1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "monitor-inl.h"
18 
19 #include <vector>
20 
21 #include "android-base/stringprintf.h"
22 
23 #include "art_method-inl.h"
24 #include "base/logging.h"  // For VLOG.
25 #include "base/mutex.h"
26 #include "base/quasi_atomic.h"
27 #include "base/stl_util.h"
28 #include "base/systrace.h"
29 #include "base/time_utils.h"
30 #include "class_linker.h"
31 #include "dex/dex_file-inl.h"
32 #include "dex/dex_file_types.h"
33 #include "dex/dex_instruction-inl.h"
34 #include "entrypoints/entrypoint_utils-inl.h"
35 #include "lock_word-inl.h"
36 #include "mirror/class-inl.h"
37 #include "mirror/object-inl.h"
38 #include "object_callbacks.h"
39 #include "scoped_thread_state_change-inl.h"
40 #include "stack.h"
41 #include "thread.h"
42 #include "thread_list.h"
43 #include "verifier/method_verifier.h"
44 #include "well_known_classes.h"
45 #include <android-base/properties.h>
46 
47 static_assert(ART_USE_FUTEXES);
48 
49 namespace art {
50 
51 using android::base::StringPrintf;
52 
53 static constexpr uint64_t kDebugThresholdFudgeFactor = kIsDebugBuild ? 10 : 1;
54 static constexpr uint64_t kLongWaitMs = 100 * kDebugThresholdFudgeFactor;
55 
56 /*
57  * Every Object has a monitor associated with it, but not every Object is actually locked.  Even
58  * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
59  * or b) wait() is called on the Object, or (c) we need to lock an object that also has an
60  * identity hashcode.
61  *
62  * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
63  * "Thin locks: featherweight synchronization for Java" (ACM 1998).  Things are even easier for us,
64  * though, because we have a full 32 bits to work with.
65  *
66  * The two states of an Object's lock are referred to as "thin" and "fat".  A lock may transition
67  * from the "thin" state to the "fat" state and this transition is referred to as inflation. We
68  * deflate locks from time to time as part of heap trimming.
69  *
70  * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
71  * in the LockWord value type.
72  *
73  * Monitors provide:
74  *  - mutually exclusive access to resources
75  *  - a way for multiple threads to wait for notification
76  *
77  * In effect, they fill the role of both mutexes and condition variables.
78  *
79  * Only one thread can own the monitor at any time.  There may be several threads waiting on it
80  * (the wait call unlocks it).  One or more waiting threads may be getting interrupted or notified
81  * at any given time.
82  */
83 
84 uint32_t Monitor::lock_profiling_threshold_ = 0;
85 uint32_t Monitor::stack_dump_lock_profiling_threshold_ = 0;
86 
Init(uint32_t lock_profiling_threshold,uint32_t stack_dump_lock_profiling_threshold)87 void Monitor::Init(uint32_t lock_profiling_threshold,
88                    uint32_t stack_dump_lock_profiling_threshold) {
89   // It isn't great to always include the debug build fudge factor for command-
90   // line driven arguments, but it's easier to adjust here than in the build.
91   lock_profiling_threshold_ =
92       lock_profiling_threshold * kDebugThresholdFudgeFactor;
93   stack_dump_lock_profiling_threshold_ =
94       stack_dump_lock_profiling_threshold * kDebugThresholdFudgeFactor;
95 }
96 
Monitor(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code)97 Monitor::Monitor(Thread* self, Thread* owner, ObjPtr<mirror::Object> obj, int32_t hash_code)
98     : monitor_lock_("a monitor lock", kMonitorLock),
99       num_waiters_(0),
100       owner_(owner),
101       lock_count_(0),
102       obj_(GcRoot<mirror::Object>(obj)),
103       wait_set_(nullptr),
104       wake_set_(nullptr),
105       hash_code_(hash_code),
106       lock_owner_(nullptr),
107       lock_owner_method_(nullptr),
108       lock_owner_dex_pc_(0),
109       lock_owner_sum_(0),
110       lock_owner_request_(nullptr),
111       monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
112 #ifdef __LP64__
113   DCHECK(false) << "Should not be reached in 64b";
114   next_free_ = nullptr;
115 #endif
116   // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
117   // with the owner unlocking the thin-lock.
118   CHECK(owner == nullptr || owner == self || owner->IsSuspended());
119   // The identity hash code is set for the life time of the monitor.
120 
121   bool monitor_timeout_enabled = Runtime::Current()->IsMonitorTimeoutEnabled();
122   if (monitor_timeout_enabled) {
123     MaybeEnableTimeout();
124   }
125 }
126 
Monitor(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code,MonitorId id)127 Monitor::Monitor(Thread* self,
128                  Thread* owner,
129                  ObjPtr<mirror::Object> obj,
130                  int32_t hash_code,
131                  MonitorId id)
132     : monitor_lock_("a monitor lock", kMonitorLock),
133       num_waiters_(0),
134       owner_(owner),
135       lock_count_(0),
136       obj_(GcRoot<mirror::Object>(obj)),
137       wait_set_(nullptr),
138       wake_set_(nullptr),
139       hash_code_(hash_code),
140       lock_owner_(nullptr),
141       lock_owner_method_(nullptr),
142       lock_owner_dex_pc_(0),
143       lock_owner_sum_(0),
144       lock_owner_request_(nullptr),
145       monitor_id_(id) {
146 #ifdef __LP64__
147   next_free_ = nullptr;
148 #endif
149   // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
150   // with the owner unlocking the thin-lock.
151   CHECK(owner == nullptr || owner == self || owner->IsSuspended());
152   // The identity hash code is set for the life time of the monitor.
153 
154   bool monitor_timeout_enabled = Runtime::Current()->IsMonitorTimeoutEnabled();
155   if (monitor_timeout_enabled) {
156     MaybeEnableTimeout();
157   }
158 }
159 
GetHashCode()160 int32_t Monitor::GetHashCode() {
161   int32_t hc = hash_code_.load(std::memory_order_relaxed);
162   if (!HasHashCode()) {
163     // Use a strong CAS to prevent spurious failures since these can make the boot image
164     // non-deterministic.
165     hash_code_.CompareAndSetStrongRelaxed(0, mirror::Object::GenerateIdentityHashCode());
166     hc = hash_code_.load(std::memory_order_relaxed);
167   }
168   DCHECK(HasHashCode());
169   return hc;
170 }
171 
SetLockingMethod(Thread * owner)172 void Monitor::SetLockingMethod(Thread* owner) {
173   DCHECK(owner == Thread::Current() || owner->IsSuspended());
174   // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on
175   // abort.
176   ArtMethod* lock_owner_method;
177   uint32_t lock_owner_dex_pc;
178   lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc, false);
179   if (lock_owner_method != nullptr && UNLIKELY(lock_owner_method->IsProxyMethod())) {
180     // Grab another frame. Proxy methods are not helpful for lock profiling. This should be rare
181     // enough that it's OK to walk the stack twice.
182     struct NextMethodVisitor final : public StackVisitor {
183       explicit NextMethodVisitor(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_)
184           : StackVisitor(thread,
185                          nullptr,
186                          StackVisitor::StackWalkKind::kIncludeInlinedFrames,
187                          false),
188             count_(0),
189             method_(nullptr),
190             dex_pc_(0) {}
191       bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
192         ArtMethod* m = GetMethod();
193         if (m->IsRuntimeMethod()) {
194           // Continue if this is a runtime method.
195           return true;
196         }
197         count_++;
198         if (count_ == 2u) {
199           method_ = m;
200           dex_pc_ = GetDexPc(false);
201           return false;
202         }
203         return true;
204       }
205       size_t count_;
206       ArtMethod* method_;
207       uint32_t dex_pc_;
208     };
209     NextMethodVisitor nmv(owner_.load(std::memory_order_relaxed));
210     nmv.WalkStack();
211     lock_owner_method = nmv.method_;
212     lock_owner_dex_pc = nmv.dex_pc_;
213   }
214   SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner);
215   DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod());
216 }
217 
SetLockingMethodNoProxy(Thread * owner)218 void Monitor::SetLockingMethodNoProxy(Thread *owner) {
219   DCHECK(owner == Thread::Current());
220   uint32_t lock_owner_dex_pc;
221   ArtMethod* lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc);
222   // We don't expect a proxy method here.
223   DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod());
224   SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner);
225 }
226 
Install(Thread * self)227 bool Monitor::Install(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
228   // This may or may not result in acquiring monitor_lock_. Its behavior is much more complicated
229   // than what clang thread safety analysis understands.
230   // Monitor is not yet public.
231   Thread* owner = owner_.load(std::memory_order_relaxed);
232   CHECK(owner == nullptr || owner == self || owner->IsSuspended());
233   // Propagate the lock state.
234   LockWord lw(GetObject()->GetLockWord(false));
235   switch (lw.GetState()) {
236     case LockWord::kThinLocked: {
237       DCHECK(owner != nullptr);
238       CHECK_EQ(owner->GetThreadId(), lw.ThinLockOwner());
239       DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self);
240       lock_count_ = lw.ThinLockCount();
241       monitor_lock_.ExclusiveLockUncontendedFor(owner);
242       DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), owner->GetTid())
243           << " my tid = " << SafeGetTid(self);
244       LockWord fat(this, lw.GCState());
245       // Publish the updated lock word, which may race with other threads.
