/* Copyright (c) 2013 - 2019, The Linux Foundation. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of The Linux Foundation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "ipa_nat_drv.h" #include "ipa_nat_drvi.h" #include #ifdef USE_GLIB #include #define strlcpy g_strlcpy #else #ifndef FEATURE_IPA_ANDROID static size_t strlcpy(char * dst, const char * src, size_t size) { size_t i; if (size < 1) return 0; for (i = 0; i < (size - 1) && src[i] != '\0'; i++) dst[i] = src[i]; for (; i < size; i++) dst[i] = '\0'; return strlen(dst); } #endif #endif struct ipa_nat_cache ipv4_nat_cache; pthread_mutex_t nat_mutex = PTHREAD_MUTEX_INITIALIZER; static ipa_nat_pdn_entry pdns[IPA_MAX_PDN_NUM]; /* ------------------------------------------ UTILITY FUNCTIONS START --------------------------------------------*/ /** * UpdateSwSpecParams() - updates sw specific params * @rule: [in/out] nat table rule * @param_type: [in] which param need to update * @value: [in] value of param * * Update SW specific params in the passed rule. * * Returns: None */ void UpdateSwSpecParams(struct ipa_nat_rule *rule, uint8_t param_type, uint32_t value) { uint32_t temp = rule->sw_spec_params; if (IPA_NAT_SW_PARAM_INDX_TBL_ENTRY_BYTE == param_type) { value = (value << INDX_TBL_ENTRY_SIZE_IN_BITS); temp &= 0x0000FFFF; } else { temp &= 0xFFFF0000; } temp = (temp | value); rule->sw_spec_params = temp; return; } /** * Read8BitFieldValue() * @rule: [in/out] * @param_type: [in] * @value: [in] * * * * Returns: None */ uint8_t Read8BitFieldValue(uint32_t param, ipa_nat_rule_field_type fld_type) { void *temp = (void *)¶m; switch (fld_type) { case PROTOCOL_FIELD: return ((time_stamp_proto *)temp)->protocol; default: IPAERR("Invalid Field type passed\n"); return 0; } } uint16_t Read16BitFieldValue(uint32_t param, ipa_nat_rule_field_type fld_type) { void *temp = (void *)¶m; switch (fld_type) { case NEXT_INDEX_FIELD: return ((next_index_pub_port *)temp)->next_index; case PUBLIC_PORT_FILED: return ((next_index_pub_port *)temp)->public_port; case ENABLE_FIELD: return ((ipcksum_enbl *)temp)->enable; case SW_SPEC_PARAM_PREV_INDEX_FIELD: return ((sw_spec_params *)temp)->prev_index; case SW_SPEC_PARAM_INDX_TBL_ENTRY_FIELD: return ((sw_spec_params *)temp)->index_table_entry; case INDX_TBL_TBL_ENTRY_FIELD: return ((tbl_ent_nxt_indx *)temp)->tbl_entry; case INDX_TBL_NEXT_INDEX_FILED: return ((tbl_ent_nxt_indx *)temp)->next_index; #ifdef NAT_DUMP case IP_CHKSUM_FIELD: return ((ipcksum_enbl *)temp)->ip_chksum; #endif default: IPAERR("Invalid Field type passed\n"); return 0; } } uint32_t Read32BitFieldValue(uint32_t param, ipa_nat_rule_field_type fld_type) { void *temp = (void *)¶m; switch (fld_type) { case TIME_STAMP_FIELD: return ((time_stamp_proto *)temp)->time_stamp; default: IPAERR("Invalid Field type passed\n"); return 0; } } /** * GetIPAVer(void) - store IPA HW ver in cache * * * Returns: 0 on success, negative on failure */ int GetIPAVer(void) { int ret; ret = ioctl(ipv4_nat_cache.ipa_fd, IPA_IOC_GET_HW_VERSION, &ipv4_nat_cache.ver); if (ret != 0) { perror("GetIPAVer(): ioctl error value"); IPAERR("unable to get IPA version. Error ;%d\n", ret); IPADBG("ipa fd %d\n", ipv4_nat_cache.ipa_fd); return -EINVAL; } IPADBG("IPA version is %d\n", ipv4_nat_cache.ver); return 0; } /** * CreateNatDevice() - Create nat devices * @mem: [in] name of device that need to create * * Create Nat device and Register for file create * notification in given directory and wait till * receive notification * * Returns: 0 on success, negative on failure */ int CreateNatDevice(struct ipa_ioc_nat_alloc_mem *mem) { int ret; ret = ioctl(ipv4_nat_cache.ipa_fd, IPA_IOC_ALLOC_NAT_MEM, mem); if (ret != 0) { perror("CreateNatDevice(): ioctl error value"); IPAERR("unable to post nat mem init. Error ;%d\n", ret); IPADBG("ipa fd %d\n", ipv4_nat_cache.ipa_fd); return -EINVAL; } IPADBG("posted IPA_IOC_ALLOC_NAT_MEM to kernel successfully\n"); return 0; } /** * GetNearest2Power() - Returns the nearest power of 2 * @num: [in] given number * @ret: [out] nearest power of 2 * * Returns the nearest power of 2 for a * given number * * Returns: 0 on success, negative on failure */ int GetNearest2Power(uint16_t num, uint16_t *ret) { uint16_t number = num; uint16_t tmp = 1; *ret = 0; if (0 == num) { return -EINVAL; } if (1 == num) { *ret = 2; return 0; } for (;;) { if (1 == num) { if (number != tmp) { tmp *= 2; } *ret = tmp; return 0; } num >>= 1; tmp *= 2; } return -EINVAL; } /** * GetNearestEven() - Returns the nearest even number * @num: [in] given number * @ret: [out] nearest even number * * Returns the nearest even number for a given number * * Returns: 0 on success, negative on failure */ void GetNearestEven(uint16_t num, uint16_t *ret) { if (num < 2) { *ret = 2; return; } while ((num % 2) != 0) { num = num + 1; } *ret = num; return; } /** * dst_hash() - Find the index into ipv4 base table * @public_ip: [in] public_ip * @trgt_ip: [in] Target IP address * @trgt_port: [in] Target port * @public_port: [in] Public port * @proto: [in] Protocol (TCP/IP) * @size: [in] size of the ipv4 base Table * * This hash method is used to find the hash index of new nat * entry into ipv4 base table. In case of zero index, the * new entry will be stored into N-1 index where N is size of * ipv4 base table * * Returns: >0 index into ipv4 base table, negative on failure */ static uint16_t dst_hash(uint32_t public_ip, uint32_t trgt_ip, uint16_t trgt_port, uint16_t public_port, uint8_t proto, uint16_t size) { uint16_t hash = ((uint16_t)(trgt_ip)) ^ ((uint16_t)(trgt_ip >> 16)) ^ (trgt_port) ^ (public_port) ^ (proto); if (ipv4_nat_cache.ver >= IPA_HW_v4_0) hash ^= ((uint16_t)(public_ip)) ^ ((uint16_t)(public_ip >> 16)); IPADBG("public ip 0x%X\n", public_ip); IPADBG("trgt_ip: 0x%x trgt_port: 0x%x\n", trgt_ip, trgt_port); IPADBG("public_port: 0x%x\n", public_port); IPADBG("proto: 0x%x size: 0x%x\n", proto, size); hash = (hash & size); /* If the hash resulted to zero then set it to maximum value as zero is unused entry in nat tables */ if (0 == hash) { return size; } IPADBG("dst_hash returning value: %d\n", hash); return hash; } /** * src_hash() - Find the index into ipv4 index base table * @priv_ip: [in] Private IP address * @priv_port: [in] Private port * @trgt_ip: [in] Target IP address * @trgt_port: [in] Target Port * @proto: [in] Protocol (TCP/IP) * @size: [in] size of the ipv4 index base Table * * This hash method is used to find the hash index of new nat * entry into ipv4 index base table. In case of zero index, the * new entry will be stored into N-1 index where N is size of * ipv4 index base table * * Returns: >0 index into ipv4 index base table, negative on failure */ static uint16_t src_hash(uint32_t priv_ip, uint16_t priv_port, uint32_t trgt_ip, uint16_t trgt_port, uint8_t proto, uint16_t size) { uint16_t hash = ((uint16_t)(priv_ip)) ^ ((uint16_t)(priv_ip >> 16)) ^ (priv_port) ^ ((uint16_t)(trgt_ip)) ^ ((uint16_t)(trgt_ip >> 16)) ^ (trgt_port) ^ (proto); IPADBG("priv_ip: 0x%x priv_port: 0x%x\n", priv_ip, priv_port); IPADBG("trgt_ip: 0x%x trgt_port: 0x%x\n", trgt_ip, trgt_port); IPADBG("proto: 0x%x size: 0x%x\n", proto, size); hash = (hash & size); /* If the hash resulted to zero then set it to maximum value as zero is unused entry in nat tables */ if (0 == hash) { return size; } IPADBG("src_hash returning value: %d\n", hash); return hash; } /** * ipa_nati_calc_ip_cksum() - Calculate the source nat * IP checksum diff * @pub_ip_addr: [in] public ip address * @priv_ip_addr: [in] Private ip address * * source nat ip checksum different is calculated as * public_ip_addr - private_ip_addr * Here we are using 1's complement to represent -ve number. * So take 1's complement of private ip addr and add it * to public ip addr. * * Returns: >0 ip checksum diff */ static uint16_t ipa_nati_calc_ip_cksum(uint32_t pub_ip_addr, uint32_t priv_ip_addr) { uint16_t ret; uint32_t cksum = 0; /* Add LSB(2 bytes) of public ip address to cksum */ cksum += (pub_ip_addr & 0xFFFF); /* Add MSB(2 bytes) of public ip address to cksum and check for carry forward(CF), if any add it */ cksum += (pub_ip_addr>>16); if (cksum >> 16) { cksum = (cksum & 0x0000FFFF); cksum += 1; } /* Calculate the 1's complement of private ip address */ priv_ip_addr = (~priv_ip_addr); /* Add LSB(2 bytes) of private ip address to cksum and check for carry forward(CF), if any add it */ cksum += (priv_ip_addr & 0xFFFF); if (cksum >> 16) { cksum = (cksum & 0x0000FFFF); cksum += 1; } /* Add MSB(2 bytes) of private ip address to cksum and check for carry forward(CF), if any add it */ cksum += (priv_ip_addr>>16); if (cksum >> 16) { cksum = (cksum & 0x0000FFFF); cksum += 1; } /* Return the LSB(2 bytes) of checksum */ ret = (uint16_t)cksum; return ret; } /** * ipa_nati_calc_tcp_udp_cksum() - Calculate the source nat * TCP/UDP checksum diff * @pub_ip_addr: [in] public ip address * @pub_port: [in] public tcp/udp port * @priv_ip_addr: [in] Private ip address * @priv_port: [in] Private tcp/udp prot * * source nat tcp/udp checksum is calculated as * (pub_ip_addr + pub_port) - (priv_ip_addr + priv_port) * Here we are using 1's complement to represent -ve number. * So take 1's complement of prviate ip addr &private port * and add it public ip addr & public port. * * Returns: >0 tcp/udp checksum diff */ static uint16_t ipa_nati_calc_tcp_udp_cksum(uint32_t pub_ip_addr, uint16_t pub_port, uint32_t priv_ip_addr, uint16_t priv_port) { uint16_t ret = 0; uint32_t cksum = 0; /* Add LSB(2 bytes) of public ip address to cksum */ cksum += (pub_ip_addr & 0xFFFF); /* Add MSB(2 bytes) of public ip address to cksum and check for carry forward(CF), if any add it */ cksum += (pub_ip_addr>>16); if (cksum >> 16) { cksum = (cksum & 0x0000FFFF); cksum += 1; } /* Add public port to cksum and check for carry forward(CF), if any add it */ cksum += pub_port; if (cksum >> 16) { cksum = (cksum & 0x0000FFFF); cksum += 1; } /* Calculate the 1's complement of private ip address */ priv_ip_addr = (~priv_ip_addr); /* Add LSB(2 bytes) of private ip address to cksum and check for carry forward(CF), if any add it */ cksum += (priv_ip_addr & 0xFFFF); if (cksum >> 16) { cksum = (cksum & 0x0000FFFF); cksum += 1; } /* Add MSB(2 bytes) of private ip address to cksum and check for carry forward(CF), if any add */ cksum += (priv_ip_addr>>16); if (cksum >> 16) { cksum = (cksum & 0x0000FFFF); cksum += 1; } /* Calculate the 1's complement of private port */ priv_port = (~priv_port); /* Add public port to cksum and check for carry forward(CF), if any add it */ cksum += priv_port; if (cksum >> 16) { cksum = (cksum & 0x0000FFFF); cksum += 1; } /* return the LSB(2 bytes) of checksum */ ret = (uint16_t)cksum; return ret; } /** * ipa_nati_make_rule_hdl() - makes nat rule handle * @tbl_hdl: [in] nat table handle * @tbl_entry: [in] nat table entry * * Calculate the nat rule handle which from * nat entry which will be returned to client of * nat driver * * Returns: >0 nat rule handle */ uint16_t ipa_nati_make_rule_hdl(uint16_t tbl_hdl, uint16_t tbl_entry) { struct ipa_nat_ip4_table_cache *tbl_ptr; uint16_t rule_hdl = 0; uint16_t cnt = 0; tbl_ptr = &ipv4_nat_cache.ip4_tbl[tbl_hdl-1]; if (tbl_entry >= tbl_ptr->table_entries) { /* Increase the current expansion table count */ tbl_ptr->cur_expn_tbl_cnt++; /* Update the index into table */ rule_hdl = tbl_entry - tbl_ptr->table_entries; rule_hdl = (rule_hdl << IPA_NAT_RULE_HDL_TBL_TYPE_BITS); /* Update the table type mask */ rule_hdl = (rule_hdl | IPA_NAT_RULE_HDL_TBL_TYPE_MASK); } else { /* Increase the current count */ tbl_ptr->cur_tbl_cnt++; rule_hdl = tbl_entry; rule_hdl = (rule_hdl << IPA_NAT_RULE_HDL_TBL_TYPE_BITS); } for (; cnt < (tbl_ptr->table_entries + tbl_ptr->expn_table_entries); cnt++) { if (IPA_NAT_INVALID_NAT_ENTRY == tbl_ptr->rule_id_array[cnt]) { tbl_ptr->rule_id_array[cnt] = rule_hdl; return cnt + 1; } } return 0; } /** * ipa_nati_parse_ipv4_rule_hdl() - prase rule handle * @tbl_hdl: [in] nat table rule * @rule_hdl: [in] nat rule handle * @expn_tbl: [out] expansion table or not * @tbl_entry: [out] index into table * * Parse the rule handle to retrieve the nat table * type and entry of nat table * * Returns: None */ void ipa_nati_parse_ipv4_rule_hdl(uint8_t tbl_index, uint16_t rule_hdl, uint8_t *expn_tbl, uint16_t *tbl_entry) { struct ipa_nat_ip4_table_cache *tbl_ptr; uint16_t rule_id; *expn_tbl = 0; *tbl_entry = IPA_NAT_INVALID_NAT_ENTRY; tbl_ptr = &ipv4_nat_cache.ip4_tbl[tbl_index]; if (rule_hdl >= (tbl_ptr->table_entries + tbl_ptr->expn_table_entries)) { IPAERR("invalid rule handle\n"); return; } rule_id = tbl_ptr->rule_id_array[rule_hdl-1]; /* Retrieve the table type */ *expn_tbl = 0; if (rule_id & IPA_NAT_RULE_HDL_TBL_TYPE_MASK) { *expn_tbl = 1; } /* Retrieve the table entry */ *tbl_entry = (rule_id >> IPA_NAT_RULE_HDL_TBL_TYPE_BITS); return; } uint32_t ipa_nati_get_entry_offset(struct ipa_nat_ip4_table_cache *cache_ptr, nat_table_type tbl_type, uint16_t tbl_entry) { struct ipa_nat_rule *tbl_ptr; uint32_t ret = 0; if (IPA_NAT_EXPN_TBL == tbl_type) { tbl_ptr = (struct ipa_nat_rule *)cache_ptr->ipv4_expn_rules_addr; } else { tbl_ptr = (struct ipa_nat_rule *)cache_ptr->ipv4_rules_addr; } ret = (char *)&tbl_ptr[tbl_entry] - (char *)tbl_ptr; ret += cache_ptr->tbl_addr_offset; return ret; } uint32_t ipa_nati_get_index_entry_offset(struct ipa_nat_ip4_table_cache *cache_ptr, nat_table_type tbl_type, uint16_t indx_tbl_entry) { struct ipa_nat_indx_tbl_rule *indx_tbl_ptr; uint32_t ret = 0; if (IPA_NAT_INDEX_EXPN_TBL == tbl_type) { indx_tbl_ptr = (struct ipa_nat_indx_tbl_rule *)cache_ptr->index_table_expn_addr; } else { indx_tbl_ptr = (struct ipa_nat_indx_tbl_rule *)cache_ptr->index_table_addr; } ret = (char *)&indx_tbl_ptr[indx_tbl_entry] - (char *)indx_tbl_ptr; ret += cache_ptr->tbl_addr_offset; return ret; } /* ------------------------------------------ UTILITY FUNCTIONS END --------------------------------------------*/ /* ------------------------------------------ Main Functions --------------------------------------------**/ void ipa_nati_reset_tbl(uint8_t tbl_indx) { uint16_t table_entries = ipv4_nat_cache.ip4_tbl[tbl_indx].table_entries; uint16_t expn_table_entries = ipv4_nat_cache.ip4_tbl[tbl_indx].expn_table_entries; /* Base table */ IPADBG("memset() base table to 0, %p\n", ipv4_nat_cache.ip4_tbl[tbl_indx].ipv4_rules_addr); memset(ipv4_nat_cache.ip4_tbl[tbl_indx].ipv4_rules_addr, 0, IPA_NAT_TABLE_ENTRY_SIZE * table_entries); /* Base expansino table */ IPADBG("memset() expn base table to 0, %p\n", ipv4_nat_cache.ip4_tbl[tbl_indx].ipv4_expn_rules_addr); memset(ipv4_nat_cache.ip4_tbl[tbl_indx].ipv4_expn_rules_addr, 0, IPA_NAT_TABLE_ENTRY_SIZE * expn_table_entries); /* Index table */ IPADBG("memset() index table to 0, %p\n", ipv4_nat_cache.ip4_tbl[tbl_indx].index_table_addr); memset(ipv4_nat_cache.ip4_tbl[tbl_indx].index_table_addr, 0, IPA_NAT_INDEX_TABLE_ENTRY_SIZE * table_entries); /* Index expansion table */ IPADBG("memset() index expn table to 0, %p\n", ipv4_nat_cache.ip4_tbl[tbl_indx].index_table_expn_addr); memset(ipv4_nat_cache.ip4_tbl[tbl_indx].index_table_expn_addr, 0, IPA_NAT_INDEX_TABLE_ENTRY_SIZE * expn_table_entries); IPADBG("returning from ipa_nati_reset_tbl()\n"); return; } int ipa_nati_add_ipv4_tbl(uint32_t public_ip_addr, uint16_t number_of_entries, uint32_t *tbl_hdl) { struct ipa_ioc_nat_alloc_mem mem; uint8_t tbl_indx = ipv4_nat_cache.table_cnt; uint16_t table_entries, expn_table_entries; int ret; *tbl_hdl = 0; /* Allocate table */ memset(&mem, 0, sizeof(mem)); ret = ipa_nati_alloc_table(number_of_entries, &mem, &table_entries, &expn_table_entries); if (0 != ret) { IPAERR("unable to allocate nat table\n"); return -ENOMEM; } /* Update the cache The (IPA_NAT_UNUSED_BASE_ENTRIES/2) indicates zero entry entries for both base and expansion table */ ret = ipa_nati_update_cache(&mem, public_ip_addr, table_entries, expn_table_entries); if (0 != ret) { IPAERR("unable to update cache Error: %d\n", ret); return -EINVAL; } /* Reset the nat table before posting init cmd */ ipa_nati_reset_tbl(tbl_indx); /* Initialize the ipa hw with nat table dimensions */ ret = ipa_nati_post_ipv4_init_cmd(tbl_indx); if (0 != ret) { IPAERR("unable to post nat_init command Error %d\n", ret); return -EINVAL; } /* store the initial public ip address in the cached pdn table this is backward compatible for pre IPAv4 versions, we will always use this ip as the single PDN address */ pdns[0].public_ip = public_ip_addr; /* Return table handle */ ipv4_nat_cache.table_cnt++; *tbl_hdl = ipv4_nat_cache.table_cnt; #ifdef NAT_DUMP ipa_nat_dump_ipv4_table(*tbl_hdl); #endif return 0; } int ipa_nati_alloc_table(uint16_t number_of_entries, struct ipa_ioc_nat_alloc_mem *mem, uint16_t *table_entries, uint16_t *expn_table_entries) { int fd = 0, ret; uint16_t total_entries; /* Copy the table name */ strlcpy(mem->dev_name, NAT_DEV_NAME, IPA_RESOURCE_NAME_MAX); /* Calculate the size for base table and expansion table */ *table_entries = (uint16_t)(number_of_entries * IPA_NAT_BASE_TABLE_PERCENTAGE); if (*table_entries == 0) { *table_entries = 1; } if (GetNearest2Power(*table_entries, table_entries)) { IPAERR("unable to calculate power of 2\n"); return -EINVAL; } *expn_table_entries = (uint16_t)(number_of_entries * IPA_NAT_EXPANSION_TABLE_PERCENTAGE); GetNearestEven(*expn_table_entries, expn_table_entries); total_entries = (*table_entries)+(*expn_table_entries); /* Calclate the memory size for both table and index table entries */ mem->size = (IPA_NAT_TABLE_ENTRY_SIZE * total_entries); IPADBG("Nat Table size: %zu\n", mem->size); mem->size += (IPA_NAT_INDEX_TABLE_ENTRY_SIZE * total_entries); IPADBG("Nat Base and Index Table size: %zu\n", mem->size); if (!ipv4_nat_cache.ipa_fd) { fd = open(IPA_DEV_NAME, O_RDONLY); if (fd < 0) { perror("ipa_nati_alloc_table(): open error value:"); IPAERR("unable to open ipa device\n"); return -EIO; } ipv4_nat_cache.ipa_fd = fd; } if (GetIPAVer()) { IPAERR("unable to get ipa ver\n"); return -EIO; } ret = CreateNatDevice(mem); return ret; } int ipa_nati_update_cache(struct ipa_ioc_nat_alloc_mem *mem, uint32_t public_addr, uint16_t tbl_entries, uint16_t expn_tbl_entries) { uint32_t index = ipv4_nat_cache.table_cnt; char *ipv4_rules_addr = NULL; int fd = 0; int flags = MAP_SHARED; int prot = PROT_READ | PROT_WRITE; off_t offset = 0; #ifdef IPA_ON_R3PC int ret = 0; uint32_t nat_mem_offset = 0; #endif ipv4_nat_cache.ip4_tbl[index].valid = IPA_NAT_TABLE_VALID; ipv4_nat_cache.ip4_tbl[index].public_addr = public_addr; ipv4_nat_cache.ip4_tbl[index].size = mem->size; ipv4_nat_cache.ip4_tbl[index].tbl_addr_offset = mem->offset; ipv4_nat_cache.ip4_tbl[index].table_entries = tbl_entries; ipv4_nat_cache.ip4_tbl[index].expn_table_entries = expn_tbl_entries; IPADBG("num of ipv4 rules:%d\n", tbl_entries); IPADBG("num of ipv4 expn rules:%d\n", expn_tbl_entries); /* allocate memory for nat index expansion table */ if (NULL == ipv4_nat_cache.ip4_tbl[index].index_expn_table_meta) { ipv4_nat_cache.ip4_tbl[index].index_expn_table_meta = malloc(sizeof(struct ipa_nat_indx_tbl_meta_info) * expn_tbl_entries); if (NULL == ipv4_nat_cache.ip4_tbl[index].index_expn_table_meta) { IPAERR("Fail to allocate ipv4 index expansion table meta\n"); return 0; } memset(ipv4_nat_cache.ip4_tbl[index].index_expn_table_meta, 0, sizeof(struct ipa_nat_indx_tbl_meta_info) * expn_tbl_entries); } /* Allocate memory for rule_id_array */ if (NULL == ipv4_nat_cache.ip4_tbl[index].rule_id_array) { ipv4_nat_cache.ip4_tbl[index].rule_id_array = malloc(sizeof(uint16_t) * (tbl_entries + expn_tbl_entries)); if (NULL == ipv4_nat_cache.ip4_tbl[index].rule_id_array) { IPAERR("Fail to allocate rule id array\n"); return 0; } memset(ipv4_nat_cache.ip4_tbl[index].rule_id_array, 0, sizeof(uint16_t) * (tbl_entries + expn_tbl_entries)); } /* open the nat table */ strlcpy(mem->dev_name, NAT_DEV_FULL_NAME, IPA_RESOURCE_NAME_MAX); fd = open(mem->dev_name, O_RDWR); if (fd < 0) { perror("ipa_nati_update_cache(): open error value:"); IPAERR("unable to open nat device. Error:%d\n", fd); return -EIO; } /* copy the nat table name */ strlcpy(ipv4_nat_cache.ip4_tbl[index].table_name, mem->dev_name, IPA_RESOURCE_NAME_MAX); ipv4_nat_cache.ip4_tbl[index].nat_fd = fd; /* open the nat device Table */ #ifndef IPA_ON_R3PC ipv4_rules_addr = (void *)mmap(NULL, mem->size, prot, flags, fd, offset); #else IPADBG("user space r3pc\n"); ipv4_rules_addr = (void *)mmap((caddr_t)0, NAT_MMAP_MEM_SIZE, prot, flags, fd, offset); #endif if (MAP_FAILED == ipv4_rules_addr) { perror("unable to mmap the memory\n"); return -EINVAL; } #ifdef IPA_ON_R3PC ret = ioctl(ipv4_nat_cache.ipa_fd, IPA_IOC_GET_NAT_OFFSET, &nat_mem_offset); if (ret != 0) { perror("ipa_nati_post_ipv4_init_cmd(): ioctl error value"); IPAERR("unable to post ant offset cmd Error: %d\n", ret); IPADBG("ipa fd %d\n", ipv4_nat_cache.ipa_fd); return -EIO; } ipv4_rules_addr += nat_mem_offset; ipv4_nat_cache.ip4_tbl[index].mmap_offset = nat_mem_offset; #endif IPADBG("mmap return value 0x%lx\n", (long unsigned int)ipv4_rules_addr); ipv4_nat_cache.ip4_tbl[index].ipv4_rules_addr = ipv4_rules_addr; ipv4_nat_cache.ip4_tbl[index].ipv4_expn_rules_addr = ipv4_rules_addr + (IPA_NAT_TABLE_ENTRY_SIZE * tbl_entries); ipv4_nat_cache.ip4_tbl[index].index_table_addr = ipv4_rules_addr + (IPA_NAT_TABLE_ENTRY_SIZE * (tbl_entries + expn_tbl_entries)); ipv4_nat_cache.ip4_tbl[index].index_table_expn_addr = ipv4_rules_addr + (IPA_NAT_TABLE_ENTRY_SIZE * (tbl_entries + expn_tbl_entries))+ (IPA_NAT_INDEX_TABLE_ENTRY_SIZE * tbl_entries); return 0; } /* comment: check the implementation once offset should be in terms of byes */ int ipa_nati_post_ipv4_init_cmd(uint8_t tbl_index) { struct ipa_ioc_v4_nat_init cmd; uint32_t offset = ipv4_nat_cache.ip4_tbl[tbl_index].tbl_addr_offset; int ret; cmd.tbl_index = tbl_index; cmd.ipv4_rules_offset = offset; cmd.expn_rules_offset = cmd.ipv4_rules_offset + (ipv4_nat_cache.ip4_tbl[tbl_index].table_entries * IPA_NAT_TABLE_ENTRY_SIZE); cmd.index_offset = cmd.expn_rules_offset + (ipv4_nat_cache.ip4_tbl[tbl_index].expn_table_entries * IPA_NAT_TABLE_ENTRY_SIZE); cmd.index_expn_offset = cmd.index_offset + (ipv4_nat_cache.ip4_tbl[tbl_index].table_entries * IPA_NAT_INDEX_TABLE_ENTRY_SIZE); cmd.table_entries = ipv4_nat_cache.ip4_tbl[tbl_index].table_entries - 1; cmd.expn_table_entries = ipv4_nat_cache.ip4_tbl[tbl_index].expn_table_entries; cmd.ip_addr = ipv4_nat_cache.ip4_tbl[tbl_index].public_addr; ret = ioctl(ipv4_nat_cache.ipa_fd, IPA_IOC_V4_INIT_NAT, &cmd); if (ret != 0) { perror("ipa_nati_post_ipv4_init_cmd(): ioctl error value"); IPAERR("unable to post init cmd Error: %d\n", ret); IPADBG("ipa fd %d\n", ipv4_nat_cache.ipa_fd); return -EINVAL; } IPADBG("Posted IPA_IOC_V4_INIT_NAT to kernel successfully\n"); return 0; } int ipa_nati_del_ipv4_table(uint32_t tbl_hdl) { uint8_t index = (uint8_t)(tbl_hdl - 1); void *addr = (void *)ipv4_nat_cache.ip4_tbl[index].ipv4_rules_addr; struct ipa_ioc_v4_nat_del del_cmd; int ret; if (!ipv4_nat_cache.ip4_tbl[index].valid) { IPAERR("invalid table handle passed\n"); ret = -EINVAL; goto fail; } if (pthread_mutex_lock(&nat_mutex) != 0) { ret = -1; goto lock_mutex_fail; } /* unmap the device memory from user space */ #ifndef IPA_ON_R3PC munmap(addr, ipv4_nat_cache.ip4_tbl[index].size); #else addr = (char *)addr - ipv4_nat_cache.ip4_tbl[index].mmap_offset; munmap(addr, NAT_MMAP_MEM_SIZE); #endif /* close the file descriptor of nat device */ if (close(ipv4_nat_cache.ip4_tbl[index].nat_fd)) { IPAERR("unable to close the file descriptor\n"); ret = -EINVAL; if (pthread_mutex_unlock(&nat_mutex) != 0) goto unlock_mutex_fail; goto fail; } del_cmd.table_index = index; del_cmd.public_ip_addr = ipv4_nat_cache.ip4_tbl[index].public_addr; ret = ioctl(ipv4_nat_cache.ipa_fd, IPA_IOC_V4_DEL_NAT, &del_cmd); if (ret != 0) { perror("ipa_nati_del_ipv4_table(): ioctl error value"); IPAERR("unable to post nat del command init Error: %d\n", ret); IPADBG("ipa fd %d\n", ipv4_nat_cache.ipa_fd); ret = -EINVAL; if (pthread_mutex_unlock(&nat_mutex) != 0) goto unlock_mutex_fail; goto fail; } IPAERR("posted IPA_IOC_V4_DEL_NAT to kernel successfully\n"); free(ipv4_nat_cache.ip4_tbl[index].index_expn_table_meta); free(ipv4_nat_cache.ip4_tbl[index].rule_id_array); memset(&ipv4_nat_cache.ip4_tbl[index], 0, sizeof(ipv4_nat_cache.ip4_tbl[index])); /* Decrease the table count by 1*/ ipv4_nat_cache.table_cnt--; if (pthread_mutex_unlock(&nat_mutex) != 0) { ret = -1; goto unlock_mutex_fail; } return 0; lock_mutex_fail: IPAERR("unable to lock the nat mutex\n"); return ret; unlock_mutex_fail: IPAERR("unable to unlock the nat mutex\n"); fail: return ret; } int ipa_nati_query_timestamp(uint32_t tbl_hdl, uint32_t rule_hdl, uint32_t *time_stamp) { uint8_t tbl_index = (uint8_t)(tbl_hdl - 1); uint8_t expn_tbl = 0; uint16_t tbl_entry = 0; struct ipa_nat_rule *tbl_ptr = NULL; if (!ipv4_nat_cache.ip4_tbl[tbl_index].valid) { IPAERR("invalid table handle\n"); return -EINVAL; } if (pthread_mutex_lock(&nat_mutex) != 0) { IPAERR("unable to lock the nat mutex\n"); return -1; } ipa_nati_parse_ipv4_rule_hdl(tbl_index, (uint16_t)rule_hdl, &expn_tbl, &tbl_entry); tbl_ptr = (struct ipa_nat_rule *)ipv4_nat_cache.ip4_tbl[tbl_index].ipv4_rules_addr; if (expn_tbl) { tbl_ptr = (struct ipa_nat_rule *)ipv4_nat_cache.ip4_tbl[tbl_index].ipv4_expn_rules_addr; } if (tbl_ptr) *time_stamp = Read32BitFieldValue(tbl_ptr[tbl_entry].ts_proto, TIME_STAMP_FIELD); if (pthread_mutex_unlock(&nat_mutex) != 0) { IPAERR("unable to unlock the nat mutex\n"); return -1; } return 0; } int ipa_nati_modify_pdn(struct ipa_ioc_nat_pdn_entry *entry) { if (entry->public_ip == 0) IPADBG("PDN %d public ip will be set to 0\n", entry->pdn_index); if (ioctl(ipv4_nat_cache.ipa_fd, IPA_IOC_NAT_MODIFY_PDN, entry)) { perror("ipa_nati_modify_pdn(): ioctl error value"); IPAERR("unable to call modify pdn icotl\n"); IPAERR("index %d, ip 0x%X, src_metdata 0x%X, dst_metadata 0x%X\n", entry->pdn_index, entry->public_ip, entry->src_metadata, entry->dst_metadata); IPADBG("ipa fd %d\n", ipv4_nat_cache.ipa_fd); return -EIO; } pdns[entry->pdn_index].public_ip = entry->public_ip; pdns[entry->pdn_index].dst_metadata = entry->dst_metadata; pdns[entry->pdn_index].src_metadata = entry->src_metadata; IPADBG("posted IPA_IOC_NAT_MODIFY_PDN to kernel successfully and stored in cache\n index %d, ip 0x%X, src_metdata 0x%X, dst_metadata 0x%X\n", entry->pdn_index, entry->public_ip, entry->src_metadata, entry->dst_metadata); return 0; } int ipa_nati_add_ipv4_rule(uint32_t tbl_hdl, const ipa_nat_ipv4_rule *clnt_rule, uint32_t *rule_hdl) { struct ipa_nat_ip4_table_cache *tbl_ptr; struct ipa_nat_sw_rule sw_rule; struct ipa_nat_indx_tbl_sw_rule index_sw_rule; uint16_t new_entry, new_index_tbl_entry; /* verify that the rule's PDN is valid */ if (clnt_rule->pdn_index >= IPA_MAX_PDN_NUM || pdns[clnt_rule->pdn_index].public_ip == 0) { IPAERR("invalid parameters, pdn index %d, public ip = 0x%X\n", clnt_rule->pdn_index, pdns[clnt_rule->pdn_index].public_ip); return -EINVAL; } memset(&sw_rule, 0, sizeof(sw_rule)); memset(&index_sw_rule, 0, sizeof(index_sw_rule)); /* Generate rule from client input */ if (ipa_nati_generate_rule(tbl_hdl, clnt_rule, &sw_rule, &index_sw_rule, &new_entry, &new_index_tbl_entry)) { IPAERR("unable to generate rule\n"); return -EINVAL; } tbl_ptr = &ipv4_nat_cache.ip4_tbl[tbl_hdl-1]; ipa_nati_copy_ipv4_rule_to_hw(tbl_ptr, &sw_rule, new_entry, (uint8_t)(tbl_hdl-1)); ipa_nati_copy_ipv4_index_rule_to_hw(tbl_ptr, &index_sw_rule, new_index_tbl_entry, (uint8_t)(tbl_hdl-1)); IPADBG("new entry:%d, new index entry: %d\n", new_entry, new_index_tbl_entry); if (ipa_nati_post_ipv4_dma_cmd((uint8_t)(tbl_hdl - 1), new_entry)) { IPAERR("unable to post dma command\n"); return -EIO; } /* Generate rule handle */ *rule_hdl = ipa_nati_make_rule_hdl((uint16_t)tbl_hdl, new_entry); if (!(*rule_hdl)) { IPAERR("unable to generate rule handle\n"); return -EINVAL; } #ifdef NAT_DUMP ipa_nat_dump_ipv4_table(tbl_hdl); #endif return 0; } int ipa_nati_generate_rule(uint32_t tbl_hdl, const ipa_nat_ipv4_rule *clnt_rule, struct ipa_nat_sw_rule *rule, struct ipa_nat_indx_tbl_sw_rule *index_sw_rule, uint16_t *tbl_entry, uint16_t *indx_tbl_entry) { struct ipa_nat_ip4_table_cache *tbl_ptr; uint16_t tmp; if (NULL == clnt_rule || NULL == index_sw_rule || NULL == rule || NULL == tbl_entry || NULL == indx_tbl_entry) { IPAERR("invalid parameters\n"); return -EINVAL; } tbl_ptr = &ipv4_nat_cache.ip4_tbl[tbl_hdl-1]; *tbl_entry = ipa_nati_generate_tbl_rule(clnt_rule, rule, tbl_ptr); if (IPA_NAT_INVALID_NAT_ENTRY == *tbl_entry) { IPAERR("unable to generate table entry\n"); return -EINVAL; } index_sw_rule->tbl_entry = *tbl_entry; *indx_tbl_entry = ipa_nati_generate_index_rule(clnt_rule, index_sw_rule, tbl_ptr); if (IPA_NAT_INVALID_NAT_ENTRY == *indx_tbl_entry) { IPAERR("unable to generate index table entry\n"); return -EINVAL; } rule->indx_tbl_entry = *indx_tbl_entry; if (*indx_tbl_entry >= tbl_ptr->table_entries) { tmp = *indx_tbl_entry - tbl_ptr->table_entries; tbl_ptr->index_expn_table_meta[tmp].prev_index = index_sw_rule->prev_index; } return 0; } uint16_t ipa_nati_generate_tbl_rule(const ipa_nat_ipv4_rule *clnt_rule, struct ipa_nat_sw_rule *sw_rule, struct ipa_nat_ip4_table_cache *tbl_ptr) { uint32_t pub_ip_addr; uint16_t prev = 0, nxt_indx = 0, new_entry; struct ipa_nat_rule *tbl = NULL, *expn_tbl = NULL; pub_ip_addr = pdns[clnt_rule->pdn_index].public_ip; tbl = (struct ipa_nat_rule *)tbl_ptr->ipv4_rules_addr; expn_tbl = (struct ipa_nat_rule *)tbl_ptr->ipv4_expn_rules_addr; /* copy the values from client rule to sw rule */ sw_rule->private_ip = clnt_rule->private_ip; sw_rule->private_port = clnt_rule->private_port; sw_rule->protocol = clnt_rule->protocol; sw_rule->public_port = clnt_rule->public_port; sw_rule->target_ip = clnt_rule->target_ip; sw_rule->target_port = clnt_rule->target_port; sw_rule->pdn_index = clnt_rule->pdn_index; /* consider only public and private ip fields */ sw_rule->ip_chksum = ipa_nati_calc_ip_cksum(pub_ip_addr, clnt_rule->private_ip); if (IPPROTO_TCP == sw_rule->protocol || IPPROTO_UDP == sw_rule->protocol) { /* consider public and private ip & port fields */ sw_rule->tcp_udp_chksum = ipa_nati_calc_tcp_udp_cksum( pub_ip_addr, clnt_rule->public_port, clnt_rule->private_ip, clnt_rule->private_port); } sw_rule->rsvd1 = 0; sw_rule->enable = IPA_NAT_FLAG_DISABLE_BIT; sw_rule->next_index = 0; /* SW sets this timer to 0. The assumption is that 0 is an invalid clock value and no clock wraparounds are expected */ sw_rule->time_stamp = 0; sw_rule->rsvd2 = 0; sw_rule->rsvd3 = 0; sw_rule->prev_index = 0; sw_rule->indx_tbl_entry = 0; new_entry = dst_hash(pub_ip_addr, clnt_rule->target_ip, clnt_rule->target_port, clnt_rule->public_port, clnt_rule->protocol, tbl_ptr->table_entries-1); /* check whether there is any collision if no collision return */ if (!Read16BitFieldValue(tbl[new_entry].ip_cksm_enbl, ENABLE_FIELD)) { sw_rule->prev_index = 0; IPADBG("Destination Nat New Entry Index %d\n", new_entry); return new_entry; } /* First collision */ if (Read16BitFieldValue(tbl[new_entry].nxt_indx_pub_port, NEXT_INDEX_FIELD) == IPA_NAT_INVALID_NAT_ENTRY) { sw_rule->prev_index = new_entry; } else { /* check for more than one collision */ /* Find the IPA_NAT_DEL_TYPE_LAST entry in list */ nxt_indx = Read16BitFieldValue(tbl[new_entry].nxt_indx_pub_port, NEXT_INDEX_FIELD); while (nxt_indx != IPA_NAT_INVALID_NAT_ENTRY) { prev = nxt_indx; nxt_indx -= tbl_ptr->table_entries; nxt_indx = Read16BitFieldValue(expn_tbl[nxt_indx].nxt_indx_pub_port, NEXT_INDEX_FIELD); /* Handling error case */ if (prev == nxt_indx) { IPAERR("Error: Prev index:%d and next:%d index should not be same\n", prev, nxt_indx); return IPA_NAT_INVALID_NAT_ENTRY; } } sw_rule->prev_index = prev; } /* On collision check for the free entry in expansion table */ new_entry = ipa_nati_expn_tbl_free_entry(expn_tbl, tbl_ptr->expn_table_entries); if (IPA_NAT_INVALID_NAT_ENTRY == new_entry) { /* Expansion