/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "oat_file.h" #include #ifndef __APPLE__ #include // for dl_iterate_phdr. #endif #include #include #include #include #include #include // dlopen_ext support from bionic. #ifdef ART_TARGET_ANDROID #include "android/dlext.h" #include "nativeloader/dlext_namespaces.h" #endif #include #include "android-base/stringprintf.h" #include "arch/instruction_set_features.h" #include "art_method.h" #include "base/bit_vector.h" #include "base/enums.h" #include "base/file_utils.h" #include "base/logging.h" // For VLOG_IS_ON. #include "base/mem_map.h" #include "base/os.h" #include "base/stl_util.h" #include "base/string_view_cpp20.h" #include "base/systrace.h" #include "base/unix_file/fd_file.h" #include "base/utils.h" #include "dex/art_dex_file_loader.h" #include "dex/dex_file.h" #include "dex/dex_file_loader.h" #include "dex/dex_file_structs.h" #include "dex/dex_file_types.h" #include "dex/standard_dex_file.h" #include "dex/type_lookup_table.h" #include "dex/utf-inl.h" #include "elf/elf_utils.h" #include "elf_file.h" #include "gc_root.h" #include "gc/heap.h" #include "gc/space/image_space.h" #include "mirror/class.h" #include "mirror/object-inl.h" #include "oat.h" #include "oat_file-inl.h" #include "oat_file_manager.h" #include "runtime-inl.h" #include "vdex_file.h" #include "verifier/verifier_deps.h" namespace art { using android::base::StringPrintf; // Whether OatFile::Open will try dlopen. Fallback is our own ELF loader. static constexpr bool kUseDlopen = true; // Whether OatFile::Open will try dlopen on the host. On the host we're not linking against // bionic, so cannot take advantage of the support for changed semantics (loading the same soname // multiple times). However, if/when we switch the above, we likely want to switch this, too, // to get test coverage of the code paths. static constexpr bool kUseDlopenOnHost = true; // For debugging, Open will print DlOpen error message if set to true. static constexpr bool kPrintDlOpenErrorMessage = false; // Note for OatFileBase and descendents: // // These are used in OatFile::Open to try all our loaders. // // The process is simple: // // 1) Allocate an instance through the standard constructor (location, executable) // 2) Load() to try to open the file. // 3) ComputeFields() to populate the OatFile fields like begin_, using FindDynamicSymbolAddress. // 4) PreSetup() for any steps that should be done before the final setup. // 5) Setup() to complete the procedure. class OatFileBase : public OatFile { public: virtual ~OatFileBase() {} template static OatFileBase* OpenOatFile(int zip_fd, const std::string& vdex_filename, const std::string& elf_filename, const std::string& location, bool writable, bool executable, bool low_4gb, ArrayRef dex_filenames, /*inout*/MemMap* reservation, // Where to load if not null. /*out*/std::string* error_msg); template static OatFileBase* OpenOatFile(int zip_fd, int vdex_fd, int oat_fd, const std::string& vdex_filename, const std::string& oat_filename, bool writable, bool executable, bool low_4gb, ArrayRef dex_filenames, /*inout*/MemMap* reservation, // Where to load if not null. /*out*/std::string* error_msg); protected: OatFileBase(const std::string& filename, bool executable) : OatFile(filename, executable) {} virtual const uint8_t* FindDynamicSymbolAddress(const std::string& symbol_name, std::string* error_msg) const = 0; virtual void PreLoad() = 0; bool LoadVdex(const std::string& vdex_filename, bool writable, bool low_4gb, std::string* error_msg); bool LoadVdex(int vdex_fd, const std::string& vdex_filename, bool writable, bool low_4gb, std::string* error_msg); virtual bool Load(const std::string& elf_filename, bool writable, bool executable, bool low_4gb, /*inout*/MemMap* reservation, // Where to load if not null. /*out*/std::string* error_msg) = 0; virtual bool Load(int oat_fd, bool writable, bool executable, bool low_4gb, /*inout*/MemMap* reservation, // Where to load if not null. /*out*/std::string* error_msg) = 0; bool ComputeFields(const std::string& file_path, std::string* error_msg); virtual void PreSetup(const std::string& elf_filename) = 0; bool Setup(int zip_fd, ArrayRef dex_filenames, std::string* error_msg); bool Setup(const std::vector& dex_files, std::string* error_msg); // Setters exposed for ElfOatFile. void SetBegin(const uint8_t* begin) { begin_ = begin; } void SetEnd(const uint8_t* end) { end_ = end; } void SetVdex(VdexFile* vdex) { vdex_.reset(vdex); } private: // Returns true if we want to remove quickened opcodes before loading the VDEX file, false // otherwise. bool ShouldUnquickenVDex() const; DISALLOW_COPY_AND_ASSIGN(OatFileBase); }; template OatFileBase* OatFileBase::OpenOatFile(int zip_fd, const std::string& vdex_filename, const std::string& elf_filename, const std::string& location, bool writable, bool executable, bool low_4gb, ArrayRef dex_filenames, /*inout*/MemMap* reservation, /*out*/std::string* error_msg) { std::unique_ptr ret(new kOatFileBaseSubType(location, executable)); ret->PreLoad(); if (!ret->Load(elf_filename, writable, executable, low_4gb, reservation, error_msg)) { return nullptr; } if (!ret->ComputeFields(elf_filename, error_msg)) { return nullptr; } ret->PreSetup(elf_filename); if (!ret->LoadVdex(vdex_filename, writable, low_4gb, error_msg)) { return nullptr; } if (!ret->Setup(zip_fd, dex_filenames, error_msg)) { return nullptr; } return ret.release(); } template OatFileBase* OatFileBase::OpenOatFile(int zip_fd, int vdex_fd, int oat_fd, const std::string& vdex_location, const std::string& oat_location, bool writable, bool executable, bool low_4gb, ArrayRef dex_filenames, /*inout*/MemMap* reservation, /*out*/std::string* error_msg) { std::unique_ptr ret(new kOatFileBaseSubType(oat_location, executable)); if (!ret->Load(oat_fd, writable, executable, low_4gb, reservation, error_msg)) { return nullptr; } if (!ret->ComputeFields(oat_location, error_msg)) { return nullptr; } ret->PreSetup(oat_location); if (!ret->LoadVdex(vdex_fd, vdex_location, writable, low_4gb, error_msg)) { return nullptr; } if (!ret->Setup(zip_fd, dex_filenames, error_msg)) { return nullptr; } return ret.release(); } bool OatFileBase::ShouldUnquickenVDex() const { // We sometimes load oat files without a runtime (eg oatdump) and don't want to do anything in // that case. If we are debuggable there are no -quick opcodes to unquicken. If the runtime is not // debuggable we don't care whether there are -quick opcodes or not so no need to do anything. Runtime* runtime = Runtime::Current(); return (runtime != nullptr && runtime->IsJavaDebuggable()) && // Note: This is called before `OatFileBase::Setup()` where we validate the // oat file contents. Check that we have at least a valid header, including // oat file version, to avoid parsing the key-value store for a different // version (out-of-date oat file) which can lead to crashes. b/179221298. // TODO: While this is a poor workaround and the correct solution would be // to postpone the unquickening check until after `OatFileBase::Setup()`, // we prefer to avoid larger rewrites because quickening is deprecated and // should be removed completely anyway. b/170086509 (GetOatHeader().IsValid() && !IsDebuggable()); } bool OatFileBase::LoadVdex(const std::string& vdex_filename, bool writable, bool low_4gb, std::string* error_msg) { vdex_ = VdexFile::OpenAtAddress(vdex_begin_, vdex_end_ - vdex_begin_, /*mmap_reuse=*/ vdex_begin_ != nullptr, vdex_filename, writable, low_4gb, ShouldUnquickenVDex(), error_msg); if (vdex_.get() == nullptr) { *error_msg = StringPrintf("Failed to load vdex file '%s' %s", vdex_filename.c_str(), error_msg->c_str()); return false; } return true; } bool OatFileBase::LoadVdex(int vdex_fd, const std::string& vdex_filename, bool writable, bool low_4gb, std::string* error_msg) { if (vdex_fd != -1) { struct stat s; int rc = TEMP_FAILURE_RETRY(fstat(vdex_fd, &s)); if (rc == -1) { PLOG(WARNING) << "Failed getting length of vdex file"; } else { vdex_ = VdexFile::OpenAtAddress( vdex_begin_, vdex_end_ - vdex_begin_, /*mmap_reuse=*/ vdex_begin_ != nullptr, vdex_fd, s.st_size, vdex_filename, writable, low_4gb, ShouldUnquickenVDex(), error_msg); if (vdex_.get() == nullptr) { *error_msg = "Failed opening vdex file."; return false; } } } return true; } bool OatFileBase::ComputeFields(const std::string& file_path, std::string* error_msg) { std::string symbol_error_msg; begin_ = FindDynamicSymbolAddress("oatdata", &symbol_error_msg); if (begin_ == nullptr) { *error_msg = StringPrintf("Failed to find oatdata symbol in '%s' %s", file_path.c_str(), symbol_error_msg.c_str()); return false; } end_ = FindDynamicSymbolAddress("oatlastword", &symbol_error_msg); if (end_ == nullptr) { *error_msg = StringPrintf("Failed to find oatlastword symbol in '%s' %s", file_path.c_str(), symbol_error_msg.c_str()); return false; } // Readjust to be non-inclusive upper bound. end_ += sizeof(uint32_t); data_bimg_rel_ro_begin_ = FindDynamicSymbolAddress("oatdatabimgrelro", &symbol_error_msg); if (data_bimg_rel_ro_begin_ != nullptr) { data_bimg_rel_ro_end_ = FindDynamicSymbolAddress("oatdatabimgrelrolastword", &symbol_error_msg); if (data_bimg_rel_ro_end_ == nullptr) { *error_msg = StringPrintf("Failed to find oatdatabimgrelrolastword symbol in '%s'", file_path.c_str()); return false; } // Readjust to be non-inclusive upper bound. data_bimg_rel_ro_end_ += sizeof(uint32_t); } bss_begin_ = const_cast(FindDynamicSymbolAddress("oatbss", &symbol_error_msg)); if (bss_begin_ == nullptr) { // No .bss section. bss_end_ = nullptr; } else { bss_end_ = const_cast(FindDynamicSymbolAddress("oatbsslastword", &symbol_error_msg)); if (bss_end_ == nullptr) { *error_msg = StringPrintf("Failed to find oatbsslastword symbol in '%s'", file_path.c_str()); return false; } // Readjust to be non-inclusive upper bound. bss_end_ += sizeof(uint32_t); // Find bss methods if present. bss_methods_ = const_cast(FindDynamicSymbolAddress("oatbssmethods", &symbol_error_msg)); // Find bss roots if present. bss_roots_ = const_cast(FindDynamicSymbolAddress("oatbssroots", &symbol_error_msg)); } vdex_begin_ = const_cast(FindDynamicSymbolAddress("oatdex", &symbol_error_msg)); if (vdex_begin_ == nullptr) { // No .vdex section. vdex_end_ = nullptr; } else { vdex_end_ = const_cast(FindDynamicSymbolAddress("oatdexlastword", &symbol_error_msg)); if (vdex_end_ == nullptr) { *error_msg = StringPrintf("Failed to find oatdexlastword symbol in '%s'", file_path.c_str()); return false; } // Readjust to be non-inclusive upper bound. vdex_end_ += sizeof(uint32_t); } return true; } // Read an unaligned entry from the OatDexFile data in OatFile and advance the read // position by the number of bytes read, i.e. sizeof(T). // Return true on success, false if the read would go beyond the end of the OatFile. template inline static bool ReadOatDexFileData(const OatFile& oat_file, /*inout*/const uint8_t** oat, /*out*/T* value) { DCHECK(oat != nullptr); DCHECK(value != nullptr); DCHECK_LE(*oat, oat_file.End()); if (UNLIKELY(static_cast(oat_file.End() - *oat) < sizeof(T))) { return false; } static_assert(std::is_trivial::value, "T must be a trivial type"); using unaligned_type __attribute__((__aligned__(1))) = T; *value = *reinterpret_cast(*oat); *oat += sizeof(T); return true; } static bool ReadIndexBssMapping(OatFile* oat_file, /*inout*/const uint8_t** oat, size_t dex_file_index, const std::string& dex_file_location, const char* tag, /*out*/const IndexBssMapping** mapping, std::string* error_msg) { uint32_t index_bss_mapping_offset; if (UNLIKELY(!ReadOatDexFileData(*oat_file, oat, &index_bss_mapping_offset))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zd for '%s' truncated " "after %s bss mapping offset", oat_file->GetLocation().c_str(), dex_file_index, dex_file_location.c_str(), tag); return false; } const bool readable_index_bss_mapping_size = index_bss_mapping_offset != 0u && index_bss_mapping_offset <= oat_file->Size() && IsAligned(index_bss_mapping_offset) && oat_file->Size() - index_bss_mapping_offset >= IndexBssMapping::ComputeSize(0); const IndexBssMapping* index_bss_mapping = readable_index_bss_mapping_size ? reinterpret_cast(oat_file->Begin() + index_bss_mapping_offset) : nullptr; if (index_bss_mapping_offset != 0u && (UNLIKELY(index_bss_mapping == nullptr) || UNLIKELY(index_bss_mapping->size() == 0u) || UNLIKELY(oat_file->Size() - index_bss_mapping_offset < IndexBssMapping::ComputeSize(index_bss_mapping->size())))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' with unaligned or " " truncated %s bss mapping, offset %u of %zu, length %zu", oat_file->GetLocation().c_str(), dex_file_index, dex_file_location.c_str(), tag, index_bss_mapping_offset, oat_file->Size(), index_bss_mapping != nullptr ? index_bss_mapping->size() : 0u); return false; } *mapping = index_bss_mapping; return true; } static bool ComputeAndCheckTypeLookupTableData(const DexFile::Header& header, const uint8_t* type_lookup_table_start, const VdexFile* vdex_file, const uint8_t** type_lookup_table_data, std::string* error_msg) { if (type_lookup_table_start == nullptr || reinterpret_cast(type_lookup_table_start)[0] == 0) { *type_lookup_table_data = nullptr; return true; } *type_lookup_table_data = type_lookup_table_start + sizeof(uint32_t); size_t expected_table_size = TypeLookupTable::RawDataLength(header.class_defs_size_); size_t found_size = reinterpret_cast(type_lookup_table_start)[0]; if (UNLIKELY(found_size != expected_table_size)) { *error_msg = StringPrintf("In vdex file '%s' unexpected type lookup table size: found %zu, expected %zu", vdex_file->GetName().c_str(), found_size, expected_table_size); return false; } if (UNLIKELY(!vdex_file->Contains(*type_lookup_table_data))) { *error_msg = StringPrintf("In vdex file '%s' found invalid type lookup table pointer %p not in [%p, %p]", vdex_file->GetName().c_str(), type_lookup_table_data, vdex_file->Begin(), vdex_file->End()); return false; } if (UNLIKELY(!vdex_file->Contains(*type_lookup_table_data + expected_table_size - 1))) { *error_msg = StringPrintf("In vdex file '%s' found overflowing type lookup table %p not in [%p, %p]", vdex_file->GetName().c_str(), type_lookup_table_data + expected_table_size, vdex_file->Begin(), vdex_file->End()); return false; } if (UNLIKELY(!IsAligned<4>(type_lookup_table_start))) { *error_msg = StringPrintf("In vdex file '%s' found invalid type lookup table alignment %p", vdex_file->GetName().c_str(), type_lookup_table_start); return false; } return true; } bool OatFileBase::Setup(const std::vector& dex_files, std::string* error_msg) { uint32_t i = 0; const uint8_t* type_lookup_table_start = nullptr; for (const DexFile* dex_file : dex_files) { std::string dex_location = dex_file->GetLocation(); std::string canonical_location = DexFileLoader::GetDexCanonicalLocation(dex_location.c_str()); type_lookup_table_start = vdex_->GetNextTypeLookupTableData(type_lookup_table_start, i++); const uint8_t* type_lookup_table_data = nullptr; if (!ComputeAndCheckTypeLookupTableData(dex_file->GetHeader(), type_lookup_table_start, vdex_.get(), &type_lookup_table_data, error_msg)) { return false; } // Create an OatDexFile and add it to the owning container. OatDexFile* oat_dex_file = new OatDexFile( this, dex_file->Begin(), dex_file->GetLocationChecksum(), dex_location, canonical_location, type_lookup_table_data); oat_dex_files_storage_.push_back(oat_dex_file); // Add the location and canonical location (if different) to the oat_dex_files_ table. std::string_view key(oat_dex_file->GetDexFileLocation()); oat_dex_files_.Put(key, oat_dex_file); if (canonical_location != dex_location) { std::string_view canonical_key(oat_dex_file->GetCanonicalDexFileLocation()); oat_dex_files_.Put(canonical_key, oat_dex_file); } } // Now that we've created all the OatDexFile, update the dex files. for (i = 0; i < dex_files.size(); ++i) { dex_files[i]->SetOatDexFile(oat_dex_files_storage_[i]); } return true; } bool OatFileBase::Setup(int zip_fd, ArrayRef dex_filenames, std::string* error_msg) { if (!GetOatHeader().IsValid()) { std::string cause = GetOatHeader().GetValidationErrorMessage(); *error_msg = StringPrintf("Invalid oat header for '%s': %s", GetLocation().c_str(), cause.c_str()); return false; } PointerSize pointer_size = GetInstructionSetPointerSize(GetOatHeader().GetInstructionSet()); size_t key_value_store_size = (Size() >= sizeof(OatHeader)) ? GetOatHeader().GetKeyValueStoreSize() : 0u; if (Size() < sizeof(OatHeader) + key_value_store_size) { *error_msg = StringPrintf("In oat file '%s' found truncated OatHeader, " "size = %zu < %zu + %zu", GetLocation().c_str(), Size(), sizeof(OatHeader), key_value_store_size); return false; } size_t oat_dex_files_offset = GetOatHeader().GetOatDexFilesOffset(); if (oat_dex_files_offset < GetOatHeader().GetHeaderSize() || oat_dex_files_offset > Size()) { *error_msg = StringPrintf("In oat file '%s' found invalid oat dex files offset: " "%zu is not in [%zu, %zu]", GetLocation().c_str(), oat_dex_files_offset, GetOatHeader().GetHeaderSize(), Size()); return false; } const uint8_t* oat = Begin() + oat_dex_files_offset; // Jump to the OatDexFile records. if (!IsAligned(data_bimg_rel_ro_begin_) || !IsAligned(data_bimg_rel_ro_end_) || data_bimg_rel_ro_begin_ > data_bimg_rel_ro_end_) { *error_msg = StringPrintf("In oat file '%s' found unaligned or unordered databimgrelro " "symbol(s): begin = %p, end = %p", GetLocation().c_str(), data_bimg_rel_ro_begin_, data_bimg_rel_ro_end_); return false; } DCHECK_GE(static_cast(pointer_size), alignof(GcRoot)); if (!IsAligned(bss_begin_) || !IsAlignedParam(bss_methods_, static_cast(pointer_size)) || !IsAlignedParam(bss_roots_, static_cast(pointer_size)) || !IsAligned)>(bss_end_)) { *error_msg = StringPrintf("In oat file '%s' found unaligned bss symbol(s): " "begin = %p, methods_ = %p, roots = %p, end = %p", GetLocation().c_str(), bss_begin_, bss_methods_, bss_roots_, bss_end_); return false; } if ((bss_methods_ != nullptr && (bss_methods_ < bss_begin_ || bss_methods_ > bss_end_)) || (bss_roots_ != nullptr && (bss_roots_ < bss_begin_ || bss_roots_ > bss_end_)) || (bss_methods_ != nullptr && bss_roots_ != nullptr && bss_methods_ > bss_roots_)) { *error_msg = StringPrintf("In oat file '%s' found bss symbol(s) outside .bss or unordered: " "begin = %p, methods = %p, roots = %p, end = %p", GetLocation().c_str(), bss_begin_, bss_methods_, bss_roots_, bss_end_); return false; } if (bss_methods_ != nullptr && bss_methods_ != bss_begin_) { *error_msg = StringPrintf("In oat file '%s' found unexpected .bss gap before 'oatbssmethods': " "begin = %p, methods = %p", GetLocation().c_str(), bss_begin_, bss_methods_); return false; } std::string_view primary_location; std::string_view primary_location_replacement; size_t dex_filenames_pos = 0u; uint32_t dex_file_count = GetOatHeader().GetDexFileCount(); oat_dex_files_storage_.reserve(dex_file_count); for (size_t i = 0; i < dex_file_count; i++) { uint32_t dex_file_location_size; if (UNLIKELY(!ReadOatDexFileData(*this, &oat, &dex_file_location_size))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu truncated after dex file " "location size", GetLocation().c_str(), i); return false; } if (UNLIKELY(dex_file_location_size == 0U)) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu with empty location name", GetLocation().c_str(), i); return false; } if (UNLIKELY(static_cast(End() - oat) < dex_file_location_size)) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu with truncated dex file " "location", GetLocation().c_str(), i); return false; } const char* dex_file_location_data = reinterpret_cast(oat); oat += dex_file_location_size; // Location encoded in the oat file. We will use this for multidex naming. std::string_view oat_dex_file_location(dex_file_location_data, dex_file_location_size); std::string dex_file_location(oat_dex_file_location); bool is_multidex = DexFileLoader::IsMultiDexLocation(dex_file_location.c_str()); // Check that `is_multidex` does not clash with other indicators. The first dex location // must be primary location and, if we're opening external dex files, the location