246       bool success = GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release);
247       if (success) {
248         if (ATraceEnabled()) {
249           SetLockingMethod(owner);
250         }
251         return true;
252       } else {
253         monitor_lock_.ExclusiveUnlockUncontended();
254         return false;
255       }
256     }
257     case LockWord::kHashCode: {
258       CHECK_EQ(hash_code_.load(std::memory_order_relaxed), static_cast<int32_t>(lw.GetHashCode()));
259       DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self);
260       LockWord fat(this, lw.GCState());
261       return GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release);
262     }
263     case LockWord::kFatLocked: {
264       // The owner_ is suspended but another thread beat us to install a monitor.
265       return false;
266     }
267     case LockWord::kUnlocked: {
268       LOG(FATAL) << "Inflating unlocked lock word";
269       UNREACHABLE();
270     }
271     default: {
272       LOG(FATAL) << "Invalid monitor state " << lw.GetState();
273       UNREACHABLE();
274     }
275   }
276 }
277 
~Monitor()278 Monitor::~Monitor() {
279   // Deflated monitors have a null object.
280 }
281 
AppendToWaitSet(Thread * thread)282 void Monitor::AppendToWaitSet(Thread* thread) {
283   // Not checking that the owner is equal to this thread, since we've released
284   // the monitor by the time this method is called.
285   DCHECK(thread != nullptr);
286   DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
287   if (wait_set_ == nullptr) {
288     wait_set_ = thread;
289     return;
290   }
291 
292   // push_back.
293   Thread* t = wait_set_;
294   while (t->GetWaitNext() != nullptr) {
295     t = t->GetWaitNext();
296   }
297   t->SetWaitNext(thread);
298 }
299 
RemoveFromWaitSet(Thread * thread)300 void Monitor::RemoveFromWaitSet(Thread *thread) {
301   DCHECK(owner_ == Thread::Current());
302   DCHECK(thread != nullptr);
303   auto remove = [&](Thread*& set){
304     if (set != nullptr) {
305       if (set == thread) {
306         set = thread->GetWaitNext();
307         thread->SetWaitNext(nullptr);
308         return true;
309       }
310       Thread* t = set;
311       while (t->GetWaitNext() != nullptr) {
312         if (t->GetWaitNext() == thread) {
313           t->SetWaitNext(thread->GetWaitNext());
314           thread->SetWaitNext(nullptr);
315           return true;
316         }
317         t = t->GetWaitNext();
318       }
319     }
320     return false;
321   };
322   if (remove(wait_set_)) {
323     return;
324   }
325   remove(wake_set_);
326 }
327 
SetObject(ObjPtr<mirror::Object> object)328 void Monitor::SetObject(ObjPtr<mirror::Object> object) {
329   obj_ = GcRoot<mirror::Object>(object);
330 }
331 
332 // This function is inlined and just helps to not have the VLOG and ATRACE check at all the
333 // potential tracing points.
AtraceMonitorLock(Thread * self,ObjPtr<mirror::Object> obj,bool is_wait)334 void Monitor::AtraceMonitorLock(Thread* self, ObjPtr<mirror::Object> obj, bool is_wait) {
335   if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging) && ATraceEnabled())) {
336     AtraceMonitorLockImpl(self, obj, is_wait);
337   }
338 }
339 
AtraceMonitorLockImpl(Thread * self,ObjPtr<mirror::Object> obj,bool is_wait)340 void Monitor::AtraceMonitorLockImpl(Thread* self, ObjPtr<mirror::Object> obj, bool is_wait) {
341   // Wait() requires a deeper call stack to be useful. Otherwise you'll see "Waiting at
342   // Object.java". Assume that we'll wait a nontrivial amount, so it's OK to do a longer
343   // stack walk than if !is_wait.
344   const size_t wanted_frame_number = is_wait ? 1U : 0U;
345 
346   ArtMethod* method = nullptr;
347   uint32_t dex_pc = 0u;
348 
349   size_t current_frame_number = 0u;
350   StackVisitor::WalkStack(
351       // Note: Adapted from CurrentMethodVisitor in thread.cc. We must not resolve here.
352       [&](const art::StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
353         ArtMethod* m = stack_visitor->GetMethod();
354         if (m == nullptr || m->IsRuntimeMethod()) {
355           // Runtime method, upcall, or resolution issue. Skip.
356           return true;
357         }
358 
359         // Is this the requested frame?
360         if (current_frame_number == wanted_frame_number) {
361           method = m;
362           dex_pc = stack_visitor->GetDexPc(false /* abort_on_error*/);
363           return false;
364         }
365 
366         // Look for more.
367         current_frame_number++;
368         return true;
369       },
370       self,
371       /* context= */ nullptr,
372       art::StackVisitor::StackWalkKind::kIncludeInlinedFrames);
373 
374   const char* prefix = is_wait ? "Waiting on " : "Locking ";
375 
376   const char* filename;
377   int32_t line_number;
378   TranslateLocation(method, dex_pc, &filename, &line_number);
379 
380   // It would be nice to have a stable "ID" for the object here. However, the only stable thing
381   // would be the identity hashcode. But we cannot use IdentityHashcode here: For one, there are
382   // times when it is unsafe to make that call (see stack dumping for an explanation). More
383   // importantly, we would have to give up on thin-locking when adding systrace locks, as the
384   // identity hashcode is stored in the lockword normally (so can't be used with thin-locks).
385   //
386   // Because of thin-locks we also cannot use the monitor id (as there is no monitor). Monitor ids
387   // also do not have to be stable, as the monitor may be deflated.
388   std::string tmp = StringPrintf("%s %d at %s:%d",
389       prefix,
390       (obj == nullptr ? -1 : static_cast<int32_t>(reinterpret_cast<uintptr_t>(obj.Ptr()))),
391       (filename != nullptr ? filename : "null"),
392       line_number);
393   ATraceBegin(tmp.c_str());
394 }
395 
AtraceMonitorUnlock()396 void Monitor::AtraceMonitorUnlock() {
397   if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging))) {
398     ATraceEnd();
399   }
400 }
401 
PrettyContentionInfo(const std::string & owner_name,pid_t owner_tid,ArtMethod * owners_method,uint32_t owners_dex_pc,size_t num_waiters)402 std::string Monitor::PrettyContentionInfo(const std::string& owner_name,
403                                           pid_t owner_tid,
404                                           ArtMethod* owners_method,
405                                           uint32_t owners_dex_pc,
406                                           size_t num_waiters) {
407   Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
408   const char* owners_filename;
409   int32_t owners_line_number = 0;
410   if (owners_method != nullptr) {
411     TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
412   }
413   std::ostringstream oss;
414   oss << "monitor contention with owner " << owner_name << " (" << owner_tid << ")";
415   if (owners_method != nullptr) {
416     oss << " at " << owners_method->PrettyMethod();
417     oss << "(" << owners_filename << ":" << owners_line_number << ")";
418   }
419   oss << " waiters=" << num_waiters;
420   return oss.str();
421 }
422 
TryLock(Thread * self,bool spin)423 bool Monitor::TryLock(Thread* self, bool spin) {
424   Thread *owner = owner_.load(std::memory_order_relaxed);
425   if (owner == self) {
426     lock_count_++;
427     CHECK_NE(lock_count_, 0u);  // Abort on overflow.
428   } else {
429     bool success = spin ? monitor_lock_.ExclusiveTryLockWithSpinning(self)
430         : monitor_lock_.ExclusiveTryLock(self);
431     if (!success) {
432       return false;
433     }
434     DCHECK(owner_.load(std::memory_order_relaxed) == nullptr);
435     owner_.store(self, std::memory_order_relaxed);
436     CHECK_EQ(lock_count_, 0u);
437     if (ATraceEnabled()) {
438       SetLockingMethodNoProxy(self);
439     }
440   }
441   DCHECK(monitor_lock_.IsExclusiveHeld(self));
442   AtraceMonitorLock(self, GetObject(), /* is_wait= */ false);
443   return true;
444 }
445 
446 template <LockReason reason>
Lock(Thread * self)447 void Monitor::Lock(Thread* self) {
448   bool called_monitors_callback = false;
449   if (TryLock(self, /*spin=*/ true)) {
450     // TODO: This preserves original behavior. Correct?
451     if (called_monitors_callback) {
452       CHECK(reason == LockReason::kForLock);
453       Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this);
454     }
455     return;
456   }
457   // Contended; not reentrant. We hold no locks, so tread carefully.
458   const bool log_contention = (lock_profiling_threshold_ != 0);
459   uint64_t wait_start_ms = log_contention ? MilliTime() : 0;
460 
461   Thread *orig_owner = nullptr;
462   ArtMethod* owners_method;
463   uint32_t owners_dex_pc;
464 
465   // Do this before releasing the mutator lock so that we don't get deflated.
