/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Sensor.h" #include #include namespace android { namespace hardware { namespace sensors { namespace V2_X { namespace implementation { using ::android::hardware::sensors::V1_0::EventPayload; using ::android::hardware::sensors::V1_0::MetaDataEventType; using ::android::hardware::sensors::V1_0::OperationMode; using ::android::hardware::sensors::V1_0::Result; using ::android::hardware::sensors::V1_0::SensorFlagBits; using ::android::hardware::sensors::V1_0::SensorStatus; using ::android::hardware::sensors::V2_1::Event; using ::android::hardware::sensors::V2_1::SensorInfo; using ::android::hardware::sensors::V2_1::SensorType; Sensor::Sensor(ISensorsEventCallback* callback) : mIsEnabled(false), mSamplingPeriodNs(0), mLastSampleTimeNs(0), mCallback(callback), mMode(OperationMode::NORMAL) { mRunThread = std::thread(startThread, this); } Sensor::~Sensor() { std::unique_lock lock(mRunMutex); mStopThread = true; mIsEnabled = false; mWaitCV.notify_all(); lock.release(); mRunThread.join(); } const SensorInfo& Sensor::getSensorInfo() const { return mSensorInfo; } void Sensor::batch(int64_t samplingPeriodNs) { if (samplingPeriodNs < mSensorInfo.minDelay * 1000ll) { samplingPeriodNs = mSensorInfo.minDelay * 1000ll; } else if (samplingPeriodNs > mSensorInfo.maxDelay * 1000ll) { samplingPeriodNs = mSensorInfo.maxDelay * 1000ll; } if (mSamplingPeriodNs != samplingPeriodNs) { mSamplingPeriodNs = samplingPeriodNs; // Wake up the 'run' thread to check if a new event should be generated now mWaitCV.notify_all(); } } void Sensor::activate(bool enable) { if (mIsEnabled != enable) { std::unique_lock lock(mRunMutex); mIsEnabled = enable; mWaitCV.notify_all(); } } Result Sensor::flush() { // Only generate a flush complete event if the sensor is enabled and if the sensor is not a // one-shot sensor. if (!mIsEnabled || (mSensorInfo.flags & static_cast(SensorFlagBits::ONE_SHOT_MODE))) { return Result::BAD_VALUE; } // Note: If a sensor supports batching, write all of the currently batched events for the sensor // to the Event FMQ prior to writing the flush complete event. Event ev; ev.sensorHandle = mSensorInfo.sensorHandle; ev.sensorType = SensorType::META_DATA; ev.u.meta.what = MetaDataEventType::META_DATA_FLUSH_COMPLETE; std::vector evs{ev}; mCallback->postEvents(evs, isWakeUpSensor()); return Result::OK; } void Sensor::startThread(Sensor* sensor) { sensor->run(); } void Sensor::run() { std::unique_lock runLock(mRunMutex); constexpr int64_t kNanosecondsInSeconds = 1000 * 1000 * 1000; while (!mStopThread) { if (!mIsEnabled || mMode == OperationMode::DATA_INJECTION) { mWaitCV.wait(runLock, [&] { return ((mIsEnabled && mMode == OperationMode::NORMAL) || mStopThread); }); } else { timespec curTime; clock_gettime(CLOCK_REALTIME, &curTime); int64_t now = (curTime.tv_sec * kNanosecondsInSeconds) + curTime.tv_nsec; int64_t nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs; if (now >= nextSampleTime) { mLastSampleTimeNs = now; nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs; mCallback->postEvents(readEvents(), isWakeUpSensor()); } mWaitCV.wait_for(runLock, std::chrono::nanoseconds(nextSampleTime - now)); } } } bool Sensor::isWakeUpSensor() { return mSensorInfo.flags & static_cast(SensorFlagBits::WAKE_UP); } std::vector Sensor::readEvents() { std::vector events; Event event; event.sensorHandle = mSensorInfo.sensorHandle; event.sensorType = mSensorInfo.type; event.timestamp = ::android::elapsedRealtimeNano(); memset(&event.u, 0, sizeof(event.u)); readEventPayload(event.u); events.push_back(event); return events; } void Sensor::setOperationMode(OperationMode