%def binop(preinstr="", result="r0", chkzero="0", instr=""): /* * Generic 32-bit binary operation. Provide an "instr" line that * specifies an instruction that performs "result = r0 op r1". * This could be an ARM instruction or a function call. (If the result * comes back in a register other than r0, you can override "result".) * * If "chkzero" is set to 1, we perform a divide-by-zero check on * vCC (r1). Useful for integer division and modulus. Note that we * *don't* check for (INT_MIN / -1) here, because the ARM math lib * handles it correctly. * * For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int, * xor-int, shl-int, shr-int, ushr-int, add-float, sub-float, * mul-float, div-float, rem-float */ /* binop vAA, vBB, vCC */ FETCH r0, 1 @ r0<- CCBB mov r9, rINST, lsr #8 @ r9<- AA mov r3, r0, lsr #8 @ r3<- CC and r2, r0, #255 @ r2<- BB GET_VREG r1, r3 @ r1<- vCC GET_VREG r0, r2 @ r0<- vBB .if $chkzero cmp r1, #0 @ is second operand zero? beq common_errDivideByZero .endif FETCH_ADVANCE_INST 2 @ advance rPC, load rINST $preinstr @ optional op; may set condition codes $instr @ $result<- op, r0-r3 changed GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG $result, r9 @ vAA<- $result GOTO_OPCODE ip @ jump to next instruction /* 11-14 instructions */ %def binop2addr(preinstr="", result="r0", chkzero="0", instr=""): /* * Generic 32-bit "/2addr" binary operation. Provide an "instr" line * that specifies an instruction that performs "result = r0 op r1". * This could be an ARM instruction or a function call. (If the result * comes back in a register other than r0, you can override "result".) * * If "chkzero" is set to 1, we perform a divide-by-zero check on * vCC (r1). Useful for integer division and modulus. * * For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr, * rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr, * shl-int/2addr, shr-int/2addr, ushr-int/2addr, add-float/2addr, * sub-float/2addr, mul-float/2addr, div-float/2addr, rem-float/2addr */ /* binop/2addr vA, vB */ mov r3, rINST, lsr #12 @ r3<- B ubfx r9, rINST, #8, #4 @ r9<- A GET_VREG r1, r3 @ r1<- vB GET_VREG r0, r9 @ r0<- vA .if $chkzero cmp r1, #0 @ is second operand zero? beq common_errDivideByZero .endif FETCH_ADVANCE_INST 1 @ advance rPC, load rINST $preinstr @ optional op; may set condition codes $instr @ $result<- op, r0-r3 changed GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG $result, r9 @ vAA<- $result GOTO_OPCODE ip @ jump to next instruction /* 10-13 instructions */ %def binopLit16(result="r0", chkzero="0", instr=""): /* * Generic 32-bit "lit16" binary operation. Provide an "instr" line * that specifies an instruction that performs "result = r0 op r1". * This could be an ARM instruction or a function call. (If the result * comes back in a register other than r0, you can override "result".) * * If "chkzero" is set to 1, we perform a divide-by-zero check on * vCC (r1). Useful for integer division and modulus. * * For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16, * rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16 */ /* binop/lit16 vA, vB, #+CCCC */ FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended) mov r2, rINST, lsr #12 @ r2<- B ubfx r9, rINST, #8, #4 @ r9<- A GET_VREG r0, r2 @ r0<- vB .if $chkzero cmp r1, #0 @ is second operand zero? beq common_errDivideByZero .endif FETCH_ADVANCE_INST 2 @ advance rPC, load rINST $instr @ $result<- op, r0-r3 changed GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG $result, r9 @ vAA<- $result GOTO_OPCODE ip @ jump to next instruction /* 10-13 instructions */ %def binopLit8(extract="asr r1, r3, #8", result="r0", chkzero="0", instr=""): /* * Generic 32-bit "lit8" binary operation. Provide an "instr" line * that specifies an instruction that performs "result = r0 op r1". * This could be an ARM instruction or a function call. (If the result * comes back in a register other than r0, you can override "result".) * * You can override "extract" if the extraction of the literal value * from r3 to r1 is not the default "asr r1, r3, #8". The extraction * can be omitted completely if the shift is embedded in "instr". * * If "chkzero" is set to 1, we perform a divide-by-zero check on * vCC (r1). Useful for integer division and modulus. * * For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8, * rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8, * shl-int/lit8, shr-int/lit8, ushr-int/lit8 */ /* binop/lit8 vAA, vBB, #+CC */ FETCH_S r3, 1 @ r3<- ssssCCBB (sign-extended for CC) mov r9, rINST, lsr #8 @ r9<- AA and r2, r3, #255 @ r2<- BB GET_VREG r0, r2 @ r0<- vBB $extract @ optional; typically r1<- ssssssCC (sign extended) .if $chkzero @cmp r1, #0 @ is second operand zero? beq common_errDivideByZero .endif FETCH_ADVANCE_INST 2 @ advance rPC, load rINST $instr @ $result<- op, r0-r3 changed GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG $result, r9 @ vAA<- $result GOTO_OPCODE ip @ jump to next instruction /* 10-12 instructions */ %def binopWide(preinstr="", result0="r0", result1="r1", chkzero="0", instr=""): /* * Generic 64-bit binary operation. Provide an "instr" line that * specifies an instruction that performs "result = r0-r1 op r2-r3". * This could be an ARM instruction or a function call. (If the result * comes back in a register other than r0, you can override "result".) * * If "chkzero" is set to 1, we perform a divide-by-zero check on * vCC (r1). Useful for integer division and modulus. * * for: add-long, sub-long, div-long, rem-long, and-long, or-long, * xor-long, add-double, sub-double, mul-double, div-double, * rem-double * * IMPORTANT: you may specify "chkzero" or "preinstr" but not both. */ /* binop vAA, vBB, vCC */ FETCH r0, 1 @ r0<- CCBB mov rINST, rINST, lsr #8 @ rINST<- AA and r2, r0, #255 @ r2<- BB mov r3, r0, lsr #8 @ r3<- CC VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[AA] VREG_INDEX_TO_ADDR r2, r2 @ r2<- &fp[BB] VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[CC] GET_VREG_WIDE_BY_ADDR r0, r1, r2 @ r0/r1<- vBB/vBB+1 GET_VREG_WIDE_BY_ADDR r2, r3, r3 @ r2/r3<- vCC/vCC+1 .if $chkzero orrs ip, r2, r3 @ second arg (r2-r3) is zero? beq common_errDivideByZero .endif CLEAR_SHADOW_PAIR rINST, lr, ip @ Zero out the shadow regs FETCH_ADVANCE_INST 2 @ advance rPC, load rINST $preinstr @ optional op; may set condition codes $instr @ result<- op, r0-r3 changed GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR $result0,$result1,r9 @ vAA/vAA+1<, $result0/$result1 GOTO_OPCODE ip @ jump to next instruction /* 14-17 instructions */ %def binopWide2addr(preinstr="", result0="r0", result1="r1", chkzero="0", instr=""): /* * Generic 64-bit "/2addr" binary operation. Provide an "instr" line * that specifies an instruction that performs "result = r0-r1 op r2-r3". * This could be an ARM instruction or a function call. (If the result * comes back in a register other than r0, you can override "result".) * * If "chkzero" is set to 1, we perform a divide-by-zero check on * vCC (r1). Useful for integer division and modulus. * * For: add-long/2addr, sub-long/2addr, div-long/2addr, rem-long/2addr, * and-long/2addr, or-long/2addr, xor-long/2addr, add-double/2addr, * sub-double/2addr, mul-double/2addr, div-double/2addr, * rem-double/2addr */ /* binop/2addr vA, vB */ mov r1, rINST, lsr #12 @ r1<- B ubfx rINST, rINST, #8, #4 @ rINST<- A VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B] VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A] GET_VREG_WIDE_BY_ADDR r2, r3, r1 @ r2/r3<- vBB/vBB+1 GET_VREG_WIDE_BY_ADDR r0, r1, r9 @ r0/r1<- vAA/vAA+1 .if $chkzero orrs ip, r2, r3 @ second arg (r2-r3) is zero? beq common_errDivideByZero .endif CLEAR_SHADOW_PAIR rINST, ip, lr @ Zero shadow regs FETCH_ADVANCE_INST 1 @ advance