466   size_t num_waiters = num_waiters_.fetch_add(1, std::memory_order_relaxed);
467 
468   bool started_trace = false;
469   if (ATraceEnabled() && owner_.load(std::memory_order_relaxed) != nullptr) {
470     // Acquiring thread_list_lock_ ensures that owner doesn't disappear while
471     // we're looking at it.
472     Locks::thread_list_lock_->ExclusiveLock(self);
473     orig_owner = owner_.load(std::memory_order_relaxed);
474     if (orig_owner != nullptr) {  // Did the owner_ give the lock up?
475       const uint32_t orig_owner_thread_id = orig_owner->GetThreadId();
476       GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner);
477       std::ostringstream oss;
478       std::string name;
479       orig_owner->GetThreadName(name);
480       oss << PrettyContentionInfo(name,
481                                   orig_owner_thread_id,
482                                   owners_method,
483                                   owners_dex_pc,
484                                   num_waiters);
485       Locks::thread_list_lock_->ExclusiveUnlock(self);
486       // Add info for contending thread.
487       uint32_t pc;
488       ArtMethod* m = self->GetCurrentMethod(&pc);
489       const char* filename;
490       int32_t line_number;
491       TranslateLocation(m, pc, &filename, &line_number);
492       oss << " blocking from "
493           << ArtMethod::PrettyMethod(m) << "(" << (filename != nullptr ? filename : "null")
494           << ":" << line_number << ")";
495       ATraceBegin(oss.str().c_str());
496       started_trace = true;
497     } else {
498       Locks::thread_list_lock_->ExclusiveUnlock(self);
499     }
500   }
501   if (log_contention) {
502     // Request the current holder to set lock_owner_info.
503     // Do this even if tracing is enabled, so we semi-consistently get the information
504     // corresponding to MonitorExit.
505     // TODO: Consider optionally obtaining a stack trace here via a checkpoint.  That would allow
506     // us to see what the other thread is doing while we're waiting.
507     orig_owner = owner_.load(std::memory_order_relaxed);
508     lock_owner_request_.store(orig_owner, std::memory_order_relaxed);
509   }
510   // Call the contended locking cb once and only once. Also only call it if we are locking for
511   // the first time, not during a Wait wakeup.
512   if (reason == LockReason::kForLock && !called_monitors_callback) {
513     called_monitors_callback = true;
514     Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocking(this);
515   }
516   self->SetMonitorEnterObject(GetObject().Ptr());
517   {
518     ScopedThreadSuspension tsc(self, kBlocked);  // Change to blocked and give up mutator_lock_.
519 
520     // Acquire monitor_lock_ without mutator_lock_, expecting to block this time.
521     // We already tried spinning above. The shutdown procedure currently assumes we stop
522     // touching monitors shortly after we suspend, so don't spin again here.
523     monitor_lock_.ExclusiveLock(self);
524 
525     if (log_contention && orig_owner != nullptr) {
526       // Woken from contention.
527       uint64_t wait_ms = MilliTime() - wait_start_ms;
528       uint32_t sample_percent;
529       if (wait_ms >= lock_profiling_threshold_) {
530         sample_percent = 100;
531       } else {
532         sample_percent = 100 * wait_ms / lock_profiling_threshold_;
533       }
534       if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
535         // Do this unconditionally for consistency. It's possible another thread
536         // snuck in in the middle, and tracing was enabled. In that case, we may get its
537         // MonitorEnter information. We can live with that.
538         GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner);
539 
540         // Reacquire mutator_lock_ for logging.
541         ScopedObjectAccess soa(self);
542 
543         const bool should_dump_stacks = stack_dump_lock_profiling_threshold_ > 0 &&
544             wait_ms > stack_dump_lock_profiling_threshold_;
545 
546         // Acquire thread-list lock to find thread and keep it from dying until we've got all
547         // the info we need.
548         Locks::thread_list_lock_->ExclusiveLock(self);
549 
550         // Is there still a thread at the same address as the original owner?
551         // We tolerate the fact that it may occasionally be the wrong one.
552         if (Runtime::Current()->GetThreadList()->Contains(orig_owner)) {
553           uint32_t original_owner_tid = orig_owner->GetTid();  // System thread id.
554           std::string original_owner_name;
555           orig_owner->GetThreadName(original_owner_name);
556           std::string owner_stack_dump;
557 
558           if (should_dump_stacks) {
559             // Very long contention. Dump stacks.
560             struct CollectStackTrace : public Closure {
561               void Run(art::Thread* thread) override
562                   REQUIRES_SHARED(art::Locks::mutator_lock_) {
563                 thread->DumpJavaStack(oss);
564               }
565 
566               std::ostringstream oss;
567             };
568             CollectStackTrace owner_trace;
569             // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its
570             // execution.
571             orig_owner->RequestSynchronousCheckpoint(&owner_trace);
572             owner_stack_dump = owner_trace.oss.str();
573           } else {
574             Locks::thread_list_lock_->ExclusiveUnlock(self);
575           }
576 
577           // This is all the data we need. We dropped the thread-list lock, it's OK for the
578           // owner to go away now.
579 
580           if (should_dump_stacks) {
581             // Give the detailed traces for really long contention.
582             // This must be here (and not above) because we cannot hold the thread-list lock
583             // while running the checkpoint.
584             std::ostringstream self_trace_oss;
585             self->DumpJavaStack(self_trace_oss);
586 
587             uint32_t pc;
588             ArtMethod* m = self->GetCurrentMethod(&pc);
589 
590             LOG(WARNING) << "Long "
591                 << PrettyContentionInfo(original_owner_name,
592                                         original_owner_tid,
593                                         owners_method,
594                                         owners_dex_pc,
595                                         num_waiters)
596                 << " in " << ArtMethod::PrettyMethod(m) << " for "
597                 << PrettyDuration(MsToNs(wait_ms)) << "\n"
598                 << "Current owner stack:\n" << owner_stack_dump
599                 << "Contender stack:\n" << self_trace_oss.str();
600           } else if (wait_ms > kLongWaitMs && owners_method != nullptr) {
601             uint32_t pc;
602             ArtMethod* m = self->GetCurrentMethod(&pc);
603             // TODO: We should maybe check that original_owner is still a live thread.
604             LOG(WARNING) << "Long "
605                 << PrettyContentionInfo(original_owner_name,
606                                         original_owner_tid,
607                                         owners_method,
608                                         owners_dex_pc,
609                                         num_waiters)
610                 << " in " << ArtMethod::PrettyMethod(m) << " for "
611                 << PrettyDuration(MsToNs(wait_ms));
612           }
613           LogContentionEvent(self,
614                             wait_ms,
615                             sample_percent,
616                             owners_method,
617                             owners_dex_pc);
618         } else {
619           Locks::thread_list_lock_->ExclusiveUnlock(self);
620         }
621       }
622     }
623   }
624   // We've successfully acquired monitor_lock_, released thread_list_lock, and are runnable.
625 
626   // We avoided touching monitor fields while suspended, so set owner_ here.
627   owner_.store(self, std::memory_order_relaxed);
628   DCHECK_EQ(lock_count_, 0u);
629 
630   if (ATraceEnabled()) {
631     SetLockingMethodNoProxy(self);
632   }
633   if (started_trace) {
634     ATraceEnd();
635   }
636   self->SetMonitorEnterObject(nullptr);
637   num_waiters_.fetch_sub(1, std::memory_order_relaxed);
638   DCHECK(monitor_lock_.IsExclusiveHeld(self));
639   // We need to pair this with a single contended locking call. NB we match the RI behavior and call
640   // this even if MonitorEnter failed.
641   if (called_monitors_callback) {
642     CHECK(reason == LockReason::kForLock);
643     Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this);
644   }
645 }
646 
647 template void Monitor::Lock<LockReason::kForLock>(Thread* self);
648 template void Monitor::Lock<LockReason::kForWait>(Thread* self);
649 
650 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
651                                               __attribute__((format(printf, 1, 2)));
652 
ThrowIllegalMonitorStateExceptionF(const char * fmt,...)653 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
654     REQUIRES_SHARED(Locks::mutator_lock_) {
655   va_list args;
656   va_start(args, fmt);
657   Thread* self = Thread::Current();
658   self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args);
659   if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
660     std::ostringstream ss;
661     self->Dump(ss);
662     LOG(Runtime::Current()->IsStarted() ? ::android::base::INFO : ::android::base::ERROR)
663         << self->GetException()->Dump() << "\n" << ss.str();
664   }
665   va_end(args);
666 }
667 
ThreadToString(Thread * thread)668 static std::string ThreadToString(Thread* thread) {
669   if (thread == nullptr) {
670     return "nullptr";
671   }
672   std::ostringstream oss;
673   // TODO: alternatively, we could just return the thread's name.
