &boot_image_checksum); for (size_t space_index = 0; space_index != image_space_count; ++space_index) { const ImageSpace* space = image_spaces[image_pos + space_index]; const OatFile* oat_file = space->oat_file_non_owned_; size_t num_dex_files = oat_file->GetOatDexFiles().size(); if (kIsDebugBuild) { CHECK_NE(num_dex_files, 0u); CHECK_LE(oat_file->GetOatDexFiles().size(), boot_class_path.size() - bcp_pos); for (size_t i = 0; i != num_dex_files; ++i) { CHECK_EQ(oat_file->GetOatDexFiles()[i]->GetDexFileLocation(), boot_class_path[bcp_pos + i]->GetLocation()); } } bcp_pos += num_dex_files; } image_pos += image_space_count; } ArrayRef boot_class_path_tail = ArrayRef(boot_class_path).SubArray(bcp_pos); DCHECK(boot_class_path_tail.empty() || !DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation().c_str())); for (const DexFile* dex_file : boot_class_path_tail) { if (!DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str())) { if (!boot_image_checksum.empty()) { boot_image_checksum += ':'; } boot_image_checksum += kDexFileChecksumPrefix; } StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum()); } return boot_image_checksum; } size_t ImageSpace::GetNumberOfComponents(ArrayRef image_spaces) { size_t n = 0; for (auto&& is : image_spaces) { n += is->GetComponentCount(); } return n; } static size_t CheckAndCountBCPComponents(std::string_view oat_boot_class_path, ArrayRef boot_class_path, /*out*/std::string* error_msg) { // Check that the oat BCP is a prefix of current BCP locations and count components. size_t component_count = 0u; std::string_view remaining_bcp(oat_boot_class_path); bool bcp_ok = false; for (const std::string& location : boot_class_path) { if (!StartsWith(remaining_bcp, location)) { break; } remaining_bcp.remove_prefix(location.size()); ++component_count; if (remaining_bcp.empty()) { bcp_ok = true; break; } if (!StartsWith(remaining_bcp, ":")) { break; } remaining_bcp.remove_prefix(1u); } if (!bcp_ok) { *error_msg = StringPrintf("Oat boot class path (%s) is not a prefix of" " runtime boot class path (%s)", std::string(oat_boot_class_path).c_str(), Join(boot_class_path, ':').c_str()); return static_cast(-1); } return component_count; } bool ImageSpace::VerifyBootClassPathChecksums(std::string_view oat_checksums, std::string_view oat_boot_class_path, const std::string& image_location, ArrayRef boot_class_path_locations, ArrayRef boot_class_path, InstructionSet image_isa, /*out*/std::string* error_msg) { if (oat_checksums.empty() || oat_boot_class_path.empty()) { *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path."; return false; } DCHECK_EQ(boot_class_path_locations.size(), boot_class_path.size()); size_t bcp_size = CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg); if (bcp_size == static_cast(-1)) { DCHECK(!error_msg->empty()); return false; } size_t bcp_pos = 0u; if (StartsWith(oat_checksums, "i")) { // Use only the matching part of the BCP for validation. BootImageLayout layout(image_location, boot_class_path.SubArray(/*pos=*/ 0u, bcp_size), boot_class_path_locations.SubArray(/*pos=*/ 0u, bcp_size)); std::string primary_image_location = layout.GetPrimaryImageLocation(); std::string system_filename; bool has_system = false; if (!FindImageFilename(primary_image_location.c_str(), image_isa, &system_filename, &has_system)) { *error_msg = StringPrintf("Unable to find image file for %s and %s", image_location.c_str(), GetInstructionSetString(image_isa)); return false; } DCHECK(has_system); if (!layout.ValidateFromSystem(image_isa, &oat_checksums, error_msg)) { return false; } bcp_pos = layout.GetNextBcpIndex(); } for ( ; bcp_pos != bcp_size; ++bcp_pos) { static_assert(ImageSpace::kDexFileChecksumPrefix == 'd', "Format prefix check."); if (!StartsWith(oat_checksums, "d")) { *error_msg = StringPrintf("Missing dex checksums, expected %s to start with 'd'", std::string(oat_checksums).c_str()); return false; } oat_checksums.remove_prefix(1u); const std::string& bcp_filename = boot_class_path[bcp_pos]; std::vector checksums; std::vector dex_locations; const ArtDexFileLoader dex_file_loader; if (!dex_file_loader.GetMultiDexChecksums(bcp_filename.c_str(), &checksums, &dex_locations, error_msg)) { return false; } DCHECK(!checksums.empty()); for (uint32_t checksum : checksums) { std::string dex_file_checksum = StringPrintf("/%08x", checksum); if (!StartsWith(oat_checksums, dex_file_checksum)) { *error_msg = StringPrintf("Dex checksum mismatch, expected %s to start with %s", std::string(oat_checksums).c_str(), dex_file_checksum.c_str()); return false; } oat_checksums.remove_prefix(dex_file_checksum.size()); } if (bcp_pos + 1u != bcp_size) { if (!StartsWith(oat_checksums, ":")) { *error_msg = StringPrintf("Missing ':' separator at start of %s", std::string(oat_checksums).c_str()); return false; } oat_checksums.remove_prefix(1u); } } if (!oat_checksums.empty()) { *error_msg = StringPrintf("Checksum too long, unexpected tail %s", std::string(oat_checksums).c_str()); return false; } return true; } bool ImageSpace::VerifyBootClassPathChecksums( std::string_view oat_checksums, std::string_view oat_boot_class_path, ArrayRef> image_spaces, ArrayRef boot_class_path_locations, ArrayRef boot_class_path, /*out*/std::string* error_msg) { DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size()); DCHECK_GE(boot_class_path_locations.size(), image_spaces.size()); if (oat_checksums.empty() || oat_boot_class_path.empty()) { *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path."; return