/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "modules.usbaudio.audio_hal" /* #define LOG_NDEBUG 0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "alsa_device_profile.h" #include "alsa_device_proxy.h" #include "alsa_logging.h" /* Lock play & record samples rates at or above this threshold */ #define RATELOCK_THRESHOLD 96000 #define max(a, b) ((a) > (b) ? (a) : (b)) #define min(a, b) ((a) < (b) ? (a) : (b)) struct audio_device { struct audio_hw_device hw_device; pthread_mutex_t lock; /* see note below on mutex acquisition order */ /* output */ struct listnode output_stream_list; /* input */ struct listnode input_stream_list; /* lock input & output sample rates */ /*FIXME - How do we address multiple output streams? */ uint32_t device_sample_rate; // this should be a rate that is common to both input & output bool mic_muted; int32_t inputs_open; /* number of input streams currently open. */ audio_patch_handle_t next_patch_handle; // Increase 1 when create audio patch }; struct stream_lock { pthread_mutex_t lock; /* see note below on mutex acquisition order */ pthread_mutex_t pre_lock; /* acquire before lock to avoid DOS by playback thread */ }; struct alsa_device_info { alsa_device_profile profile; /* The profile of the ALSA device */ alsa_device_proxy proxy; /* The state */ struct listnode list_node; }; struct stream_out { struct audio_stream_out stream; struct stream_lock lock; bool standby; struct audio_device *adev; /* hardware information - only using this for the lock */ struct listnode alsa_devices; /* The ALSA devices connected to the stream. */ unsigned hal_channel_count; /* channel count exposed to AudioFlinger. * This may differ from the device channel count when * the device is not compatible with AudioFlinger * capabilities, e.g. exposes too many channels or * too few channels. */ audio_channel_mask_t hal_channel_mask; /* USB devices deal in channel counts, not masks * so the proxy doesn't have a channel_mask, but * audio HALs need to talk about channel masks * so expose the one calculated by * adev_open_output_stream */ struct listnode list_node; void * conversion_buffer; /* any conversions are put into here * they could come from here too if * there was a previous conversion */ size_t conversion_buffer_size; /* in bytes */ struct pcm_config config; audio_io_handle_t handle; // Unique constant for a stream audio_patch_handle_t patch_handle; // Patch handle for this stream }; struct stream_in { struct audio_stream_in stream; struct stream_lock lock; bool standby; struct audio_device *adev; /* hardware information - only using this for the lock */ struct listnode alsa_devices; /* The ALSA devices connected to the stream. */ unsigned hal_channel_count; /* channel count exposed to AudioFlinger. * This may differ from the device channel count when * the device is not compatible with AudioFlinger * capabilities, e.g. exposes too many channels or * too few channels. */ audio_channel_mask_t hal_channel_mask; /* USB devices deal in channel counts, not masks * so the proxy doesn't have a channel_mask, but * audio HALs need to talk about channel masks * so expose the one calculated by * adev_open_input_stream */ struct listnode list_node; /* We may need to read more data from the device in order to data reduce to 16bit, 4chan */ void * conversion_buffer; /* any conversions are put into here * they could come from here too if * there was a previous conversion */ size_t conversion_buffer_size; /* in bytes */ struct pcm_config config; audio_io_handle_t handle; // Unique identifier for a stream audio_patch_handle_t patch_handle; // Patch handle for this stream }; // Map channel count to output channel mask static const audio_channel_mask_t OUT_CHANNEL_MASKS_MAP[FCC_24 + 1] = { [0] = AUDIO_CHANNEL_NONE, // == 0 (so this line is optional and could be omitted) // != AUDIO_CHANNEL_INVALID == 0xC0000000u [1] = AUDIO_CHANNEL_OUT_MONO, [2] = AUDIO_CHANNEL_OUT_STEREO, [3] = AUDIO_CHANNEL_OUT_2POINT1, [4] = AUDIO_CHANNEL_OUT_QUAD, [5] = AUDIO_CHANNEL_OUT_PENTA, [6] = AUDIO_CHANNEL_OUT_5POINT1, [7] = AUDIO_CHANNEL_OUT_6POINT1, [8] = AUDIO_CHANNEL_OUT_7POINT1, [9 ... 11] = AUDIO_CHANNEL_NONE, // == 0 (so this line is optional and could be omitted). [12] = AUDIO_CHANNEL_OUT_7POINT1POINT4, [13 ... 23] = AUDIO_CHANNEL_NONE, // == 0 (so this line is optional and could be omitted). [24] = AUDIO_CHANNEL_OUT_22POINT2, }; static const int OUT_CHANNEL_MASKS_SIZE = AUDIO_ARRAY_SIZE(OUT_CHANNEL_MASKS_MAP); // Map channel count to input channel mask static const audio_channel_mask_t IN_CHANNEL_MASKS_MAP[] = { AUDIO_CHANNEL_NONE, /* 0 */ AUDIO_CHANNEL_IN_MONO, /* 1 */ AUDIO_CHANNEL_IN_STEREO, /* 2 */ /* channel counts greater than this are not considered */ }; static const int IN_CHANNEL_MASKS_SIZE = AUDIO_ARRAY_SIZE(IN_CHANNEL_MASKS_MAP); // Map channel count to index mask static const audio_channel_mask_t CHANNEL_INDEX_MASKS_MAP[FCC_24 + 1] = { [0] = AUDIO_CHANNEL_NONE, // == 0 (so this line is optional and could be omitted). [1] = AUDIO_CHANNEL_INDEX_MASK_1, [2] = AUDIO_CHANNEL_INDEX_MASK_2, [3] = AUDIO_CHANNEL_INDEX_MASK_3, [4] = AUDIO_CHANNEL_INDEX_MASK_4, [5] = AUDIO_CHANNEL_INDEX_MASK_5, [6] = AUDIO_CHANNEL_INDEX_MASK_6, [7] = AUDIO_CHANNEL_INDEX_MASK_7, [8] = AUDIO_CHANNEL_INDEX_MASK_8, [9] = AUDIO_CHANNEL_INDEX_MASK_9, [10] = AUDIO_CHANNEL_INDEX_MASK_10, [11] = AUDIO_CHANNEL_INDEX_MASK_11, [12] = AUDIO_CHANNEL_INDEX_MASK_12, [13] = AUDIO_CHANNEL_INDEX_MASK_13, [14] = AUDIO_CHANNEL_INDEX_MASK_14, [15] = AUDIO_CHANNEL_INDEX_MASK_15, [16] = AUDIO_CHANNEL_INDEX_MASK_16, [17] = AUDIO_CHANNEL_INDEX_MASK_17, [18] = AUDIO_CHANNEL_INDEX_MASK_18, [19] = AUDIO_CHANNEL_INDEX_MASK_19, [20] = AUDIO_CHANNEL_INDEX_MASK_20, [21] = AUDIO_CHANNEL_INDEX_MASK_21, [22] = AUDIO_CHANNEL_INDEX_MASK_22, [23] = AUDIO_CHANNEL_INDEX_MASK_23, [24] = AUDIO_CHANNEL_INDEX_MASK_24, }; static const int CHANNEL_INDEX_MASKS_SIZE = AUDIO_ARRAY_SIZE(CHANNEL_INDEX_MASKS_MAP); /* * Locking Helpers */ /* * NOTE: when multiple mutexes have to be acquired, always take the * stream_in or stream_out mutex first, followed by the audio_device mutex. * stream pre_lock is always acquired before stream lock to prevent starvation of control thread by * higher priority playback or capture thread. */ static void stream_lock_init(struct stream_lock *lock) { pthread_mutex_init(&lock->lock, (const pthread_mutexattr_t *) NULL); pthread_mutex_init(&lock->pre_lock, (const pthread_mutexattr_t *) NULL); } static void stream_lock(struct stream_lock *lock) { if (lock == NULL) { return; } pthread_mutex_lock(&lock->pre_lock); pthread_mutex_lock(&lock->lock); pthread_mutex_unlock(&lock->pre_lock); } static void stream_unlock(struct stream_lock *lock) { pthread_mutex_unlock(&lock->lock); } static void device_lock(struct audio_device *adev) { pthread_mutex_lock(&adev->lock); } static int device_try_lock(struct audio_device *adev) { return pthread_mutex_trylock(&adev->lock); } static void