674   oss << *thread;
675   return oss.str();
676 }
677 
FailedUnlock(ObjPtr<mirror::Object> o,uint32_t expected_owner_thread_id,uint32_t found_owner_thread_id,Monitor * monitor)678 void Monitor::FailedUnlock(ObjPtr<mirror::Object> o,
679                            uint32_t expected_owner_thread_id,
680                            uint32_t found_owner_thread_id,
681                            Monitor* monitor) {
682   std::string current_owner_string;
683   std::string expected_owner_string;
684   std::string found_owner_string;
685   uint32_t current_owner_thread_id = 0u;
686   {
687     MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
688     ThreadList* const thread_list = Runtime::Current()->GetThreadList();
689     Thread* expected_owner = thread_list->FindThreadByThreadId(expected_owner_thread_id);
690     Thread* found_owner = thread_list->FindThreadByThreadId(found_owner_thread_id);
691 
692     // Re-read owner now that we hold lock.
693     Thread* current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr;
694     if (current_owner != nullptr) {
695       current_owner_thread_id = current_owner->GetThreadId();
696     }
697     // Get short descriptions of the threads involved.
698     current_owner_string = ThreadToString(current_owner);
699     expected_owner_string = expected_owner != nullptr ? ThreadToString(expected_owner) : "unnamed";
700     found_owner_string = found_owner != nullptr ? ThreadToString(found_owner) : "unnamed";
701   }
702 
703   if (current_owner_thread_id == 0u) {
704     if (found_owner_thread_id == 0u) {
705       ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
706                                          " on thread '%s'",
707                                          mirror::Object::PrettyTypeOf(o).c_str(),
708                                          expected_owner_string.c_str());
709     } else {
710       // Race: the original read found an owner but now there is none
711       ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
712                                          " (where now the monitor appears unowned) on thread '%s'",
713                                          found_owner_string.c_str(),
714                                          mirror::Object::PrettyTypeOf(o).c_str(),
715                                          expected_owner_string.c_str());
716     }
717   } else {
718     if (found_owner_thread_id == 0u) {
719       // Race: originally there was no owner, there is now
720       ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
721                                          " (originally believed to be unowned) on thread '%s'",
722                                          current_owner_string.c_str(),
723                                          mirror::Object::PrettyTypeOf(o).c_str(),
724                                          expected_owner_string.c_str());
725     } else {
726       if (found_owner_thread_id != current_owner_thread_id) {
727         // Race: originally found and current owner have changed
728         ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
729                                            " owned by '%s') on object of type '%s' on thread '%s'",
730                                            found_owner_string.c_str(),
731                                            current_owner_string.c_str(),
732                                            mirror::Object::PrettyTypeOf(o).c_str(),
733                                            expected_owner_string.c_str());
734       } else {
735         ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
736                                            " on thread '%s",
737                                            current_owner_string.c_str(),
738                                            mirror::Object::PrettyTypeOf(o).c_str(),
739                                            expected_owner_string.c_str());
740       }
741     }
742   }
743 }
744 
Unlock(Thread * self)745 bool Monitor::Unlock(Thread* self) {
746   DCHECK(self != nullptr);
747   Thread* owner = owner_.load(std::memory_order_relaxed);
748   if (owner == self) {
749     // We own the monitor, so nobody else can be in here.
750     CheckLockOwnerRequest(self);
751     AtraceMonitorUnlock();
752     if (lock_count_ == 0) {
753       owner_.store(nullptr, std::memory_order_relaxed);
754       SignalWaiterAndReleaseMonitorLock(self);
755     } else {
756       --lock_count_;
757       DCHECK(monitor_lock_.IsExclusiveHeld(self));
758       DCHECK_EQ(owner_.load(std::memory_order_relaxed), self);
759       // Keep monitor_lock_, but pretend we released it.
760       FakeUnlockMonitorLock();
761     }
762     return true;
763   }
764   // We don't own this, so we're not allowed to unlock it.
765   // The JNI spec says that we should throw IllegalMonitorStateException in this case.
766   uint32_t owner_thread_id = 0u;
767   {
768     MutexLock mu(self, *Locks::thread_list_lock_);
769     owner = owner_.load(std::memory_order_relaxed);
770     if (owner != nullptr) {
771       owner_thread_id = owner->GetThreadId();
772     }
773   }
774   FailedUnlock(GetObject(), self->GetThreadId(), owner_thread_id, this);
775   // Pretend to release monitor_lock_, which we should not.
776   FakeUnlockMonitorLock();
777   return false;
778 }
779 
SignalWaiterAndReleaseMonitorLock(Thread * self)780 void Monitor::SignalWaiterAndReleaseMonitorLock(Thread* self) {
781   // We want to release the monitor and signal up to one thread that was waiting
782   // but has since been notified.
783   DCHECK_EQ(lock_count_, 0u);
784   DCHECK(monitor_lock_.IsExclusiveHeld(self));
785   while (wake_set_ != nullptr) {
786     // No risk of waking ourselves here; since monitor_lock_ is not released until we're ready to
787     // return, notify can't move the current thread from wait_set_ to wake_set_ until this
788     // method is done checking wake_set_.
789     Thread* thread = wake_set_;
790     wake_set_ = thread->GetWaitNext();
791     thread->SetWaitNext(nullptr);
792     DCHECK(owner_.load(std::memory_order_relaxed) == nullptr);
793 
794     // Check to see if the thread is still waiting.
795     {
796       // In the case of wait(), we'll be acquiring another thread's GetWaitMutex with
797       // self's GetWaitMutex held. This does not risk deadlock, because we only acquire this lock
798       // for threads in the wake_set_. A thread can only enter wake_set_ from Notify or NotifyAll,
799       // and those hold monitor_lock_. Thus, the threads whose wait mutexes we acquire here must
800       // have already been released from wait(), since we have not released monitor_lock_ until
801       // after we've chosen our thread to wake, so there is no risk of the following lock ordering
802       // leading to deadlock:
803       // Thread 1 waits
804       // Thread 2 waits
805       // Thread 3 moves threads 1 and 2 from wait_set_ to wake_set_
806       // Thread 1 enters this block, and attempts to acquire Thread 2's GetWaitMutex to wake it
807       // Thread 2 enters this block, and attempts to acquire Thread 1's GetWaitMutex to wake it
808       //
809       // Since monitor_lock_ is not released until the thread-to-be-woken-up's GetWaitMutex is
810       // acquired, two threads cannot attempt to acquire each other's GetWaitMutex while holding
811       // their own and cause deadlock.
812       MutexLock wait_mu(self, *thread->GetWaitMutex());
813       if (thread->GetWaitMonitor() != nullptr) {
814         // Release the lock, so that a potentially awakened thread will not
815         // immediately contend on it. The lock ordering here is:
816         // monitor_lock_, self->GetWaitMutex, thread->GetWaitMutex
817         monitor_lock_.Unlock(self);  // Releases contenders.
818         thread->GetWaitConditionVariable()->Signal(self);
819         return;
820       }
821     }
822   }
823   monitor_lock_.Unlock(self);
824   DCHECK(!monitor_lock_.IsExclusiveHeld(self));
825 }
826 
Wait(Thread * self,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)827 void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
828                    bool interruptShouldThrow, ThreadState why) {
829   DCHECK(self != nullptr);
830   DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);
831 
832   // Make sure that we hold the lock.
833   if (owner_.load(std::memory_order_relaxed) != self) {
834     ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
835     return;
836   }
837 
838   // We need to turn a zero-length timed wait into a regular wait because
839   // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
840   if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
841     why = kWaiting;
842   }
843 
844   // Enforce the timeout range.
845   if (ms < 0 || ns < 0 || ns > 999999) {
846     self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;",
847                              "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
848     return;
849   }
850 
851   CheckLockOwnerRequest(self);
852 
853   /*
854    * Release our hold - we need to let it go even if we're a few levels
855    * deep in a recursive lock, and we need to restore that later.
856    */
857   unsigned int prev_lock_count = lock_count_;
858   lock_count_ = 0;
859 
860   AtraceMonitorUnlock();  // For the implict Unlock() just above. This will only end the deepest
861                           // nesting, but that is enough for the visualization, and corresponds to
862                           // the single Lock() we do afterwards.
863   AtraceMonitorLock(self, GetObject(), /* is_wait= */ true);
864 
865   bool was_interrupted = false;
866   bool timed_out = false;
867   // Update monitor state now; it's not safe once we're "suspended".
868   owner_.store(nullptr, std::memory_order_relaxed);
869   num_waiters_.fetch_add(1, std::memory_order_relaxed);
870   {
871     // Update thread state. If the GC wakes up, it'll ignore us, knowing
872     // that we won't touch any references in this state, and we'll check
873     // our suspend mode before we transition out.
874     ScopedThreadSuspension sts(self, why);
875 
876     // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
877     MutexLock mu(self, *self->GetWaitMutex());
878 
879     /*
880      * Add ourselves to the set of threads waiting on this monitor.
881      * It's important that we are only added to the wait set after
882      * acquiring our GetWaitMutex, so that calls to Notify() that occur after we
883      * have released monitor_lock_ will not move us from wait_set_ to wake_set_
884      * until we've signalled contenders on this monitor.
885      */
886     AppendToWaitSet(self);
887 
888     // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
889     // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
890     // up.
891     DCHECK(self->GetWaitMonitor() == nullptr);
892     self->SetWaitMonitor(this);
893 
894     // Release the monitor lock.