false; } size_t oat_bcp_size = CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg); if (oat_bcp_size == static_cast(-1)) { DCHECK(!error_msg->empty()); return false; } const size_t num_image_spaces = image_spaces.size(); if (num_image_spaces != oat_bcp_size) { *error_msg = StringPrintf("Image header records more dependencies (%zu) than BCP (%zu)", num_image_spaces, oat_bcp_size); return false; } // Verify image checksums. size_t bcp_pos = 0u; size_t image_pos = 0u; while (image_pos != num_image_spaces && StartsWith(oat_checksums, "i")) { // Verify the current image checksum. const ImageHeader& current_header = image_spaces[image_pos]->GetImageHeader(); uint32_t image_space_count = current_header.GetImageSpaceCount(); DCHECK_NE(image_space_count, 0u); DCHECK_LE(image_space_count, image_spaces.size() - image_pos); uint32_t component_count = current_header.GetComponentCount(); uint32_t checksum = current_header.GetImageChecksum(); if (!CheckAndRemoveImageChecksum(component_count, checksum, &oat_checksums, error_msg)) { DCHECK(!error_msg->empty()); return false; } if (kIsDebugBuild) { for (size_t space_index = 0; space_index != image_space_count; ++space_index) { const OatFile* oat_file = image_spaces[image_pos + space_index]->oat_file_non_owned_; size_t num_dex_files = oat_file->GetOatDexFiles().size(); CHECK_NE(num_dex_files, 0u); const std::string main_location = oat_file->GetOatDexFiles()[0]->GetDexFileLocation(); CHECK_EQ(main_location, boot_class_path_locations[bcp_pos + space_index]); CHECK(!DexFileLoader::IsMultiDexLocation(main_location.c_str())); size_t num_base_locations = 1u; for (size_t i = 1u; i != num_dex_files; ++i) { if (DexFileLoader::IsMultiDexLocation( oat_file->GetOatDexFiles()[i]->GetDexFileLocation().c_str())) { CHECK_EQ(image_space_count, 1u); // We can find base locations only for --single-image. ++num_base_locations; } } if (image_space_count == 1u) { CHECK_EQ(num_base_locations, component_count); } } } image_pos += image_space_count; bcp_pos += component_count; if (!StartsWith(oat_checksums, ":")) { // Check that we've reached the end of checksums and BCP. if (!oat_checksums.empty()) { *error_msg = StringPrintf("Expected ':' separator or end of checksums, remaining %s.", std::string(oat_checksums).c_str()); return false; } if (image_pos != oat_bcp_size) { *error_msg = StringPrintf("Component count mismatch between checksums (%zu) and BCP (%zu)", image_pos, oat_bcp_size); return false; } return true; } oat_checksums.remove_prefix(1u); } // We do not allow dependencies of extensions on dex files. That would require // interleaving the loading of the images with opening the other BCP dex files. return false; } std::vector ImageSpace::ExpandMultiImageLocations( ArrayRef dex_locations, const std::string& image_location, bool boot_image_extension) { DCHECK(!dex_locations.empty()); // Find the path. size_t last_slash = image_location.rfind('/'); CHECK_NE(last_slash, std::string::npos); // We also need to honor path components that were encoded through '@'. Otherwise the loading // code won't be able to find the images. if (image_location.find('@', last_slash) != std::string::npos) { last_slash = image_location.rfind('@'); } // Find the dot separating the primary image name from the extension. size_t last_dot = image_location.rfind('.'); // Extract the extension and base (the path and primary image name). std::string extension; std::string base = image_location; if (last_dot != std::string::npos && last_dot > last_slash) { extension = image_location.substr(last_dot); // Including the dot. base.resize(last_dot); } // For non-empty primary image name, add '-' to the `base`. if (last_slash + 1u != base.size()) { base += '-'; } std::vector locations; locations.reserve(dex_locations.size()); size_t start_index = 0u; if (!boot_image_extension) { start_index = 1u; locations.push_back(image_location); } // Now create the other names. Use a counted loop to skip the first one if needed. for (size_t i = start_index; i < dex_locations.size(); ++i) { // Replace path with `base` (i.e. image path and prefix) and replace the original // extension (if any) with `extension`. std::string name = dex_locations[i]; size_t last_dex_slash = name.rfind('/'); if (last_dex_slash != std::string::npos) { name = name.substr(last_dex_slash + 1); } size_t last_dex_dot = name.rfind('.'); if (last_dex_dot != std::string::npos) { name.resize(last_dex_dot); } locations.push_back(base + name + extension); } return locations; } void ImageSpace::DumpSections(std::ostream& os) const { const uint8_t* base = Begin(); const ImageHeader& header = GetImageHeader(); for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { auto section_type = static_cast(i); const ImageSection& section = header.GetImageSection(section_type); os << section_type << " " << reinterpret_cast(base + section.Offset()) << "-" << reinterpret_cast(base + section.End()) << "\n"; } } void ImageSpace::ReleaseMetadata() { const ImageSection& metadata = GetImageHeader().GetMetadataSection(); VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes"; // Avoid using ZeroAndReleasePages since the zero fill might not be word atomic. uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), kPageSize); uint8_t* const page_end = AlignDown(Begin() + metadata.End(), kPageSize); if (page_begin < page_end) { CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed"; } } } // namespace space } // namespace gc } // namespace art