must // be multi-dex if and only if we already have a dex file opened for it. if ((i == 0 && is_multidex) || (!external_dex_files_.empty() && (is_multidex != (i < external_dex_files_.size())))) { *error_msg = StringPrintf("In oat file '%s' found unexpected %s location '%s'", GetLocation().c_str(), is_multidex ? "multi-dex" : "primary", dex_file_location.c_str()); return false; } // Remember the primary location and, if provided, the replacement from `dex_filenames`. if (!is_multidex) { primary_location = oat_dex_file_location; if (!dex_filenames.empty()) { if (dex_filenames_pos == dex_filenames.size()) { *error_msg = StringPrintf("In oat file '%s' found excessive primary location '%s'" ", expected only %zu primary locations", GetLocation().c_str(), dex_file_location.c_str(), dex_filenames.size()); return false; } primary_location_replacement = dex_filenames[dex_filenames_pos]; ++dex_filenames_pos; } } // Check that the base location of a multidex location matches the last seen primary location. if (is_multidex && (!StartsWith(dex_file_location, primary_location) || dex_file_location[primary_location.size()] != DexFileLoader::kMultiDexSeparator)) { *error_msg = StringPrintf("In oat file '%s' found unexpected multidex location '%s'," " unrelated to '%s'", GetLocation().c_str(), dex_file_location.c_str(), std::string(primary_location).c_str()); return false; } std::string dex_file_name = dex_file_location; if (!dex_filenames.empty()) { dex_file_name.replace(/*pos*/ 0u, primary_location.size(), primary_location_replacement); // If the location does not contain path and matches the file name component, // use the provided file name also as the location. // TODO: Do we need this for anything other than tests? if (dex_file_location.find('/') == std::string::npos && dex_file_name.size() > dex_file_location.size() && dex_file_name[dex_file_name.size() - dex_file_location.size() - 1u] == '/' && EndsWith(dex_file_name, dex_file_location)) { dex_file_location = dex_file_name; } } uint32_t dex_file_checksum; if (UNLIKELY(!ReadOatDexFileData(*this, &oat, &dex_file_checksum))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' truncated after " "dex file checksum", GetLocation().c_str(), i, dex_file_location.c_str()); return false; } uint32_t dex_file_offset; if (UNLIKELY(!ReadOatDexFileData(*this, &oat, &dex_file_offset))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' truncated " "after dex file offsets", GetLocation().c_str(), i, dex_file_location.c_str()); return false; } if (UNLIKELY(dex_file_offset > DexSize())) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' with dex file " "offset %u > %zu", GetLocation().c_str(), i, dex_file_location.c_str(), dex_file_offset, DexSize()); return false; } const uint8_t* dex_file_pointer = nullptr; if (UNLIKELY(dex_file_offset == 0U)) { // Do not support mixed-mode oat files. if (i != 0u && external_dex_files_.empty()) { *error_msg = StringPrintf("In oat file '%s', unsupported uncompressed-dex-file for dex " "file %zu (%s)", GetLocation().c_str(), i, dex_file_location.c_str()); return false; } DCHECK_LE(i, external_dex_files_.size()); if (i == external_dex_files_.size()) { std::vector> new_dex_files; // No dex files, load it from location. const ArtDexFileLoader dex_file_loader; bool loaded = false; if (zip_fd != -1) { loaded = dex_file_loader.OpenZip(zip_fd, dex_file_location, /*verify=*/ false, /*verify_checksum=*/ false, error_msg, &new_dex_files); } else { loaded = dex_file_loader.Open(dex_file_name.c_str(), dex_file_location, /*verify=*/ false, /*verify_checksum=*/ false, error_msg, &new_dex_files); } if (!loaded) { if (Runtime::Current() == nullptr) { // If there's no runtime, we're running oatdump, so return // a half constructed oat file that oatdump knows how to deal with. LOG(WARNING) << "Could not find associated dex files of oat file. " << "Oatdump will only dump the header."; return true; } else { return false; } } // The oat file may be out of date wrt/ the dex-file location. We need to be defensive // here and ensure that at least the number of dex files still matches. // If we have a zip_fd, or reached the end of provided `dex_filenames`, we must // load all dex files from that file, otherwise we may open multiple files. // Note: actual checksum comparisons are the duty of the OatFileAssistant and will be // done after loading the OatFile. size_t max_dex_files = dex_file_count - external_dex_files_.size(); bool expect_all = (zip_fd != -1) || (!dex_filenames.empty() && dex_filenames_pos == dex_filenames.size()); if (expect_all ? new_dex_files.size() != max_dex_files : new_dex_files.size() > max_dex_files) { *error_msg = StringPrintf("In oat file '%s', expected %s%zu uncompressed dex files, but " "found %zu in '%s'", GetLocation().c_str(), (expect_all ? "" : "<="), max_dex_files, new_dex_files.size(), dex_file_location.c_str()); return false; } for (std::unique_ptr& dex_file : new_dex_files) { external_dex_files_.push_back(std::move(dex_file)); } } dex_file_pointer = external_dex_files_[i]->Begin(); } else { // Do not support mixed-mode oat files. if (!external_dex_files_.empty()) { *error_msg = StringPrintf("In oat file '%s', unsupported embedded dex-file for dex file " "%zu (%s)", GetLocation().c_str(), i, dex_file_location.c_str()); return false; } if (UNLIKELY(DexSize() - dex_file_offset < sizeof(DexFile::Header))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' with dex file " "offset %u of %zu but the size of dex file header is %zu", GetLocation().c_str(), i, dex_file_location.c_str(), dex_file_offset, DexSize(), sizeof(DexFile::Header)); return false; } dex_file_pointer = DexBegin() + dex_file_offset; } const bool valid_magic = DexFileLoader::IsMagicValid(dex_file_pointer); if (UNLIKELY(!valid_magic)) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' with invalid " "dex file magic", GetLocation().c_str(), i, dex_file_location.c_str()); return false; } if (UNLIKELY(!DexFileLoader::IsVersionAndMagicValid(dex_file_pointer))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' with invalid " "dex file version", GetLocation().c_str(), i, dex_file_location.c_str()); return false; } const DexFile::Header* header = reinterpret_cast(dex_file_pointer); if (dex_file_offset != 0 && (DexSize() - dex_file_offset < header->file_size_)) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' with dex file " "offset %u and size %u truncated at %zu", GetLocation().c_str(), i, dex_file_location.c_str(), dex_file_offset, header->file_size_, DexSize()); return false; } uint32_t class_offsets_offset; if (UNLIKELY(!ReadOatDexFileData(*this, &oat, &class_offsets_offset))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' truncated " "after class offsets offset", GetLocation().c_str(), i, dex_file_location.c_str()); return false; } if (UNLIKELY(class_offsets_offset > Size()) || UNLIKELY((Size() - class_offsets_offset) / sizeof(uint32_t) < header->class_defs_size_)) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' with truncated " "class offsets, offset %u of %zu, class defs %u", GetLocation().c_str(), i, dex_file_location.c_str(), class_offsets_offset, Size(), header->class_defs_size_); return false; } if (UNLIKELY(!IsAligned(class_offsets_offset))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' with unaligned " "class offsets, offset %u", GetLocation().c_str(), i, dex_file_location.c_str(), class_offsets_offset); return false; } const uint32_t* class_offsets_pointer = reinterpret_cast(Begin() + class_offsets_offset); uint32_t lookup_table_offset; if (UNLIKELY(!ReadOatDexFileData(*this, &oat, &lookup_table_offset))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zd for '%s' truncated " "after lookup table offset", GetLocation().c_str(), i, dex_file_location.c_str()); return false; } const uint8_t* lookup_table_data = lookup_table_offset != 0u ? DexBegin() + lookup_table_offset : nullptr; if (lookup_table_offset != 0u && (UNLIKELY(lookup_table_offset > DexSize()) || UNLIKELY(DexSize() - lookup_table_offset < TypeLookupTable::RawDataLength(header->class_defs_size_)))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zu for '%s' with truncated " "type lookup table, offset %u of %zu, class defs %u", GetLocation().c_str(), i, dex_file_location.c_str(), lookup_table_offset, Size(), header->class_defs_size_); return false; } uint32_t dex_layout_sections_offset; if (UNLIKELY(!ReadOatDexFileData(*this, &oat, &dex_layout_sections_offset))) { *error_msg = StringPrintf("In oat file '%s' found OatDexFile #%zd for '%s' truncated " "after dex layout sections offset", GetLocation().c_str(), i, dex_file_location.c_str()); return false; } const DexLayoutSections* const dex_layout_sections = dex_layout_sections_offset != 0 ? reinterpret_cast(Begin() + dex_layout_sections_offset) : nullptr; const IndexBssMapping* method_bss_mapping; const IndexBssMapping* type_bss_mapping; const IndexBssMapping* public_type_bss_mapping; const IndexBssMapping* package_type_bss_mapping; const IndexBssMapping* string_bss_mapping; if (!ReadIndexBssMapping( this, &oat, i, dex_file_location, "method", &method_bss_mapping, error_msg) || !ReadIndexBssMapping( this, &oat, i, dex_file_location, "type", &type_bss_mapping, error_msg) || !ReadIndexBssMapping( this, &oat, i, dex_file_location, "type", &public_type_bss_mapping, error_msg) || !ReadIndexBssMapping( this, &oat, i, dex_file_location, "type", &package_type_bss_mapping, error_msg) || !ReadIndexBssMapping( this, &oat, i, dex_file_location, "string", &string_bss_mapping, error_msg)) { return false; } // Create the OatDexFile and add it to the owning container. OatDexFile* oat_dex_file = new OatDexFile( this, dex_file_location, DexFileLoader::GetDexCanonicalLocation(dex_file_name.c_str()), dex_file_checksum, dex_file_pointer, lookup_table_data, method_bss_mapping, type_bss_mapping, public_type_bss_mapping, package_type_bss_mapping, string_bss_mapping, class_offsets_pointer, dex_layout_sections); oat_dex_files_storage_.push_back(oat_dex_file); // Add the location and canonical location (if different) to