/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_THREAD_INL_H_ #define ART_RUNTIME_THREAD_INL_H_ #include "thread.h" #include "arch/instruction_set.h" #include "base/aborting.h" #include "base/casts.h" #include "base/mutex-inl.h" #include "base/time_utils.h" #include "jni/jni_env_ext.h" #include "managed_stack-inl.h" #include "obj_ptr.h" #include "suspend_reason.h" #include "thread-current-inl.h" #include "thread_pool.h" namespace art { // Quickly access the current thread from a JNIEnv. static inline Thread* ThreadForEnv(JNIEnv* env) { JNIEnvExt* full_env(down_cast(env)); return full_env->GetSelf(); } inline void Thread::AllowThreadSuspension() { DCHECK_EQ(Thread::Current(), this); if (UNLIKELY(TestAllFlags())) { CheckSuspend(); } // Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due // to missing handles. PoisonObjectPointers(); } inline void Thread::CheckSuspend() { DCHECK_EQ(Thread::Current(), this); for (;;) { if (ReadFlag(kCheckpointRequest)) { RunCheckpointFunction(); } else if (ReadFlag(kSuspendRequest)) { FullSuspendCheck(); } else if (ReadFlag(kEmptyCheckpointRequest)) { RunEmptyCheckpoint(); } else { break; } } } inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) { Thread* self = Thread::Current(); DCHECK_EQ(self, this); for (;;) { if (ReadFlag(kEmptyCheckpointRequest)) { RunEmptyCheckpoint(); // Check we hold only an expected mutex when accessing weak ref. if (kIsDebugBuild) { for (int i = kLockLevelCount - 1; i >= 0; --i) { BaseMutex* held_mutex = self->GetHeldMutex(static_cast(i)); if (held_mutex != nullptr && held_mutex != Locks::mutator_lock_ && held_mutex != cond_var_mutex) { CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex)) << "Holding unexpected mutex " << held_mutex->GetName() << " when accessing weak ref"; } } } } else { break; } } } inline void Thread::CheckEmptyCheckpointFromMutex() { DCHECK_EQ(Thread::Current(), this); for (;;) { if (ReadFlag(kEmptyCheckpointRequest)) { RunEmptyCheckpoint(); } else { break; } } } inline ThreadState Thread::SetState(ThreadState new_state) { // Should only be used to change between suspended states. // Cannot use this code to change into or from Runnable as changing to Runnable should // fail if old_state_and_flags.suspend_request is true and changing from Runnable might // miss passing an active suspend barrier. DCHECK_NE(new_state, kRunnable); if (kIsDebugBuild && this != Thread::Current()) { std::string name; GetThreadName(name); LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()=" << Thread::Current() << ") changing state to " << new_state; } union StateAndFlags old_state_and_flags; old_state_and_flags.as_int = tls32_.state_and_flags.as_int; CHECK_NE(old_state_and_flags.as_struct.state, kRunnable) << new_state << " " << *this << " " << *Thread::Current(); tls32_.state_and_flags.as_struct.state = new_state; return static_cast(old_state_and_flags.as_struct.state); } inline bool Thread::IsThreadSuspensionAllowable() const { if (tls32_.no_thread_suspension != 0) { return false; } for (int i = kLockLevelCount - 1; i >= 0; --i) { if (i != kMutatorLock && i != kUserCodeSuspensionLock && GetHeldMutex(static_cast(i)) != nullptr) { return false; } } // Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we // have the mutex meaning we need to do this hack. auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS { return tls32_.user_code_suspend_count != 0; }; if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) { return false; } return true; } inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const { if (kIsDebugBuild) { if (gAborting == 0) { CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause; } if (check_locks) { bool bad_mutexes_held = false; for (int i = kLockLevelCount - 1; i >= 0; --i) { // We expect no locks except the mutator_lock_. User code suspension lock is OK as long as // we aren't going to be held suspended due to SuspendReason::kForUserCode. if (i != kMutatorLock && i != kUserCodeSuspensionLock) { BaseMutex* held_mutex = GetHeldMutex(static_cast(i)); if (held_mutex != nullptr) { LOG(ERROR) << "holding \"" << held_mutex->GetName() << "\" at point where thread suspension is expected"; bad_mutexes_held = true; } } } // Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to // user_code_suspend_count which would prevent the thread from ever waking up. Thread // autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we // have the mutex meaning we need to do this hack. auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS { return tls32_.user_code_suspend_count != 0; }; if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) { LOG(ERROR) << "suspending due to user-code while holding \"" << Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never " << "wake up."; bad_mutexes_held = true; } if (gAborting == 0) { CHECK(!bad_mutexes_held); } } } } inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) { DCHECK_NE(new_state, kRunnable); DCHECK_EQ(GetState(), kRunnable); union StateAndFlags old_state_and_flags; union StateAndFlags new_state_and_flags; while (true) { old_state_and_flags.as_int = tls32_.state_and_flags.as_int; if (UNLIKELY((old_state_and_flags.as_struct.flags & kCheckpointRequest) != 0)) { RunCheckpointFunction(); continue; } if (UNLIKELY((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest) != 0)) { RunEmptyCheckpoint(); continue; } // Change the state but keep the current flags (kCheckpointRequest is clear). DCHECK_EQ((old_state_and_flags.as_struct.flags & kCheckpointRequest), 0); DCHECK_EQ((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest), 0); new_state_and_flags.as_struct.flags = old_state_and_flags.as_struct.flags; new_state_and_flags.as_struct.state = new_state; // CAS the value, ensuring that prior memory operations are visible to any thread // that observes that we are suspended. bool done = tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakRelease(old_state_and_flags.as_int, new_state_and_flags.as_int); if (LIKELY(done)) { break; } } } inline void Thread::PassActiveSuspendBarriers() { while (true) { uint16_t current_flags = tls32_.state_and_flags.as_struct.flags; if (LIKELY((current_flags & (kCheckpointRequest | kEmptyCheckpointRequest | kActiveSuspendBarrier)) == 0)) { break; } else if ((current_flags & kActiveSuspendBarrier) != 0) { PassActiveSuspendBarriers(this); } else { // Impossible LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint"; } } } inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) { AssertThreadSuspensionIsAllowable(); PoisonObjectPointersIfDebug(); DCHECK_EQ(this, Thread::Current()); // Change to non-runnable state, thereby appearing suspended to the system. TransitionToSuspendedAndRunCheckpoints(new_state); // Mark the release of the share of the mutator_lock_. Locks::mutator_lock_->TransitionFromRunnableToSuspended(this); // Once suspended - check the active suspend barrier flag PassActiveSuspendBarriers(); } inline ThreadState Thread::TransitionFromSuspendedToRunnable() { union StateAndFlags old_state_and_flags; old_state_and_flags.as_int = tls32_.state_and_flags.as_int; int16_t old_state = old_state_and_flags.as_struct.state; DCHECK_NE(static_cast(old_state), kRunnable); do { Locks::mutator_lock_->AssertNotHeld(this); // Otherwise we starve GC.. old_state_and_flags.as_int = tls32_.state_and_flags.as_int; DCHECK_EQ(old_state_and_flags.as_struct.state, old_state); if (LIKELY(old_state_and_flags.as_struct.flags == 0)) { // Optimize for the return from native code case - this is the fast path. // Atomically change from suspended to runnable if no suspend request pending. union StateAndFlags new_state_and_flags; new_state_and_flags.as_int = old_state_and_flags.as_int; new_state_and_flags.as_struct.state = kRunnable; // CAS the value with a memory barrier. if (LIKELY(tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakAcquire( old_state_and_flags.as_int, new_state_and_flags.as_int))) { // Mark the acquisition of a share of the mutator_lock_. Locks::mutator_lock_->TransitionFromSuspendedToRunnable(this); break; } } else if ((old_state_and_flags.as_struct.flags & kActiveSuspendBarrier) != 0) { PassActiveSuspendBarriers(this); } else if ((old_state_and_flags.as_struct.flags & (kCheckpointRequest | kEmptyCheckpointRequest)) != 0) { // Impossible LOG(FATAL) << "Transitioning to runnable with checkpoint flag, " << " flags=" << old_state_and_flags.as_struct.flags << " state=" << old_state_and_flags.as_struct.state; } else if ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) { // Wait while our suspend count is non-zero. // We pass null to the MutexLock as we may be in a situation where the // runtime is shutting down. Guarding ourselves from that situation // requires to take the shutdown lock, which is undesirable here. Thread* thread_to_pass = nullptr; if (kIsDebugBuild && !IsDaemon()) { // We know we can make our debug locking checks on non-daemon threads, // so re-enable them on debug builds. thread_to_pass = this; } MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_); ScopedTransitioningToRunnable scoped_transitioning_to_runnable(this); old_state_and_flags.as_int = tls32_.state_and_flags.as_int; DCHECK_EQ(old_state_and_flags.as_struct.state, old_state); while ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) { // Re-check when Thread::resume_cond_ is