device_unlock(struct audio_device *adev) { pthread_mutex_unlock(&adev->lock); } /* * streams list management */ static void adev_add_stream_to_list( struct audio_device* adev, struct listnode* list, struct listnode* stream_node) { device_lock(adev); list_add_tail(list, stream_node); device_unlock(adev); } static struct stream_out* adev_get_stream_out_by_io_handle_l( struct audio_device* adev, audio_io_handle_t handle) { struct listnode *node; list_for_each (node, &adev->output_stream_list) { struct stream_out *out = node_to_item(node, struct stream_out, list_node); if (out->handle == handle) { return out; } } return NULL; } static struct stream_in* adev_get_stream_in_by_io_handle_l( struct audio_device* adev, audio_io_handle_t handle) { struct listnode *node; list_for_each (node, &adev->input_stream_list) { struct stream_in *in = node_to_item(node, struct stream_in, list_node); if (in->handle == handle) { return in; } } return NULL; } static struct stream_out* adev_get_stream_out_by_patch_handle_l( struct audio_device* adev, audio_patch_handle_t patch_handle) { struct listnode *node; list_for_each (node, &adev->output_stream_list) { struct stream_out *out = node_to_item(node, struct stream_out, list_node); if (out->patch_handle == patch_handle) { return out; } } return NULL; } static struct stream_in* adev_get_stream_in_by_patch_handle_l( struct audio_device* adev, audio_patch_handle_t patch_handle) { struct listnode *node; list_for_each (node, &adev->input_stream_list) { struct stream_in *in = node_to_item(node, struct stream_in, list_node); if (in->patch_handle == patch_handle) { return in; } } return NULL; } /* * Extract the card and device numbers from the supplied key/value pairs. * kvpairs A null-terminated string containing the key/value pairs or card and device. * i.e. "card=1;device=42" * card A pointer to a variable to receive the parsed-out card number. * device A pointer to a variable to receive the parsed-out device number. * NOTE: The variables pointed to by card and device return -1 (undefined) if the * associated key/value pair is not found in the provided string. * Return true if the kvpairs string contain a card/device spec, false otherwise. */ static bool parse_card_device_params(const char *kvpairs, int *card, int *device) { struct str_parms * parms = str_parms_create_str(kvpairs); char value[32]; int param_val; // initialize to "undefined" state. *card = -1; *device = -1; param_val = str_parms_get_str(parms, "card", value, sizeof(value)); if (param_val >= 0) { *card = atoi(value); } param_val = str_parms_get_str(parms, "device", value, sizeof(value)); if (param_val >= 0) { *device = atoi(value); } str_parms_destroy(parms); return *card >= 0 && *device >= 0; } static char *device_get_parameters(const alsa_device_profile *profile, const char * keys) { if (profile->card < 0 || profile->device < 0) { return strdup(""); } struct str_parms *query = str_parms_create_str(keys); struct str_parms *result = str_parms_create(); /* These keys are from hardware/libhardware/include/audio.h */ /* supported sample rates */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES)) { char* rates_list = profile_get_sample_rate_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES, rates_list); free(rates_list); } /* supported channel counts */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_CHANNELS)) { char* channels_list = profile_get_channel_count_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_CHANNELS, channels_list); free(channels_list); } /* supported sample formats */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_FORMATS)) { char * format_params = profile_get_format_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_FORMATS, format_params); free(format_params); } str_parms_destroy(query); char* result_str = str_parms_to_str(result); str_parms_destroy(result); ALOGV("device_get_parameters = %s", result_str); return result_str; } static audio_format_t audio_format_from(enum pcm_format format) { switch (format) { case PCM_FORMAT_S16_LE: return AUDIO_FORMAT_PCM_16_BIT; case PCM_FORMAT_S32_LE: return AUDIO_FORMAT_PCM_32_BIT; case PCM_FORMAT_S8: return AUDIO_FORMAT_PCM_8_BIT; case PCM_FORMAT_S24_LE: return AUDIO_FORMAT_PCM_8_24_BIT; case PCM_FORMAT_S24_3LE: return AUDIO_FORMAT_PCM_24_BIT_PACKED; default: return AUDIO_FORMAT_INVALID; } } static unsigned int populate_channel_mask_from_profile(const alsa_device_profile* profile, bool is_output, audio_channel_mask_t channel_masks[]) { unsigned int num_channel_masks = 0; const audio_channel_mask_t* channel_masks_map = is_output ? OUT_CHANNEL_MASKS_MAP : IN_CHANNEL_MASKS_MAP; int channel_masks_size = is_output ? OUT_CHANNEL_MASKS_SIZE : IN_CHANNEL_MASKS_SIZE; if (channel_masks_size > FCC_LIMIT + 1) { channel_masks_size = FCC_LIMIT + 1; } unsigned int channel_count = 0; for (size_t i = 0; i < min(channel_masks_size, AUDIO_PORT_MAX_CHANNEL_MASKS) && (channel_count = profile->channel_counts[i]) != 0 && num_channel_masks < AUDIO_PORT_MAX_CHANNEL_MASKS; ++i) { if (channel_count < channel_masks_size && channel_masks_map[channel_count] != AUDIO_CHANNEL_NONE) { channel_masks[num_channel_masks++] = channel_masks_map[channel_count]; if (num_channel_masks >= AUDIO_PORT_MAX_CHANNEL_MASKS) { break; } } if (channel_count < CHANNEL_INDEX_MASKS_SIZE && CHANNEL_INDEX_MASKS_MAP[channel_count] != AUDIO_CHANNEL_NONE) { channel_masks[num_channel_masks++] = CHANNEL_INDEX_MASKS_MAP[channel_count]; } } return num_channel_masks; } static unsigned int populate_sample_rates_from_profile(const alsa_device_profile* profile, unsigned int sample_rates[]) { unsigned int num_sample_rates = 0; for (;num_sample_rates < min(MAX_PROFILE_SAMPLE_RATES, AUDIO_PORT_MAX_SAMPLING_RATES) && profile->sample_rates[num_sample_rates] != 0; num_sample_rates++) { sample_rates[num_sample_rates] = profile->sample_rates[num_sample_rates]; } return num_sample_rates; } /* * HAl Functions */ /** * NOTE: when multiple mutexes have to be acquired, always respect the * following order: hw device > out stream */ static struct alsa_device_info* stream_get_first_alsa_device(const struct listnode *alsa_devices) { if (list_empty(alsa_devices)) { return NULL; } return node_to_item(list_head(alsa_devices), struct alsa_device_info, list_node); } /** * Must be called with holding the stream's lock. */ static void stream_standby_l(struct listnode *alsa_devices, bool *standby) { if (!