895     DCHECK(monitor_lock_.IsExclusiveHeld(self));
896     SignalWaiterAndReleaseMonitorLock(self);
897 
898     // Handle the case where the thread was interrupted before we called wait().
899     if (self->IsInterrupted()) {
900       was_interrupted = true;
901     } else {
902       // Wait for a notification or a timeout to occur.
903       if (why == kWaiting) {
904         self->GetWaitConditionVariable()->Wait(self);
905       } else {
906         DCHECK(why == kTimedWaiting || why == kSleeping) << why;
907         timed_out = self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
908       }
909       was_interrupted = self->IsInterrupted();
910     }
911   }
912 
913   {
914     // We reset the thread's wait_monitor_ field after transitioning back to runnable so
915     // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
916     // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
917     // are waiting on "null".)
918     MutexLock mu(self, *self->GetWaitMutex());
919     DCHECK(self->GetWaitMonitor() != nullptr);
920     self->SetWaitMonitor(nullptr);
921   }
922 
923   // Allocate the interrupted exception not holding the monitor lock since it may cause a GC.
924   // If the GC requires acquiring the monitor for enqueuing cleared references, this would
925   // cause a deadlock if the monitor is held.
926   if (was_interrupted && interruptShouldThrow) {
927     /*
928      * We were interrupted while waiting, or somebody interrupted an
929      * un-interruptible thread earlier and we're bailing out immediately.
930      *
931      * The doc sayeth: "The interrupted status of the current thread is
932      * cleared when this exception is thrown."
933      */
934     self->SetInterrupted(false);
935     self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr);
936   }
937 
938   AtraceMonitorUnlock();  // End Wait().
939 
940   // We just slept, tell the runtime callbacks about this.
941   Runtime::Current()->GetRuntimeCallbacks()->MonitorWaitFinished(this, timed_out);
942 
943   // Re-acquire the monitor and lock.
944   Lock<LockReason::kForWait>(self);
945   lock_count_ = prev_lock_count;
946   DCHECK(monitor_lock_.IsExclusiveHeld(self));
947   self->GetWaitMutex()->AssertNotHeld(self);
948 
949   num_waiters_.fetch_sub(1, std::memory_order_relaxed);
950   RemoveFromWaitSet(self);
951 }
952 
Notify(Thread * self)953 void Monitor::Notify(Thread* self) {
954   DCHECK(self != nullptr);
955   // Make sure that we hold the lock.
956   if (owner_.load(std::memory_order_relaxed) != self) {
957     ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
958     return;
959   }
960   // Move one thread from waiters to wake set
961   Thread* to_move = wait_set_;
962   if (to_move != nullptr) {
963     wait_set_ = to_move->GetWaitNext();
964     to_move->SetWaitNext(wake_set_);
965     wake_set_ = to_move;
966   }
967 }
968 
NotifyAll(Thread * self)969 void Monitor::NotifyAll(Thread* self) {
970   DCHECK(self != nullptr);
971   // Make sure that we hold the lock.
972   if (owner_.load(std::memory_order_relaxed) != self) {
973     ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
974     return;
975   }
976 
977   // Move all threads from waiters to wake set
978   Thread* to_move = wait_set_;
979   if (to_move != nullptr) {
980     wait_set_ = nullptr;
981     Thread* move_to = wake_set_;
982     if (move_to == nullptr) {
983       wake_set_ = to_move;
984       return;
985     }
986     while (move_to->GetWaitNext() != nullptr) {
987       move_to = move_to->GetWaitNext();
988     }
989     move_to->SetWaitNext(to_move);
990   }
991 }
992 
Deflate(Thread * self,ObjPtr<mirror::Object> obj)993 bool Monitor::Deflate(Thread* self, ObjPtr<mirror::Object> obj) {
994   DCHECK(obj != nullptr);
995   // Don't need volatile since we only deflate with mutators suspended.
996   LockWord lw(obj->GetLockWord(false));
997   // If the lock isn't an inflated monitor, then we don't need to deflate anything.
998   if (lw.GetState() == LockWord::kFatLocked) {
999     Monitor* monitor = lw.FatLockMonitor();
1000     DCHECK(monitor != nullptr);
1001     // Can't deflate if we have anybody waiting on the CV or trying to acquire the monitor.
1002     if (monitor->num_waiters_.load(std::memory_order_relaxed) > 0) {
1003       return false;
1004     }
1005     if (!monitor->monitor_lock_.ExclusiveTryLock(self)) {
1006       // We cannot deflate a monitor that's currently held. It's unclear whether we should if
1007       // we could.
1008       return false;
1009     }
1010     DCHECK_EQ(monitor->lock_count_, 0u);
1011     DCHECK_EQ(monitor->owner_.load(std::memory_order_relaxed), static_cast<Thread*>(nullptr));
1012     if (monitor->HasHashCode()) {
1013       LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.GCState());
1014       // Assume no concurrent read barrier state changes as mutators are suspended.
1015       obj->SetLockWord(new_lw, false);
1016       VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
1017     } else {
1018       // No lock and no hash, just put an empty lock word inside the object.
1019       LockWord new_lw = LockWord::FromDefault(lw.GCState());
1020       // Assume no concurrent read barrier state changes as mutators are suspended.
1021       obj->SetLockWord(new_lw, false);
1022       VLOG(monitor) << "Deflated" << obj << " to empty lock word";
1023     }
1024     monitor->monitor_lock_.ExclusiveUnlock(self);
1025     DCHECK(!(monitor->monitor_lock_.IsExclusiveHeld(self)));
1026     // The monitor is deflated, mark the object as null so that we know to delete it during the
1027     // next GC.
1028     monitor->obj_ = GcRoot<mirror::Object>(nullptr);
1029   }
1030   return true;
1031 }
1032 
Inflate(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code)1033 void Monitor::Inflate(Thread* self, Thread* owner, ObjPtr<mirror::Object> obj, int32_t hash_code) {
1034   DCHECK(self != nullptr);
1035   DCHECK(obj != nullptr);
1036   // Allocate and acquire a new monitor.
1037   Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
1038   DCHECK(m != nullptr);
1039   if (m->Install(self)) {
1040     if (owner != nullptr) {
1041       VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
1042           << " created monitor " << m << " for object " << obj;
1043     } else {
1044       VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
1045           << " created monitor " << m << " for object " << obj;
1046     }
1047     Runtime::Current()->GetMonitorList()->Add(m);
1048     CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
1049   } else {
1050     MonitorPool::ReleaseMonitor(self, m);
1051   }
1052 }
1053 
InflateThinLocked(Thread * self,Handle<mirror::Object> obj,LockWord lock_word,uint32_t hash_code)1054 void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
1055                                 uint32_t hash_code) {
1056   DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
1057   uint32_t owner_thread_id = lock_word.ThinLockOwner();
1058   if (owner_thread_id == self->GetThreadId()) {
1059     // We own the monitor, we can easily inflate it.
1060     Inflate(self, self, obj.Get(), hash_code);
1061   } else {
1062     ThreadList* thread_list = Runtime::Current()->GetThreadList();
1063     // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
1064     self->SetMonitorEnterObject(obj.Get());
1065     bool timed_out;
1066     Thread* owner;
1067     {
1068       ScopedThreadSuspension sts(self, kWaitingForLockInflation);
1069       owner = thread_list->SuspendThreadByThreadId(owner_thread_id,
1070                                                    SuspendReason::kInternal,
1071                                                    &timed_out);
1072     }
1073     if (owner != nullptr) {
1074       // We succeeded in suspending the thread, check the lock's status didn't change.
1075       lock_word = obj->GetLockWord(true);
1076       if (lock_word.GetState() == LockWord::kThinLocked &&
1077           lock_word.ThinLockOwner() == owner_thread_id) {
1078         // Go ahead and inflate the lock.
1079         Inflate(self, owner, obj.Get(), hash_code);
1080       }
1081       bool resumed = thread_list->Resume(owner, SuspendReason::kInternal);
1082       DCHECK(resumed);
1083     }
1084     self->SetMonitorEnterObject(nullptr);
1085   }
1086 }
1087 
1088 // Fool annotalysis into thinking that the lock on obj is acquired.
FakeLock(ObjPtr<mirror::Object> obj)1089 static ObjPtr<mirror::Object> FakeLock(ObjPtr<mirror::Object> obj)
1090     EXCLUSIVE_LOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS {
1091   return obj;
1092 }
1093 
1094 // Fool annotalysis into thinking that the lock on obj is release.
FakeUnlock(ObjPtr<mirror::Object> obj)1095 static ObjPtr<mirror::Object> FakeUnlock(ObjPtr<mirror::Object> obj)
1096     UNLOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS {
1097   return obj;
1098 }
1099 
MonitorEnter(Thread * self,ObjPtr<mirror::Object> obj,bool trylock)1100 ObjPtr<mirror::Object> Monitor::MonitorEnter(Thread* self,
1101                                              ObjPtr<mirror::Object> obj,
1102                                              bool trylock) {
1103   DCHECK(self != nullptr);
1104   DCHECK(obj != nullptr);
1105   self->AssertThreadSuspensionIsAllowable();
1106   obj = FakeLock(obj);
1107   uint32_t thread_id = self->GetThreadId();
1108   size_t contention_count = 0;
1109   constexpr size_t kExtraSpinIters = 100;
1110   StackHandleScope<1> hs(self);
1111   Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1112   while (true) {
1113     // We initially read the lockword with ordinary Java/relaxed semantics. When stronger
1114     // semantics are needed, we address it below. Since GetLockWord bottoms out to a relaxed load,
1115     // we can fix it later, in an infrequently executed case, with a fence.
