1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <stdio.h>
18
19 #include "timing_logger.h"
20
21 #include <android-base/logging.h>
22
23 #include "base/mutex.h"
24 #include "base/stl_util.h"
25 #include "base/systrace.h"
26 #include "base/time_utils.h"
27 #include "gc/heap.h"
28 #include "runtime.h"
29 #include "thread-current-inl.h"
30
31 #include <cmath>
32 #include <iomanip>
33
34 namespace art {
35
36 constexpr size_t TimingLogger::kIndexNotFound;
37
CumulativeLogger(const std::string & name)38 CumulativeLogger::CumulativeLogger(const std::string& name)
39 : name_(name),
40 lock_name_("CumulativeLoggerLock" + name),
41 lock_(new Mutex(lock_name_.c_str(), kDefaultMutexLevel, true)) {
42 Reset();
43 }
44
~CumulativeLogger()45 CumulativeLogger::~CumulativeLogger() {
46 cumulative_timers_.clear();
47 }
48
SetName(const std::string & name)49 void CumulativeLogger::SetName(const std::string& name) {
50 MutexLock mu(Thread::Current(), *GetLock());
51 name_.assign(name);
52 }
53
Start()54 void CumulativeLogger::Start() {
55 }
56
End()57 void CumulativeLogger::End() {
58 MutexLock mu(Thread::Current(), *GetLock());
59 ++iterations_;
60 }
61
Reset()62 void CumulativeLogger::Reset() {
63 MutexLock mu(Thread::Current(), *GetLock());
64 iterations_ = 0;
65 total_time_ = 0;
66 cumulative_timers_.clear();
67 }
68
AddLogger(const TimingLogger & logger)69 void CumulativeLogger::AddLogger(const TimingLogger &logger) {
70 MutexLock mu(Thread::Current(), *GetLock());
71 TimingLogger::TimingData timing_data(logger.CalculateTimingData());
72 const std::vector<TimingLogger::Timing>& timings = logger.GetTimings();
73 for (size_t i = 0; i < timings.size(); ++i) {
74 if (timings[i].IsStartTiming()) {
75 AddPair(timings[i].GetName(), timing_data.GetExclusiveTime(i));
76 }
77 }
78 ++iterations_;
79 }
80
GetIterations() const81 size_t CumulativeLogger::GetIterations() const {
82 MutexLock mu(Thread::Current(), *GetLock());
83 return iterations_;
84 }
85
Dump(std::ostream & os) const86 void CumulativeLogger::Dump(std::ostream &os) const {
87 MutexLock mu(Thread::Current(), *GetLock());
88 DumpAverages(os);
89 }
90
AddPair(const char * label,uint64_t delta_time)91 void CumulativeLogger::AddPair(const char* label, uint64_t delta_time) {
92 // Convert delta time to microseconds so that we don't overflow our counters.
93 delta_time /= kAdjust;
94 total_time_ += delta_time;
95 CumulativeTime candidate(label, delta_time);
96 auto it = std::lower_bound(cumulative_timers_.begin(), cumulative_timers_.end(), candidate);
97 // Maintain the vector sorted so that lookup above, which is more frequent can
98 // happen in log(n).
99 if (it == cumulative_timers_.end() || it->Name() != label) {
100 cumulative_timers_.insert(it, candidate);
101 } else {
102 it->Add(delta_time);
103 }
104 }
105
DumpAverages(std::ostream & os) const106 void CumulativeLogger::DumpAverages(std::ostream &os) const {
107 os << "Start Dumping Averages for " << iterations_ << " iterations"
108 << " for " << name_ << "\n";
109 const size_t timers_sz = cumulative_timers_.size();
110 // Create an array of pointers to cumulative timers on stack and sort it in
111 // decreasing order of accumulated timer so that the most time consuming
112 // timer is printed first.