*standby) { struct listnode *node; list_for_each (node, alsa_devices) { struct alsa_device_info *device_info = node_to_item(node, struct alsa_device_info, list_node); proxy_close(&device_info->proxy); } *standby = true; } } static void stream_clear_devices(struct listnode *alsa_devices) { struct listnode *node, *temp; struct alsa_device_info *device_info = NULL; list_for_each_safe (node, temp, alsa_devices) { device_info = node_to_item(node, struct alsa_device_info, list_node); if (device_info != NULL) { list_remove(&device_info->list_node); free(device_info); } } } static int stream_set_new_devices(struct pcm_config *config, struct listnode *alsa_devices, unsigned int num_devices, const int cards[], const int devices[], int direction) { int status = 0; stream_clear_devices(alsa_devices); for (unsigned int i = 0; i < num_devices; ++i) { struct alsa_device_info *device_info = (struct alsa_device_info *) calloc(1, sizeof(struct alsa_device_info)); profile_init(&device_info->profile, direction); device_info->profile.card = cards[i]; device_info->profile.device = devices[i]; status = profile_read_device_info(&device_info->profile) ? 0 : -EINVAL; if (status != 0) { ALOGE("%s failed to read device info card=%d;device=%d", __func__, cards[i], devices[i]); goto exit; } status = proxy_prepare(&device_info->proxy, &device_info->profile, config); if (status != 0) { ALOGE("%s failed to prepare device card=%d;device=%d", __func__, cards[i], devices[i]); goto exit; } list_add_tail(alsa_devices, &device_info->list_node); } exit: if (status != 0) { stream_clear_devices(alsa_devices); } return status; } static void stream_dump_alsa_devices(const struct listnode *alsa_devices, int fd) { struct listnode *node; size_t i = 0; list_for_each(node, alsa_devices) { struct alsa_device_info *device_info = node_to_item(node, struct alsa_device_info, list_node); dprintf(fd, "Output Profile %zu:\n", i); profile_dump(&device_info->profile, fd); dprintf(fd, "Output Proxy %zu:\n", i); proxy_dump(&device_info->proxy, fd); } } /* * OUT functions */ static uint32_t out_get_sample_rate(const struct audio_stream *stream) { struct alsa_device_info *device_info = stream_get_first_alsa_device( &((struct stream_out*)stream)->alsa_devices); if (device_info == NULL) { ALOGW("%s device info is null", __func__); return 0; } uint32_t rate = proxy_get_sample_rate(&device_info->proxy); ALOGV("out_get_sample_rate() = %d", rate); return rate; } static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate) { return 0; } static size_t out_get_buffer_size(const struct audio_stream *stream) { const struct stream_out* out = (const struct stream_out*)stream; const struct alsa_device_info* device_info = stream_get_first_alsa_device(&out->alsa_devices); if (device_info == NULL) { ALOGW("%s device info is null", __func__); return 0; } return proxy_get_period_size(&device_info->proxy) * audio_stream_out_frame_size(&(out->stream)); } static uint32_t out_get_channels(const struct audio_stream *stream) { const struct stream_out *out = (const struct stream_out*)stream; return out->hal_channel_mask; } static audio_format_t out_get_format(const struct audio_stream *stream) { /* Note: The HAL doesn't do any FORMAT conversion at this time. It * Relies on the framework to provide data in the specified format. * This could change in the future. */ struct alsa_device_info *device_info = stream_get_first_alsa_device( &((struct stream_out*)stream)->alsa_devices); if (device_info == NULL) { ALOGW("%s device info is null", __func__); return AUDIO_FORMAT_DEFAULT; } audio_format_t format = audio_format_from_pcm_format(proxy_get_format(&device_info->proxy)); return format; } static int out_set_format(struct audio_stream *stream, audio_format_t format) { return 0; } static int out_standby(struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; stream_lock(&out->lock); device_lock(out->adev); stream_standby_l(&out->alsa_devices, &out->standby); device_unlock(out->adev); stream_unlock(&out->lock); return 0; } static int out_dump(const struct audio_stream *stream, int fd) { const struct stream_out* out_stream = (const struct stream_out*) stream; if (out_stream != NULL) { stream_dump_alsa_devices(&out_stream->alsa_devices, fd); } return 0; } static int out_set_parameters(struct audio_stream *stream __unused, const char *kvpairs) { ALOGV("out_set_parameters() keys:%s", kvpairs); // The set parameters here only matters when the routing devices are changed. // When the device version is not less than 3.0, the framework will use create // audio patch API instead of set parameters to chanage audio routing. return 0; } static char * out_get_parameters(const struct audio_stream *stream, const char *keys) { struct stream_out *out = (struct stream_out *)stream; stream_lock(&out->lock); struct alsa_device_info *device_info = stream_get_first_alsa_device(&out->alsa_devices); char *params_str = NULL; if (device_info != NULL) { params_str = device_get_parameters(&device_info->profile, keys); } stream_unlock(&out->lock); return params_str; } static uint32_t out_get_latency(const struct audio_stream_out *stream) { struct alsa_device_info *device_info = stream_get_first_alsa_device( &((struct stream_out*)stream)->alsa_devices); if (device_info == NULL) { ALOGW("%s device info is null", __func__); return 0; } return proxy_get_latency(&device_info->proxy); } static int out_set_volume(struct audio_stream_out *stream, float left, float right) { return -ENOSYS; } /* must be called with hw device and output stream mutexes locked */ static int start_output_stream(struct stream_out *out) { int status = 0; struct listnode *node; list_for_each(node, &out->alsa_devices) { struct alsa_device_info *device_info = node_to_item(node, struct alsa_device_info, list_node); ALOGV("start_output_stream(card:%d device:%d)", device_info->profile.card, device_info->profile.device); status = proxy_open(&device_info->proxy); if (status != 0) { ALOGE("%s failed to open device(card: %d device: %d)", __func__, device_info->profile.card, device_info->profile.device); goto exit; } } exit: if (status != 0) { list_for_each(node, &out->alsa_devices) { struct alsa_device_info *device_info = node_to_item(node, struct alsa_device_info, list_node); proxy_close(&device_info->proxy); } } return status; } static ssize_t out_write(struct audio_stream_out *stream, const void* buffer, size_t bytes) { int ret; struct stream_out *out = (struct stream_out *)stream; stream_lock(&out->lock); if (out->standby) { ret = start_output_stream(out); if (ret != 0) { goto err; } out->standby = false; } struct listnode* node; list_for_each(node, &out->alsa_devices) { struct alsa_device_info* device_info = node_to_item(node, struct alsa_device_info, list_node); alsa_device_proxy* proxy = &device_info->proxy; const void * write_buff = buffer; int num_write_buff_bytes = bytes; const int num_device_channels = proxy_get_channel_count(proxy); /* what we told alsa */ const int num_req_channels = out->hal_channel_count; /* what we told AudioFlinger */ if (num_device_channels != num_req_channels) { /* allocate buffer */ const size_t required_conversion_buffer_size = bytes * num_device_channels / num_req_channels; if (required_conversion_buffer_size > out->conversion_buffer_size) { out->conversion_buffer_size = required_conversion_buffer_size; out->conversion_buffer = realloc(out->conversion_buffer, out->conversion_buffer_size); } /* convert data */ const audio_format_t audio_format = out_get_format(&(out->stream.common)); const