rPC, load rINST $preinstr @ optional op; may set condition codes $instr @ result<- op, r0-r3 changed GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR $result0,$result1,r9 @ vAA/vAA+1<- $result0/$result1 GOTO_OPCODE ip @ jump to next instruction /* 12-15 instructions */ %def unop(preinstr="", instr=""): /* * Generic 32-bit unary operation. Provide an "instr" line that * specifies an instruction that performs "result = op r0". * This could be an ARM instruction or a function call. * * for: neg-int, not-int, neg-float, int-to-float, float-to-int, * int-to-byte, int-to-char, int-to-short */ /* unop vA, vB */ mov r3, rINST, lsr #12 @ r3<- B ubfx r9, rINST, #8, #4 @ r9<- A GET_VREG r0, r3 @ r0<- vB $preinstr @ optional op; may set condition codes FETCH_ADVANCE_INST 1 @ advance rPC, load rINST $instr @ r0<- op, r0-r3 changed GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG r0, r9 @ vAA<- r0 GOTO_OPCODE ip @ jump to next instruction /* 8-9 instructions */ %def unopNarrower(preinstr="", instr=""): /* * Generic 64bit-to-32bit unary operation. Provide an "instr" line * that specifies an instruction that performs "result = op r0/r1", where * "result" is a 32-bit quantity in r0. * * For: long-to-float * * (This would work for long-to-int, but that instruction is actually * an exact match for op_move.) */ /* unop vA, vB */ mov r3, rINST, lsr #12 @ r3<- B ubfx r9, rINST, #8, #4 @ r9<- A VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B] GET_VREG_WIDE_BY_ADDR r0, r1, r3 @ r0/r1<- vB/vB+1 FETCH_ADVANCE_INST 1 @ advance rPC, load rINST $preinstr @ optional op; may set condition codes $instr @ r0<- op, r0-r3 changed GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG r0, r9 @ vA<- r0 GOTO_OPCODE ip @ jump to next instruction /* 9-10 instructions */ %def unopWide(preinstr="", instr=""): /* * Generic 64-bit unary operation. Provide an "instr" line that * specifies an instruction that performs "result = op r0/r1". * This could be an ARM instruction or a function call. * * For: neg-long, not-long, neg-double, long-to-double, double-to-long */ /* unop vA, vB */ mov r3, rINST, lsr #12 @ r3<- B ubfx rINST, rINST, #8, #4 @ rINST<- A VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B] VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A] GET_VREG_WIDE_BY_ADDR r0, r1, r3 @ r0/r1<- vAA CLEAR_SHADOW_PAIR rINST, ip, lr @ Zero shadow regs FETCH_ADVANCE_INST 1 @ advance rPC, load rINST $preinstr @ optional op; may set condition codes $instr @ r0/r1<- op, r2-r3 changed GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA<- r0/r1 GOTO_OPCODE ip @ jump to next instruction /* 10-11 instructions */ %def unopWider(preinstr="", instr=""): /* * Generic 32bit-to-64bit unary operation. Provide an "instr" line * that specifies an instruction that performs "result = op r0", where * "result" is a 64-bit quantity in r0/r1. * * For: int-to-long, int-to-double, float-to-long, float-to-double */ /* unop vA, vB */ mov r3, rINST, lsr #12 @ r3<- B ubfx rINST, rINST, #8, #4 @ rINST<- A GET_VREG r0, r3 @ r0<- vB VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A] $preinstr @ optional op; may set condition codes CLEAR_SHADOW_PAIR rINST, ip, lr @ Zero shadow regs FETCH_ADVANCE_INST 1 @ advance rPC, load rINST $instr @ r0<- op, r0-r3 changed GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vA/vA+1<- r0/r1 GOTO_OPCODE ip @ jump to next instruction /* 9-10 instructions */ %def op_add_int(): % binop(instr="add r0, r0, r1") %def op_add_int_2addr(): % binop2addr(instr="add r0, r0, r1") %def op_add_int_lit16(): % binopLit16(instr="add r0, r0, r1") %def op_add_int_lit8(): % binopLit8(extract="", instr="add r0, r0, r3, asr #8") %def op_add_long(): % binopWide(preinstr="adds r0, r0, r2", instr="adc r1, r1, r3") %def op_add_long_2addr(): % binopWide2addr(preinstr="adds r0, r0, r2", instr="adc r1, r1, r3") %def