the oat_dex_files_ table. // Note: We do not add the non-canonical `dex_file_name`. If it is different from both // the location and canonical location, GetOatDexFile() shall canonicalize it when // requested and match the canonical path. std::string_view key = oat_dex_file_location; // References oat file data. std::string_view canonical_key(oat_dex_file->GetCanonicalDexFileLocation()); oat_dex_files_.Put(key, oat_dex_file); if (canonical_key != key) { oat_dex_files_.Put(canonical_key, oat_dex_file); } } if (!dex_filenames.empty() && dex_filenames_pos != dex_filenames.size()) { *error_msg = StringPrintf("Oat file '%s' contains only %zu primary dex locations, expected %zu", GetLocation().c_str(), dex_filenames_pos, dex_filenames.size()); return false; } if (DataBimgRelRoBegin() != nullptr) { // Make .data.bimg.rel.ro read only. ClassLinker shall temporarily make it writable for // relocation when we register a dex file from this oat file. We do not do the relocation // here to avoid dirtying the pages if the code is never actually ready to be executed. uint8_t* reloc_begin = const_cast(DataBimgRelRoBegin()); CheckedCall(mprotect, "protect relocations", reloc_begin, DataBimgRelRoSize(), PROT_READ); // Make sure the file lists a boot image dependency, otherwise the .data.bimg.rel.ro // section is bogus. The full dependency is checked before the code is executed. // We cannot do this check if we do not have a key-value store, i.e. for secondary // oat files for boot image extensions. if (GetOatHeader().GetKeyValueStoreSize() != 0u) { const char* boot_class_path_checksum = GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey); if (boot_class_path_checksum == nullptr || boot_class_path_checksum[0] != gc::space::ImageSpace::kImageChecksumPrefix) { *error_msg = StringPrintf("Oat file '%s' contains .data.bimg.rel.ro section " "without boot image dependency.", GetLocation().c_str()); return false; } } } return true; } //////////////////////// // OatFile via dlopen // //////////////////////// class DlOpenOatFile final : public OatFileBase { public: DlOpenOatFile(const std::string& filename, bool executable) : OatFileBase(filename, executable), dlopen_handle_(nullptr), shared_objects_before_(0) { } ~DlOpenOatFile() { if (dlopen_handle_ != nullptr) { if (!kIsTargetBuild) { MutexLock mu(Thread::Current(), *Locks::host_dlopen_handles_lock_); host_dlopen_handles_.erase(dlopen_handle_); dlclose(dlopen_handle_); } else { dlclose(dlopen_handle_); } } } protected: const uint8_t* FindDynamicSymbolAddress(const std::string& symbol_name, std::string* error_msg) const override { const uint8_t* ptr = reinterpret_cast(dlsym(dlopen_handle_, symbol_name.c_str())); if (ptr == nullptr) { *error_msg = dlerror(); } return ptr; } void PreLoad() override; bool Load(const std::string& elf_filename, bool writable, bool executable, bool low_4gb, /*inout*/MemMap* reservation, // Where to load if not null. /*out*/std::string* error_msg) override; bool Load(int oat_fd ATTRIBUTE_UNUSED, bool writable ATTRIBUTE_UNUSED, bool executable ATTRIBUTE_UNUSED, bool low_4gb ATTRIBUTE_UNUSED, /*inout*/MemMap* reservation ATTRIBUTE_UNUSED, /*out*/std::string* error_msg ATTRIBUTE_UNUSED) override { return false; } // Ask the linker where it mmaped the file and notify our mmap wrapper of the regions. void PreSetup(const std::string& elf_filename) override; private: bool Dlopen(const std::string& elf_filename, /*inout*/MemMap* reservation, // Where to load if not null. /*out*/std::string* error_msg); // On the host, if the same library is loaded again with dlopen the same // file handle is returned. This differs from the behavior of dlopen on the // target, where dlopen reloads the library at a different address every // time you load it. The runtime relies on the target behavior to ensure // each instance of the loaded library has a unique dex cache. To avoid // problems, we fall back to our own linker in the case when the same // library is opened multiple times on host. dlopen_handles_ is used to // detect that case. // Guarded by host_dlopen_handles_lock_; static std::unordered_set host_dlopen_handles_; // Reservation and placeholder memory map objects corresponding to the regions mapped by dlopen. // Note: Must be destroyed after dlclose() as it can hold the owning reservation. std::vector dlopen_mmaps_; // dlopen handle during runtime. void* dlopen_handle_; // TODO: Unique_ptr with custom deleter. // The number of shared objects the linker told us about before loading. Used to // (optimistically) optimize the PreSetup stage (see comment there). size_t shared_objects_before_; DISALLOW_COPY_AND_ASSIGN(DlOpenOatFile); }; std::unordered_set DlOpenOatFile::host_dlopen_handles_; void DlOpenOatFile::PreLoad() { #ifdef __APPLE__ UNUSED(shared_objects_before_); LOG(FATAL) << "Should not reach here."; UNREACHABLE(); #else // Count the entries in dl_iterate_phdr we get at this point in time. struct dl_iterate_context { static int callback(dl_phdr_info* info ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED, void* data) { reinterpret_cast(data)->count++; return 0; // Continue iteration. } size_t count = 0; } context; dl_iterate_phdr(dl_iterate_context::callback, &context); shared_objects_before_ = context.count; #endif } bool DlOpenOatFile::Load(const std::string& elf_filename, bool writable, bool executable, bool low_4gb, /*inout*/MemMap* reservation, // Where to load if not null. /*out*/std::string* error_msg) { // Use dlopen only when flagged to do so, and when it's OK to load things executable. // TODO: Also try when not executable? The issue here could be re-mapping as writable (as // !executable is a sign that we may want to patch), which may not be allowed for // various reasons. if (!kUseDlopen) { *error_msg = "DlOpen is disabled."; return false; } if (low_4gb) { *error_msg = "DlOpen does not support low 4gb loading."; return false; } if (writable) { *error_msg = "DlOpen does not support writable loading."; return false; } if (!executable) { *error_msg = "DlOpen does not support non-executable loading."; return false; } // dlopen always returns the same library if it is already opened on the host. For this reason // we only use dlopen if we are the target or we do not already have the dex file opened. Having // the same library loaded multiple times at different addresses is required for class unloading // and for having dex caches arrays in the .bss section. if (!kIsTargetBuild) { if (!kUseDlopenOnHost) { *error_msg = "DlOpen disabled for host."; return false; } } bool success = Dlopen(elf_filename, reservation, error_msg); DCHECK(dlopen_handle_ != nullptr || !success); return success; } #ifdef ART_TARGET_ANDROID static struct android_namespace_t* GetSystemLinkerNamespace() { static struct android_namespace_t* system_ns = []() { // The system namespace is called "default" for binaries in /system and // "system" for those in the ART APEX. Try "system" first since "default" // always exists. // TODO(b/185587109): Get rid of this error prone logic. struct android_namespace_t* ns = android_get_exported_namespace("system"); if (ns == nullptr) { ns = android_get_exported_namespace("default"); if (ns == nullptr) { LOG(FATAL) << "Failed to get system namespace for loading OAT files"; } } return ns; }(); return system_ns; } #endif // ART_TARGET_ANDROID bool DlOpenOatFile::Dlopen(const std::string& elf_filename, /*inout*/MemMap* reservation, /*out*/std::string* error_msg) { #ifdef __APPLE__ // The dl_iterate_phdr syscall is missing. There is similar API on OSX, // but let's fallback to the custom loading code for the time being. UNUSED(elf_filename, reservation); *error_msg = "Dlopen unsupported on Mac."; return false; #else { UniqueCPtr absolute_path(realpath(elf_filename.c_str(), nullptr)); if (absolute_path == nullptr) { *error_msg = StringPrintf("Failed to find absolute path for '%s'", elf_filename.c_str()); return false; } #ifdef ART_TARGET_ANDROID android_dlextinfo extinfo = {}; extinfo.flags = ANDROID_DLEXT_FORCE_LOAD; // Force-load, don't reuse handle // (open oat files multiple times). if (reservation != nullptr) { if (!reservation->IsValid()) { *error_msg = StringPrintf("Invalid reservation for %s", elf_filename.c_str()); return false; } extinfo.flags |= ANDROID_DLEXT_RESERVED_ADDRESS; // Use the reserved memory range. extinfo.reserved_addr = reservation->Begin(); extinfo.reserved_size = reservation->Size(); } if (strncmp(kAndroidArtApexDefaultPath, absolute_path.get(), sizeof(kAndroidArtApexDefaultPath) - 1) != 0 || absolute_path.get()[sizeof(kAndroidArtApexDefaultPath) - 1] != '/') { // Use the system namespace for OAT files outside the ART APEX. Search // paths and links don't matter here, but permitted paths do, and the // system namespace is configured to allow loading from all appropriate // locations. extinfo.flags |= ANDROID_DLEXT_USE_NAMESPACE; extinfo.library_namespace = GetSystemLinkerNamespace(); } dlopen_handle_ = android_dlopen_ext(absolute_path.get(), RTLD_NOW, &extinfo); if (reservation != nullptr && dlopen_handle_ != nullptr) { // Find used pages from the reservation. struct dl_iterate_context { static int callback(dl_phdr_info* info, size_t size ATTRIBUTE_UNUSED, void* data) { auto* context = reinterpret_cast(data); static_assert(std::is_same::value, "Half must match"); using Elf_Half = Elf64_Half; // See whether this callback corresponds to the file which we have just loaded. uint8_t* reservation_begin = context->reservation->Begin(); bool contained_in_reservation = false; for (Elf_Half i = 0; i < info->dlpi_phnum; i++) { if (info->dlpi_phdr[i].p_type == PT_LOAD) { uint8_t* vaddr = reinterpret_cast(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr); size_t memsz = info->dlpi_phdr[i].p_memsz; size_t offset = static_cast(vaddr - reservation_begin); if (offset < context->reservation->Size()) { contained_in_reservation = true; DCHECK_LE(memsz, context->reservation->Size() - offset); } else if (vaddr < reservation_begin) { // Check that there's no overlap with the