/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG (ATRACE_TAG_GRAPHICS | ATRACE_TAG_HAL) #define LOG_TAG "hwc-vsync-worker" #include "vsyncworker.h" #include #include #include #include #include #include #include #include #include "drmdevice.h" #include "worker.h" using namespace std::chrono_literals; constexpr auto nsecsPerSec = std::chrono::nanoseconds(1s).count(); constexpr auto hwVsyncPeriodTag = "HWVsyncPeriod"; namespace android { VSyncWorker::VSyncWorker() : Worker("vsync", 2, true), drm_(NULL), display_(-1), enabled_(false), last_timestamp_(-1) { } VSyncWorker::~VSyncWorker() { Exit(); } int VSyncWorker::Init(DrmDevice *drm, int display) { drm_ = drm; display_ = display; return InitWorker(); } void VSyncWorker::RegisterCallback(std::shared_ptr callback) { Lock(); callback_ = callback; Unlock(); } void VSyncWorker::VSyncControl(bool enabled) { Lock(); enabled_ = enabled; last_timestamp_ = -1; Unlock(); ATRACE_INT("HWCVsync", static_cast(enabled)); ATRACE_INT64(hwVsyncPeriodTag, 0); Signal(); } /* * Returns the timestamp of the next vsync in phase with last_timestamp_. * For example: * last_timestamp_ = 137 * frame_ns = 50 * current = 683 * * expect = (50 * ((683 - 137)/50 + 1)) + 137 * expect = 687 * * Thus, we must sleep until timestamp 687 to maintain phase with the last * timestamp. But if we don't know last vblank timestamp, sleep one vblank * then try to get vblank from driver again. */ int VSyncWorker::GetPhasedVSync(int64_t frame_ns, int64_t &expect) { struct timespec now; if (clock_gettime(CLOCK_MONOTONIC, &now)) { ALOGE("clock_gettime failed %d", errno); return -EPERM; } int64_t current = now.tv_sec * nsecsPerSec + now.tv_nsec; if (last_timestamp_ < 0) { expect = current + frame_ns; return -EAGAIN; } expect = frame_ns * ((current - last_timestamp_) / frame_ns + 1) + last_timestamp_; return 0; } int VSyncWorker::SyntheticWaitVBlank(int64_t ×tamp) { float refresh = 60.0f; // Default to 60Hz refresh rate DrmConnector *conn = drm_->GetConnectorForDisplay(display_); if (conn && conn->active_mode().v_refresh() != 0.0f) { refresh = conn->active_mode().v_refresh(); } else { ALOGW("Vsync worker active with conn=%p refresh=%f\n", conn, conn ? conn->active_mode().v_refresh() : 0.0f); } int64_t phased_timestamp; int ret = GetPhasedVSync(nsecsPerSec / refresh, phased_timestamp); if (ret && ret != -EAGAIN) return -1; struct timespec vsync; vsync.tv_sec = phased_timestamp / nsecsPerSec; vsync.tv_nsec = phased_timestamp % nsecsPerSec; int err; do { err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &vsync, nullptr); } while (err == EINTR); if (err || ret) return -1; timestamp = (int64_t)vsync.tv_sec * nsecsPerSec + (int64_t)vsync.tv_nsec; return 0; } void VSyncWorker::Routine() { int ret; Lock(); if (!enabled_) { ret = WaitForSignalOrExitLocked(); if (ret == -EINTR) { Unlock(); return; } } int display = display_; std::shared_ptr callback(callback_); Unlock(); DrmCrtc *crtc = drm_->GetCrtcForDisplay(display); if (!crtc) { ALOGE("Failed to get crtc for display"); return; } uint32_t high_crtc = (crtc->pipe() << DRM_VBLANK_HIGH_CRTC_SHIFT); drmVBlank vblank; memset(&vblank, 0, sizeof(vblank)); vblank.request.type = (drmVBlankSeqType)(DRM_VBLANK_RELATIVE | (high_crtc & DRM_VBLANK_HIGH_CRTC_MASK)); vblank.request.sequence = 1; int64_t timestamp; ret = drmWaitVBlank(drm_->fd(), &vblank); if (ret) { if (SyntheticWaitVBlank(timestamp)) { // postpone the callback until we get a real value from the hardware return; } } else { timestamp = (int64_t)vblank.reply.tval_sec * nsecsPerSec + (int64_t)vblank.reply.tval_usec * 1000; } /* * VSync could be disabled during routine execution so it could potentially * lead to crash since callback's inner hook could be invalid anymore. We have * no control over lifetime of this hook, therefore we can't rely that it'll * be valid after vsync disabling. * * Blocking VSyncControl to wait until routine * will finish execution is logically correct way to fix this issue, but it * creates visible lags and stutters, so we have to resort to other ways of * mitigating this issue. * * Doing check before attempt to invoke callback drastically shortens the * window when such situation could happen and that allows us to practically * avoid this issue. * * Please note that issue described below is different one and it is related * to RegisterCallback, not to disabling vsync via VSyncControl. */ if (!enabled_) return; /* * There's a race here where a change in callback_ will not take effect until * the next subsequent requested vsync. This is unavoidable since we can't * call the vsync hook while holding the thread lock. * * We could shorten the race window by caching callback_ right before calling * the hook. However, in practice, callback_ is only updated once, so it's not * worth the overhead. */ if (callback) callback->Callback(display, timestamp); if (last_timestamp_ >= 0) { int64_t period = timestamp - last_timestamp_; ATRACE_INT64(hwVsyncPeriodTag, period); ALOGV("HW vsync period %" PRId64 "ns", period); } last_timestamp_ = timestamp; } } // namespace android