op_and_int(): % binop(instr="and r0, r0, r1") %def op_and_int_2addr(): % binop2addr(instr="and r0, r0, r1") %def op_and_int_lit16(): % binopLit16(instr="and r0, r0, r1") %def op_and_int_lit8(): % binopLit8(extract="", instr="and r0, r0, r3, asr #8") %def op_and_long(): % binopWide(preinstr="and r0, r0, r2", instr="and r1, r1, r3") %def op_and_long_2addr(): % binopWide2addr(preinstr="and r0, r0, r2", instr="and r1, r1, r3") %def op_cmp_long(): /* * Compare two 64-bit values. Puts 0, 1, or -1 into the destination * register based on the results of the comparison. */ /* cmp-long vAA, vBB, vCC */ FETCH r0, 1 @ r0<- CCBB mov r9, rINST, lsr #8 @ r9<- AA and r2, r0, #255 @ r2<- BB mov r3, r0, lsr #8 @ r3<- CC VREG_INDEX_TO_ADDR r2, r2 @ r2<- &fp[BB] VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[CC] GET_VREG_WIDE_BY_ADDR r0, r1, r2 @ r0/r1<- vBB/vBB+1 GET_VREG_WIDE_BY_ADDR r2, r3, r3 @ r2/r3<- vCC/vCC+1 cmp r0, r2 sbcs ip, r1, r3 @ Sets correct CCs for checking LT (but not EQ/NE) mov ip, #0 mvnlt ip, #0 @ -1 cmpeq r0, r2 @ For correct EQ/NE, we may need to repeat the first CMP orrne ip, #1 FETCH_ADVANCE_INST 2 @ advance rPC, load rINST SET_VREG ip, r9 @ vAA<- ip GET_INST_OPCODE ip @ extract opcode from rINST GOTO_OPCODE ip @ jump to next instruction %def op_div_int(): /* * Specialized 32-bit binary operation * * Performs "r0 = r0 div r1". The selection between sdiv or the gcc helper * depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for * ARMv7 CPUs that have hardware division support). * * div-int * */ FETCH r0, 1 @ r0<- CCBB mov r9, rINST, lsr #8 @ r9<- AA mov r3, r0, lsr #8 @ r3<- CC and r2, r0, #255 @ r2<- BB GET_VREG r1, r3 @ r1<- vCC GET_VREG r0, r2 @ r0<- vBB cmp r1, #0 @ is second operand zero? beq common_errDivideByZero FETCH_ADVANCE_INST 2 @ advance rPC, load rINST #ifdef __ARM_ARCH_EXT_IDIV__ sdiv r0, r0, r1 @ r0<- op #else bl __aeabi_idiv @ r0<- op, r0-r3 changed #endif GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG r0, r9 @ vAA<- r0 GOTO_OPCODE ip @ jump to next instruction /* 11-14 instructions */ %def op_div_int_2addr(): /* * Specialized 32-bit binary operation * * Performs "r0 = r0 div r1". The selection between sdiv or the gcc helper * depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for * ARMv7 CPUs that have hardware division support). * * div-int/2addr * */ mov r3, rINST, lsr #12 @ r3<- B ubfx r9, rINST, #8, #4 @ r9<- A GET_VREG r1, r3 @ r1<- vB GET_VREG r0, r9 @ r0<- vA cmp r1, #0 @ is second operand zero? beq common_errDivideByZero FETCH_ADVANCE_INST 1 @ advance rPC, load rINST #ifdef __ARM_ARCH_EXT_IDIV__ sdiv r0, r0, r1 @ r0<- op #else bl __aeabi_idiv @ r0<- op, r0-r3 changed #endif GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG r0, r9 @ vAA<- r0 GOTO_OPCODE ip @ jump to next instruction /* 10-13 instructions */ %def op_div_int_lit16(): /* * Specialized 32-bit binary operation * * Performs "r0 = r0 div r1". The selection between sdiv or the gcc helper * depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for * ARMv7 CPUs that have hardware division support). * * div-int/lit16 * */ FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended) mov r2, rINST, lsr #12 @ r2<- B ubfx r9, rINST, #8, #4 @ r9<- A GET_VREG r0, r2 @ r0<- vB cmp r1, #0 @ is second operand zero? beq common_errDivideByZero FETCH_ADVANCE_INST 2 @ advance rPC, load rINST #ifdef __ARM_ARCH_EXT_IDIV__ sdiv r0, r0, r1 @ r0<- op #else bl __aeabi_idiv @ r0<- op, r0-r3 changed #endif GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG r0, r9 @ vAA<- r0 GOTO_OPCODE ip @ jump to next instruction /* 10-13 instructions */ %def op_div_int_lit8(): /* * Specialized 32-bit binary operation * * Performs "r0 = r0 div r1". The selection between sdiv or the gcc helper * depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for * ARMv7 CPUs that have hardware division support). * * div-int/lit8 * */ FETCH_S r3, 1 @ r3<- ssssCCBB (sign-extended for CC mov r9, rINST, lsr #8 @ r9<- AA and r2, r3, #255 @ r2<- BB GET_VREG r0, r2 @ r0<- vBB movs r1, r3, asr #8 @ r1<- ssssssCC (sign extended) @cmp r1, #0 @ is second operand zero? beq common_errDivideByZero FETCH_ADVANCE_INST 2 @ advance rPC, load rINST #ifdef __ARM_ARCH_EXT_IDIV__ sdiv r0, r0, r1 @ r0<- op #else bl __aeabi_idiv @ r0<- op, r0-r3 changed #endif GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG r0, r9 @ vAA<- r0 GOTO_OPCODE ip @ jump to next instruction /* 10-12 instructions */ %def op_div_long(): % binopWide(instr="bl __aeabi_ldivmod", chkzero="1") %def op_div_long_2addr(): % binopWide2addr(instr="bl __aeabi_ldivmod", chkzero="1") %def op_int_to_byte(): % unop(instr="sxtb r0, r0") %def op_int_to_char(): % unop(instr="uxth r0, r0") %def op_int_to_long(): % unopWider(instr="mov r1, r0, asr #31") %def op_int_to_short(): % unop(instr="sxth r0, r0") %def op_long_to_int(): /* we ignore the high word, making this equivalent to a 32-bit reg move */ % op_move() %def op_mul_int(): /* must be "mul r0, r1, r0" -- "r0, r0, r1" is illegal */ % binop(instr="mul r0, r1, r0") %def op_mul_int_2addr(): /* must be "mul r0, r1, r0" -- "r0, r0, r1" is illegal */ % binop2addr(instr="mul r0, r1, r0") %def op_mul_int_lit16(): /* must be "mul r0, r1, r0" -- "r0, r0, r1" is illegal */ % binopLit16(instr="mul r0, r1, r0") %def op_mul_int_lit8(): /* must be "mul r0, r1, r0" -- "r0, r0, r1" is illegal */ % binopLit8(instr="mul r0, r1, r0") %def op_mul_long(): /* * Signed 64-bit integer multiply. * * Consider WXxYZ (r1r0 x r3r2) with a long multiply: * WX * x YZ * -------- * ZW ZX * YW YX * * The low word of the result holds ZX, the high word holds * (ZW+YX) + (the high overflow from ZX). YW doesn't matter because * it doesn't fit in the low 64 bits. * * Unlike most ARM math operations, multiply instructions have * restrictions on using the same register more than once (Rd and Rm * cannot be the same). */ /* mul-long vAA, vBB, vCC */ FETCH r0, 1 @ r0<- CCBB and r2, r0, #255 @ r2<- BB mov r3, r0, lsr #8 @ r3<- CC VREG_INDEX_TO_ADDR r2, r2 @ r2<- &fp[BB] VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[CC] GET_VREG_WIDE_BY_ADDR r0, r1, r2 @ r0/r1<- vBB/vBB+1 GET_VREG_WIDE_BY_ADDR r2, r3, r3 @ r2/r3<- vCC/vCC+1 mul ip, r2, r1 @ ip<- ZxW umull r1, lr, r2, r0 @ r1/lr <- ZxX mla r2, r0, r3, ip @ r2<- YxX + (ZxW) mov r0, rINST, lsr #8 @ r0<- AA add r2, r2, lr @ r2<- lr + low(ZxW + (YxX)) CLEAR_SHADOW_PAIR r0, lr, ip @ Zero out the shadow regs VREG_INDEX_TO_ADDR r0, r0 @ r0<- &fp[AA] FETCH_ADVANCE_INST 2 @ advance rPC, load rINST GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR r1, r2 , r0 @ vAA/vAA+1<- r1/r2 GOTO_OPCODE ip @ jump to next instruction %def op_mul_long_2addr(): /* * Signed 64-bit integer multiply, "/2addr" version. * * See op_mul_long for an explanation. * * We get a little tight on registers, so to avoid looking up &fp[A] * again we stuff it into rINST. */ /* mul-long/2addr vA, vB */ mov r1, rINST, lsr #12 @ r1<- B ubfx r9, rINST, #8, #4 @ r9<- A VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B] VREG_INDEX_TO_ADDR rINST, r9 @ rINST<- &fp[A] GET_VREG_WIDE_BY_ADDR r2, r3, r1 @ r2/r3<- vBB/vBB+1 GET_VREG_WIDE_BY_ADDR r0, r1, rINST @ r0/r1<- vAA/vAA+1 mul ip, r2, r1 @ ip<- ZxW umull r1, lr, r2, r0 @ r1/lr <- ZxX mla r2, r0, r3, ip @ r2<- YxX + (ZxW) mov r0, rINST @ r0<- &fp[A] (free up rINST) FETCH_ADVANCE_INST 1 @ advance rPC, load rINST add r2, r2, lr @ r2<- r2 + low(ZxW + (YxX)) GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR r1, r2, r0 @ vAA/vAA+1<- r1/r2 GOTO_OPCODE ip @ jump to next instruction %def op_neg_int(): % unop(instr="rsb r0, r0, #0") %def op_neg_long(): % unopWide(preinstr="rsbs r0, r0, #0", instr="rsc r1, r1, #0") %def op_not_int(): % unop(instr="mvn r0, r0") %def op_not_long(): % unopWide(preinstr="mvn