mode) { if (mMode != mode) { std::unique_lock lock(mRunMutex); mMode = mode; mWaitCV.notify_all(); } } bool Sensor::supportsDataInjection() const { return mSensorInfo.flags & static_cast(SensorFlagBits::DATA_INJECTION); } Result Sensor::injectEvent(const Event& event) { Result result = Result::OK; if (event.sensorType == SensorType::ADDITIONAL_INFO) { // When in OperationMode::NORMAL, SensorType::ADDITIONAL_INFO is used to push operation // environment data into the device. } else if (!supportsDataInjection()) { result = Result::INVALID_OPERATION; } else if (mMode == OperationMode::DATA_INJECTION) { mCallback->postEvents(std::vector{event}, isWakeUpSensor()); } else { result = Result::BAD_VALUE; } return result; } OnChangeSensor::OnChangeSensor(ISensorsEventCallback* callback) : Sensor(callback), mPreviousEventSet(false) {} void OnChangeSensor::activate(bool enable) { Sensor::activate(enable); if (!enable) { mPreviousEventSet = false; } } std::vector OnChangeSensor::readEvents() { std::vector events = Sensor::readEvents(); std::vector outputEvents; for (auto iter = events.begin(); iter != events.end(); ++iter) { Event ev = *iter; if (!mPreviousEventSet || memcmp(&mPreviousEvent.u, &ev.u, sizeof(ev.u)) != 0) { outputEvents.push_back(ev); mPreviousEvent = ev; mPreviousEventSet = true; } } return outputEvents; } AccelSensor::AccelSensor(int32_t sensorHandle, ISensorsEventCallback* callback) : Sensor(callback) { mSensorInfo.sensorHandle = sensorHandle; mSensorInfo.name = "Accel Sensor"; mSensorInfo.vendor = "Vendor String"; mSensorInfo.version = 1; mSensorInfo.type = SensorType::ACCELEROMETER; mSensorInfo.typeAsString = ""; mSensorInfo.maxRange = 78.4f; // +/- 8g mSensorInfo.resolution = 1.52e-5; mSensorInfo.power = 0.001f; // mA mSensorInfo.minDelay = 10 * 1000; // microseconds mSensorInfo.maxDelay = kDefaultMaxDelayUs; mSensorInfo.fifoReservedEventCount = 0; mSensorInfo.fifoMaxEventCount = 0; mSensorInfo.requiredPermission = ""; mSensorInfo.flags = static_cast(SensorFlagBits::DATA_INJECTION); }; void AccelSensor::readEventPayload(EventPayload& payload) { payload.vec3.x = 0; payload.vec3.y = 0; payload.vec3.z = -9.8; payload.vec3.status = SensorStatus::ACCURACY_HIGH; } PressureSensor::PressureSensor(int32_t sensorHandle, ISensorsEventCallback* callback) : Sensor(callback) { mSensorInfo.sensorHandle = sensorHandle; mSensorInfo.name = "Pressure Sensor"; mSensorInfo.vendor = "Vendor String"; mSensorInfo.version = 1; mSensorInfo.type = SensorType::PRESSURE; mSensorInfo.typeAsString = ""; mSensorInfo.maxRange = 1100.0f; // hPa mSensorInfo.resolution = 0.005f; // hPa mSensorInfo.power = 0.001f; // mA mSensorInfo.minDelay = 100 * 1000; // microseconds mSensorInfo.maxDelay = kDefaultMaxDelayUs; mSensorInfo.fifoReservedEventCount = 0; mSensorInfo.fifoMaxEventCount = 0; mSensorInfo.requiredPermission = ""; mSensorInfo.flags = 0; }; void PressureSensor::readEventPayload(EventPayload& payload) { payload.scalar = 1013.25f; } MagnetometerSensor::MagnetometerSensor(int32_t sensorHandle, ISensorsEventCallback* callback) : Sensor(callback) { mSensorInfo.sensorHandle = sensorHandle; mSensorInfo.name = "Magnetic Field Sensor"; mSensorInfo.vendor = "Vendor String"; mSensorInfo.version = 1; mSensorInfo.type = SensorType::MAGNETIC_FIELD; mSensorInfo.typeAsString = ""; mSensorInfo.maxRange = 1300.0f; mSensorInfo.resolution = 0.01f; mSensorInfo.power = 0.001f; // mA mSensorInfo.minDelay = 20 * 1000; // microseconds mSensorInfo.maxDelay = kDefaultMaxDelayUs; mSensorInfo.fifoReservedEventCount = 0; mSensorInfo.fifoMaxEventCount = 0; mSensorInfo.requiredPermission = ""; mSensorInfo.flags = 