notified. Thread::resume_cond_->Wait(thread_to_pass); old_state_and_flags.as_int = tls32_.state_and_flags.as_int; DCHECK_EQ(old_state_and_flags.as_struct.state, old_state); } DCHECK_EQ(GetSuspendCount(), 0); } } while (true); // Run the flip function, if set. Closure* flip_func = GetFlipFunction(); if (flip_func != nullptr) { flip_func->Run(this); } return static_cast(old_state); } inline mirror::Object* Thread::AllocTlab(size_t bytes) { DCHECK_GE(TlabSize(), bytes); ++tlsPtr_.thread_local_objects; mirror::Object* ret = reinterpret_cast(tlsPtr_.thread_local_pos); tlsPtr_.thread_local_pos += bytes; return ret; } inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) { DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end); if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) { // There's room. DCHECK_LE(reinterpret_cast(tlsPtr_.thread_local_alloc_stack_top) + sizeof(StackReference), reinterpret_cast(tlsPtr_.thread_local_alloc_stack_end)); DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr); tlsPtr_.thread_local_alloc_stack_top->Assign(obj); ++tlsPtr_.thread_local_alloc_stack_top; return true; } return false; } inline void Thread::SetThreadLocalAllocationStack(StackReference* start, StackReference* end) { DCHECK(Thread::Current() == this) << "Should be called by self"; DCHECK(start != nullptr); DCHECK(end != nullptr); DCHECK_ALIGNED(start, sizeof(StackReference)); DCHECK_ALIGNED(end, sizeof(StackReference)); DCHECK_LT(start, end); tlsPtr_.thread_local_alloc_stack_end = end; tlsPtr_.thread_local_alloc_stack_top = start; } inline void Thread::RevokeThreadLocalAllocationStack() { if (kIsDebugBuild) { // Note: self is not necessarily equal to this thread since thread may be suspended. Thread* self = Thread::Current(); DCHECK(this == self || IsSuspended() || GetState() == kWaitingPerformingGc) << GetState() << " thread " << this << " self " << self; } tlsPtr_.thread_local_alloc_stack_end = nullptr; tlsPtr_.thread_local_alloc_stack_top = nullptr; } inline void Thread::PoisonObjectPointersIfDebug() { if (kObjPtrPoisoning) { Thread::Current()->PoisonObjectPointers(); } } inline bool Thread::ModifySuspendCount(Thread* self, int delta, AtomicInteger* suspend_barrier, SuspendReason reason) { if (delta > 0 && ((kUseReadBarrier && this != self) || suspend_barrier != nullptr)) { // When delta > 0 (requesting a suspend), ModifySuspendCountInternal() may fail either if // active_suspend_barriers is full or we are in the middle of a thread flip. Retry in a loop. while (true) { if (LIKELY(ModifySuspendCountInternal(self, delta, suspend_barrier, reason))) { return true; } else { // Failure means the list of active_suspend_barriers is full or we are in the middle of a // thread flip, we should release the thread_suspend_count_lock_ (to avoid deadlock) and // wait till the target thread has executed or Thread::PassActiveSuspendBarriers() or the // flip function. Note that we could not simply wait for the thread to change to a suspended // state, because it might need to run checkpoint function before the state change or // resumes from the resume_cond_, which also needs thread_suspend_count_lock_. // // The list of active_suspend_barriers is very unlikely to be full since more than // kMaxSuspendBarriers threads need to execute SuspendAllInternal() simultaneously, and // target thread stays in kRunnable in the mean time. Locks::thread_suspend_count_lock_->ExclusiveUnlock(self); NanoSleep(100000); Locks::thread_suspend_count_lock_->ExclusiveLock(self); } } } else { return ModifySuspendCountInternal(self, delta, suspend_barrier, reason); } } inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) { new_top_frame->CheckConsistentVRegs(); return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame); } inline ShadowFrame* Thread::PopShadowFrame() { return tlsPtr_.managed_stack.PopShadowFrame(); } inline uint8_t* Thread::GetStackEndForInterpreter(bool implicit_overflow_check) const { uint8_t* end = tlsPtr_.stack_end + (implicit_overflow_check ? GetStackOverflowReservedBytes(kRuntimeISA) : 0); if (kIsDebugBuild) { // In a debuggable build, but especially under ASAN, the access-checks interpreter has a // potentially humongous stack size. We don't want to take too much of the stack regularly, // so do not increase the regular reserved size (for compiled code etc) and only report the // virtually smaller stack to the interpreter here. end += GetStackOverflowReservedBytes(kRuntimeISA); } return end; } inline void Thread::ResetDefaultStackEnd() { // Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room // to throw a StackOverflowError. tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA); } } // namespace art #endif // ART_RUNTIME_THREAD_INL_H_