reservation. DCHECK_LE(memsz, static_cast(reservation_begin - vaddr)); } break; // It is sufficient to check the first PT_LOAD header. } } if (contained_in_reservation) { for (Elf_Half i = 0; i < info->dlpi_phnum; i++) { if (info->dlpi_phdr[i].p_type == PT_LOAD) { uint8_t* vaddr = reinterpret_cast(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr); size_t memsz = info->dlpi_phdr[i].p_memsz; size_t offset = static_cast(vaddr - reservation_begin); DCHECK_LT(offset, context->reservation->Size()); DCHECK_LE(memsz, context->reservation->Size() - offset); context->max_size = std::max(context->max_size, offset + memsz); } } return 1; // Stop iteration and return 1 from dl_iterate_phdr. } return 0; // Continue iteration and return 0 from dl_iterate_phdr when finished. } const MemMap* const reservation; size_t max_size = 0u; }; dl_iterate_context context = { reservation }; if (dl_iterate_phdr(dl_iterate_context::callback, &context) == 0) { LOG(FATAL) << "Could not find the shared object mmapped to the reservation."; UNREACHABLE(); } // Take ownership of the memory used by the shared object. dlopen() does not assume // full ownership of this memory and dlclose() shall just remap it as zero pages with // PROT_NONE. We need to unmap the memory when destroying this oat file. dlopen_mmaps_.push_back(reservation->TakeReservedMemory(context.max_size)); } #else static_assert(!kIsTargetBuild || kIsTargetLinux || kIsTargetFuchsia, "host_dlopen_handles_ will leak handles"); if (reservation != nullptr) { *error_msg = StringPrintf("dlopen() into reserved memory is unsupported on host for '%s'.", elf_filename.c_str()); return false; } MutexLock mu(Thread::Current(), *Locks::host_dlopen_handles_lock_); dlopen_handle_ = dlopen(absolute_path.get(), RTLD_NOW); if (dlopen_handle_ != nullptr) { if (!host_dlopen_handles_.insert(dlopen_handle_).second) { dlclose(dlopen_handle_); dlopen_handle_ = nullptr; *error_msg = StringPrintf("host dlopen re-opened '%s'", elf_filename.c_str()); return false; } } #endif // ART_TARGET_ANDROID } if (dlopen_handle_ == nullptr) { *error_msg = StringPrintf("Failed to dlopen '%s': %s", elf_filename.c_str(), dlerror()); return false; } return true; #endif } void DlOpenOatFile::PreSetup(const std::string& elf_filename) { #ifdef __APPLE__ UNUSED(elf_filename); LOG(FATAL) << "Should not reach here."; UNREACHABLE(); #else struct PlaceholderMapData { const char* name; uint8_t* vaddr; size_t memsz; }; struct dl_iterate_context { static int callback(dl_phdr_info* info, size_t size ATTRIBUTE_UNUSED, void* data) { auto* context = reinterpret_cast(data); static_assert(std::is_same::value, "Half must match"); using Elf_Half = Elf64_Half; context->shared_objects_seen++; if (context->shared_objects_seen < context->shared_objects_before) { // We haven't been called yet for anything we haven't seen before. Just continue. // Note: this is aggressively optimistic. If another thread was unloading a library, // we may miss out here. However, this does not happen often in practice. return 0; } // See whether this callback corresponds to the file which we have just loaded. bool contains_begin = false; for (Elf_Half i = 0; i < info->dlpi_phnum; i++) { if (info->dlpi_phdr[i].p_type == PT_LOAD) { uint8_t* vaddr = reinterpret_cast(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr); size_t memsz = info->dlpi_phdr[i].p_memsz; if (vaddr <= context->begin_ && context->begin_ < vaddr + memsz) { contains_begin = true; break; } } } // Add placeholder mmaps for this file. if (contains_begin) { for (Elf_Half i = 0; i < info->dlpi_phnum; i++) { if (info->dlpi_phdr[i].p_type == PT_LOAD) { uint8_t* vaddr = reinterpret_cast(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr); size_t memsz = info->dlpi_phdr[i].p_memsz; size_t name_size = strlen(info->dlpi_name) + 1u; std::vector* placeholder_maps_names = context->placeholder_maps_names_; // We must not allocate any memory in the callback, see b/156312036 . if (name_size < placeholder_maps_names->capacity() - placeholder_maps_names->size() && context->placeholder_maps_data_->size() < context->placeholder_maps_data_->capacity()) { placeholder_maps_names->insert( placeholder_maps_names->end(), info->dlpi_name, info->dlpi_name + name_size); const char* name = &(*placeholder_maps_names)[placeholder_maps_names->size() - name_size]; context->placeholder_maps_data_->push_back({ name, vaddr, memsz }); } context->num_placeholder_maps_ += 1u; context->placeholder_maps_names_size_ += name_size; } } return 1; // Stop iteration and return 1 from dl_iterate_phdr. } return 0; // Continue iteration and return 0 from dl_iterate_phdr when finished. } const uint8_t* const begin_; std::vector* placeholder_maps_data_; size_t num_placeholder_maps_; std::vector* placeholder_maps_names_; size_t placeholder_maps_names_size_; size_t shared_objects_before; size_t shared_objects_seen; }; // We must not allocate any memory in the callback, see b/156312036 . // Therefore we pre-allocate storage for the data we need for creating the placeholder maps. std::vector placeholder_maps_data; placeholder_maps_data.reserve(32); // 32 should be enough. If not, we'll retry. std::vector placeholder_maps_names; placeholder_maps_names.reserve(4 * KB); // 4KiB should be enough. If not, we'll retry. dl_iterate_context context = { Begin(), &placeholder_maps_data, /*num_placeholder_maps_*/ 0u, &placeholder_maps_names, /*placeholder_maps_names_size_*/ 0u, shared_objects_before_, /*shared_objects_seen*/ 0u }; if (dl_iterate_phdr(dl_iterate_context::callback, &context) == 0) { // Hm. Maybe our optimization went wrong. Try another time with shared_objects_before == 0 // before giving up. This should be unusual. VLOG(oat) << "Need a second run in PreSetup, didn't find with shared_objects_before=" << shared_objects_before_; DCHECK(placeholder_maps_data.empty()); DCHECK_EQ(context.num_placeholder_maps_, 0u); DCHECK(placeholder_maps_names.empty()); DCHECK_EQ(context.placeholder_maps_names_size_, 0u); context.shared_objects_before = 0u; context.shared_objects_seen = 0u; if (dl_iterate_phdr(dl_iterate_context::callback, &context) == 0) { // OK, give up and print an error. PrintFileToLog("/proc/self/maps", android::base::LogSeverity::WARNING); LOG(ERROR) << "File " << elf_filename << " loaded with dlopen but cannot find its mmaps."; } } if (placeholder_maps_data.size() < context.num_placeholder_maps_) { // Insufficient capacity. Reserve more space and retry. placeholder_maps_data.clear(); placeholder_maps_data.reserve(context.num_placeholder_maps_); context.num_placeholder_maps_ = 0u; placeholder_maps_names.clear(); placeholder_maps_names.reserve(context.placeholder_maps_names_size_); context.placeholder_maps_names_size_ = 0u; context.shared_objects_before = 0u; context.shared_objects_seen = 0u; bool success = (dl_iterate_phdr(dl_iterate_context::callback, &context) != 0); CHECK(success); } CHECK_EQ(placeholder_maps_data.size(), context.num_placeholder_maps_); CHECK_EQ(placeholder_maps_names.size(), context.placeholder_maps_names_size_); DCHECK_EQ(static_cast(std::count(placeholder_maps_names.begin(), placeholder_maps_names.end(), '\0')), context.num_placeholder_maps_); for (const PlaceholderMapData& data : placeholder_maps_data) { MemMap mmap = MemMap::MapPlaceholder(data.name, data.vaddr, data.memsz); dlopen_mmaps_.push_back(std::move(mmap)); } #endif } //////////////////////////////////////////////// // OatFile via our own ElfFile implementation // //////////////////////////////////////////////// class ElfOatFile final : public OatFileBase { public: ElfOatFile(const std::string& filename, bool executable) : OatFileBase(filename, executable) {} bool InitializeFromElfFile(int zip_fd, ElfFile* elf_file, VdexFile* vdex_file, ArrayRef dex_filenames, std::string* error_msg); protected: const uint8_t* FindDynamicSymbolAddress(const std::string& symbol_name, std::string* error_msg) const override { const uint8_t* ptr = elf_file_->FindDynamicSymbolAddress(symbol_name); if (ptr == nullptr) { *error_msg = "(Internal implementation could not find symbol)"; } return ptr; } void PreLoad() override { } bool Load(const std::string& elf_filename, bool writable, bool executable, bool low_4gb, /*inout*/MemMap* reservation, // Where to load if not null. /*out*/std::string* error_msg) override; bool Load(int oat_fd, bool writable, bool executable, bool low_4gb, /*inout*/MemMap* reservation, // Where to load if not null. /*out*/std::string* error_msg) override; void PreSetup(const std::string& elf_filename ATTRIBUTE_UNUSED) override { } private: bool ElfFileOpen(File* file, bool writable, bool executable, bool low_4gb, /*inout*/MemMap* reservation, // Where to load if not null. /*out*/std::string* error_msg); private: // Backing memory map for oat file during cross compilation. std::unique_ptr elf_file_; DISALLOW_COPY_AND_ASSIGN(ElfOatFile); }; bool ElfOatFile::InitializeFromElfFile(int zip_fd, ElfFile* elf_file, VdexFile* vdex_file, ArrayRef dex_filenames, std::string* error_msg) { ScopedTrace trace(__PRETTY_FUNCTION__); if (IsExecutable()) { *error_msg = "Cannot initialize from elf file in executable mode."; return false; } elf_file_.reset(elf_file); SetVdex(vdex_file); uint64_t offset, size; bool has_section = elf_file->GetSectionOffsetAndSize(".rodata", &offset, &size); CHECK(has_section); SetBegin(elf_file->Begin() + offset); SetEnd(elf_file->Begin() + size + offset); // Ignore the optional .bss section when opening non-executable. return Setup(zip_fd, dex_filenames, error_msg); } bool ElfOatFile::Load(const std::string& elf_filename, bool writable, bool executable, bool low_4gb, /*inout*/MemMap* reservation, /*out*/std::string* error_msg) { ScopedTrace trace(__PRETTY_FUNCTION__); std::unique_ptr file(OS::OpenFileForReading(elf_filename.c_str())); if (file == nullptr) { *error_msg = StringPrintf("Failed to open oat filename for reading: %s", strerror(errno)); return false; } return ElfOatFile::ElfFileOpen(file.get(), writable, executable, low_4gb, reservation, error_msg); } bool ElfOatFile::Load(int oat_fd, bool writable, bool