0; }; LightSensor::LightSensor(int32_t sensorHandle, ISensorsEventCallback* callback) : OnChangeSensor(callback) { mSensorInfo.sensorHandle = sensorHandle; mSensorInfo.name = "Light Sensor"; mSensorInfo.vendor = "Vendor String"; mSensorInfo.version = 1; mSensorInfo.type = SensorType::LIGHT; mSensorInfo.typeAsString = ""; mSensorInfo.maxRange = 43000.0f; mSensorInfo.resolution = 10.0f; mSensorInfo.power = 0.001f; // mA mSensorInfo.minDelay = 200 * 1000; // microseconds mSensorInfo.maxDelay = kDefaultMaxDelayUs; mSensorInfo.fifoReservedEventCount = 0; mSensorInfo.fifoMaxEventCount = 0; mSensorInfo.requiredPermission = ""; mSensorInfo.flags = static_cast(SensorFlagBits::ON_CHANGE_MODE); }; ProximitySensor::ProximitySensor(int32_t sensorHandle, ISensorsEventCallback* callback) : OnChangeSensor(callback) { mSensorInfo.sensorHandle = sensorHandle; mSensorInfo.name = "Proximity Sensor"; mSensorInfo.vendor = "Vendor String"; mSensorInfo.version = 1; mSensorInfo.type = SensorType::PROXIMITY; mSensorInfo.typeAsString = ""; mSensorInfo.maxRange = 5.0f; mSensorInfo.resolution = 1.0f; mSensorInfo.power = 0.012f; // mA mSensorInfo.minDelay = 200 * 1000; // microseconds mSensorInfo.maxDelay = kDefaultMaxDelayUs; mSensorInfo.fifoReservedEventCount = 0; mSensorInfo.fifoMaxEventCount = 0; mSensorInfo.requiredPermission = ""; mSensorInfo.flags = static_cast(SensorFlagBits::ON_CHANGE_MODE | SensorFlagBits::WAKE_UP); }; GyroSensor::GyroSensor(int32_t sensorHandle, ISensorsEventCallback* callback) : Sensor(callback) { mSensorInfo.sensorHandle = sensorHandle; mSensorInfo.name = "Gyro Sensor"; mSensorInfo.vendor = "Vendor String"; mSensorInfo.version = 1; mSensorInfo.type = SensorType::GYROSCOPE; mSensorInfo.typeAsString = ""; mSensorInfo.maxRange = 1000.0f * M_PI / 180.0f; mSensorInfo.resolution = 1000.0f * M_PI / (180.0f * 32768.0f); mSensorInfo.power = 0.001f; mSensorInfo.minDelay = 10 * 1000; // microseconds mSensorInfo.maxDelay = kDefaultMaxDelayUs; mSensorInfo.fifoReservedEventCount = 0; mSensorInfo.fifoMaxEventCount = 0; mSensorInfo.requiredPermission = ""; mSensorInfo.flags = 0; }; AmbientTempSensor::AmbientTempSensor(int32_t sensorHandle, ISensorsEventCallback* callback) : OnChangeSensor(callback) { mSensorInfo.sensorHandle = sensorHandle; mSensorInfo.name = "Ambient Temp Sensor"; mSensorInfo.vendor = "Vendor String"; mSensorInfo.version = 1; mSensorInfo.type = SensorType::AMBIENT_TEMPERATURE; mSensorInfo.typeAsString = ""; mSensorInfo.maxRange = 80.0f; mSensorInfo.resolution = 0.01f; mSensorInfo.power = 0.001f; mSensorInfo.minDelay = 40 * 1000; // microseconds mSensorInfo.maxDelay = kDefaultMaxDelayUs; mSensorInfo.fifoReservedEventCount = 0; mSensorInfo.fifoMaxEventCount = 0; mSensorInfo.requiredPermission = ""; mSensorInfo.flags = static_cast(SensorFlagBits::ON_CHANGE_MODE); }; RelativeHumiditySensor::RelativeHumiditySensor(int32_t sensorHandle, ISensorsEventCallback* callback) : OnChangeSensor(callback) { mSensorInfo.sensorHandle = sensorHandle; mSensorInfo.name = "Relative Humidity Sensor"; mSensorInfo.vendor = "Vendor String"; mSensorInfo.version = 1; mSensorInfo.type = SensorType::RELATIVE_HUMIDITY; mSensorInfo.typeAsString = ""; mSensorInfo.maxRange = 100.0f; mSensorInfo.resolution = 0.1f; mSensorInfo.power = 0.001f; mSensorInfo.minDelay = 40 * 1000; // microseconds mSensorInfo.maxDelay = kDefaultMaxDelayUs; mSensorInfo.fifoReservedEventCount = 0; mSensorInfo.fifoMaxEventCount = 0; mSensorInfo.requiredPermission = ""; mSensorInfo.flags = static_cast(SensorFlagBits::ON_CHANGE_MODE); } } // namespace implementation } // namespace V2_X } // namespace sensors } // namespace hardware } // namespace android