table is full return*/ IPAERR("Expansion table is full\n"); IPAERR("Current Table: %d & Expn Entries: %d\n", tbl_ptr->cur_tbl_cnt, tbl_ptr->cur_expn_tbl_cnt); return IPA_NAT_INVALID_NAT_ENTRY; } new_entry += tbl_ptr->table_entries; IPADBG("new entry index %d\n", new_entry); return new_entry; } /* returns expn table entry index */ uint16_t ipa_nati_expn_tbl_free_entry(struct ipa_nat_rule *expn_tbl, uint16_t size) { int cnt; for (cnt = 1; cnt < size; cnt++) { if (!Read16BitFieldValue(expn_tbl[cnt].ip_cksm_enbl, ENABLE_FIELD)) { IPADBG("new expansion table entry index %d\n", cnt); return cnt; } } IPAERR("nat expansion table is full\n"); return 0; } uint16_t ipa_nati_generate_index_rule(const ipa_nat_ipv4_rule *clnt_rule, struct ipa_nat_indx_tbl_sw_rule *sw_rule, struct ipa_nat_ip4_table_cache *tbl_ptr) { struct ipa_nat_indx_tbl_rule *indx_tbl, *indx_expn_tbl; uint16_t prev = 0, nxt_indx = 0, new_entry; indx_tbl = (struct ipa_nat_indx_tbl_rule *)tbl_ptr->index_table_addr; indx_expn_tbl = (struct ipa_nat_indx_tbl_rule *)tbl_ptr->index_table_expn_addr; new_entry = src_hash(clnt_rule->private_ip, clnt_rule->private_port, clnt_rule->target_ip, clnt_rule->target_port, clnt_rule->protocol, tbl_ptr->table_entries-1); /* check whether there is any collision if no collision return */ if (!Read16BitFieldValue(indx_tbl[new_entry].tbl_entry_nxt_indx, INDX_TBL_TBL_ENTRY_FIELD)) { sw_rule->prev_index = 0; IPADBG("Source Nat Index Table Entry %d\n", new_entry); return new_entry; } /* check for more than one collision */ if (Read16BitFieldValue(indx_tbl[new_entry].tbl_entry_nxt_indx, INDX_TBL_NEXT_INDEX_FILED) == IPA_NAT_INVALID_NAT_ENTRY) { sw_rule->prev_index = new_entry; IPADBG("First collosion. Entry %d\n", new_entry); } else { /* Find the IPA_NAT_DEL_TYPE_LAST entry in list */ nxt_indx = Read16BitFieldValue(indx_tbl[new_entry].tbl_entry_nxt_indx, INDX_TBL_NEXT_INDEX_FILED); while (nxt_indx != IPA_NAT_INVALID_NAT_ENTRY) { prev = nxt_indx; nxt_indx -= tbl_ptr->table_entries; nxt_indx = Read16BitFieldValue(indx_expn_tbl[nxt_indx].tbl_entry_nxt_indx, INDX_TBL_NEXT_INDEX_FILED); /* Handling error case */ if (prev == nxt_indx) { IPAERR("Error: Prev:%d and next:%d index should not be same\n", prev, nxt_indx); return IPA_NAT_INVALID_NAT_ENTRY; } } sw_rule->prev_index = prev; } /* On collision check for the free entry in expansion table */ new_entry = ipa_nati_index_expn_get_free_entry(indx_expn_tbl, tbl_ptr->expn_table_entries); if (IPA_NAT_INVALID_NAT_ENTRY == new_entry) { /* Expansion table is full return*/ IPAERR("Index expansion table is full\n"); IPAERR("Current Table: %d & Expn Entries: %d\n", tbl_ptr->cur_tbl_cnt, tbl_ptr->cur_expn_tbl_cnt); return IPA_NAT_INVALID_NAT_ENTRY; } new_entry += tbl_ptr->table_entries; if (sw_rule->prev_index == new_entry) { IPAERR("Error: prev_entry:%d ", sw_rule->prev_index); IPAERR("and new_entry:%d should not be same ", new_entry); IPAERR("infinite loop detected\n"); return IPA_NAT_INVALID_NAT_ENTRY; } IPADBG("index table entry %d\n", new_entry); return new_entry; } /* returns index expn table entry index */ uint16_t ipa_nati_index_expn_get_free_entry( struct ipa_nat_indx_tbl_rule *indx_tbl, uint16_t size) { int cnt; for (cnt = 1; cnt < size; cnt++) { if (!Read16BitFieldValue(indx_tbl[cnt].tbl_entry_nxt_indx, INDX_TBL_TBL_ENTRY_FIELD)) { return cnt; } } IPAERR("nat index expansion table is full\n"); return 0; } void ipa_nati_write_next_index(uint8_t tbl_indx, nat_table_type tbl_type, uint16_t value, uint32_t offset) { struct ipa_ioc_nat_dma_cmd *cmd; IPADBG("Updating next index field of table %d on collosion using dma\n", tbl_type); IPADBG("table index: %d, value: %d offset;%d\n", tbl_indx, value, offset); cmd = (struct ipa_ioc_nat_dma_cmd *) malloc(sizeof(struct ipa_ioc_nat_dma_cmd)+ sizeof(struct ipa_ioc_nat_dma_one)); if (NULL == cmd) { IPAERR("unable to allocate memory\n"); return; } cmd->dma[0].table_index = tbl_indx; cmd->dma[0].base_addr = tbl_type; cmd->dma[0].data = value; cmd->dma[0].offset = offset; cmd->entries = 1; if (ioctl(ipv4_nat_cache.ipa_fd, IPA_IOC_NAT_DMA, cmd)) { perror("ipa_nati_post_ipv4_dma_cmd(): ioctl error value"); IPAERR("unable to call dma icotl to update next index\n"); IPAERR("ipa fd %d\n", ipv4_nat_cache.ipa_fd); goto fail; } fail: free(cmd); return; } void ipa_nati_copy_ipv4_rule_to_hw( struct ipa_nat_ip4_table_cache *ipv4_cache, struct ipa_nat_sw_rule *rule, uint16_t entry, uint8_t tbl_index) { struct ipa_nat_rule *tbl_ptr; uint16_t prev_entry = rule->prev_index; nat_table_type tbl_type; uint32_t offset = 0; if (entry < ipv4_cache->table_entries) { tbl_ptr = (struct ipa_nat_rule *)ipv4_cache->ipv4_rules_addr; memcpy(&tbl_ptr[entry], rule, sizeof(struct ipa_nat_rule)); } else { tbl_ptr = (struct ipa_nat_rule *)ipv4_cache->ipv4_expn_rules_addr; memcpy(&tbl_ptr[entry - ipv4_cache->table_entries], rule, sizeof(struct ipa_nat_rule)); } /* Update the previos entry next_index */ if (IPA_NAT_INVALID_NAT_ENTRY != prev_entry) { if (prev_entry < ipv4_cache->table_entries) { tbl_type = IPA_NAT_BASE_TBL; tbl_ptr = (struct ipa_nat_rule *)ipv4_cache->ipv4_rules_addr; } else { tbl_type = IPA_NAT_EXPN_TBL; /* tbp_ptr is already pointing to expansion table no need to initialize it */ prev_entry = prev_entry - ipv4_cache->table_entries; } offset = ipa_nati_get_entry_offset(ipv4_cache, tbl_type, prev_entry); offset += IPA_NAT_RULE_NEXT_FIELD_OFFSET; ipa_nati_write_next_index(tbl_index, tbl_type, entry, offset); } return; } void ipa_nati_copy_ipv4_index_rule_to_hw( struct ipa_nat_ip4_table_cache *ipv4_cache, struct ipa_nat_indx_tbl_sw_rule *indx_sw_rule, uint16_t entry, uint8_t tbl_index) { struct ipa_nat_indx_tbl_rule *tbl_ptr; struct ipa_nat_sw_indx_tbl_rule sw_rule; uint16_t prev_entry = indx_sw_rule->prev_index; nat_table_type tbl_type; uint16_t offset = 0; sw_rule.next_index = indx_sw_rule->next_index; sw_rule.tbl_entry = indx_sw_rule->tbl_entry; if (entry < ipv4_cache->table_entries) { tbl_ptr = (struct ipa_nat_indx_tbl_rule *)ipv4_cache->index_table_addr; memcpy(&tbl_ptr[entry], &sw_rule, sizeof(struct ipa_nat_indx_tbl_rule)); } else { tbl_ptr = (struct ipa_nat_indx_tbl_rule *)ipv4_cache->index_table_expn_addr; memcpy(&tbl_ptr[entry - ipv4_cache->table_entries], &sw_rule, sizeof(struct ipa_nat_indx_tbl_rule)); } /* Update the next field of previous entry on collosion */ if (IPA_NAT_INVALID_NAT_ENTRY != prev_entry) { if (prev_entry < ipv4_cache->table_entries) { tbl_type = IPA_NAT_INDX_TBL; tbl_ptr = (struct ipa_nat_indx_tbl_rule *)ipv4_cache->index_table_addr; } else { tbl_type = IPA_NAT_INDEX_EXPN_TBL; /* tbp_ptr is already pointing to expansion table no need to initialize it */ prev_entry = prev_entry - ipv4_cache->table_entries; } offset = ipa_nati_get_index_entry_offset(ipv4_cache, tbl_type, prev_entry); offset += IPA_NAT_INDEX_RULE_NEXT_FIELD_OFFSET; IPADBG("Updating next index field of index table on collosion using dma()\n"); ipa_nati_write_next_index(tbl_index, tbl_type, entry, offset); } return; } int ipa_nati_post_ipv4_dma_cmd(uint8_t tbl_indx, uint16_t entry) { struct ipa_ioc_nat_dma_cmd *cmd; struct ipa_nat_rule *tbl_ptr; uint32_t offset = ipv4_nat_cache.ip4_tbl[tbl_indx].tbl_addr_offset; int ret = 0; cmd = (struct ipa_ioc_nat_dma_cmd *) malloc(sizeof(struct ipa_ioc_nat_dma_cmd)+ sizeof(struct ipa_ioc_nat_dma_one)); if (NULL == cmd) { IPAERR("unable to allocate memory\n"); return -ENOMEM; } if (entry < ipv4_nat_cache.ip4_tbl[tbl_indx].table_entries) { tbl_ptr = (struct ipa_nat_rule *)ipv4_nat_cache.ip4_tbl[tbl_indx].ipv4_rules_addr; cmd->dma[0].table_index = tbl_indx; cmd->dma[0].base_addr = IPA_NAT_BASE_TBL; cmd->dma[0].data = IPA_NAT_FLAG_ENABLE_BIT_MASK; cmd->dma[0].offset = (char *)&tbl_ptr[entry] - (char *)tbl_ptr; cmd->dma[0].offset += IPA_NAT_RULE_FLAG_FIELD_OFFSET; } else { tbl_ptr = (struct ipa_nat_rule *)ipv4_nat_cache.ip4_tbl[tbl_indx].ipv4_expn_rules_addr; entry = entry - ipv4_nat_cache.ip4_tbl[tbl_indx].table_entries; cmd->dma[0].table_index = tbl_indx; cmd->dma[0].base_addr = IPA_NAT_EXPN_TBL; cmd->dma[0].data = IPA_NAT_FLAG_ENABLE_BIT_MASK; cmd->dma[0].offset = (char *)&tbl_ptr[entry] - (char *)tbl_ptr; cmd->dma[0].offset += IPA_NAT_RULE_FLAG_FIELD_OFFSET; cmd->dma[0].offset += offset; } cmd->entries = 1; if (ioctl(ipv4_nat_cache.ipa_fd, IPA_IOC_NAT_DMA, cmd)) { perror("ipa_nati_post_ipv4_dma_cmd(): ioctl error value"); IPAERR("unable to call dma icotl\n"); IPADBG("ipa fd %d\n", ipv4_nat_cache.ipa_fd); ret = -EIO; goto fail; } IPADBG("posted IPA_IOC_NAT_DMA to kernel successfully during add operation\n"); fail: free(cmd); return ret; } int ipa_nati_del_ipv4_rule(uint32_t tbl_hdl, uint32_t rule_hdl) { uint8_t expn_tbl; uint16_t tbl_entry; struct ipa_nat_ip4_table_cache *tbl_ptr; del_type rule_pos; uint8_t tbl_indx = (uint8_t)(tbl_hdl - 1); int ret; /* Parse the rule handle */ ipa_nati_parse_ipv4_rule_hdl(tbl_indx, (uint16_t)rule_hdl, &expn_tbl, &tbl_entry); if (IPA_NAT_INVALID_NAT_ENTRY == tbl_entry) { IPAERR("Invalid Rule Entry\n"); ret = -EINVAL; goto fail; } if (pthread_mutex_lock(&nat_mutex) != 0) { ret = -1; goto mutex_lock_error; } IPADBG("Delete below rule\n"); IPADBG("tbl_entry:%d expn_tbl:%d\n", tbl_entry, expn_tbl); tbl_ptr = &ipv4_nat_cache.ip4_tbl[tbl_indx]; if (!tbl_ptr->valid) { IPAERR("invalid table handle\n"); ret = -EINVAL; if (pthread_mutex_unlock(&nat_mutex) != 0) goto mutex_unlock_error; goto fail; } ipa_nati_find_rule_pos(tbl_ptr, expn_tbl, tbl_entry, &rule_pos); IPADBG("rule_pos:%d\n", rule_pos); if (ipa_nati_post_del_dma_cmd(tbl_indx, tbl_entry, expn_tbl, rule_pos)) { ret = -EINVAL; if (pthread_mutex_unlock(&nat_mutex) != 0) goto mutex_unlock_error; goto fail; } ipa_nati_del_dead_ipv4_head_nodes(tbl_indx); /* Reset rule_id_array entry */ ipv4_nat_cache.ip4_tbl[tbl_indx].rule_id_array[rule_hdl-1] = IPA_NAT_INVALID_NAT_ENTRY; #ifdef NAT_DUMP IPADBG("Dumping Table after deleting rule\n"); ipa_nat_dump_ipv4_table(tbl_hdl); #endif if (pthread_mutex_unlock(&nat_mutex) != 0) { ret = -1; goto mutex_unlock_error; } return 0; mutex_lock_error: IPAERR("unable to lock the nat mutex\n"); return ret; mutex_unlock_error: IPAERR("unable to unlock the nat mutex\n"); fail: return ret; } void ReorderCmds(struct ipa_ioc_nat_dma_cmd *cmd, int size) { int indx_tbl_start = 0, cnt, cnt1; struct ipa_ioc_nat_dma_cmd *tmp; IPADBG("called ReorderCmds() with entries :%d\n", cmd->entries); for (cnt = 0; cnt < cmd->entries; cnt++) { if (cmd->dma[cnt].base_addr == IPA_NAT_INDX_TBL || cmd->dma[cnt].base_addr == IPA_NAT_INDEX_EXPN_TBL) { indx_tbl_start = cnt; break; } } if (indx_tbl_start == 0) { IPADBG("Reorder not needed\n"); return; } tmp = (struct ipa_ioc_nat_dma_cmd *)malloc(size); if (tmp == NULL) { IPAERR("unable to allocate memory\n"); return; } cnt1 = 0; tmp->entries = cmd->entries; for (cnt = indx_tbl_start; cnt < cmd->entries; cnt++) { tmp->dma[cnt1] = cmd->dma[cnt]; cnt1++; } for (cnt = 0; cnt < indx_tbl_start; cnt++) { tmp->dma[cnt1] = cmd->dma[cnt]; cnt1++; } memset(cmd, 0, size); memcpy(cmd, tmp, size); free(tmp); return; } int ipa_nati_post_del_dma_cmd(uint8_t tbl_indx, uint16_t cur_tbl_entry, uint8_t expn_tbl, del_type rule_pos) { #define MAX_DMA_ENTRIES_FOR_DEL 3 struct ipa_nat_ip4_table_cache *cache_ptr; struct ipa_nat_indx_tbl_rule *indx_tbl_ptr; struct ipa_nat_rule *tbl_ptr; int ret = 0, size = 0; uint16_t indx_tbl_entry = IPA_NAT_INVALID_NAT_ENTRY; del_type indx_rule_pos; struct ipa_ioc_nat_dma_cmd *cmd; uint8_t no_of_cmds = 0; uint16_t prev_entry = IPA_NAT_INVALID_NAT_ENTRY; uint16_t next_entry = IPA_NAT_INVALID_NAT_ENTRY; uint16_t indx_next_entry = IPA_NAT_INVALID_NAT_ENTRY; uint16_t indx_next_next_entry = IPA_NAT_INVALID_NAT_ENTRY; uint16_t table_entry; size = sizeof(struct ipa_ioc_nat_dma_cmd)+ (MAX_DMA_ENTRIES_FOR_DEL * sizeof(struct ipa_ioc_nat_dma_one)); cmd = (struct ipa_ioc_nat_dma_cmd *)malloc(size); if (NULL == cmd) { IPAERR("unable to allocate memory\n"); return -ENOMEM; } cache_ptr = &ipv4_nat_cache.ip4_tbl[tbl_indx]; if (!expn_tbl) { tbl_ptr = (struct ipa_nat_rule *)cache_ptr->ipv4_rules_addr; } else { tbl_ptr = (struct ipa_nat_rule *)cache_ptr->ipv4_expn_rules_addr; } if (!Read16BitFieldValue(tbl_ptr[cur_tbl_entry].ip_cksm_enbl, ENABLE_FIELD)) { IPAERR("Deleting invalid(not enabled) rule\n"); ret = -EINVAL; goto fail; } indx_tbl_entry = Read16BitFieldValue(tbl_ptr[cur_tbl_entry].sw_spec_params, SW_SPEC_PARAM_INDX_TBL_ENTRY_FIELD); /* ================================================ Base Table rule Deletion ================================================*/ /* Just delete the current rule by disabling the flag field */ if (IPA_NAT_DEL_TYPE_ONLY_ONE == rule_pos) { cmd->dma[no_of_cmds].table_index = tbl_indx; cmd->dma[no_of_cmds].base_addr = IPA_NAT_BASE_TBL; cmd->dma[no_of_cmds].data = IPA_NAT_FLAG_DISABLE_BIT_MASK; cmd->dma[no_of_cmds].offset = ipa_nati_get_entry_offset(cache_ptr, cmd->dma[no_of_cmds].base_addr, cur_tbl_entry); cmd->dma[no_of_cmds].offset += IPA_NAT_RULE_FLAG_FIELD_OFFSET; } /* Just update the protocol field to invalid */ else if (IPA_NAT_DEL_TYPE_HEAD == rule_pos) { cmd->dma[no_of_cmds].table_index = tbl_indx; cmd->dma[no_of_cmds].base_addr = IPA_NAT_BASE_TBL; cmd->dma[no_of_cmds].data = IPA_NAT_INVALID_PROTO_FIELD_VALUE; cmd->dma[no_of_cmds].offset = ipa_nati_get_entry_offset(cache_ptr, cmd->dma[no_of_cmds].base_addr, cur_tbl_entry); cmd->dma[no_of_cmds].offset += IPA_NAT_RULE_PROTO_FIELD_OFFSET; IPADBG("writing invalid proto: 0x%x\n", cmd->dma[no_of_cmds].data); } /* Update the previous entry of next_index field value with current entry next_index field value */ else if (IPA_NAT_DEL_TYPE_MIDDLE == rule_pos) { prev_entry = Read16BitFieldValue(tbl_ptr[cur_tbl_entry].sw_spec_params, SW_SPEC_PARAM_PREV_INDEX_FIELD); cmd->dma[no_of_cmds].table_index = tbl_indx; cmd->dma[no_of_cmds].data = Read16BitFieldValue(tbl_ptr[cur_tbl_entry].nxt_indx_pub_port, NEXT_INDEX_FIELD); cmd->dma[no_of_cmds].base_addr = IPA_NAT_BASE_TBL; if (prev_entry >= cache_ptr->table_entries) { cmd->dma[no_of_cmds].base_addr = IPA_NAT_EXPN_TBL; prev_entry -= cache_ptr->table_entries; } cmd->dma[no_of_cmds].offset = ipa_nati_get_entry_offset(cache_ptr, cmd->dma[no_of_cmds].base_addr, prev_entry); cmd->dma[no_of_cmds].offset += IPA_NAT_RULE_NEXT_FIELD_OFFSET; } /* Reset the previous entry of next_index field with 0 */ else if (IPA_NAT_DEL_TYPE_LAST == rule_pos) { prev_entry = Read16BitFieldValue(tbl_ptr[cur_tbl_entry].sw_spec_params, SW_SPEC_PARAM_PREV_INDEX_FIELD); cmd->dma[no_of_cmds].table_index = tbl_indx; cmd->dma[no_of_cmds].data = IPA_NAT_INVALID_NAT_ENTRY; cmd->dma[no_of_cmds].base_addr = IPA_NAT_BASE_TBL; if (prev_entry >= cache_ptr->table_entries) { cmd->dma[no_of_cmds].base_addr = IPA_NAT_EXPN_TBL; prev_entry -= cache_ptr->table_entries; } cmd->dma[no_of_cmds].offset = ipa_nati_get_entry_offset(cache_ptr, cmd->dma[no_of_cmds].base_addr, prev_entry); cmd->dma[no_of_cmds].offset += IPA_NAT_RULE_NEXT_FIELD_OFFSET; } /* ================================================ Base Table rule Deletion End ================================================*/ /* ================================================ Index Table rule Deletion ================================================*/ ipa_nati_find_index_rule_pos(cache_ptr, indx_tbl_entry, &indx_rule_pos); IPADBG("Index table entry: 0x%x\n", indx_tbl_entry); IPADBG("and position: %d\n", indx_rule_pos); if (indx_tbl_entry >= cache_ptr->table_entries) { indx_tbl_entry -= cache_ptr->table_entries; indx_tbl_ptr = (struct ipa_nat_indx_tbl_rule *)cache_ptr->index_table_expn_addr; } else { indx_tbl_ptr = (struct ipa_nat_indx_tbl_rule *)cache_ptr->index_table_addr; } /* Just delete the current rule by resetting nat_table_index field to 0 */ if (IPA_NAT_DEL_TYPE_ONLY_ONE == indx_rule_pos) { no_of_cmds++; cmd->dma[no_of_cmds].base_addr = IPA_NAT_INDX_TBL; cmd->dma[no_of_cmds].table_index = tbl_indx; cmd->dma[no_of_cmds].data = IPA_NAT_INVALID_NAT_ENTRY; cmd->dma[no_of_cmds].offset = ipa_nati_get_index_entry_offset(cache_ptr, cmd->dma[no_of_cmds].base_addr, indx_tbl_entry); cmd->dma[no_of_cmds].offset += IPA_NAT_INDEX_RULE_NAT_INDEX_FIELD_OFFSET; } /* copy the next entry values to current entry */ else if (IPA_NAT_DEL_TYPE_HEAD == indx_rule_pos) { next_entry = Read16BitFieldValue(indx_tbl_ptr[indx_tbl_entry].tbl_entry_nxt_indx, INDX_TBL_NEXT_INDEX_FILED); next_entry -= cache_ptr->table_entries; no_of_cmds++; cmd->dma[no_of_cmds].base_addr = IPA_NAT_INDX_TBL; cmd->dma[no_of_cmds].table_index = tbl_indx; /* Copy the nat_table_index field value of next entry */ indx_tbl_ptr = (struct ipa_nat_indx_tbl_rule *)cache_ptr->index_table_expn_addr; cmd->dma[no_of_cmds].data = Read16BitFieldValue(indx_tbl_ptr[next_entry].tbl_entry_nxt_indx, INDX_TBL_TBL_ENTRY_FIELD); cmd->dma[no_of_cmds].offset = ipa_nati_get_index_entry_offset(cache_ptr, cmd->dma[no_of_cmds].base_addr, indx_tbl_entry); cmd->dma[no_of_cmds].offset += IPA_NAT_INDEX_RULE_NAT_INDEX_FIELD_OFFSET; /* Copy the next_index field value of next entry */ no_of_cmds++; cmd->dma[no_of_cmds].base_addr = IPA_NAT_INDX_TBL; cmd->dma[no_of_cmds].table_index = tbl_indx; cmd->dma[no_of_cmds].data = Read16BitFieldValue(indx_tbl_ptr[next_entry].tbl_entry_nxt_indx, INDX_TBL_NEXT_INDEX_FILED); cmd->dma[no_of_cmds].offset = ipa_nati_get_index_entry_offset(cache_ptr, cmd->dma[no_of_cmds].base_addr, indx_tbl_entry); cmd->dma[no_of_cmds].offset += IPA_NAT_INDEX_RULE_NEXT_FIELD_OFFSET; indx_next_entry = next_entry; } /* Update the previous entry of next_index field value with current entry next_index field value */ else if (IPA_NAT_DEL_TYPE_MIDDLE == indx_rule_pos) { prev_entry = cache_ptr->index_expn_table_meta[indx_tbl_entry].prev_index; no_of_cmds++; cmd->dma[no_of_cmds].table_index = tbl_indx; cmd->dma[no_of_cmds].data = Read16BitFieldValue(indx_tbl_ptr[indx_tbl_entry].tbl_entry_nxt_indx, INDX_TBL_NEXT_INDEX_FILED); cmd->dma[no_of_cmds].base_addr = IPA_NAT_INDX_TBL; if (prev_entry >= cache_ptr->table_entries) { cmd->dma[no_of_cmds].base_addr = IPA_NAT_INDEX_EXPN_TBL; prev_entry -= cache_ptr->table_entries; } IPADBG("prev_entry: %d update with cur next_index: %d\n", prev_entry, cmd->dma[no_of_cmds].data); IPADBG("prev_entry: %d exist in table_type:%d\n", prev_entry, cmd->dma[no_of_cmds].base_addr); cmd->dma[no_of_cmds].offset = ipa_nati_get_index_entry_offset(cache_ptr, cmd->dma[no_of_cmds].base_addr, prev_entry); cmd->dma[no_of_cmds].offset += IPA_NAT_INDEX_RULE_NEXT_FIELD_OFFSET; } /* Reset the previous entry next_index field with 0 */ else if (IPA_NAT_DEL_TYPE_LAST == indx_rule_pos) { prev_entry = cache_ptr->index_expn_table_meta[indx_tbl_entry].prev_index; no_of_cmds++; cmd->dma[no_of_cmds].table_index = tbl_indx; cmd->dma[no_of_cmds].data = IPA_NAT_INVALID_NAT_ENTRY; cmd->dma[no_of_cmds].base_addr = IPA_NAT_INDX_TBL; if (prev_entry >= cache_ptr->table_entries) { cmd->dma[no_of_cmds].base_addr = IPA_NAT_INDEX_EXPN_TBL; prev_entry -= cache_ptr->table_entries; } IPADBG("Reseting prev_entry: %d next_index\n", prev_entry); IPADBG("prev_entry: %d exist in table_type:%d\n", prev_entry, cmd->dma[no_of_cmds].base_addr); cmd->dma[no_of_cmds].offset = ipa_nati_get_index_entry_offset(cache_ptr, cmd->dma[no_of_cmds].base_addr, prev_entry); cmd->dma[no_of_cmds].offset += IPA_NAT_INDEX_RULE_NEXT_FIELD_OFFSET; } /* ================================================ Index Table rule Deletion End ================================================*/ cmd->entries = no_of_cmds + 1; if (cmd->entries > 1) { ReorderCmds(cmd, size); } if (ioctl(ipv4_nat_cache.ipa_fd, IPA_IOC_NAT_DMA, cmd)) { perror("ipa_nati_post_del_dma_cmd(): ioctl error value"); IPAERR("unable to post cmd\n"); IPADBG("ipa fd %d\n", ipv4_nat_cache.ipa_fd); ret = -EIO; goto fail; } /* if entry exist in IPA_NAT_DEL_TYPE_MIDDLE of list Update the previous entry in sw specific parameters */ if (IPA_NAT_DEL_TYPE_MIDDLE == rule_pos) { /* Retrieve the current entry prev_entry value */ prev_entry = Read16BitFieldValue(tbl_ptr[cur_tbl_entry].sw_spec_params, SW_SPEC_PARAM_PREV_INDEX_FIELD); /* Retrieve the next entry */ next_entry = Read16BitFieldValue(tbl_ptr[cur_tbl_entry].nxt_indx_pub_port, NEXT_INDEX_FIELD); next_entry -= cache_ptr->table_entries; tbl_ptr = (struct ipa_nat_rule *)cache_ptr->ipv4_expn_rules_addr; /* copy the current entry prev_entry value to next entry*/ UpdateSwSpecParams(&tbl_ptr[next_entry], IPA_NAT_SW_PARAM_PREV_INDX_BYTE, prev_entry); } /* Reset the other field values of current delete entry In case of IPA_NAT_DEL_TYPE_HEAD, don't reset */ if (IPA_NAT_DEL_TYPE_HEAD != rule_pos) { memset(&tbl_ptr[cur_tbl_entry], 0, sizeof(struct ipa_nat_rule)); } if (indx_rule_pos == IPA_NAT_DEL_TYPE_HEAD) { /* Update next next entry previous value to current entry as we moved the next entry values to current entry */ indx_next_next_entry = Read16BitFieldValue(indx_tbl_ptr[indx_next_entry].tbl_entry_nxt_indx, INDX_TBL_NEXT_INDEX_FILED); if (indx_next_next_entry != 0 && indx_next_next_entry >= cache_ptr->table_entries) { IPADBG("Next Next entry: %d\n", indx_next_next_entry); indx_next_next_entry -= cache_ptr->table_entries; IPADBG("Updating entry: %d prev index to: %d\n", indx_next_next_entry, indx_tbl_entry); cache_ptr->index_expn_table_meta[indx_next_next_entry].prev_index = indx_tbl_entry; } /* Now reset the next entry as we copied the next entry to current entry */ IPADBG("Resetting, index table entry(Proper): %d\n", (cache_ptr->table_entries + indx_next_entry)); /* This resets both table entry and next index values */ indx_tbl_ptr[indx_next_entry].tbl_entry_nxt_indx = 0; /* In case of IPA_NAT_DEL_TYPE_HEAD, update the sw specific parameters (index table entry) of base table entry */ indx_tbl_ptr = (struct ipa_nat_indx_tbl_rule *)cache_ptr->index_table_addr; table_entry = Read16BitFieldValue(indx_tbl_ptr[indx_tbl_entry].tbl_entry_nxt_indx, INDX_TBL_TBL_ENTRY_FIELD); if (table_entry >= cache_ptr->table_entries) { tbl_ptr = (struct ipa_nat_rule *)cache_ptr->ipv4_expn_rules_addr; table_entry -= cache_ptr->table_entries; } else { tbl_ptr = (struct ipa_nat_rule *)cache_ptr->ipv4_rules_addr; } UpdateSwSpecParams(&tbl_ptr[table_entry], IPA_NAT_SW_PARAM_INDX_TBL_ENTRY_BYTE, indx_tbl_entry); } else { /* Update the prev_entry value (in index_expn_table_meta) for the next_entry in list with current entry prev_entry value */ if (IPA_NAT_DEL_TYPE_MIDDLE == indx_rule_pos) { next_entry = Read16BitFieldValue(indx_tbl_ptr[indx_tbl_entry].tbl_entry_nxt_indx, INDX_TBL_NEXT_INDEX_FILED); if (next_entry >= cache_ptr->table_entries) { next_entry -= cache_ptr->table_entries; } cache_ptr->index_expn_table_meta[next_entry].prev_index = cache_ptr->index_expn_table_meta[indx_tbl_entry].prev_index; cache_ptr->index_expn_table_meta[indx_tbl_entry].prev_index = IPA_NAT_INVALID_NAT_ENTRY; } IPADBG("At, indx_tbl_entry value: %d\n", indx_tbl_entry); IPADBG("At, indx_tbl_entry member address: %p\n", &indx_tbl_ptr[indx_tbl_entry].tbl_entry_nxt_indx); indx_tbl_ptr[indx_tbl_entry].tbl_entry_nxt_indx = 0; } fail: free(cmd); return ret; } void ipa_nati_find_index_rule_pos( struct ipa_nat_ip4_table_cache *cache_ptr, uint16_t tbl_entry, del_type *rule_pos) { struct ipa_nat_indx_tbl_rule *tbl_ptr; if (tbl_entry >= cache_ptr->table_entries) { tbl_ptr = (struct ipa_nat_indx_tbl_rule *)cache_ptr->index_table_expn_addr; tbl_entry -= cache_ptr->table_entries; if (Read16BitFieldValue(tbl_ptr[tbl_entry].tbl_entry_nxt_indx, INDX_TBL_NEXT_INDEX_FILED) == IPA_NAT_INVALID_NAT_ENTRY) { *rule_pos = IPA_NAT_DEL_TYPE_LAST; } else { *rule_pos = IPA_NAT_DEL_TYPE_MIDDLE; } } else { tbl_ptr = (struct ipa_nat_indx_tbl_rule *)cache_ptr->index_table_addr; if (Read16BitFieldValue(tbl_ptr[tbl_entry].tbl_entry_nxt_indx, INDX_TBL_NEXT_INDEX_FILED) == IPA_NAT_INVALID_NAT_ENTRY) { *rule_pos = IPA_NAT_DEL_TYPE_ONLY_ONE; } else { *rule_pos = IPA_NAT_DEL_TYPE_HEAD; } } } void ipa_nati_find_rule_pos(struct ipa_nat_ip4_table_cache *cache_ptr, uint8_t expn_tbl, uint16_t tbl_entry, del_type *rule_pos) { struct ipa_nat_rule *tbl_ptr; if (expn_tbl) { tbl_ptr = (struct ipa_nat_rule *)cache_ptr->ipv4_expn_rules_addr; if (Read16BitFieldValue(tbl_ptr[tbl_entry].nxt_indx_pub_port, NEXT_INDEX_FIELD) == IPA_NAT_INVALID_NAT_ENTRY) { *rule_pos = IPA_NAT_DEL_TYPE_LAST; } else { *rule_pos = IPA_NAT_DEL_TYPE_MIDDLE; } } else { tbl_ptr = (struct ipa_nat_rule *)cache_ptr->ipv4_rules_addr; if (Read16BitFieldValue(tbl_ptr[tbl_entry].nxt_indx_pub_port, NEXT_INDEX_FIELD) == IPA_NAT_INVALID_NAT_ENTRY) { *rule_pos = IPA_NAT_DEL_TYPE_ONLY_ONE; } else { *rule_pos = IPA_NAT_DEL_TYPE_HEAD; } } } void ipa_nati_del_dead_ipv4_head_nodes(uint8_t tbl_indx) { struct ipa_nat_rule *tbl_ptr; uint16_t cnt; tbl_ptr = (struct ipa_nat_rule *)ipv4_nat_cache.ip4_tbl[tbl_indx].ipv4_rules_addr; for (cnt = 0; cnt < ipv4_nat_cache.ip4_tbl[tbl_indx].table_entries; cnt++) { if (Read8BitFieldValue(tbl_ptr[cnt].ts_proto, PROTOCOL_FIELD) == IPAHAL_NAT_INVALID_PROTOCOL && Read16BitFieldValue(tbl_ptr[cnt].nxt_indx_pub_port, NEXT_INDEX_FIELD) == IPA_NAT_INVALID_NAT_ENTRY) { /* Delete the IPA_NAT_DEL_TYPE_HEAD node */ IPADBG("deleting the dead node 0x%x\n", cnt); memset(&tbl_ptr[cnt], 0, sizeof(struct ipa_nat_rule)); } } /* end of for loop */ return; } /* ======================================================== Debug functions ========================================================*/ #ifdef NAT_DUMP void ipa_nat_dump_ipv4_table(uint32_t tbl_hdl) { struct ipa_nat_rule *tbl_ptr; struct ipa_nat_indx_tbl_rule *indx_tbl_ptr; int cnt; uint8_t atl_one = 0; if (IPA_NAT_INVALID_NAT_ENTRY == tbl_hdl || tbl_hdl > IPA_NAT_MAX_IP4_TBLS) { IPAERR("invalid table handle passed\n"); return; } /* Print ipv4 rules */ IPADBG("Dumping ipv4 active rules:\n"); tbl_ptr = (struct ipa_nat_rule *) ipv4_nat_cache.ip4_tbl[tbl_hdl-1].ipv4_rules_addr; for (cnt = 0; cnt < ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].table_entries; cnt++) { if (Read16BitFieldValue(tbl_ptr[cnt].ip_cksm_enbl, ENABLE_FIELD)) { atl_one = 1; ipa_nati_print_rule(&tbl_ptr[cnt], cnt); } } if (!atl_one) { IPADBG("No active base rules, total: %d\n", ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].table_entries); } atl_one = 0; /* Print ipv4 expansion rules */ IPADBG("Dumping ipv4 active expansion rules:\n"); tbl_ptr = (struct ipa_nat_rule *) ipv4_nat_cache.ip4_tbl[tbl_hdl-1].ipv4_expn_rules_addr; for (cnt = 0; cnt <= ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].expn_table_entries; cnt++) { if (Read16BitFieldValue(tbl_ptr[cnt].ip_cksm_enbl, ENABLE_FIELD)) { atl_one = 1; ipa_nati_print_rule(&tbl_ptr[cnt], (cnt + ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].table_entries)); } } if (!atl_one) { IPADBG("No active base expansion rules, total: %d\n", ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].expn_table_entries); } atl_one = 0; /* Print ipv4 index rules */ IPADBG("Dumping ipv4 index active rules:\n"); indx_tbl_ptr = (struct ipa_nat_indx_tbl_rule *) ipv4_nat_cache.ip4_tbl[tbl_hdl-1].index_table_addr; for (cnt = 0; cnt < ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].table_entries; cnt++) { if (Read16BitFieldValue(indx_tbl_ptr[cnt].tbl_entry_nxt_indx, INDX_TBL_TBL_ENTRY_FIELD)) { atl_one = 1; ipa_nati_print_index_rule(&indx_tbl_ptr[cnt], cnt, 0); } } if (!atl_one) { IPADBG("No active index table rules, total:%d\n", ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].table_entries); } atl_one = 0; /* Print ipv4 index expansion rules */ IPADBG("Dumping ipv4 index expansion active rules:\n"); indx_tbl_ptr = (struct ipa_nat_indx_tbl_rule *) ipv4_nat_cache.ip4_tbl[tbl_hdl-1].index_table_expn_addr; for (cnt = 0; cnt <= ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].expn_table_entries; cnt++) { if (Read16BitFieldValue(indx_tbl_ptr[cnt].tbl_entry_nxt_indx, INDX_TBL_TBL_ENTRY_FIELD)) { atl_one = 1; ipa_nati_print_index_rule(&indx_tbl_ptr[cnt], (cnt + ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].table_entries), ipv4_nat_cache.ip4_tbl[tbl_hdl-1].index_expn_table_meta[cnt].prev_index); } } if (!atl_one) { IPADBG("No active index expansion rules, total:%d\n", ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].expn_table_entries); } atl_one = 0; } void ipa_nati_print_rule( struct ipa_nat_rule *param, uint32_t rule_id) { struct ipa_nat_sw_rule sw_rule; memcpy(&sw_rule, param, sizeof(sw_rule)); uint32_t ip_addr; IPADUMP("rule-id:%d ", rule_id); ip_addr = sw_rule.target_ip; IPADUMP("Trgt-IP:%d.%d.%d.%d ", ((ip_addr & 0xFF000000) >> 24), ((ip_addr & 0x00FF0000) >> 16), ((ip_addr & 0x0000FF00) >> 8), ((ip_addr & 0x000000FF))); IPADUMP("Trgt-Port:%d Priv-Port:%d ", sw_rule.target_port, sw_rule.private_port); ip_addr = sw_rule.private_ip; IPADUMP("Priv-IP:%d.%d.%d.%d ", ((ip_addr & 0xFF000000) >> 24), ((ip_addr & 0x00FF0000) >> 16), ((ip_addr & 0x0000FF00) >> 8), ((ip_addr & 0x000000FF))); IPADUMP("Pub-Port:%d Nxt-indx:%d ", sw_rule.public_port, sw_rule.next_index); IPADUMP("IP-cksm-delta:0x%x En-bit:0x%x ", sw_rule.ip_chksum, sw_rule.enable); IPADUMP("TS:0x%x Proto:0x%x ", sw_rule.time_stamp, sw_rule.protocol); IPADUMP("Prv-indx:%d indx_tbl_entry:%d ", sw_rule.prev_index, sw_rule.indx_tbl_entry); IPADUMP("Tcp-udp-cksum-delta:0x%x", sw_rule.tcp_udp_chksum); IPADUMP("\n"); return; } void ipa_nati_print_index_rule( struct ipa_nat_indx_tbl_rule *param, uint32_t rule_id, uint16_t prev_indx) { struct ipa_nat_sw_indx_tbl_rule sw_rule; memcpy(&sw_rule, param, sizeof(sw_rule)); IPADUMP("rule-id:%d Table_entry:%d Next_index:%d, prev_indx:%d", rule_id, sw_rule.tbl_entry, sw_rule.next_index, prev_indx); IPADUMP("\n"); return; } int ipa_nati_query_nat_rules( uint32_t tbl_hdl, nat_table_type tbl_type) { struct ipa_nat_rule *tbl_ptr; struct ipa_nat_indx_tbl_rule *indx_tbl_ptr; int cnt = 0, ret = 0; if (IPA_NAT_INVALID_NAT_ENTRY == tbl_hdl || tbl_hdl > IPA_NAT_MAX_IP4_TBLS) { IPAERR("invalid table handle passed\n"); return ret; } /* Print ipv4 rules */ if (tbl_type == IPA_NAT_BASE_TBL) { IPADBG("Counting ipv4 active rules:\n"); tbl_ptr = (struct ipa_nat_rule *) ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].ipv4_rules_addr; for (cnt = 0; cnt < ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].table_entries; cnt++) { if (Read16BitFieldValue(tbl_ptr[cnt].ip_cksm_enbl, ENABLE_FIELD)) { ret++; } } if (!ret) { IPADBG("No active base rules\n"); } IPADBG("Number of active base rules: %d\n", ret); } /* Print ipv4 expansion rules */ if (tbl_type == IPA_NAT_EXPN_TBL) { IPADBG("Counting ipv4 active expansion rules:\n"); tbl_ptr = (struct ipa_nat_rule *) ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].ipv4_expn_rules_addr; for (cnt = 0; cnt < ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].expn_table_entries; cnt++) { if (Read16BitFieldValue(tbl_ptr[cnt].ip_cksm_enbl, ENABLE_FIELD)) { ret++; } } if (!ret) { IPADBG("No active base expansion rules\n"); } IPADBG("Number of active base expansion rules: %d\n", ret); } /* Print ipv4 index rules */ if (tbl_type == IPA_NAT_INDX_TBL) { IPADBG("Counting ipv4 index active rules:\n"); indx_tbl_ptr = (struct ipa_nat_indx_tbl_rule *) ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].index_table_addr; for (cnt = 0; cnt < ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].table_entries; cnt++) { if (Read16BitFieldValue(indx_tbl_ptr[cnt].tbl_entry_nxt_indx, INDX_TBL_TBL_ENTRY_FIELD)) { ret++; } } if (!ret) { IPADBG("No active index table rules\n"); } IPADBG("Number of active index table rules: %d\n", ret); } /* Print ipv4 index expansion rules */ if (tbl_type == IPA_NAT_INDEX_EXPN_TBL) { IPADBG("Counting ipv4 index expansion active rules:\n"); indx_tbl_ptr = (struct ipa_nat_indx_tbl_rule *) ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].index_table_expn_addr; for (cnt = 0; cnt < ipv4_nat_cache.ip4_tbl[tbl_hdl - 1].expn_table_entries; cnt++) { if (Read16BitFieldValue(indx_tbl_ptr[cnt].tbl_entry_nxt_indx, INDX_TBL_TBL_ENTRY_FIELD)) { ret++; } } if (!ret) IPADBG("No active index expansion rules\n"); IPADBG("Number of active index expansion rules: %d\n", ret); } return ret; } #endif