1116     LockWord lock_word = h_obj->GetLockWord(false);
1117     switch (lock_word.GetState()) {
1118       case LockWord::kUnlocked: {
1119         // No ordering required for preceding lockword read, since we retest.
1120         LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.GCState()));
1121         if (h_obj->CasLockWord(lock_word, thin_locked, CASMode::kWeak, std::memory_order_acquire)) {
1122           AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1123           return h_obj.Get();  // Success!
1124         }
1125         continue;  // Go again.
1126       }
1127       case LockWord::kThinLocked: {
1128         uint32_t owner_thread_id = lock_word.ThinLockOwner();
1129         if (owner_thread_id == thread_id) {
1130           // No ordering required for initial lockword read.
1131           // We own the lock, increase the recursion count.
1132           uint32_t new_count = lock_word.ThinLockCount() + 1;
1133           if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
1134             LockWord thin_locked(LockWord::FromThinLockId(thread_id,
1135                                                           new_count,
1136                                                           lock_word.GCState()));
1137             // Only this thread pays attention to the count. Thus there is no need for stronger
1138             // than relaxed memory ordering.
1139             if (!kUseReadBarrier) {
1140               h_obj->SetLockWord(thin_locked, /* as_volatile= */ false);
1141               AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1142               return h_obj.Get();  // Success!
1143             } else {
1144               // Use CAS to preserve the read barrier state.
1145               if (h_obj->CasLockWord(lock_word,
1146                                      thin_locked,
1147                                      CASMode::kWeak,
1148                                      std::memory_order_relaxed)) {
1149                 AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1150                 return h_obj.Get();  // Success!
1151               }
1152             }
1153             continue;  // Go again.
1154           } else {
1155             // We'd overflow the recursion count, so inflate the monitor.
1156             InflateThinLocked(self, h_obj, lock_word, 0);
1157           }
1158         } else {
1159           if (trylock) {
1160             return nullptr;
1161           }
1162           // Contention.
1163           contention_count++;
1164           Runtime* runtime = Runtime::Current();
1165           if (contention_count
1166               <= kExtraSpinIters + runtime->GetMaxSpinsBeforeThinLockInflation()) {
1167             // TODO: Consider switching the thread state to kWaitingForLockInflation when we are
1168             // yielding.  Use sched_yield instead of NanoSleep since NanoSleep can wait much longer
1169             // than the parameter you pass in. This can cause thread suspension to take excessively
1170             // long and make long pauses. See b/16307460.
1171             if (contention_count > kExtraSpinIters) {
1172               sched_yield();
1173             }
1174           } else {
1175             contention_count = 0;
1176             // No ordering required for initial lockword read. Install rereads it anyway.
1177             InflateThinLocked(self, h_obj, lock_word, 0);
1178           }
1179         }
1180         continue;  // Start from the beginning.
1181       }
1182       case LockWord::kFatLocked: {
1183         // We should have done an acquire read of the lockword initially, to ensure
1184         // visibility of the monitor data structure. Use an explicit fence instead.
1185         std::atomic_thread_fence(std::memory_order_acquire);
1186         Monitor* mon = lock_word.FatLockMonitor();
1187         if (trylock) {
1188           return mon->TryLock(self) ? h_obj.Get() : nullptr;
1189         } else {
1190           mon->Lock(self);
1191           DCHECK(mon->monitor_lock_.IsExclusiveHeld(self));
1192           return h_obj.Get();  // Success!
1193         }
1194       }
1195       case LockWord::kHashCode:
1196         // Inflate with the existing hashcode.
1197         // Again no ordering required for initial lockword read, since we don't rely
1198         // on the visibility of any prior computation.
1199         Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
1200         continue;  // Start from the beginning.
1201       default: {
1202         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1203         UNREACHABLE();
1204       }
1205     }
1206   }
1207 }
1208 
MonitorExit(Thread * self,ObjPtr<mirror::Object> obj)1209 bool Monitor::MonitorExit(Thread* self, ObjPtr<mirror::Object> obj) {
1210   DCHECK(self != nullptr);
1211   DCHECK(obj != nullptr);
1212   self->AssertThreadSuspensionIsAllowable();
1213   obj = FakeUnlock(obj);
1214   StackHandleScope<1> hs(self);
1215   Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1216   while (true) {
1217     LockWord lock_word = obj->GetLockWord(true);
1218     switch (lock_word.GetState()) {
1219       case LockWord::kHashCode:
1220         // Fall-through.
1221       case LockWord::kUnlocked:
1222         FailedUnlock(h_obj.Get(), self->GetThreadId(), 0u, nullptr);
1223         return false;  // Failure.
1224       case LockWord::kThinLocked: {
1225         uint32_t thread_id = self->GetThreadId();
1226         uint32_t owner_thread_id = lock_word.ThinLockOwner();
1227         if (owner_thread_id != thread_id) {
1228           FailedUnlock(h_obj.Get(), thread_id, owner_thread_id, nullptr);
1229           return false;  // Failure.
1230         } else {
1231           // We own the lock, decrease the recursion count.
1232           LockWord new_lw = LockWord::Default();
1233           if (lock_word.ThinLockCount() != 0) {
1234             uint32_t new_count = lock_word.ThinLockCount() - 1;
1235             new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.GCState());
1236           } else {
1237             new_lw = LockWord::FromDefault(lock_word.GCState());
1238           }
1239           if (!kUseReadBarrier) {
1240             DCHECK_EQ(new_lw.ReadBarrierState(), 0U);
1241             // TODO: This really only needs memory_order_release, but we currently have
1242             // no way to specify that. In fact there seem to be no legitimate uses of SetLockWord
1243             // with a final argument of true. This slows down x86 and ARMv7, but probably not v8.
1244             h_obj->SetLockWord(new_lw, true);
1245             AtraceMonitorUnlock();
1246             // Success!
1247             return true;
1248           } else {
1249             // Use CAS to preserve the read barrier state.
1250             if (h_obj->CasLockWord(lock_word, new_lw, CASMode::kWeak, std::memory_order_release)) {
1251               AtraceMonitorUnlock();
1252               // Success!
1253               return true;
1254             }
1255           }
1256           continue;  // Go again.
1257         }
1258       }
1259       case LockWord::kFatLocked: {
1260         Monitor* mon = lock_word.FatLockMonitor();
1261         return mon->Unlock(self);
1262       }
1263       default: {
1264         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1265         UNREACHABLE();
1266       }
1267     }
1268   }
1269 }
1270 
Wait(Thread * self,ObjPtr<mirror::Object> obj,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)1271 void Monitor::Wait(Thread* self,
1272                    ObjPtr<mirror::Object> obj,
1273                    int64_t ms,
1274                    int32_t ns,
1275                    bool interruptShouldThrow,
1276                    ThreadState why) {
1277   DCHECK(self != nullptr);
1278   DCHECK(obj != nullptr);
1279   StackHandleScope<1> hs(self);
1280   Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1281 
1282   Runtime::Current()->GetRuntimeCallbacks()->ObjectWaitStart(h_obj, ms);
1283   if (UNLIKELY(self->ObserveAsyncException() || self->IsExceptionPending())) {
1284     // See b/65558434 for information on handling of exceptions here.
1285     return;
1286   }
1287 
1288   LockWord lock_word = h_obj->GetLockWord(true);
1289   while (lock_word.GetState() != LockWord::kFatLocked) {
1290     switch (lock_word.GetState()) {
1291       case LockWord::kHashCode:
1292         // Fall-through.
1293       case LockWord::kUnlocked:
1294         ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1295         return;  // Failure.
1296       case LockWord::kThinLocked: {
1297         uint32_t thread_id = self->GetThreadId();
1298         uint32_t owner_thread_id = lock_word.ThinLockOwner();
1299         if (owner_thread_id != thread_id) {
1300           ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1301           return;  // Failure.
1302         } else {
1303           // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so
1304           // re-load.
1305           Inflate(self, self, h_obj.Get(), 0);
1306           lock_word = h_obj->GetLockWord(true);
1307         }
1308         break;
1309       }
1310       case LockWord::kFatLocked:  // Unreachable given the loop condition above. Fall-through.
1311       default: {
1312         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1313         UNREACHABLE();
1314       }
1315     }
1316   }
1317   Monitor* mon = lock_word.FatLockMonitor();
1318   mon->Wait(self, ms, ns, interruptShouldThrow, why);
1319 }
1320 
DoNotify(Thread * self,ObjPtr<mirror::Object> obj,bool notify_all)1321 void Monitor::DoNotify(Thread* self, ObjPtr<mirror::Object> obj, bool notify_all) {
1322   DCHECK(self != nullptr);
1323   DCHECK(obj != nullptr);
1324   LockWord lock_word = obj->GetLockWord(true);
1325   switch (lock_word.GetState()) {
1326     case LockWord::kHashCode:
1327       // Fall-through.