executable, bool low_4gb, /*inout*/MemMap* reservation, /*out*/std::string* error_msg) { ScopedTrace trace(__PRETTY_FUNCTION__); if (oat_fd != -1) { int duped_fd = DupCloexec(oat_fd); std::unique_ptr file = std::make_unique(duped_fd, false); if (file == nullptr) { *error_msg = StringPrintf("Failed to open oat filename for reading: %s", strerror(errno)); return false; } return ElfOatFile::ElfFileOpen(file.get(), writable, executable, low_4gb, reservation, error_msg); } return false; } bool ElfOatFile::ElfFileOpen(File* file, bool writable, bool executable, bool low_4gb, /*inout*/MemMap* reservation, /*out*/std::string* error_msg) { ScopedTrace trace(__PRETTY_FUNCTION__); elf_file_.reset(ElfFile::Open(file, writable, /*program_header_only=*/ true, low_4gb, error_msg)); if (elf_file_ == nullptr) { DCHECK(!error_msg->empty()); return false; } bool loaded = elf_file_->Load(file, executable, low_4gb, reservation, error_msg); DCHECK(loaded || !error_msg->empty()); return loaded; } class OatFileBackedByVdex final : public OatFileBase { public: explicit OatFileBackedByVdex(const std::string& filename) : OatFileBase(filename, /*executable=*/ false) {} static OatFileBackedByVdex* Open(const std::vector& dex_files, std::unique_ptr&& vdex_file, const std::string& location) { std::unique_ptr oat_file(new OatFileBackedByVdex(location)); // SetVdex will take ownership of the VdexFile. oat_file->SetVdex(vdex_file.release()); oat_file->SetupHeader(dex_files.size()); // Initialize OatDexFiles. std::string error_msg; if (!oat_file->Setup(dex_files, &error_msg)) { LOG(WARNING) << "Could not create in-memory vdex file: " << error_msg; return nullptr; } return oat_file.release(); } static OatFileBackedByVdex* Open(int zip_fd, std::unique_ptr&& unique_vdex_file, const std::string& dex_location, std::string* error_msg) { VdexFile* vdex_file = unique_vdex_file.get(); std::unique_ptr oat_file(new OatFileBackedByVdex(vdex_file->GetName())); // SetVdex will take ownership of the VdexFile. oat_file->SetVdex(unique_vdex_file.release()); if (vdex_file->HasDexSection()) { uint32_t i = 0; const uint8_t* type_lookup_table_start = nullptr; for (const uint8_t* dex_file_start = vdex_file->GetNextDexFileData(nullptr, i); dex_file_start != nullptr; dex_file_start = vdex_file->GetNextDexFileData(dex_file_start, ++i)) { const DexFile::Header* header = reinterpret_cast(dex_file_start); if (UNLIKELY(!vdex_file->Contains(dex_file_start))) { *error_msg = StringPrintf("In vdex file '%s' found invalid dex file pointer %p not in [%p, %p]", dex_location.c_str(), dex_file_start, vdex_file->Begin(), vdex_file->End()); return nullptr; } if (UNLIKELY(!vdex_file->Contains(dex_file_start + header->file_size_ - 1))) { *error_msg = StringPrintf("In vdex file '%s' found overflowing dex file %p not in [%p, %p]", dex_location.c_str(), dex_file_start + header->file_size_, vdex_file->Begin(), vdex_file->End()); return nullptr; } if (UNLIKELY(!DexFileLoader::IsVersionAndMagicValid(dex_file_start))) { *error_msg = StringPrintf("In vdex file '%s' found dex file with invalid dex file version", dex_location.c_str()); return nullptr; } // Create the OatDexFile and add it to the owning container. std::string location = DexFileLoader::GetMultiDexLocation(i, dex_location.c_str()); std::string canonical_location = DexFileLoader::GetDexCanonicalLocation(location.c_str()); type_lookup_table_start = vdex_file->GetNextTypeLookupTableData(type_lookup_table_start, i); const uint8_t* type_lookup_table_data = nullptr; if (!ComputeAndCheckTypeLookupTableData(*header, type_lookup_table_start, vdex_file, &type_lookup_table_data, error_msg)) { return nullptr; } OatDexFile* oat_dex_file = new OatDexFile(oat_file.get(), dex_file_start, vdex_file->GetLocationChecksum(i), location, canonical_location, type_lookup_table_data); oat_file->oat_dex_files_storage_.push_back(oat_dex_file); std::string_view key(oat_dex_file->GetDexFileLocation()); oat_file->oat_dex_files_.Put(key, oat_dex_file); if (canonical_location != location) { std::string_view canonical_key(oat_dex_file->GetCanonicalDexFileLocation()); oat_file->oat_dex_files_.Put(canonical_key, oat_dex_file); } } oat_file->SetupHeader(oat_file->oat_dex_files_storage_.size()); } else { // No need for any verification when loading dex files as we already have // a vdex file. const ArtDexFileLoader dex_file_loader; bool loaded = false; if (zip_fd != -1) { loaded = dex_file_loader.OpenZip(zip_fd, dex_location, /*verify=*/ false, /*verify_checksum=*/ false, error_msg, &oat_file->external_dex_files_); } else { loaded = dex_file_loader.Open(dex_location.c_str(), dex_location, /*verify=*/ false, /*verify_checksum=*/ false, error_msg, &oat_file->external_dex_files_); } if (!loaded) { return nullptr; } oat_file->SetupHeader(oat_file->external_dex_files_.size()); if (!oat_file->Setup(MakeNonOwningPointerVector(oat_file->external_dex_files_), error_msg)) { return nullptr; } } return oat_file.release(); } void SetupHeader(size_t number_of_dex_files) { DCHECK(!IsExecutable()); // Create a fake OatHeader with a key store to help debugging. std::unique_ptr isa_features = InstructionSetFeatures::FromCppDefines(); SafeMap store; store.Put(OatHeader::kCompilerFilter, CompilerFilter::NameOfFilter(CompilerFilter::kVerify)); store.Put(OatHeader::kCompilationReasonKey, "vdex"); store.Put(OatHeader::kConcurrentCopying, kUseReadBarrier ? OatHeader::kTrueValue : OatHeader::kFalseValue); oat_header_.reset(OatHeader::Create(kRuntimeISA, isa_features.get(), number_of_dex_files, &store)); const uint8_t* begin = reinterpret_cast(oat_header_.get()); SetBegin(begin); SetEnd(begin + oat_header_->GetHeaderSize()); } protected: void PreLoad() override {} bool Load(const std::string& elf_filename ATTRIBUTE_UNUSED, bool writable ATTRIBUTE_UNUSED, bool executable ATTRIBUTE_UNUSED, bool low_4gb ATTRIBUTE_UNUSED, MemMap* reservation ATTRIBUTE_UNUSED, std::string* error_msg ATTRIBUTE_UNUSED) override { LOG(FATAL) << "Unsupported"; UNREACHABLE(); } bool Load(int oat_fd ATTRIBUTE_UNUSED, bool writable ATTRIBUTE_UNUSED, bool executable ATTRIBUTE_UNUSED, bool low_4gb ATTRIBUTE_UNUSED, MemMap* reservation ATTRIBUTE_UNUSED, std::string* error_msg ATTRIBUTE_UNUSED) override { LOG(FATAL) << "Unsupported"; UNREACHABLE(); } void PreSetup(const std::string& elf_filename ATTRIBUTE_UNUSED) override {} const uint8_t* FindDynamicSymbolAddress(const std::string& symbol_name ATTRIBUTE_UNUSED, std::string* error_msg) const override { *error_msg = "Unsupported"; return nullptr; } private: std::unique_ptr oat_header_; DISALLOW_COPY_AND_ASSIGN(OatFileBackedByVdex); }; ////////////////////////// // General OatFile code // ////////////////////////// static void CheckLocation(const std::string& location) { CHECK(!location.empty()); } OatFile* OatFile::Open(int zip_fd, const std::string& oat_filename, const std::string& oat_location, bool executable, bool low_4gb, ArrayRef dex_filenames, /*inout*/MemMap* reservation, /*out*/std::string* error_msg) { ScopedTrace trace("Open oat file " + oat_location); CHECK(!oat_filename.empty()) << oat_location; CheckLocation(oat_location); std::string vdex_filename = GetVdexFilename(oat_filename); // Check that the vdex file even exists, fast-fail. We don't check the odex // file as we use the absence of an odex file for test the functionality of // vdex-only. if (!OS::FileExists(vdex_filename.c_str())) { *error_msg = StringPrintf("File %s does not exist.", vdex_filename.c_str()); return nullptr; } // Try dlopen first, as it is required for native debuggability. This will fail fast if dlopen is // disabled. OatFile* with_dlopen = OatFileBase::OpenOatFile(zip_fd, vdex_filename, oat_filename, oat_location, /*writable=*/ false, executable, low_4gb, dex_filenames, reservation, error_msg); if (with_dlopen != nullptr) { Runtime* runtime = Runtime::Current(); // The runtime might not be available at this point if we're running // dex2oat or oatdump. if (runtime != nullptr) { size_t madvise_size_limit = runtime->GetMadviseWillNeedSizeOdex(); Runtime::MadviseFileForRange(madvise_size_limit, with_dlopen->Size(), with_dlopen->Begin(), with_dlopen->End(), oat_location); } return with_dlopen; } if (kPrintDlOpenErrorMessage) { LOG(ERROR) << "Failed to dlopen: " << oat_filename << " with error " << *error_msg; } // If we aren't trying to execute, we just use our own ElfFile loader for a couple reasons: // // On target, dlopen may fail when compiling due to selinux restrictions on installd. // // We use our own ELF loader for Quick to deal with legacy apps that // open a generated dex file by name, remove the file, then open // another generated dex file with the same name. http://b/10614658 // // On host, dlopen is expected to fail when cross compiling, so fall back to ElfOatFile. // // // Another independent reason is the absolute placement of boot.oat. dlopen on the host usually // does honor the virtual address encoded in the ELF file only for ET_EXEC files, not ET_DYN. OatFile* with_internal = OatFileBase::OpenOatFile(zip_fd, vdex_filename, oat_filename, oat_location, /*writable=*/ false, executable, low_4gb, dex_filenames, reservation, error_msg); return with_internal; } OatFile* OatFile::Open(int zip_fd, int vdex_fd, int oat_fd, const std::string& oat_location, bool executable, bool low_4gb, ArrayRef dex_filenames, /*inout*/MemMap* reservation, /*out*/std::string* error_msg) { CHECK(!oat_location.empty()) << oat_location; std::string vdex_location = GetVdexFilename(oat_location); OatFile* with_internal = OatFileBase::OpenOatFile(zip_fd, vdex_fd, oat_fd, vdex_location, oat_location, /*writable=*/ false, executable, low_4gb, dex_filenames, reservation, error_msg); return with_internal; } OatFile* OatFile::OpenFromVdex(const std::vector& dex_files, std::unique_ptr&& vdex_file, const std::string& location) { CheckLocation(location); return OatFileBackedByVdex::Open(dex_files, std::move(vdex_file), location); } OatFile* OatFile::OpenFromVdex(int zip_fd, std::unique_ptr&& vdex_file, const std::string& location, std::string* error_msg) { CheckLocation(location); return