r0, r0", instr="mvn r1, r1") %def op_or_int(): % binop(instr="orr r0, r0, r1") %def op_or_int_2addr(): % binop2addr(instr="orr r0, r0, r1") %def op_or_int_lit16(): % binopLit16(instr="orr r0, r0, r1") %def op_or_int_lit8(): % binopLit8(extract="", instr="orr r0, r0, r3, asr #8") %def op_or_long(): % binopWide(preinstr="orr r0, r0, r2", instr="orr r1, r1, r3") %def op_or_long_2addr(): % binopWide2addr(preinstr="orr r0, r0, r2", instr="orr r1, r1, r3") %def op_rem_int(): /* * Specialized 32-bit binary operation * * Performs "r1 = r0 rem r1". The selection between sdiv block or the gcc helper * depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for * ARMv7 CPUs that have hardware division support). * * NOTE: idivmod returns quotient in r0 and remainder in r1 * * rem-int * */ FETCH r0, 1 @ r0<- CCBB mov r9, rINST, lsr #8 @ r9<- AA mov r3, r0, lsr #8 @ r3<- CC and r2, r0, #255 @ r2<- BB GET_VREG r1, r3 @ r1<- vCC GET_VREG r0, r2 @ r0<- vBB cmp r1, #0 @ is second operand zero? beq common_errDivideByZero FETCH_ADVANCE_INST 2 @ advance rPC, load rINST #ifdef __ARM_ARCH_EXT_IDIV__ sdiv r2, r0, r1 mls r1, r1, r2, r0 @ r1<- op, r0-r2 changed #else bl __aeabi_idivmod @ r1<- op, r0-r3 changed #endif GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG r1, r9 @ vAA<- r1 GOTO_OPCODE ip @ jump to next instruction /* 11-14 instructions */ %def op_rem_int_2addr(): /* * Specialized 32-bit binary operation * * Performs "r1 = r0 rem r1". The selection between sdiv block or the gcc helper * depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for * ARMv7 CPUs that have hardware division support). * * NOTE: idivmod returns quotient in r0 and remainder in r1 * * rem-int/2addr * */ mov r3, rINST, lsr #12 @ r3<- B ubfx r9, rINST, #8, #4 @ r9<- A GET_VREG r1, r3 @ r1<- vB GET_VREG r0, r9 @ r0<- vA cmp r1, #0 @ is second operand zero? beq common_errDivideByZero FETCH_ADVANCE_INST 1 @ advance rPC, load rINST #ifdef __ARM_ARCH_EXT_IDIV__ sdiv r2, r0, r1 mls r1, r1, r2, r0 @ r1<- op #else bl __aeabi_idivmod @ r1<- op, r0-r3 changed #endif GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG r1, r9 @ vAA<- r1 GOTO_OPCODE ip @ jump to next instruction /* 10-13 instructions */ %def op_rem_int_lit16(): /* * Specialized 32-bit binary operation * * Performs "r1 = r0 rem r1". The selection between sdiv block or the gcc helper * depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for * ARMv7 CPUs that have hardware division support). * * NOTE: idivmod returns quotient in r0 and remainder in r1 * * rem-int/lit16 * */ FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended) mov r2, rINST, lsr #12 @ r2<- B ubfx r9, rINST, #8, #4 @ r9<- A GET_VREG r0, r2 @ r0<- vB cmp r1, #0 @ is second operand zero? beq common_errDivideByZero FETCH_ADVANCE_INST 2 @ advance rPC, load rINST #ifdef __ARM_ARCH_EXT_IDIV__ sdiv r2, r0, r1 mls r1, r1, r2, r0 @ r1<- op #else bl __aeabi_idivmod @ r1<- op, r0-r3 changed #endif GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG r1, r9 @ vAA<- r1 GOTO_OPCODE ip @ jump to next instruction /* 10-13 instructions */ %def op_rem_int_lit8(): /* * Specialized 32-bit binary operation * * Performs "r1 = r0 rem r1". The selection between sdiv block or the gcc helper * depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for * ARMv7 CPUs that have hardware division support). * * NOTE: idivmod returns quotient in r0 and remainder in r1 * * rem-int/lit8 * */ FETCH_S r3, 1 @ r3<- ssssCCBB (sign-extended for CC) mov r9, rINST, lsr #8 @ r9<- AA and r2, r3, #255 @ r2<- BB GET_VREG r0, r2 @ r0<- vBB movs r1, r3, asr #8 @ r1<- ssssssCC (sign extended) @cmp r1, #0 @ is second operand zero? beq common_errDivideByZero FETCH_ADVANCE_INST 2 @ advance rPC, load rINST #ifdef __ARM_ARCH_EXT_IDIV__ sdiv r2, r0, r1 mls r1, r1, r2, r0 @ r1<- op #else bl __aeabi_idivmod @ r1<- op, r0-r3 changed #endif GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG r1, r9 @ vAA<- r1 GOTO_OPCODE ip @ jump to next instruction /* 10-12 instructions */ %def op_rem_long(): /* ldivmod returns quotient in r0/r1 and remainder in r2/r3 */ % binopWide(instr="bl __aeabi_ldivmod", result0="r2", result1="r3", chkzero="1") %def op_rem_long_2addr(): /* ldivmod returns quotient in r0/r1 and remainder in r2/r3 */ % binopWide2addr(instr="bl __aeabi_ldivmod", result0="r2", result1="r3", chkzero="1") %def op_rsub_int(): /* this op is "rsub-int", but can be thought of as "rsub-int/lit16" */ % binopLit16(instr="rsb r0, r0, r1") %def op_rsub_int_lit8(): % binopLit8(extract="", instr="rsb r0, r0, r3, asr #8") %def op_shl_int(): % binop(preinstr="and r1, r1, #31", instr="mov r0, r0, asl r1") %def op_shl_int_2addr(): % binop2addr(preinstr="and r1, r1, #31", instr="mov r0, r0, asl r1") %def op_shl_int_lit8(): % binopLit8(extract="ubfx r1, r3, #8, #5", instr="mov r0, r0, asl r1") %def op_shl_long(): /* * Long integer shift. This is different from the generic 32/64-bit * binary operations because vAA/vBB are 64-bit but vCC (the shift * distance) is 32-bit. Also, Dalvik requires us to mask off the low * 6 bits of the shift distance. */ /* shl-long vAA, vBB, vCC */ FETCH r0, 1 @ r0<- CCBB mov r9, rINST, lsr #8 @ r9<- AA and r3, r0, #255 @ r3<- BB mov r0, r0, lsr #8 @ r0<- CC VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[BB] GET_VREG r2, r0 @ r2<- vCC GET_VREG_WIDE_BY_ADDR r0, r1, r3 @ r0/r1<- vBB/vBB+1 CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs and r2, r2, #63 @ r2<- r2 & 0x3f VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[AA] mov r1, r1, asl r2 @ r1<- r1 << r2 rsb r3, r2, #32 @ r3<- 32 - r2 orr r1, r1, r0, lsr r3 @ r1<- r1 | (r0 << (32-r2)) subs ip, r2, #32 @ ip<- r2 - 32 movpl r1, r0, asl ip @ if r2 >= 32, r1<- r0 << (r2-32) FETCH_ADVANCE_INST 2 @ advance rPC, load rINST mov r0, r0, asl r2 @ r0<- r0 << r2 GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1 GOTO_OPCODE ip @ jump to next instruction %def op_shl_long_2addr(): /* * Long integer shift, 2addr version. vA is 64-bit value/result, vB is * 32-bit shift distance. */ /* shl-long/2addr vA, vB */ mov r3, rINST, lsr #12 @ r3<- B ubfx r9, rINST, #8, #4 @ r9<- A GET_VREG r2, r3 @ r2<- vB CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[A] and r2, r2, #63 @ r2<- r2 & 0x3f GET_VREG_WIDE_BY_ADDR r0, r1, r9 @ r0/r1<- vAA/vAA+1 mov r1, r1, asl r2 @ r1<- r1 << r2 rsb r3, r2, #32 @ r3<- 32 - r2 orr r1, r1, r0, lsr r3 @ r1<- r1 | (r0 << (32-r2)) subs ip, r2, #32 @ ip<- r2 - 32 FETCH_ADVANCE_INST 1 @ advance rPC, load rINST movpl r1, r0, asl ip @ if r2 >= 32, r1<- r0 << (r2-32) mov r0, r0, asl r2 @ r0<- r0 << r2 GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1 GOTO_OPCODE ip @ jump to next instruction %def op_shr_int(): % binop(preinstr="and r1, r1, #31", instr="mov r0, r0, asr r1") %def op_shr_int_2addr(): % binop2addr(preinstr="and r1, r1, #31", instr="mov r0, r0, asr r1") %def op_shr_int_lit8(): % binopLit8(extract="ubfx r1, r3, #8, #5", instr="mov r0, r0, asr r1") %def op_shr_long(): /* * Long integer shift. This is different from the generic 32/64-bit * binary operations because vAA/vBB are 64-bit but vCC (the shift * distance) is 32-bit. Also, Dalvik requires us to mask off the low * 6 bits of the shift distance. */ /* shr-long vAA, vBB, vCC */ FETCH r0, 1 @ r0<- CCBB mov r9, rINST, lsr #8 @ r9<- AA and r3, r0, #255 @ r3<- BB mov r0, r0, lsr #8 @ r0<- CC VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[BB] GET_VREG r2, r0 @ r2<- vCC GET_VREG_WIDE_BY_ADDR r0, r1, r3 @ r0/r1<- vBB/vBB+1 CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs and r2, r2, #63 @ r0<- r0 & 0x3f VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[AA] mov r0, r0, lsr r2 @ r0<- r2 >> r2 rsb r3, r2, #32 @ r3<- 32 - r2 orr r0, r0, r1, asl r3 @ r0<- r0 | (r1 << (32-r2)) subs ip, r2, #32 @ ip<- r2 - 32 movpl r0, r1, asr ip @ if r2 >= 32, r0<-r1 >> (r2-32) FETCH_ADVANCE_INST 2 @ advance rPC, load rINST mov r1, r1, asr r2 @ r1<- r1 >> r2 GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1 GOTO_OPCODE ip @ jump to next instruction %def op_shr_long_2addr(): /* * Long integer shift, 2addr version. vA is 64-bit value/result, vB is * 32-bit shift distance. */ /* shr-long/2addr vA, vB */ mov r3, rINST, lsr #12 @ r3<- B ubfx r9, rINST, #8, #4 @ r9<- A GET_VREG r2, r3 @ r2<- vB CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[A] and r2, r2, #63 @ r2<- r2 & 0x3f GET_VREG_WIDE_BY_ADDR r0, r1, r9 @ r0/r1<- vAA/vAA+1 mov r0, r0, lsr r2 @ r0<- r2 >> r2 rsb r3, r2, #32 @ r3<- 32 - r2 orr r0, r0, r1, asl r3 @ r0<- r0 | (r1 << (32-r2)) subs ip, r2, #32 @ ip<- r2 - 32 FETCH_ADVANCE_INST 1 @ advance rPC, load rINST movpl r0, r1, asr ip @ if r2 >= 32, r0<-r1 >> (r2-32) mov r1, r1, asr r2 @ r1<- r1 >> r2 GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1 GOTO_OPCODE ip @ jump to next instruction %def op_sub_int(): % binop(instr="sub r0, r0, r1") %def op_sub_int_2addr(): % binop2addr(instr="sub r0, r0, r1") %def op_sub_long(): % binopWide(preinstr="subs r0, r0, r2", instr="sbc r1, r1, r3") %def op_sub_long_2addr(): % binopWide2addr(preinstr="subs r0, r0, r2", instr="sbc r1, r1, r3") %def op_ushr_int(): % binop(preinstr="and r1, r1, #31", instr="mov r0, r0, lsr r1") %def op_ushr_int_2addr(): % binop2addr(preinstr="and r1, r1, #31", instr="mov r0, r0, lsr r1") %def op_ushr_int_lit8(): % binopLit8(extract="ubfx r1, r3, #8, #5", instr="mov r0, r0, lsr r1") %def op_ushr_long(): /* * Long integer shift. This is different from the generic 32/64-bit * binary operations because vAA/vBB are 64-bit but vCC (the shift * distance) is 32-bit. Also, Dalvik requires us to mask off the low * 6 bits of the shift distance. */ /* ushr-long vAA, vBB, vCC */ FETCH r0, 1 @ r0<- CCBB mov r9, rINST, lsr #8 @ r9<- AA and r3, r0, #255 @ r3<- BB mov r0, r0, lsr #8 @ r0<- CC VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[BB] GET_VREG r2, r0 @ r2<- vCC GET_VREG_WIDE_BY_ADDR r0, r1, r3 @ r0/r1<- vBB/vBB+1 CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs and r2, r2, #63 @ r0<- r0 & 0x3f VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[AA] mov r0, r0, lsr r2 @ r0<- r2 >> r2 rsb r3, r2, #32 @ r3<- 32 - r2 orr r0, r0, r1, asl r3 @ r0<- r0 | (r1 << (32-r2)) subs ip, r2, #32 @ ip<- r2 - 32 movpl r0, r1, lsr ip @ if r2 >= 32, r0<-r1 >>> (r2-32) FETCH_ADVANCE_INST 2 @ advance rPC, load rINST mov r1, r1, lsr r2 @ r1<- r1 >>> r2 GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1 GOTO_OPCODE ip @ jump to next instruction %def op_ushr_long_2addr(): /* * Long integer shift, 2addr version. vA is 64-bit value/result, vB is * 32-bit shift distance. */ /* ushr-long/2addr vA, vB */ mov r3, rINST, lsr #12 @ r3<- B ubfx r9, rINST, #8, #4 @ r9<- A GET_VREG r2, r3 @ r2<- vB CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[A] and r2, r2, #63 @ r2<- r2 & 0x3f GET_VREG_WIDE_BY_ADDR r0, r1, r9 @ r0/r1<- vAA/vAA+1 mov r0, r0, lsr r2 @ r0<- r2 >> r2 rsb r3, r2, #32 @ r3<- 32 - r2 orr r0, r0, r1, asl r3 @ r0<- r0 | (r1 << (32-r2)) subs ip, r2, #32 @ ip<- r2 - 32 FETCH_ADVANCE_INST 1 @ advance rPC, load rINST movpl r0, r1, lsr ip @ if r2 >= 32, r0<-r1 >>> (r2-32) mov r1, r1, lsr r2 @ r1<- r1 >>> r2 GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1 GOTO_OPCODE ip @ jump to next instruction %def op_xor_int(): % binop(instr="eor r0, r0, r1") %def op_xor_int_2addr(): % binop2addr(instr="eor r0, r0, r1") %def op_xor_int_lit16(): % binopLit16(instr="eor r0, r0, r1") %def op_xor_int_lit8(): % binopLit8(extract="", instr="eor r0, r0, r3, asr #8") %def op_xor_long(): % binopWide(preinstr="eor r0, r0, r2", instr="eor r1, r1, r3") %def op_xor_long_2addr(): % binopWide2addr(preinstr="eor r0, r0, r2", instr="eor r1, r1, r3")