1328     case LockWord::kUnlocked:
1329       ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1330       return;  // Failure.
1331     case LockWord::kThinLocked: {
1332       uint32_t thread_id = self->GetThreadId();
1333       uint32_t owner_thread_id = lock_word.ThinLockOwner();
1334       if (owner_thread_id != thread_id) {
1335         ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1336         return;  // Failure.
1337       } else {
1338         // We own the lock but there's no Monitor and therefore no waiters.
1339         return;  // Success.
1340       }
1341     }
1342     case LockWord::kFatLocked: {
1343       Monitor* mon = lock_word.FatLockMonitor();
1344       if (notify_all) {
1345         mon->NotifyAll(self);
1346       } else {
1347         mon->Notify(self);
1348       }
1349       return;  // Success.
1350     }
1351     default: {
1352       LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1353       UNREACHABLE();
1354     }
1355   }
1356 }
1357 
GetLockOwnerThreadId(ObjPtr<mirror::Object> obj)1358 uint32_t Monitor::GetLockOwnerThreadId(ObjPtr<mirror::Object> obj) {
1359   DCHECK(obj != nullptr);
1360   LockWord lock_word = obj->GetLockWord(true);
1361   switch (lock_word.GetState()) {
1362     case LockWord::kHashCode:
1363       // Fall-through.
1364     case LockWord::kUnlocked:
1365       return ThreadList::kInvalidThreadId;
1366     case LockWord::kThinLocked:
1367       return lock_word.ThinLockOwner();
1368     case LockWord::kFatLocked: {
1369       Monitor* mon = lock_word.FatLockMonitor();
1370       return mon->GetOwnerThreadId();
1371     }
1372     default: {
1373       LOG(FATAL) << "Unreachable";
1374       UNREACHABLE();
1375     }
1376   }
1377 }
1378 
FetchState(const Thread * thread,ObjPtr<mirror::Object> * monitor_object,uint32_t * lock_owner_tid)1379 ThreadState Monitor::FetchState(const Thread* thread,
1380                                 /* out */ ObjPtr<mirror::Object>* monitor_object,
1381                                 /* out */ uint32_t* lock_owner_tid) {
1382   DCHECK(monitor_object != nullptr);
1383   DCHECK(lock_owner_tid != nullptr);
1384 
1385   *monitor_object = nullptr;
1386   *lock_owner_tid = ThreadList::kInvalidThreadId;
1387 
1388   ThreadState state = thread->GetState();
1389 
1390   switch (state) {
1391     case kWaiting:
1392     case kTimedWaiting:
1393     case kSleeping:
1394     {
1395       Thread* self = Thread::Current();
1396       MutexLock mu(self, *thread->GetWaitMutex());
1397       Monitor* monitor = thread->GetWaitMonitor();
1398       if (monitor != nullptr) {
1399         *monitor_object = monitor->GetObject();
1400       }
1401     }
1402     break;
1403 
1404     case kBlocked:
1405     case kWaitingForLockInflation:
1406     {
1407       ObjPtr<mirror::Object> lock_object = thread->GetMonitorEnterObject();
1408       if (lock_object != nullptr) {
1409         if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1410           // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1411           // may have not been flipped yet and "pretty_object" may be a from-space (stale) ref, in
1412           // which case the GetLockOwnerThreadId() call below will crash. So explicitly mark/forward
1413           // it here.
1414           lock_object = ReadBarrier::Mark(lock_object.Ptr());
1415         }
1416         *monitor_object = lock_object;
1417         *lock_owner_tid = lock_object->GetLockOwnerThreadId();
1418       }
1419     }
1420     break;
1421 
1422     default:
1423       break;
1424   }
1425 
1426   return state;
1427 }
1428 
GetContendedMonitor(Thread * thread)1429 ObjPtr<mirror::Object> Monitor::GetContendedMonitor(Thread* thread) {
1430   // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
1431   // definition of contended that includes a monitor a thread is trying to enter...
1432   ObjPtr<mirror::Object> result = thread->GetMonitorEnterObject();
1433   if (result == nullptr) {
1434     // ...but also a monitor that the thread is waiting on.
1435     MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
1436     Monitor* monitor = thread->GetWaitMonitor();
1437     if (monitor != nullptr) {
1438       result = monitor->GetObject();
1439     }
1440   }
1441   return result;
1442 }
1443 
VisitLocks(StackVisitor * stack_visitor,void (* callback)(ObjPtr<mirror::Object>,void *),void * callback_context,bool abort_on_failure)1444 void Monitor::VisitLocks(StackVisitor* stack_visitor,
1445                          void (*callback)(ObjPtr<mirror::Object>, void*),
1446                          void* callback_context,
1447                          bool abort_on_failure) {
1448   ArtMethod* m = stack_visitor->GetMethod();
1449   CHECK(m != nullptr);
1450 
1451   // Native methods are an easy special case.
1452   // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
1453   if (m->IsNative()) {
1454     if (m->IsSynchronized()) {
1455       DCHECK(!m->IsCriticalNative());
1456       DCHECK(!m->IsFastNative());
1457       ObjPtr<mirror::Object> lock;
1458       if (m->IsStatic()) {
1459         // Static methods synchronize on the declaring class object.
1460         lock = m->GetDeclaringClass();
1461       } else {
1462         // Instance methods synchronize on the `this` object.
1463         // The `this` reference is stored in the first out vreg in the caller's frame.
1464         uint8_t* sp = reinterpret_cast<uint8_t*>(stack_visitor->GetCurrentQuickFrame());
1465         size_t frame_size = stack_visitor->GetCurrentQuickFrameInfo().FrameSizeInBytes();
1466         lock = reinterpret_cast<StackReference<mirror::Object>*>(
1467             sp + frame_size + static_cast<size_t>(kRuntimePointerSize))->AsMirrorPtr();
1468       }
1469       callback(lock, callback_context);
1470     }
1471     return;
1472   }
1473 
1474   // Proxy methods should not be synchronized.
1475   if (m->IsProxyMethod()) {
1476     CHECK(!m->IsSynchronized());
1477     return;
1478   }
1479 
1480   // Is there any reason to believe there's any synchronization in this method?
1481   CHECK(m->GetCodeItem() != nullptr) << m->PrettyMethod();
1482   CodeItemDataAccessor accessor(m->DexInstructionData());
1483   if (accessor.TriesSize() == 0) {
1484     return;  // No "tries" implies no synchronization, so no held locks to report.
1485   }
1486 
1487   // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot
1488   // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an
1489   // inconsistent stack anyways.
1490   uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure);
1491   if (!abort_on_failure && dex_pc == dex::kDexNoIndex) {
1492     LOG(ERROR) << "Could not find dex_pc for " << m->PrettyMethod();
1493     return;
1494   }
1495 
1496   // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
1497   // the locks held in this stack frame.
1498   std::vector<verifier::MethodVerifier::DexLockInfo> monitor_enter_dex_pcs;
1499   verifier::MethodVerifier::FindLocksAtDexPc(m,
1500                                              dex_pc,
1501                                              &monitor_enter_dex_pcs,
1502                                              Runtime::Current()->GetTargetSdkVersion());
1503   for (verifier::MethodVerifier::DexLockInfo& dex_lock_info : monitor_enter_dex_pcs) {
1504     // As a debug check, check that dex PC corresponds to a monitor-enter.
1505     if (kIsDebugBuild) {
1506       const Instruction& monitor_enter_instruction = accessor.InstructionAt(dex_lock_info.dex_pc);
1507       CHECK_EQ(monitor_enter_instruction.Opcode(), Instruction::MONITOR_ENTER)
1508           << "expected monitor-enter @" << dex_lock_info.dex_pc << "; was "
1509           << reinterpret_cast<const void*>(&monitor_enter_instruction);
1510     }
1511 
1512     // Iterate through the set of dex registers, as the compiler may not have held all of them
1513     // live.
1514     bool success = false;
1515     for (uint32_t dex_reg : dex_lock_info.dex_registers) {
1516       uint32_t value;
1517 
1518       // For optimized code we expect the DexRegisterMap to be present - monitor information
1519       // not be optimized out.
1520       success = stack_visitor->GetVReg(m, dex_reg, kReferenceVReg, &value);
1521       if (success) {
1522         ObjPtr<mirror::Object> o = reinterpret_cast<mirror::Object*>(value);
1523         callback(o, callback_context);
1524         break;
1525       }
1526     }
1527     DCHECK(success) << "Failed to find/read reference for monitor-enter at dex pc "
1528                     << dex_lock_info.dex_pc
1529                     << " in method "
1530                     << m->PrettyMethod();
1531     if (!success) {
1532       LOG(WARNING) << "Had a lock reported for dex pc " << dex_lock_info.dex_pc
1533                    << " but was not able to fetch a corresponding object!";
1534     }
1535   }
1536 }
1537 
IsValidLockWord(LockWord lock_word)1538 bool Monitor::IsValidLockWord(LockWord lock_word) {
1539   switch (lock_word.GetState()) {
1540     case LockWord::kUnlocked:
1541       // Nothing to check.
