1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "dead_code_elimination.h"
18 
19 #include "base/array_ref.h"
20 #include "base/bit_vector-inl.h"
21 #include "base/scoped_arena_allocator.h"
22 #include "base/scoped_arena_containers.h"
23 #include "base/stl_util.h"
24 #include "ssa_phi_elimination.h"
25 
26 namespace art {
27 
MarkReachableBlocks(HGraph * graph,ArenaBitVector * visited)28 static void MarkReachableBlocks(HGraph* graph, ArenaBitVector* visited) {
29   // Use local allocator for allocating memory.
30   ScopedArenaAllocator allocator(graph->GetArenaStack());
31 
32   ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocDCE));
33   constexpr size_t kDefaultWorlistSize = 8;
34   worklist.reserve(kDefaultWorlistSize);
35   visited->SetBit(graph->GetEntryBlock()->GetBlockId());
36   worklist.push_back(graph->GetEntryBlock());
37 
38   while (!worklist.empty()) {
39     HBasicBlock* block = worklist.back();
40     worklist.pop_back();
41     int block_id = block->GetBlockId();
42     DCHECK(visited->IsBitSet(block_id));
43 
44     ArrayRef<HBasicBlock* const> live_successors(block->GetSuccessors());
45     HInstruction* last_instruction = block->GetLastInstruction();
46     if (last_instruction->IsIf()) {
47       HIf* if_instruction = last_instruction->AsIf();
48       HInstruction* condition = if_instruction->InputAt(0);
49       if (condition->IsIntConstant()) {
50         if (condition->AsIntConstant()->IsTrue()) {
51           live_successors = live_successors.SubArray(0u, 1u);
52           DCHECK_EQ(live_successors[0], if_instruction->IfTrueSuccessor());
53         } else {
54           DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
55           live_successors = live_successors.SubArray(1u, 1u);
56           DCHECK_EQ(live_successors[0], if_instruction->IfFalseSuccessor());
57         }
58       }
59     } else if (last_instruction->IsPackedSwitch()) {
60       HPackedSwitch* switch_instruction = last_instruction->AsPackedSwitch();
61       HInstruction* switch_input = switch_instruction->InputAt(0);
62       if (switch_input->IsIntConstant()) {
63         int32_t switch_value = switch_input->AsIntConstant()->GetValue();
64         int32_t start_value = switch_instruction->GetStartValue();
65         // Note: Though the spec forbids packed-switch values to wrap around, we leave
66         // that task to the verifier and use unsigned arithmetic with it's "modulo 2^32"
67         // semantics to check if the value is in range, wrapped or not.
68         uint32_t switch_index =
69             static_cast<uint32_t>(switch_value) - static_cast<uint32_t>(start_value);
70         if (switch_index < switch_instruction->GetNumEntries()) {
71           live_successors = live_successors.SubArray(switch_index, 1u);
72           DCHECK_EQ(live_successors[0], block->GetSuccessors()[switch_index]);
73         } else {
74           live_successors = live_successors.SubArray(switch_instruction->GetNumEntries(), 1u);
75           DCHECK_EQ(live_successors[0], switch_instruction->GetDefaultBlock());
76         }
77       }
78     }
79 
80     for (HBasicBlock* successor : live_successors) {
81       // Add only those successors that have not been visited yet.
82       if (!visited->IsBitSet(successor->GetBlockId())) {
83         visited->SetBit(successor->GetBlockId());
84         worklist.push_back(successor);
85       }
86     }
87   }
88 }
89 
MaybeRecordDeadBlock(HBasicBlock * block)90 void HDeadCodeElimination::MaybeRecordDeadBlock(HBasicBlock* block) {
91   if (stats_ != nullptr) {
92     stats_->RecordStat(MethodCompilationStat::kRemovedDeadInstruction,
93                        block->GetPhis().CountSize() + block->GetInstructions().CountSize());
94   }
95 }
96 
MaybeRecordSimplifyIf()97 void HDeadCodeElimination::MaybeRecordSimplifyIf() {
98   if (stats_ != nullptr) {
99     stats_->RecordStat(MethodCompilationStat::kSimplifyIf);
100   }
101 }
102 
HasInput(HCondition * instruction,HInstruction * input)103 static bool HasInput(HCondition* instruction, HInstruction* input) {
104   return (instruction->InputAt(0) == input) ||
105          (instruction->InputAt(1) == input);
106 }
107 
HasEquality(IfCondition condition)108 static bool HasEquality(IfCondition condition) {
109   switch (condition) {
110     case kCondEQ:
111     case kCondLE:
112     case kCondGE:
113     case kCondBE:
114     case kCondAE:
115       return true;
116     case kCondNE:
117     case kCondLT:
118     case kCondGT:
119     case kCondB:
120     case kCondA:
121       return false;
122   }
123 }
124 
Evaluate(HCondition * condition,HInstruction * left,HInstruction * right)125 static HConstant* Evaluate(HCondition* condition, HInstruction* left, HInstruction* right) {
126   if (left == right && !DataType::IsFloatingPointType(left->GetType())) {
127     return condition->GetBlock()->GetGraph()->GetIntConstant(
128         HasEquality(condition->GetCondition()) ? 1 : 0);
129   }
130 
131   if (!left->IsConstant() || !right->IsConstant()) {
132     return nullptr;
133   }
134 
135   if (left->IsIntConstant()) {
136     return condition->Evaluate(left->AsIntConstant(), right->AsIntConstant());
137   } else if (left->IsNullConstant()) {
138     return condition->Evaluate(left->AsNullConstant(), right->AsNullConstant());
139   } else if (left->IsLongConstant()) {
140     return condition->Evaluate(left->AsLongConstant(), right->AsLongConstant());
141   } else if (left->IsFloatConstant()) {
142     return condition->Evaluate(left->AsFloatConstant(), right->AsFloatConstant());
143   } else {
144     DCHECK(left->IsDoubleConstant());
145     return condition->Evaluate(left->AsDoubleConstant(), right->AsDoubleConstant());
146   }
147 }
148 
RemoveNonNullControlDependences(HBasicBlock * block,HBasicBlock * throws)149 static bool RemoveNonNullControlDependences(HBasicBlock* block, HBasicBlock* throws) {
150   // Test for an if as last statement.