unsigned sample_size_in_bytes = audio_bytes_per_sample(audio_format); num_write_buff_bytes = adjust_channels(write_buff, num_req_channels, out->conversion_buffer, num_device_channels, sample_size_in_bytes, num_write_buff_bytes); write_buff = out->conversion_buffer; } if (write_buff != NULL && num_write_buff_bytes != 0) { proxy_write(proxy, write_buff, num_write_buff_bytes); } } stream_unlock(&out->lock); return bytes; err: stream_unlock(&out->lock); if (ret != 0) { usleep(bytes * 1000000 / audio_stream_out_frame_size(stream) / out_get_sample_rate(&stream->common)); } return bytes; } static int out_get_render_position(const struct audio_stream_out *stream, uint32_t *dsp_frames) { return -EINVAL; } static int out_get_presentation_position(const struct audio_stream_out *stream, uint64_t *frames, struct timespec *timestamp) { struct stream_out *out = (struct stream_out *)stream; // discard const qualifier stream_lock(&out->lock); const struct alsa_device_info* device_info = stream_get_first_alsa_device(&out->alsa_devices); const int ret = device_info == NULL ? -ENODEV : proxy_get_presentation_position(&device_info->proxy, frames, timestamp); stream_unlock(&out->lock); return ret; } static int out_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int out_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int out_get_next_write_timestamp(const struct audio_stream_out *stream, int64_t *timestamp) { return -EINVAL; } static int adev_open_output_stream(struct audio_hw_device *hw_dev, audio_io_handle_t handle, audio_devices_t devicesSpec __unused, audio_output_flags_t flags, struct audio_config *config, struct audio_stream_out **stream_out, const char *address /*__unused*/) { ALOGV("adev_open_output_stream() handle:0x%X, devicesSpec:0x%X, flags:0x%X, addr:%s", handle, devicesSpec, flags, address); struct stream_out *out; out = (struct stream_out *)calloc(1, sizeof(struct stream_out)); if (out == NULL) { return -ENOMEM; } /* setup function pointers */ out->stream.common.get_sample_rate = out_get_sample_rate; out->stream.common.set_sample_rate = out_set_sample_rate; out->stream.common.get_buffer_size = out_get_buffer_size; out->stream.common.get_channels = out_get_channels; out->stream.common.get_format = out_get_format; out->stream.common.set_format = out_set_format; out->stream.common.standby = out_standby; out->stream.common.dump = out_dump; out->stream.common.set_parameters = out_set_parameters; out->stream.common.get_parameters = out_get_parameters; out->stream.common.add_audio_effect = out_add_audio_effect; out->stream.common.remove_audio_effect = out_remove_audio_effect; out->stream.get_latency = out_get_latency; out->stream.set_volume = out_set_volume; out->stream.write = out_write; out->stream.get_render_position = out_get_render_position; out->stream.get_presentation_position = out_get_presentation_position; out->stream.get_next_write_timestamp = out_get_next_write_timestamp; out->handle = handle; stream_lock_init(&out->lock); out->adev = (struct audio_device *)hw_dev; list_init(&out->alsa_devices); struct alsa_device_info *device_info = (struct alsa_device_info *)calloc(1, sizeof(struct alsa_device_info)); profile_init(&device_info->profile, PCM_OUT); // build this to hand to the alsa_device_proxy struct pcm_config proxy_config = {}; /* Pull out the card/device pair */ parse_card_device_params(address, &device_info->profile.card, &device_info->profile.device); profile_read_device_info(&device_info->profile); int ret = 0; /* Rate */ if (config->sample_rate == 0) { proxy_config.rate = profile_get_default_sample_rate(&device_info->profile); } else if (profile_is_sample_rate_valid(&device_info->profile, config->sample_rate)) { proxy_config.rate = config->sample_rate; } else { proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(&device_info->profile); ret = -EINVAL; } /* TODO: This is a problem if the input does not support this rate */ device_lock(out->adev); out->adev->device_sample_rate = config->sample_rate; device_unlock(out->adev); /* Format */ if (config->format == AUDIO_FORMAT_DEFAULT) { proxy_config.format = profile_get_default_format(&device_info->profile); config->format = audio_format_from_pcm_format(proxy_config.format); } else { enum pcm_format fmt = pcm_format_from_audio_format(config->format); if (profile_is_format_valid(&device_info->profile, fmt)) { proxy_config.format = fmt; } else { proxy_config.format = profile_get_default_format(&device_info->profile); config->format = audio_format_from_pcm_format(proxy_config.format); ret = -EINVAL; } } /* Channels */ bool calc_mask = false; if (config->channel_mask == AUDIO_CHANNEL_NONE) { /* query case */ out->hal_channel_count = profile_get_default_channel_count(&device_info->profile); calc_mask = true; } else { /* explicit case */ out->hal_channel_count = audio_channel_count_from_out_mask(config->channel_mask); } /* The Framework is currently limited to no more than this number of channels */ if (out->hal_channel_count > FCC_LIMIT) { out->hal_channel_count = FCC_LIMIT; calc_mask = true; } if (calc_mask) { /* need to calculate the mask from channel count either because this is the query case * or the specified mask isn't valid for this device, or is more than the FW can handle */ config->channel_mask = out->hal_channel_count <= FCC_2 /* position mask for mono and stereo*/ ? audio_channel_out_mask_from_count(out->hal_channel_count) /* otherwise indexed */ : audio_channel_mask_for_index_assignment_from_count(out->hal_channel_count); } out->hal_channel_mask = config->channel_mask; // Validate the "logical" channel count against support in the "actual" profile. // if they differ, choose the "actual" number of channels *closest* to the "logical". // and store THAT in proxy_config.channels proxy_config.channels = profile_get_closest_channel_count(&device_info->profile, out->hal_channel_count); proxy_prepare(&device_info->proxy, &device_info->profile, &proxy_config); out->config = proxy_config; list_add_tail(&out->alsa_devices, &device_info->list_node); /* TODO The retry mechanism isn't implemented in AudioPolicyManager/AudioFlinger * So clear any errors that may have occurred above. */ ret = 0; out->conversion_buffer = NULL; out->conversion_buffer_size = 0; out->standby = true; /* Save the stream for adev_dump() */ adev_add_stream_to_list(out->adev, &out->adev->output_stream_list, &out->list_node); *stream_out = &out->stream; return ret; } static void adev_close_output_stream(struct audio_hw_device *hw_dev, struct audio_stream_out *stream) { struct stream_out *out = (struct stream_out *)stream; stream_lock(&out->lock); /* Close the pcm device */ stream_standby_l(&out->alsa_devices, &out->standby); stream_clear_devices(&out->alsa_devices); free(out->conversion_buffer); out->conversion_buffer = NULL; out->conversion_buffer_size = 0; device_lock(out->adev); list_remove(&out->list_node); out->adev->device_sample_rate = 