OatFileBackedByVdex::Open(zip_fd, std::move(vdex_file), location, error_msg); } OatFile::OatFile(const std::string& location, bool is_executable) : location_(location), vdex_(nullptr), begin_(nullptr), end_(nullptr), data_bimg_rel_ro_begin_(nullptr), data_bimg_rel_ro_end_(nullptr), bss_begin_(nullptr), bss_end_(nullptr), bss_methods_(nullptr), bss_roots_(nullptr), is_executable_(is_executable), vdex_begin_(nullptr), vdex_end_(nullptr), secondary_lookup_lock_("OatFile secondary lookup lock", kOatFileSecondaryLookupLock) { CHECK(!location_.empty()); } OatFile::~OatFile() { STLDeleteElements(&oat_dex_files_storage_); } const OatHeader& OatFile::GetOatHeader() const { return *reinterpret_cast(Begin()); } const uint8_t* OatFile::Begin() const { CHECK(begin_ != nullptr); return begin_; } const uint8_t* OatFile::End() const { CHECK(end_ != nullptr); return end_; } const uint8_t* OatFile::DexBegin() const { return vdex_->Begin(); } const uint8_t* OatFile::DexEnd() const { return vdex_->End(); } ArrayRef OatFile::GetBootImageRelocations() const { if (data_bimg_rel_ro_begin_ != nullptr) { const uint32_t* relocations = reinterpret_cast(data_bimg_rel_ro_begin_); const uint32_t* relocations_end = reinterpret_cast(data_bimg_rel_ro_end_); return ArrayRef(relocations, relocations_end - relocations); } else { return ArrayRef(); } } ArrayRef OatFile::GetBssMethods() const { if (bss_methods_ != nullptr) { ArtMethod** methods = reinterpret_cast(bss_methods_); ArtMethod** methods_end = reinterpret_cast(bss_roots_ != nullptr ? bss_roots_ : bss_end_); return ArrayRef(methods, methods_end - methods); } else { return ArrayRef(); } } ArrayRef> OatFile::GetBssGcRoots() const { if (bss_roots_ != nullptr) { auto* roots = reinterpret_cast*>(bss_roots_); auto* roots_end = reinterpret_cast*>(bss_end_); return ArrayRef>(roots, roots_end - roots); } else { return ArrayRef>(); } } const OatDexFile* OatFile::GetOatDexFile(const char* dex_location, const uint32_t* dex_location_checksum, std::string* error_msg) const { // NOTE: We assume here that the canonical location for a given dex_location never // changes. If it does (i.e. some symlink used by the filename changes) we may return // an incorrect OatDexFile. As long as we have a checksum to check, we shall return // an identical file or fail; otherwise we may see some unpredictable failures. // TODO: Additional analysis of usage patterns to see if this can be simplified // without any performance loss, for example by not doing the first lock-free lookup. const OatDexFile* oat_dex_file = nullptr; std::string_view key(dex_location); // Try to find the key cheaply in the oat_dex_files_ map which holds dex locations // directly mentioned in the oat file and doesn't require locking. auto primary_it = oat_dex_files_.find(key); if (primary_it != oat_dex_files_.end()) { oat_dex_file = primary_it->second; DCHECK(oat_dex_file != nullptr); } else { // This dex_location is not one of the dex locations directly mentioned in the // oat file. The correct lookup is via the canonical location but first see in // the secondary_oat_dex_files_ whether we've looked up this location before. MutexLock mu(Thread::Current(), secondary_lookup_lock_); auto secondary_lb = secondary_oat_dex_files_.lower_bound(key); if (secondary_lb != secondary_oat_dex_files_.end() && key == secondary_lb->first) { oat_dex_file = secondary_lb->second; // May be null. } else { // We haven't seen this dex_location before, we must check the canonical location. std::string dex_canonical_location = DexFileLoader::GetDexCanonicalLocation(dex_location); if (dex_canonical_location != dex_location) { std::string_view canonical_key(dex_canonical_location); auto canonical_it = oat_dex_files_.find(canonical_key); if (canonical_it != oat_dex_files_.end()) { oat_dex_file = canonical_it->second; } // else keep null. } // else keep null. // Copy the key to the string_cache_ and store the result in secondary map. string_cache_.emplace_back(key.data(), key.length()); std::string_view key_copy(string_cache_.back()); secondary_oat_dex_files_.PutBefore(secondary_lb, key_copy, oat_dex_file); } } if (oat_dex_file == nullptr) { if (error_msg != nullptr) { std::string dex_canonical_location = DexFileLoader::GetDexCanonicalLocation(dex_location); *error_msg = "Failed to find OatDexFile for DexFile " + std::string(dex_location) + " (canonical path " + dex_canonical_location + ") in OatFile " + GetLocation(); } return nullptr; } if (dex_location_checksum != nullptr && oat_dex_file->GetDexFileLocationChecksum() != *dex_location_checksum) { if (error_msg != nullptr) { std::string dex_canonical_location = DexFileLoader::GetDexCanonicalLocation(dex_location); std::string checksum = StringPrintf("0x%08x", oat_dex_file->GetDexFileLocationChecksum()); std::string required_checksum = StringPrintf("0x%08x", *dex_location_checksum); *error_msg = "OatDexFile for DexFile " + std::string(dex_location) + " (canonical path " + dex_canonical_location + ") in OatFile " + GetLocation() + " has checksum " + checksum + " but " + required_checksum + " was required"; } return nullptr; } return oat_dex_file; } OatDexFile::OatDexFile(const OatFile* oat_file, const std::string& dex_file_location, const std::string& canonical_dex_file_location, uint32_t dex_file_location_checksum, const uint8_t* dex_file_pointer, const uint8_t* lookup_table_data, const IndexBssMapping* method_bss_mapping_data, const IndexBssMapping* type_bss_mapping_data, const IndexBssMapping* public_type_bss_mapping_data, const IndexBssMapping* package_type_bss_mapping_data, const IndexBssMapping* string_bss_mapping_data, const uint32_t* oat_class_offsets_pointer, const DexLayoutSections* dex_layout_sections) : oat_file_(oat_file), dex_file_location_(dex_file_location), canonical_dex_file_location_(canonical_dex_file_location), dex_file_location_checksum_(dex_file_location_checksum), dex_file_pointer_(dex_file_pointer), lookup_table_data_(lookup_table_data), method_bss_mapping_(method_bss_mapping_data), type_bss_mapping_(type_bss_mapping_data), public_type_bss_mapping_(public_type_bss_mapping_data), package_type_bss_mapping_(package_type_bss_mapping_data), string_bss_mapping_(string_bss_mapping_data), oat_class_offsets_pointer_(oat_class_offsets_pointer), lookup_table_(), dex_layout_sections_(dex_layout_sections) { InitializeTypeLookupTable(); DCHECK(!IsBackedByVdexOnly()); } void OatDexFile::InitializeTypeLookupTable() { // Initialize TypeLookupTable. if (lookup_table_data_ != nullptr) { // Peek the number of classes from the DexFile. const DexFile::Header* dex_header = reinterpret_cast(dex_file_pointer_); const uint32_t num_class_defs = dex_header->class_defs_size_; if (lookup_table_data_ + TypeLookupTable::RawDataLength(num_class_defs) > GetOatFile()->DexEnd()) { LOG(WARNING) << "found truncated lookup table in " << dex_file_location_; } else { const uint8_t* dex_data = dex_file_pointer_; // TODO: Clean this up to create the type lookup table after the dex file has been created? if (CompactDexFile::IsMagicValid(dex_header->magic_)) { dex_data += dex_header->data_off_; } lookup_table_ = TypeLookupTable::Open(dex_data, lookup_table_data_, num_class_defs); } } } OatDexFile::OatDexFile(const OatFile* oat_file, const uint8_t* dex_file_pointer, uint32_t dex_file_location_checksum, const std::string& dex_file_location, const std::string& canonical_dex_file_location, const uint8_t* lookup_table_data) : oat_file_(oat_file), dex_file_location_(dex_file_location), canonical_dex_file_location_(canonical_dex_file_location), dex_file_location_checksum_(dex_file_location_checksum), dex_file_pointer_(dex_file_pointer), lookup_table_data_(lookup_table_data) { InitializeTypeLookupTable(); DCHECK(IsBackedByVdexOnly()); } OatDexFile::OatDexFile(TypeLookupTable&& lookup_table) : lookup_table_(std::move(lookup_table)) { // Stripped-down OatDexFile only allowed in the compiler, the zygote, or the system server. CHECK(Runtime::Current() == nullptr || Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote() || Runtime::Current()->IsSystemServer()); } OatDexFile::~OatDexFile() {} size_t OatDexFile::FileSize() const { DCHECK(dex_file_pointer_ != nullptr); return reinterpret_cast(dex_file_pointer_)->file_size_; } std::unique_ptr OatDexFile::OpenDexFile(std::string* error_msg) const { ScopedTrace trace(__PRETTY_FUNCTION__); static constexpr bool kVerify = false; static constexpr bool kVerifyChecksum = false; const ArtDexFileLoader dex_file_loader; return dex_file_loader.Open(dex_file_pointer_, FileSize(), dex_file_location_, dex_file_location_checksum_, this, kVerify, kVerifyChecksum, error_msg); } uint32_t OatDexFile::GetOatClassOffset(uint16_t class_def_index) const { DCHECK(oat_class_offsets_pointer_ != nullptr); return oat_class_offsets_pointer_[class_def_index]; } bool OatDexFile::IsBackedByVdexOnly() const { return oat_class_offsets_pointer_ == nullptr; } OatFile::OatClass OatDexFile::GetOatClass(uint16_t class_def_index) const { if (IsBackedByVdexOnly()) { // If there is only a vdex file, return that the class is not ready. The // caller will have to call `VdexFile::ComputeClassStatus` to compute the // actual class status, because we need to do the assignability type checks. return OatFile::OatClass(oat_file_, ClassStatus::kNotReady, /* type= */ OatClassType::kNoneCompiled, /* bitmap_size= */ 0u, /* bitmap_pointer= */ nullptr, /* methods_pointer= */ nullptr); } uint32_t oat_class_offset = GetOatClassOffset(class_def_index); CHECK_GE(oat_class_offset, sizeof(OatHeader)) << oat_file_->GetLocation(); CHECK_LT(oat_class_offset, oat_file_->Size()) << oat_file_->GetLocation(); CHECK_LE(/* status */ sizeof(uint16_t) + /* type */ sizeof(uint16_t), oat_file_->Size() - oat_class_offset) << oat_file_->GetLocation(); const uint8_t* current_pointer = oat_file_->Begin() + oat_class_offset; uint16_t status_value = *reinterpret_cast(current_pointer); current_pointer += sizeof(uint16_t); uint16_t type_value = *reinterpret_cast(current_pointer); current_pointer += sizeof(uint16_t); CHECK_LE(status_value, enum_cast(ClassStatus::kLast)) << static_cast(status_value) << " at " << oat_file_->GetLocation(); CHECK_LT(type_value, enum_cast(OatClassType::kOatClassMax)) << oat_file_->GetLocation(); ClassStatus status = enum_cast(status_value); OatClassType type = enum_cast(type_value); uint32_t num_methods = 0; const uint32_t* bitmap_pointer = nullptr; const OatMethodOffsets* methods_pointer = nullptr; if (type != OatClassType::kNoneCompiled) { CHECK_LE(sizeof(uint32_t), static_cast(oat_file_->End() - current_pointer)) << oat_file_->GetLocation(); num_methods = *reinterpret_cast(current_pointer); current_pointer += sizeof(uint32_t); CHECK_NE(num_methods, 0u) << oat_file_->GetLocation(); uint32_t num_method_offsets; if (type == OatClassType::kSomeCompiled) { uint32_t bitmap_size = BitVector::BitsToWords(num_methods) * BitVector::kWordBytes; CHECK_LE(bitmap_size, static_cast(oat_file_->End() - current_pointer)) << oat_file_->GetLocation(); bitmap_pointer = reinterpret_cast(current_pointer); current_pointer += bitmap_size; // Note: The bits in range [num_methods, bitmap_size * kBitsPerByte) // should be zero but we're not verifying that. num_method_offsets = BitVector::NumSetBits(bitmap_pointer, num_methods); } else { num_method_offsets = num_methods; } CHECK_LE(num_method_offsets, static_cast(oat_file_->End() - current_pointer) / sizeof(OatMethodOffsets)) << oat_file_->GetLocation(); methods_pointer = reinterpret_cast(current_pointer); } return OatFile::OatClass(oat_file_, status, type, num_methods, bitmap_pointer, methods_pointer); } const dex::ClassDef* OatDexFile::FindClassDef(const DexFile& dex_file, const char* descriptor, size_t hash) { const OatDexFile* oat_dex_file = dex_file.GetOatDexFile(); DCHECK_EQ(ComputeModifiedUtf8Hash(descriptor), hash); bool used_lookup_table = false; const dex::ClassDef* lookup_table_classdef = nullptr; if (LIKELY((oat_dex_file != nullptr) && oat_dex_file->GetTypeLookupTable().Valid())) { used_lookup_table = true; const uint32_t class_def_idx = oat_dex_file->GetTypeLookupTable().Lookup(descriptor, hash); if (class_def_idx != dex::kDexNoIndex) { CHECK_LT(class_def_idx, dex_file.NumClassDefs()) << oat_dex_file->GetOatFile()->GetLocation(); lookup_table_classdef = &dex_file.GetClassDef(class_def_idx); } if (!kIsDebugBuild) { return lookup_table_classdef; } } // Fast path for rare no class defs case. const uint32_t num_class_defs = dex_file.NumClassDefs(); if (num_class_defs == 0) { DCHECK(!used_lookup_table); return nullptr; } const dex::TypeId* type_id = dex_file.FindTypeId(descriptor); if (type_id != nullptr) { dex::TypeIndex type_idx = dex_file.GetIndexForTypeId(*type_id); const dex::ClassDef* found_class_def = dex_file.FindClassDef(type_idx); if (kIsDebugBuild && used_lookup_table) { DCHECK_EQ(found_class_def, lookup_table_classdef); } return found_class_def; } return nullptr; } // Madvise the dex file based on the state we are moving to. void OatDexFile::MadviseDexFile(const DexFile& dex_file, MadviseState state) { Runtime* const runtime = Runtime::Current(); const bool low_ram = runtime->GetHeap()->IsLowMemoryMode(); // TODO: Also do madvise hints for non low ram devices. if (!low_ram) { return; } if (state == MadviseState::kMadviseStateAtLoad && runtime->MAdviseRandomAccess()) { // Default every dex file to MADV_RANDOM when its loaded by default for low ram devices. // Other devices have enough page cache to get performance benefits from loading more pages // into the page cache. DexLayoutSection::MadviseLargestPageAlignedRegion(dex_file.Begin(), dex_file.Begin() + dex_file.Size(), MADV_RANDOM); } const OatDexFile* oat_dex_file = dex_file.GetOatDexFile(); if (oat_dex_file != nullptr) { // Should always be there. const DexLayoutSections* const sections = oat_dex_file->GetDexLayoutSections(); if (sections != nullptr) { sections->Madvise(&dex_file, state); } else { DCHECK(oat_dex_file->IsBackedByVdexOnly()); } } } OatFile::OatClass::OatClass(const OatFile* oat_file, ClassStatus status, OatClassType type, uint32_t num_methods, const uint32_t* bitmap_pointer, const OatMethodOffsets* methods_pointer) : oat_file_(oat_file), status_(status), type_(type), num_methods_(num_methods), bitmap_(bitmap_pointer), methods_pointer_(methods_pointer) { DCHECK_EQ(num_methods != 0u, type != OatClassType::kNoneCompiled); DCHECK_EQ(bitmap_pointer != nullptr, type == OatClassType::kSomeCompiled); DCHECK_EQ(methods_pointer != nullptr, type != OatClassType::kNoneCompiled); } uint32_t OatFile::OatClass::GetOatMethodOffsetsOffset(uint32_t method_index) const { const OatMethodOffsets* oat_method_offsets = GetOatMethodOffsets(method_index); if (oat_method_offsets == nullptr) { return 0u; } return reinterpret_cast(oat_method_offsets) - oat_file_->Begin(); } const OatMethodOffsets* OatFile::OatClass::GetOatMethodOffsets(uint32_t method_index) const { // NOTE: We don't keep the number of methods for `kNoneCompiled` and cannot do // a bounds check for `method_index` in that case. if (methods_pointer_ == nullptr) { CHECK_EQ(OatClassType::kNoneCompiled, type_); return nullptr; } CHECK_LT(method_index, num_methods_) << oat_file_->GetLocation(); size_t methods_pointer_index; if (bitmap_ == nullptr) { CHECK_EQ(OatClassType::kAllCompiled, type_); methods_pointer_index = method_index; } else { CHECK_EQ(OatClassType::kSomeCompiled, type_); if (!BitVector::IsBitSet(bitmap_, method_index)) { return nullptr; } size_t num_set_bits = BitVector::NumSetBits(bitmap_, method_index); methods_pointer_index = num_set_bits; } if (kIsDebugBuild) { size_t size_until_end = dchecked_integral_cast( oat_file_->End() - reinterpret_cast(methods_pointer_)); CHECK_LE(methods_pointer_index, size_until_end / sizeof(OatMethodOffsets)) << oat_file_->GetLocation(); } const OatMethodOffsets& oat_method_offsets = methods_pointer_[methods_pointer_index]; return &oat_method_offsets; } const OatFile::OatMethod OatFile::OatClass::GetOatMethod(uint32_t method_index) const { const OatMethodOffsets* oat_method_offsets = GetOatMethodOffsets(method_index); if (oat_method_offsets == nullptr) { return OatMethod(nullptr, 0); } if (oat_file_->IsExecutable() || Runtime::Current() == nullptr || // This case applies for oatdump. Runtime::Current()->IsAotCompiler()) { return OatMethod(oat_file_->Begin(), oat_method_offsets->code_offset_); } // We aren't allowed to use the compiled code. We just force it down the interpreted / jit // version. return OatMethod(oat_file_->Begin(), 0); } bool OatFile::IsDebuggable() const { return GetOatHeader().IsDebuggable(); } CompilerFilter::Filter OatFile::GetCompilerFilter() const { return GetOatHeader().GetCompilerFilter(); } std::string OatFile::GetClassLoaderContext() const { return GetOatHeader().GetStoreValueByKey(OatHeader::kClassPathKey); } const char* OatFile::GetCompilationReason() const { return GetOatHeader().GetStoreValueByKey(OatHeader::kCompilationReasonKey); } OatFile::OatClass OatFile::FindOatClass(const DexFile& dex_file, uint16_t class_def_idx, bool* found) { DCHECK_NE(class_def_idx, DexFile::kDexNoIndex16); const OatDexFile* oat_dex_file = dex_file.GetOatDexFile(); if (oat_dex_file == nullptr || oat_dex_file->GetOatFile() == nullptr) { *found = false; return OatFile::OatClass::Invalid(); } *found = true; return oat_dex_file->GetOatClass(class_def_idx); } bool OatFile::RequiresImage() const { return GetOatHeader().RequiresImage(); } static void DCheckIndexToBssMapping(const OatFile* oat_file, uint32_t number_of_indexes, size_t slot_size, const IndexBssMapping* index_bss_mapping) { if (kIsDebugBuild && index_bss_mapping != nullptr) { size_t index_bits = IndexBssMappingEntry::IndexBits(number_of_indexes); const IndexBssMappingEntry* prev_entry = nullptr; for (const IndexBssMappingEntry& entry : *index_bss_mapping) { CHECK_ALIGNED_PARAM(entry.bss_offset, slot_size); CHECK_LT(entry.bss_offset, oat_file->BssSize()); uint32_t mask = entry.GetMask(index_bits); CHECK_LE(POPCOUNT(mask) * slot_size, entry.bss_offset); size_t index_mask_span = (mask != 0u) ? 32u - index_bits - CTZ(mask) : 0u; CHECK_LE(index_mask_span, entry.GetIndex(index_bits)); if (prev_entry != nullptr) { CHECK_LT(prev_entry->GetIndex(index_bits), entry.GetIndex(index_bits) - index_mask_span); } prev_entry = &entry; } CHECK(prev_entry != nullptr); CHECK_LT(prev_entry->GetIndex(index_bits), number_of_indexes); } } void OatFile::InitializeRelocations() const { DCHECK(IsExecutable()); // Initialize the .data.bimg.rel.ro section. if (!GetBootImageRelocations().empty()) { uint8_t* reloc_begin = const_cast(DataBimgRelRoBegin()); CheckedCall(mprotect, "un-protect boot image relocations", reloc_begin, DataBimgRelRoSize(), PROT_READ | PROT_WRITE); uint32_t boot_image_begin = Runtime::Current()->GetHeap()->GetBootImagesStartAddress(); for (const uint32_t& relocation : GetBootImageRelocations()) { const_cast(relocation) += boot_image_begin; } CheckedCall(mprotect, "protect boot image relocations", reloc_begin, DataBimgRelRoSize(), PROT_READ); } // Before initializing .bss, check the .bss mappings in debug mode. if (kIsDebugBuild) { PointerSize pointer_size = GetInstructionSetPointerSize(GetOatHeader().GetInstructionSet()); for (const OatDexFile* odf : GetOatDexFiles()) { const DexFile::Header* header = reinterpret_cast(odf->GetDexFilePointer()); DCheckIndexToBssMapping(this, header->method_ids_size_, static_cast(pointer_size), odf->GetMethodBssMapping()); DCheckIndexToBssMapping(this, header->type_ids_size_, sizeof(GcRoot), odf->GetTypeBssMapping()); DCheckIndexToBssMapping(this, header->string_ids_size_, sizeof(GcRoot), odf->GetStringBssMapping()); } } // Initialize the .bss section. // TODO: Pre-initialize from boot/app image? ArtMethod* resolution_method = Runtime::Current()->GetResolutionMethod(); for (ArtMethod*& entry : GetBssMethods()) { entry = resolution_method; } } void OatDexFile::AssertAotCompiler() { CHECK(Runtime::Current()->IsAotCompiler()); } bool OatFile::IsBackedByVdexOnly() const { return oat_dex_files_storage_.size() >= 1 && oat_dex_files_storage_[0]->IsBackedByVdexOnly(); } } // namespace art