1542       return true;
1543     case LockWord::kThinLocked:
1544       // Basic consistency check of owner.
1545       return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
1546     case LockWord::kFatLocked: {
1547       // Check the  monitor appears in the monitor list.
1548       Monitor* mon = lock_word.FatLockMonitor();
1549       MonitorList* list = Runtime::Current()->GetMonitorList();
1550       MutexLock mu(Thread::Current(), list->monitor_list_lock_);
1551       for (Monitor* list_mon : list->list_) {
1552         if (mon == list_mon) {
1553           return true;  // Found our monitor.
1554         }
1555       }
1556       return false;  // Fail - unowned monitor in an object.
1557     }
1558     case LockWord::kHashCode:
1559       return true;
1560     default:
1561       LOG(FATAL) << "Unreachable";
1562       UNREACHABLE();
1563   }
1564 }
1565 
IsLocked()1566 bool Monitor::IsLocked() REQUIRES_SHARED(Locks::mutator_lock_) {
1567   return GetOwner() != nullptr;
1568 }
1569 
TranslateLocation(ArtMethod * method,uint32_t dex_pc,const char ** source_file,int32_t * line_number)1570 void Monitor::TranslateLocation(ArtMethod* method,
1571                                 uint32_t dex_pc,
1572                                 const char** source_file,
1573                                 int32_t* line_number) {
1574   // If method is null, location is unknown
1575   if (method == nullptr) {
1576     *source_file = "";
1577     *line_number = 0;
1578     return;
1579   }
1580   *source_file = method->GetDeclaringClassSourceFile();
1581   if (*source_file == nullptr) {
1582     *source_file = "";
1583   }
1584   *line_number = method->GetLineNumFromDexPC(dex_pc);
1585 }
1586 
GetOwnerThreadId()1587 uint32_t Monitor::GetOwnerThreadId() {
1588   // Make sure owner is not deallocated during access.
1589   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1590   Thread* owner = GetOwner();
1591   if (owner != nullptr) {
1592     return owner->GetThreadId();
1593   } else {
1594     return ThreadList::kInvalidThreadId;
1595   }
1596 }
1597 
MonitorList()1598 MonitorList::MonitorList()
1599     : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
1600       monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
1601 }
1602 
~MonitorList()1603 MonitorList::~MonitorList() {
1604   Thread* self = Thread::Current();
1605   MutexLock mu(self, monitor_list_lock_);
1606   // Release all monitors to the pool.
1607   // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
1608   // clear faster in the pool.
1609   MonitorPool::ReleaseMonitors(self, &list_);
1610 }
1611 
DisallowNewMonitors()1612 void MonitorList::DisallowNewMonitors() {
1613   CHECK(!kUseReadBarrier);
1614   MutexLock mu(Thread::Current(), monitor_list_lock_);
1615   allow_new_monitors_ = false;
1616 }
1617 
AllowNewMonitors()1618 void MonitorList::AllowNewMonitors() {
1619   CHECK(!kUseReadBarrier);
1620   Thread* self = Thread::Current();
1621   MutexLock mu(self, monitor_list_lock_);
1622   allow_new_monitors_ = true;
1623   monitor_add_condition_.Broadcast(self);
1624 }
1625 
BroadcastForNewMonitors()1626 void MonitorList::BroadcastForNewMonitors() {
1627   Thread* self = Thread::Current();
1628   MutexLock mu(self, monitor_list_lock_);
1629   monitor_add_condition_.Broadcast(self);
1630 }
1631 
Add(Monitor * m)1632 void MonitorList::Add(Monitor* m) {
1633   Thread* self = Thread::Current();
1634   MutexLock mu(self, monitor_list_lock_);
1635   // CMS needs this to block for concurrent reference processing because an object allocated during
1636   // the GC won't be marked and concurrent reference processing would incorrectly clear the JNI weak
1637   // ref. But CC (kUseReadBarrier == true) doesn't because of the to-space invariant.
1638   while (!kUseReadBarrier && UNLIKELY(!allow_new_monitors_)) {
1639     // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
1640     // presence of threads blocking for weak ref access.
1641     self->CheckEmptyCheckpointFromWeakRefAccess(&monitor_list_lock_);
1642     monitor_add_condition_.WaitHoldingLocks(self);
1643   }
1644   list_.push_front(m);
1645 }
1646 
SweepMonitorList(IsMarkedVisitor * visitor)1647 void MonitorList::SweepMonitorList(IsMarkedVisitor* visitor) {
1648   Thread* self = Thread::Current();
1649   MutexLock mu(self, monitor_list_lock_);
1650   for (auto it = list_.begin(); it != list_.end(); ) {
1651     Monitor* m = *it;
1652     // Disable the read barrier in GetObject() as this is called by GC.
1653     ObjPtr<mirror::Object> obj = m->GetObject<kWithoutReadBarrier>();
1654     // The object of a monitor can be null if we have deflated it.
1655     ObjPtr<mirror::Object> new_obj = obj != nullptr ? visitor->IsMarked(obj.Ptr()) : nullptr;
1656     if (new_obj == nullptr) {
1657       VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
1658                     << obj;
1659       MonitorPool::ReleaseMonitor(self, m);
1660       it = list_.erase(it);
1661     } else {
1662       m->SetObject(new_obj);
1663       ++it;
1664     }
1665   }
1666 }
1667 
Size()1668 size_t MonitorList::Size() {
1669   Thread* self = Thread::Current();
1670   MutexLock mu(self, monitor_list_lock_);
1671   return list_.size();
1672 }
1673 
1674 class MonitorDeflateVisitor : public IsMarkedVisitor {
1675  public:
MonitorDeflateVisitor()1676   MonitorDeflateVisitor() : self_(Thread::Current()), deflate_count_(0) {}
1677 
IsMarked(mirror::Object * object)1678   mirror::Object* IsMarked(mirror::Object* object) override
1679       REQUIRES_SHARED(Locks::mutator_lock_) {
1680     if (Monitor::Deflate(self_, object)) {
1681       DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
1682       ++deflate_count_;
1683       // If we deflated, return null so that the monitor gets removed from the array.
1684       return nullptr;
1685     }
1686     return object;  // Monitor was not deflated.
1687   }
1688 
1689   Thread* const self_;
1690   size_t deflate_count_;
1691 };
1692 
DeflateMonitors()1693 size_t MonitorList::DeflateMonitors() {
1694   MonitorDeflateVisitor visitor;
1695   Locks::mutator_lock_->AssertExclusiveHeld(visitor.self_);
1696   SweepMonitorList(&visitor);
1697   return visitor.deflate_count_;
1698 }
1699 
MonitorInfo(ObjPtr<mirror::Object> obj)1700 MonitorInfo::MonitorInfo(ObjPtr<mirror::Object> obj) : owner_(nullptr), entry_count_(0) {
1701   DCHECK(obj != nullptr);
1702   LockWord lock_word = obj->GetLockWord(true);
1703   switch (lock_word.GetState()) {
1704     case LockWord::kUnlocked:
1705       // Fall-through.
1706     case LockWord::kForwardingAddress:
1707       // Fall-through.
1708     case LockWord::kHashCode:
1709       break;
1710     case LockWord::kThinLocked:
1711       owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
1712       DCHECK(owner_ != nullptr) << "Thin-locked without owner!";
1713       entry_count_ = 1 + lock_word.ThinLockCount();
1714       // Thin locks have no waiters.
1715       break;
1716     case LockWord::kFatLocked: {
1717       Monitor* mon = lock_word.FatLockMonitor();
1718       owner_ = mon->owner_.load(std::memory_order_relaxed);
1719       // Here it is okay for the owner to be null since we don't reset the LockWord back to
1720       // kUnlocked until we get a GC. In cases where this hasn't happened yet we will have a fat
1721       // lock without an owner.
1722       // Neither owner_ nor entry_count_ is touched by threads in "suspended" state, so
1723       // we must see consistent values.
1724       if (owner_ != nullptr) {
1725         entry_count_ = 1 + mon->lock_count_;
1726       } else {
1727         DCHECK_EQ(mon->lock_count_, 0u) << "Monitor is fat-locked without any owner!";
1728       }
1729       for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) {
1730         waiters_.push_back(waiter);
1731       }
1732       break;
1733     }
1734   }
1735 }
1736 
MaybeEnableTimeout()1737 void Monitor::MaybeEnableTimeout() {
1738   std::string current_package = Runtime::Current()->GetProcessPackageName();
1739   bool enabled_for_app = android::base::GetBoolProperty("debug.art.monitor.app", false);
1740   if (current_package == "android" || enabled_for_app) {
1741     monitor_lock_.setEnableMonitorTimeout();
1742     monitor_lock_.setMonitorId(monitor_id_);
1743   }
1744 }
1745 
1746 }  // namespace art
1747