113 const CumulativeTime* sorted_timers[timers_sz];
114 for (size_t i = 0; i < timers_sz; i++) {
115 sorted_timers[i] = cumulative_timers_.data() + i;
116 }
117 std::sort(sorted_timers,
118 sorted_timers + timers_sz,
119 [](const CumulativeTime* a, const CumulativeTime* b) { return a->Sum() > b->Sum(); });
120 for (size_t i = 0; i < timers_sz; i++) {
121 const CumulativeTime *timer = sorted_timers[i];
122 uint64_t total_time_ns = timer->Sum() * kAdjust;
123 os << timer->Name()
124 << ":\tSum: " << PrettyDuration(total_time_ns)
125 << " Avg: " << PrettyDuration(total_time_ns / iterations_) << "\n";
126 }
127 os << "Done Dumping Averages\n";
128 }
129
TimingLogger(const char * name,bool precise,bool verbose,TimingLogger::TimingKind kind)130 TimingLogger::TimingLogger(const char* name,
131 bool precise,
132 bool verbose,
133 TimingLogger::TimingKind kind)
134 : name_(name), precise_(precise), verbose_(verbose), kind_(kind) {
135 }
136
Reset()137 void TimingLogger::Reset() {
138 timings_.clear();
139 }
140
StartTiming(const char * label)141 void TimingLogger::StartTiming(const char* label) {
142 DCHECK(label != nullptr);
143 timings_.push_back(Timing(kind_, label));
144 ATraceBegin(label);
145 }
146
EndTiming()147 void TimingLogger::EndTiming() {
148 timings_.push_back(Timing(kind_, nullptr));
149 ATraceEnd();
150 }
151
GetTotalNs() const152 uint64_t TimingLogger::GetTotalNs() const {
153 if (timings_.size() < 2) {
154 return 0;
155 }
156 return timings_.back().GetTime() - timings_.front().GetTime();
157 }
158
FindTimingIndex(const char * name,size_t start_idx) const159 size_t TimingLogger::FindTimingIndex(const char* name, size_t start_idx) const {
160 DCHECK_LT(start_idx, timings_.size());
161 for (size_t i = start_idx; i < timings_.size(); ++i) {
162 if (timings_[i].IsStartTiming() && strcmp(timings_[i].GetName(), name) == 0) {
163 return i;
164 }
165 }
166 return kIndexNotFound;
167 }
168
CalculateTimingData() const169 TimingLogger::TimingData TimingLogger::CalculateTimingData() const {
170 TimingLogger::TimingData ret;
171 ret.data_.resize(timings_.size());
172 std::vector<size_t> open_stack;
173 for (size_t i = 0; i < timings_.size(); ++i) {
174 if (timings_[i].IsEndTiming()) {
175 CHECK(!open_stack.empty()) << "No starting split for ending split at index " << i;
176 size_t open_idx = open_stack.back();
177 uint64_t time = timings_[i].GetTime() - timings_[open_idx].GetTime();
178 ret.data_[open_idx].exclusive_time += time;
179 DCHECK_EQ(ret.data_[open_idx].total_time, 0U);
180 ret.data_[open_idx].total_time += time;
181 // Each open split has exactly one end.
182 open_stack.pop_back();
183 // If there is a parent node, subtract from the exclusive time.
184 if (!open_stack.empty()) {
185 // Note this may go negative, but will work due to 2s complement when we add the value
186 // total time value later.
187 ret.data_[open_stack.back()].exclusive_time -= time;
188 }
189 } else {
190 open_stack.push_back(i);
191 }
192 }
193 CHECK(open_stack.empty()) << "Missing ending for timing "
194 << timings_[open_stack.back()].GetName() << " at index " << open_stack.back();
195 return ret; // No need to fear, C++11 move semantics are here.
196 }
197
Dump(std::ostream & os,const char * indent_string) const198 void TimingLogger::Dump(std::ostream &os, const char* indent_string) const {
199 static constexpr size_t kFractionalDigits = 3;
200 TimingLogger::TimingData timing_data(CalculateTimingData());
201 uint64_t longest_split = 0;
202 for (size_t i = 0; i < timings_.size(); ++i) {
203 longest_split = std::max(longest_split, timing_data.GetTotalTime(i));
204 }
205 // Compute which type of unit we will use for printing the timings.
206 TimeUnit tu = GetAppropriateTimeUnit(longest_split);
207 uint64_t divisor = GetNsToTimeUnitDivisor(tu);
208 uint64_t mod_fraction = divisor >= 1000 ? divisor / 1000 : 1;
209 // Print formatted splits.
210 size_t tab_count = 1;
211 os << name_ << " [Exclusive time] [Total time]\n";
212 for (size_t i = 0; i < timings_.size(); ++i) {
213 if (timings_[i].IsStartTiming()) {
214 uint64_t exclusive_time = timing_data.GetExclusiveTime(i);
215 uint64_t total_time = timing_data.GetTotalTime(i);
216 if (!precise_) {
217 // Make the fractional part 0.
218 exclusive_time -= exclusive_time % mod_fraction;
219 total_time -= total_time % mod_fraction;
220 }
221 for (size_t j = 0; j < tab_count; ++j) {
222 os << indent_string;
223 }
224 os << FormatDuration(exclusive_time, tu, kFractionalDigits);
225 // If they are the same, just print one value to prevent spam.
226 if (exclusive_time != total_time) {
227 os << "/" << FormatDuration(total_time, tu, kFractionalDigits);
228 }
229 os << " " << timings_[i].GetName() << "\n";
230 ++tab_count;
231 } else {
232 --tab_count;
233 }
234 }
235 os << name_ << ": end, " << PrettyDuration(GetTotalNs()) << "\n";
236 }
237
Verify()238 void TimingLogger::Verify() {
239 size_t counts[2] = { 0 };
240 for (size_t i = 0; i < timings_.size(); ++i) {
241 if (i > 0) {
242 CHECK_LE(timings_[i - 1].GetTime(), timings_[i].GetTime());
243 }
244 ++counts[timings_[i].IsStartTiming() ? 0 : 1];
245 }
246 CHECK_EQ(counts[0], counts[1]) << "Number of StartTiming and EndTiming doesn't match";
247 }
248
~TimingLogger()249 TimingLogger::~TimingLogger() {
250 if (kIsDebugBuild) {
251 Verify();
252 }
253 }
254
255 } // namespace art
256