0; device_unlock(out->adev); stream_unlock(&out->lock); free(stream); } static size_t adev_get_input_buffer_size(const struct audio_hw_device *hw_dev, const struct audio_config *config) { /* TODO This needs to be calculated based on format/channels/rate */ return 320; } /* * IN functions */ static uint32_t in_get_sample_rate(const struct audio_stream *stream) { struct alsa_device_info *device_info = stream_get_first_alsa_device( &((const struct stream_in *)stream)->alsa_devices); if (device_info == NULL) { ALOGW("%s device info is null", __func__); return 0; } uint32_t rate = proxy_get_sample_rate(&device_info->proxy); ALOGV("in_get_sample_rate() = %d", rate); return rate; } static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate) { ALOGV("in_set_sample_rate(%d) - NOPE", rate); return -ENOSYS; } static size_t in_get_buffer_size(const struct audio_stream *stream) { const struct stream_in * in = ((const struct stream_in*)stream); struct alsa_device_info *device_info = stream_get_first_alsa_device(&in->alsa_devices); if (device_info == NULL) { ALOGW("%s device info is null", __func__); return 0; } return proxy_get_period_size(&device_info->proxy) * audio_stream_in_frame_size(&(in->stream)); } static uint32_t in_get_channels(const struct audio_stream *stream) { const struct stream_in *in = (const struct stream_in*)stream; return in->hal_channel_mask; } static audio_format_t in_get_format(const struct audio_stream *stream) { struct alsa_device_info *device_info = stream_get_first_alsa_device( &((const struct stream_in *)stream)->alsa_devices); if (device_info == NULL) { ALOGW("%s device info is null", __func__); return AUDIO_FORMAT_DEFAULT; } alsa_device_proxy *proxy = &device_info->proxy; audio_format_t format = audio_format_from_pcm_format(proxy_get_format(proxy)); return format; } static int in_set_format(struct audio_stream *stream, audio_format_t format) { ALOGV("in_set_format(%d) - NOPE", format); return -ENOSYS; } static int in_standby(struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; stream_lock(&in->lock); device_lock(in->adev); stream_standby_l(&in->alsa_devices, &in->standby); device_unlock(in->adev); stream_unlock(&in->lock); return 0; } static int in_dump(const struct audio_stream *stream, int fd) { const struct stream_in* in_stream = (const struct stream_in*)stream; if (in_stream != NULL) { stream_dump_alsa_devices(&in_stream->alsa_devices, fd); } return 0; } static int in_set_parameters(struct audio_stream *stream, const char *kvpairs) { ALOGV("in_set_parameters() keys:%s", kvpairs); // The set parameters here only matters when the routing devices are changed. // When the device version higher than 3.0, the framework will use create_audio_patch // API instead of set_parameters to change audio routing. return 0; } static char * in_get_parameters(const struct audio_stream *stream, const char *keys) { struct stream_in *in = (struct stream_in *)stream; stream_lock(&in->lock); struct alsa_device_info *device_info = stream_get_first_alsa_device(&in->alsa_devices); char *params_str = NULL; if (device_info != NULL) { params_str = device_get_parameters(&device_info->profile, keys); } stream_unlock(&in->lock); return params_str; } static int in_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int in_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int in_set_gain(struct audio_stream_in *stream, float gain) { return 0; } /* must be called with hw device and output stream mutexes locked */ static int start_input_stream(struct stream_in *in) { // Only care about the first device as only one input device is allowed. struct alsa_device_info *device_info = stream_get_first_alsa_device(&in->alsa_devices); if (device_info == NULL) { return -ENODEV; } ALOGV("start_input_stream(card:%d device:%d)", device_info->profile.card, device_info->profile.device); return proxy_open(&device_info->proxy); } /* TODO mutex stuff here (see out_write) */ static ssize_t in_read(struct audio_stream_in *stream, void* buffer, size_t bytes) { size_t num_read_buff_bytes = 0; void * read_buff = buffer; void * out_buff = buffer; int ret = 0; struct stream_in * in = (struct stream_in *)stream; stream_lock(&in->lock); if (in->standby) { ret = start_input_stream(in); if (ret != 0) { goto err; } in->standby = false; } // Only care about the first device as only one input device is allowed. struct alsa_device_info *device_info = stream_get_first_alsa_device(&in->alsa_devices); if (device_info == NULL) { return 0; } /* * OK, we need to figure out how much data to read to be able to output the requested * number of bytes in the HAL format (16-bit, stereo). */ num_read_buff_bytes = bytes; int num_device_channels = proxy_get_channel_count(&device_info->proxy); /* what we told Alsa */ int num_req_channels = in->hal_channel_count; /* what we told AudioFlinger */ if (num_device_channels != num_req_channels) { num_read_buff_bytes = (num_device_channels * num_read_buff_bytes) / num_req_channels; } /* Setup/Realloc the conversion buffer (if necessary). */ if (num_read_buff_bytes != bytes) { if (num_read_buff_bytes > in->conversion_buffer_size) { /*TODO Remove this when AudioPolicyManger/AudioFlinger support arbitrary formats (and do these conversions themselves) */ in->conversion_buffer_size = num_read_buff_bytes; in->conversion_buffer = realloc(in->conversion_buffer, in->conversion_buffer_size); } read_buff = in->conversion_buffer; } ret = proxy_read(&device_info->proxy, read_buff, num_read_buff_bytes); if (ret == 0) { if (num_device_channels != num_req_channels) { // ALOGV("chans dev:%d req:%d", num_device_channels, num_req_channels); out_buff = buffer; /* Num Channels conversion */ if (num_device_channels != num_req_channels) { audio_format_t audio_format = in_get_format(&(in->stream.common)); unsigned sample_size_in_bytes = audio_bytes_per_sample(audio_format); num_read_buff_bytes = adjust_channels(read_buff, num_device_channels, out_buff, num_req_channels, sample_size_in_bytes, num_read_buff_bytes); } } /* no need to acquire in->adev->lock to read mic_muted here as we don't change its state */ if (num_read_buff_bytes > 0 && in->adev->mic_muted) memset(buffer, 0, num_read_buff_bytes); } else { num_read_buff_bytes = 0; // reset the value after USB headset is unplugged } err: stream_unlock(&in->lock); return num_read_buff_bytes; } static uint32_t in_get_input_frames_lost(struct audio_stream_in *stream) { return 0; } static int in_get_capture_position(const struct audio_stream_in *stream, int64_t *frames, int64_t *time) { struct stream_in *in = (struct stream_in *)stream; // discard const qualifier stream_lock(&in->lock); struct alsa_device_info *device_info = stream_get_first_alsa_device(&in->alsa_devices); const int ret = device_info == NULL ? -ENODEV : proxy_get_capture_position(&device_info->proxy, frames, time); stream_unlock(&in->lock); return ret; } static int in_get_active_microphones(const struct audio_stream_in *stream, struct audio_microphone_characteristic_t *mic_array, size_t *mic_count) { (void)stream; (void)mic_array; (void)mic_count; return -ENOSYS; } static int in_set_microphone_direction(const struct audio_stream_in *stream, audio_microphone_direction_t dir) { (void)stream; (void)dir; ALOGV("---- in_set_microphone_direction()"); return -ENOSYS; } static int in_set_microphone_field_dimension(const struct audio_stream_in *stream, float zoom) { (void)zoom; ALOGV("---- in_set_microphone_field_dimension()"); return -ENOSYS; } static int adev_open_input_stream(struct audio_hw_device *hw_dev, audio_io_handle_t handle, audio_devices_t devicesSpec __unused, struct audio_config *config, struct audio_stream_in **stream_in, audio_input_flags_t flags __unused, const char *address, audio_source_t source __unused) { ALOGV("adev_open_input_stream() rate:%" PRIu32 ", chanMask:0x%" PRIX32 ", fmt:%" PRIu8, config->sample_rate, config->channel_mask, config->format); /* Pull out the card/device pair */ int32_t card, device; if (!parse_card_device_params(address, &card, &device)) { ALOGW("%s fail - invalid address %s", __func__, address); *stream_in = NULL; return -EINVAL; } struct stream_in * const in = (struct stream_in *)calloc(1, sizeof(struct stream_in)); if (in == NULL) { *stream_in = NULL; return -ENOMEM; } /* setup function pointers */ in->stream.common.get_sample_rate = in_get_sample_rate; in->stream.common.set_sample_rate = in_set_sample_rate; in->stream.common.get_buffer_size = in_get_buffer_size; in->stream.common.get_channels = in_get_channels; in->stream.common.get_format = in_get_format; in->stream.common.set_format = in_set_format; in->stream.common.standby = in_standby; in->stream.common.dump = in_dump; in->stream.common.set_parameters = in_set_parameters; in->stream.common.get_parameters = in_get_parameters; in->stream.common.add_audio_effect = in_add_audio_effect; in->stream.common.remove_audio_effect = in_remove_audio_effect; in->stream.set_gain = in_set_gain; in->stream.read = in_read; in->stream.get_input_frames_lost = in_get_input_frames_lost; in->stream.get_capture_position = in_get_capture_position; in->stream.get_active_microphones = in_get_active_microphones; in->stream.set_microphone_direction = in_set_microphone_direction; in->stream.set_microphone_field_dimension = in_set_microphone_field_dimension; in->handle = handle; stream_lock_init(&in->lock); in->adev = (struct audio_device *)hw_dev; list_init(&in->alsa_devices); struct alsa_device_info *device_info = (struct alsa_device_info *)calloc(1, sizeof(struct alsa_device_info)); profile_init(&device_info->profile, PCM_IN); memset(&in->config, 0, sizeof(in->config)); int ret = 0; device_lock(in->adev); int num_open_inputs = in->adev->inputs_open; device_unlock(in->adev); /* Check if an input stream is already open */ if (num_open_inputs > 0) { if (!profile_is_cached_for(&device_info->profile, card, device)) { ALOGW("%s fail - address card:%d device:%d doesn't match existing profile", __func__, card, device); ret = -EINVAL; } } else { /* Read input profile only if necessary */ device_info->profile.card = card; device_info->profile.device = device; if (!profile_read_device_info(&device_info->profile)) { ALOGW("%s fail - cannot read profile", __func__); ret = -EINVAL; } } if (ret != 0) { free(in); *stream_in = NULL; return ret; } /* Rate */ int request_config_rate = config->sample_rate; if (config->sample_rate == 0) { config->sample_rate = profile_get_default_sample_rate(&device_info->profile); } if (in->adev->device_sample_rate != 0 && /* we are playing, so lock the rate if possible */ in->adev->device_sample_rate >= RATELOCK_THRESHOLD) {/* but only for high sample rates */ if (config->sample_rate != in->adev->device_sample_rate) { unsigned highest_rate = profile_get_highest_sample_rate(&device_info->profile); if (highest_rate == 0) { ret = -EINVAL; /* error with device */ } else { in->config.rate = config->sample_rate = min(highest_rate, in->adev->device_sample_rate); if (request_config_rate != 0 && in->config.rate != config->sample_rate) { /* Changing the requested rate */ ret = -EINVAL; } else { /* Everything AOK! */ ret = 0; } } } } else if (profile_is_sample_rate_valid(&device_info->profile, config->sample_rate)) { in->config.rate = config->sample_rate; } else { in->config.rate = config->sample_rate = profile_get_default_sample_rate(&device_info->profile); ret = -EINVAL; } /* Format */ if (config->format == AUDIO_FORMAT_DEFAULT) { in->config.format = profile_get_default_format(&device_info->profile); config->format = audio_format_from_pcm_format(in->config.format); } else { enum pcm_format fmt = pcm_format_from_audio_format(config->format); if (profile_is_format_valid(&device_info->profile, fmt)) { in->config.format = fmt; } else { in->config.format = profile_get_default_format(&device_info->profile); config->format = audio_format_from_pcm_format(in->config.format); ret = -EINVAL; } } /* Channels */ bool calc_mask = false; if (config->channel_mask == AUDIO_CHANNEL_NONE) { /* query case */ in->hal_channel_count = profile_get_default_channel_count(&device_info->profile); calc_mask = true; } else { /* explicit case */ in->hal_channel_count = audio_channel_count_from_in_mask(config->channel_mask); } /* The Framework is currently limited to no more than this number of channels */ if (in->hal_channel_count > FCC_LIMIT) { in->hal_channel_count = FCC_LIMIT; calc_mask = true; } if (calc_mask) { /* need to calculate the mask from channel count either because this is the query case * or the specified mask isn't valid for this device, or is more than the FW can handle */ in->hal_channel_mask = in->hal_channel_count <= FCC_2 /* position mask for mono & stereo */ ? audio_channel_in_mask_from_count(in->hal_channel_count) /* otherwise indexed */ : audio_channel_mask_for_index_assignment_from_count(in->hal_channel_count); // if we change the mask... if (in->hal_channel_mask != config->channel_mask && config->channel_mask != AUDIO_CHANNEL_NONE) { config->channel_mask = in->hal_channel_mask; ret = -EINVAL; } } else { in->hal_channel_mask = config->channel_mask; } if (ret == 0) { // Validate the "logical" channel count against support in the "actual" profile. // if they differ, choose the "actual" number of channels *closest* to the "logical". // and store THAT in proxy_config.channels in->config.channels = profile_get_closest_channel_count(&device_info->profile, in->hal_channel_count); ret = proxy_prepare(&device_info->proxy, &device_info->profile, &in->config); if (ret == 0) { in->standby = true; in->conversion_buffer = NULL; in->conversion_buffer_size = 0; *stream_in = &in->stream; /* Save this for adev_dump() */ adev_add_stream_to_list(in->adev, &in->adev->input_stream_list, &in->list_node); } else { ALOGW("proxy_prepare error %d", ret); unsigned channel_count = proxy_get_channel_count(&device_info->proxy); config->channel_mask = channel_count <= FCC_2 ? audio_channel_in_mask_from_count(channel_count) : audio_channel_mask_for_index_assignment_from_count(channel_count); config->format = audio_format_from_pcm_format(proxy_get_format(&device_info->proxy)); config->sample_rate = proxy_get_sample_rate(&device_info->proxy); } } if (ret != 0) { // Deallocate this stream on error, because AudioFlinger won't call // adev_close_input_stream() in this case. *stream_in = NULL; free(in); return ret; } list_add_tail(&in->alsa_devices, &device_info->list_node); device_lock(in->adev); ++in->adev->inputs_open; device_unlock(in->adev); return ret; } static void adev_close_input_stream(struct audio_hw_device *hw_dev, struct audio_stream_in *stream) { struct stream_in *in = (struct stream_in *)stream; stream_lock(&in->lock); device_lock(in->adev); list_remove(&in->list_node); --in->adev->inputs_open; struct alsa_device_info *device_info = stream_get_first_alsa_device(&in->alsa_devices); if (device_info != NULL) { ALOGV("adev_close_input_stream(c:%d d:%d)", device_info->profile.card, device_info->profile.device); } LOG_ALWAYS_FATAL_IF(in->adev->inputs_open < 0, "invalid inputs_open: %d", in->adev->inputs_open); stream_standby_l(&in->alsa_devices, &in->standby); device_unlock(in->adev); stream_clear_devices(&in->alsa_devices); stream_unlock(&in->lock); free(in->conversion_buffer); free(stream); } /* * ADEV Functions */ static int adev_set_parameters(struct audio_hw_device *hw_dev, const char *kvpairs) { return 0; } static char * adev_get_parameters(const struct audio_hw_device *hw_dev, const char *keys) { return strdup(""); } static int adev_init_check(const struct audio_hw_device *hw_dev) { return 0; } static int adev_set_voice_volume(struct audio_hw_device *hw_dev, float volume) { return -ENOSYS; } static int adev_set_master_volume(struct audio_hw_device *hw_dev, float volume) { return -ENOSYS; } static int adev_set_mode(struct audio_hw_device *hw_dev, audio_mode_t mode) { return 0; } static int adev_set_mic_mute(struct audio_hw_device *hw_dev, bool state) { struct audio_device * adev = (struct audio_device *)hw_dev; device_lock(adev); adev->mic_muted = state; device_unlock(adev); return -ENOSYS; } static int adev_get_mic_mute(const struct audio_hw_device *hw_dev, bool *state) { return -ENOSYS; } static int adev_create_audio_patch(struct audio_hw_device *dev, unsigned int num_sources, const struct audio_port_config *sources, unsigned int num_sinks, const struct audio_port_config *sinks, audio_patch_handle_t *handle) { if (num_sources != 1 || num_sinks == 0 || num_sinks > AUDIO_PATCH_PORTS_MAX) { // Only accept mix->device and device->mix cases. In that case, the number of sources // must be 1. The number of sinks must be in the range of (0, AUDIO_PATCH_PORTS_MAX]. return -EINVAL; } if (sources[0].type == AUDIO_PORT_TYPE_DEVICE) { // If source is a device, the number of sinks should be 1. if (num_sinks != 1 || sinks[0].type != AUDIO_PORT_TYPE_MIX) { return -EINVAL; } } else if (sources[0].type == AUDIO_PORT_TYPE_MIX) { // If source is a mix, all sinks should be device. for (unsigned int i = 0; i < num_sinks; i++) { if (sinks[i].type != AUDIO_PORT_TYPE_DEVICE) { ALOGE("%s() invalid sink type %#x for mix source", __func__, sinks[i].type); return -EINVAL; } } } else { // All other cases are invalid. return -EINVAL; } struct audio_device* adev = (struct audio_device*) dev; bool generatedPatchHandle = false; device_lock(adev); if (*handle == AUDIO_PATCH_HANDLE_NONE) { *handle = ++adev->next_patch_handle; generatedPatchHandle = true; } int cards[AUDIO_PATCH_PORTS_MAX]; int devices[AUDIO_PATCH_PORTS_MAX]; const struct audio_port_config *port_configs = sources[0].type == AUDIO_PORT_TYPE_DEVICE ? sources : sinks; int num_configs = 0; audio_io_handle_t io_handle = 0; bool wasStandby = true; int direction = PCM_OUT; audio_patch_handle_t *patch_handle = NULL; struct listnode *alsa_devices = NULL; struct stream_lock *lock = NULL; struct pcm_config *config = NULL; struct stream_in *in = NULL; struct stream_out *out = NULL; unsigned int num_saved_devices = 0; int saved_cards[AUDIO_PATCH_PORTS_MAX]; int saved_devices[AUDIO_PATCH_PORTS_MAX]; struct listnode *node; // Only handle patches for mix->devices and device->mix case. if (sources[0].type == AUDIO_PORT_TYPE_DEVICE) { in = adev_get_stream_in_by_io_handle_l(adev, sinks[0].ext.mix.handle); if (in == NULL) { ALOGE("%s()can not find stream with handle(%d)", __func__, sinks[0].ext.mix.handle); device_unlock(adev); return -EINVAL; } direction = PCM_IN; wasStandby = in->standby; io_handle = in->handle; num_configs = num_sources; patch_handle = &in->patch_handle; alsa_devices = &in->alsa_devices; lock = &in->lock; config = &in->config; } else { out = adev_get_stream_out_by_io_handle_l(adev, sources[0].ext.mix.handle); if (out == NULL) { ALOGE("%s()can not find stream with handle(%d)", __func__, sources[0].ext.mix.handle); device_unlock(adev); return -EINVAL; } direction = PCM_OUT; wasStandby = out->standby; io_handle = out->handle; num_configs = num_sinks; patch_handle = &out->patch_handle; alsa_devices = &out->alsa_devices; lock = &out->lock; config = &out->config; } // Check if the patch handle match the recorded one if a valid patch handle is passed. if (!generatedPatchHandle && *patch_handle != *handle) { ALOGE("%s() the patch handle(%d) does not match recorded one(%d) for stream " "with handle(%d) when creating audio patch", __func__, *handle, *patch_handle, io_handle); device_unlock(adev); return -EINVAL; } device_unlock(adev); for (unsigned int i = 0; i < num_configs; ++i) { if (!parse_card_device_params(port_configs[i].ext.device.address, &cards[i], &devices[i])) { ALOGE("%s, failed to parse card and device %s", __func__, port_configs[i].ext.device.address); return -EINVAL; } } stream_lock(lock); list_for_each (node, alsa_devices) { struct alsa_device_info *device_info = node_to_item(node, struct alsa_device_info, list_node); saved_cards[num_saved_devices] = device_info->profile.card; saved_devices[num_saved_devices++] = device_info->profile.device; } device_lock(adev); stream_standby_l(alsa_devices, out == NULL ? &in->standby : &out->standby); device_unlock(adev); // Timestamps: // Audio timestamps assume continuous PCM frame counts which are maintained // with the device proxy.transferred variable. Technically it would be better // associated with in or out stream, not the device; here we save and restore // using the first alsa device as a simplification. uint64_t saved_transferred_frames = 0; struct alsa_device_info *device_info = stream_get_first_alsa_device(alsa_devices); if (device_info != NULL) saved_transferred_frames = device_info->proxy.transferred; int ret = stream_set_new_devices(config, alsa_devices, num_configs, cards, devices, direction); if (ret != 0) { *handle = generatedPatchHandle ? AUDIO_PATCH_HANDLE_NONE : *handle; stream_set_new_devices( config, alsa_devices, num_saved_devices, saved_cards, saved_devices, direction); } else { *patch_handle = *handle; } // Timestamps: Restore transferred frames. if (saved_transferred_frames != 0) { device_info = stream_get_first_alsa_device(alsa_devices); if (device_info != NULL) device_info->proxy.transferred = saved_transferred_frames; } if (!wasStandby) { device_lock(adev); if (in != NULL) { start_input_stream(in); } if (out != NULL) { start_output_stream(out); } device_unlock(adev); } stream_unlock(lock); return ret; } static int adev_release_audio_patch(struct audio_hw_device *dev, audio_patch_handle_t patch_handle) { struct audio_device* adev = (struct audio_device*) dev; device_lock(adev); struct stream_out *out = adev_get_stream_out_by_patch_handle_l(adev, patch_handle); device_unlock(adev); if (out != NULL) { stream_lock(&out->lock); device_lock(adev); stream_standby_l(&out->alsa_devices, &out->standby); device_unlock(adev); out->patch_handle = AUDIO_PATCH_HANDLE_NONE; stream_unlock(&out->lock); return 0; } device_lock(adev); struct stream_in *in = adev_get_stream_in_by_patch_handle_l(adev, patch_handle); device_unlock(adev); if (in != NULL) { stream_lock(&in->lock); device_lock(adev); stream_standby_l(&in->alsa_devices, &in->standby); device_unlock(adev); in->patch_handle = AUDIO_PATCH_HANDLE_NONE; stream_unlock(&in->lock); return 0; } ALOGE("%s cannot find stream with patch handle as %d", __func__, patch_handle); return -EINVAL; } static int adev_get_audio_port(struct audio_hw_device *dev, struct audio_port *port) { if (port->type != AUDIO_PORT_TYPE_DEVICE) { return -EINVAL; } alsa_device_profile profile; const bool is_output = audio_is_output_device(port->ext.device.type); profile_init(&profile, is_output ? PCM_OUT : PCM_IN); if (!parse_card_device_params(port->ext.device.address, &profile.card, &profile.device)) { return -EINVAL; } if (!profile_read_device_info(&profile)) { return -ENOENT; } port->num_formats = 0;; for (size_t i = 0; i < min(MAX_PROFILE_FORMATS, AUDIO_PORT_MAX_FORMATS) && profile.formats[i] != 0; ++i) { audio_format_t format = audio_format_from(profile.formats[i]); if (format != AUDIO_FORMAT_INVALID) { port->formats[port->num_formats++] = format; } } port->num_sample_rates = populate_sample_rates_from_profile(&profile, port->sample_rates); port->num_channel_masks = populate_channel_mask_from_profile( &profile, is_output, port->channel_masks); return 0; } static int adev_get_audio_port_v7(struct audio_hw_device *dev, struct audio_port_v7 *port) { if (port->type != AUDIO_PORT_TYPE_DEVICE) { return -EINVAL; } alsa_device_profile profile; const bool is_output = audio_is_output_device(port->ext.device.type); profile_init(&profile, is_output ? PCM_OUT : PCM_IN); if (!parse_card_device_params(port->ext.device.address, &profile.card, &profile.device)) { return -EINVAL; } if (!profile_read_device_info(&profile)) { return -ENOENT; } audio_channel_mask_t channel_masks[AUDIO_PORT_MAX_CHANNEL_MASKS]; unsigned int num_channel_masks = populate_channel_mask_from_profile( &profile, is_output, channel_masks); unsigned int sample_rates[AUDIO_PORT_MAX_SAMPLING_RATES]; const unsigned int num_sample_rates = populate_sample_rates_from_profile(&profile, sample_rates); port->num_audio_profiles = 0;; for (size_t i = 0; i < min(MAX_PROFILE_FORMATS, AUDIO_PORT_MAX_AUDIO_PROFILES) && profile.formats[i] != 0; ++i) { audio_format_t format = audio_format_from(profile.formats[i]); if (format == AUDIO_FORMAT_INVALID) { continue; } const unsigned int j = port->num_audio_profiles++; port->audio_profiles[j].format = format; port->audio_profiles[j].num_sample_rates = num_sample_rates; memcpy(port->audio_profiles[j].sample_rates, sample_rates, num_sample_rates * sizeof(unsigned int)); port->audio_profiles[j].num_channel_masks = num_channel_masks; memcpy(port->audio_profiles[j].channel_masks, channel_masks, num_channel_masks* sizeof(audio_channel_mask_t)); } return 0; } static int adev_dump(const struct audio_hw_device *device, int fd) { dprintf(fd, "\nUSB audio module:\n"); struct audio_device* adev = (struct audio_device*)device; const int kNumRetries = 3; const int kSleepTimeMS = 500; // use device_try_lock() in case we dumpsys during a deadlock int retry = kNumRetries; while (retry > 0 && device_try_lock(adev) != 0) { sleep(kSleepTimeMS); retry--; } if (retry > 0) { if (list_empty(&adev->output_stream_list)) { dprintf(fd, " No output streams.\n"); } else { struct listnode* node; list_for_each(node, &adev->output_stream_list) { struct audio_stream* stream = (struct audio_stream *)node_to_item(node, struct stream_out, list_node); out_dump(stream, fd); } } if (list_empty(&adev->input_stream_list)) { dprintf(fd, "\n No input streams.\n"); } else { struct listnode* node; list_for_each(node, &adev->input_stream_list) { struct audio_stream* stream = (struct audio_stream *)node_to_item(node, struct stream_in, list_node); in_dump(stream, fd); } } device_unlock(adev); } else { // Couldn't lock dprintf(fd, " Could not obtain device lock.\n"); } return 0; } static int adev_close(hw_device_t *device) { free(device); return 0; } static int adev_open(const hw_module_t* module, const char* name, hw_device_t** device) { if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0) return -EINVAL; struct audio_device *adev = calloc(1, sizeof(struct audio_device)); if (!adev) return -ENOMEM; pthread_mutex_init(&adev->lock, (const pthread_mutexattr_t *) NULL); list_init(&adev->output_stream_list); list_init(&adev->input_stream_list); adev->hw_device.common.tag = HARDWARE_DEVICE_TAG; adev->hw_device.common.version = AUDIO_DEVICE_API_VERSION_3_2; adev->hw_device.common.module = (struct hw_module_t *)module; adev->hw_device.common.close = adev_close; adev->hw_device.init_check = adev_init_check; adev->hw_device.set_voice_volume = adev_set_voice_volume; adev->hw_device.set_master_volume = adev_set_master_volume; adev->hw_device.set_mode = adev_set_mode; adev->hw_device.set_mic_mute = adev_set_mic_mute; adev->hw_device.get_mic_mute = adev_get_mic_mute; adev->hw_device.set_parameters = adev_set_parameters; adev->hw_device.get_parameters = adev_get_parameters; adev->hw_device.get_input_buffer_size = adev_get_input_buffer_size; adev->hw_device.open_output_stream = adev_open_output_stream; adev->hw_device.close_output_stream = adev_close_output_stream; adev->hw_device.open_input_stream = adev_open_input_stream; adev->hw_device.close_input_stream = adev_close_input_stream; adev->hw_device.create_audio_patch = adev_create_audio_patch; adev->hw_device.release_audio_patch = adev_release_audio_patch; adev->hw_device.get_audio_port = adev_get_audio_port; adev->hw_device.get_audio_port_v7 = adev_get_audio_port_v7; adev->hw_device.dump = adev_dump; *device = &adev->hw_device.common; return 0; } static struct hw_module_methods_t hal_module_methods = { .open = adev_open, }; struct audio_module HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = AUDIO_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = AUDIO_HARDWARE_MODULE_ID, .name = "USB audio HW HAL", .author = "The Android Open Source Project", .methods = &hal_module_methods, }, };