151   if (!block->EndsWithIf()) {
152     return false;
153   }
154   HIf* ifs = block->GetLastInstruction()->AsIf();
155   // Find either:
156   //   if obj == null
157   //     throws
158   //   else
159   //     not_throws
160   // or:
161   //   if obj != null
162   //     not_throws
163   //   else
164   //     throws
165   HInstruction* cond = ifs->InputAt(0);
166   HBasicBlock* not_throws = nullptr;
167   if (throws == ifs->IfTrueSuccessor() && cond->IsEqual()) {
168     not_throws = ifs->IfFalseSuccessor();
169   } else if (throws == ifs->IfFalseSuccessor() && cond->IsNotEqual()) {
170     not_throws = ifs->IfTrueSuccessor();
171   } else {
172     return false;
173   }
174   DCHECK(cond->IsEqual() || cond->IsNotEqual());
175   HInstruction* obj = cond->InputAt(1);
176   if (obj->IsNullConstant()) {
177     obj = cond->InputAt(0);
178   } else if (!cond->InputAt(0)->IsNullConstant()) {
179     return false;
180   }
181   // Scan all uses of obj and find null check under control dependence.
182   HBoundType* bound = nullptr;
183   const HUseList<HInstruction*>& uses = obj->GetUses();
184   for (auto it = uses.begin(), end = uses.end(); it != end;) {
185     HInstruction* user = it->GetUser();
186     ++it;  // increment before possibly replacing
187     if (user->IsNullCheck()) {
188       HBasicBlock* user_block = user->GetBlock();
189       if (user_block != block &&
190           user_block != throws &&
191           block->Dominates(user_block)) {
192         if (bound == nullptr) {
193           ReferenceTypeInfo ti = obj->GetReferenceTypeInfo();
194           bound = new (obj->GetBlock()->GetGraph()->GetAllocator()) HBoundType(obj);
195           bound->SetUpperBound(ti, /*can_be_null*/ false);
196           bound->SetReferenceTypeInfo(ti);
197           bound->SetCanBeNull(false);
198           not_throws->InsertInstructionBefore(bound, not_throws->GetFirstInstruction());
199         }
200         user->ReplaceWith(bound);
201         user_block->RemoveInstruction(user);
202       }
203     }
204   }
205   return bound != nullptr;
206 }
207 
208 // Simplify the pattern:
209 //
210 //           B1
211 //          /  \
212 //          |   foo()  // always throws
213 //          \   goto B2
214 //           \ /
215 //            B2
216 //
217 // Into:
218 //
219 //           B1
220 //          /  \
221 //          |  foo()
222 //          |  goto Exit
223 //          |   |
224 //         B2  Exit
225 //
226 // Rationale:
227 // Removal of the never taken edge to B2 may expose
228 // other optimization opportunities, such as code sinking.
SimplifyAlwaysThrows()229 bool HDeadCodeElimination::SimplifyAlwaysThrows() {
230   // Make sure exceptions go to exit.
231   if (graph_->HasTryCatch()) {
232     return false;
233   }
234   HBasicBlock* exit = graph_->GetExitBlock();
235   if (exit == nullptr) {
236     return false;
237   }
238 
239   bool rerun_dominance_and_loop_analysis = false;
240 
241   // Order does not matter, just pick one.
242   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
243     HInstruction* first = block->GetFirstInstruction();
244     HInstruction* last = block->GetLastInstruction();
245     // Ensure only one throwing instruction appears before goto.
246     if (first->AlwaysThrows() &&
247         first->GetNext() == last &&
248         last->IsGoto() &&
249         block->GetPhis().IsEmpty() &&
250         block->GetPredecessors().size() == 1u) {
251       DCHECK_EQ(block->GetSuccessors().size(), 1u);
252       HBasicBlock* pred = block->GetSinglePredecessor();
253       HBasicBlock* succ = block->GetSingleSuccessor();
254       // Ensure no computations are merged through throwing block.
255       // This does not prevent the optimization per se, but would
256       // require an elaborate clean up of the SSA graph.
257       if (succ != exit &&
258           !block->Dominates(pred) &&
259           pred->Dominates(succ) &&
260           succ->GetPredecessors().size() > 1u &&
261           succ->GetPhis().IsEmpty()) {
262         block->ReplaceSuccessor(succ, exit);
263         rerun_dominance_and_loop_analysis = true;
264         MaybeRecordStat(stats_, MethodCompilationStat::kSimplifyThrowingInvoke);
265         // Perform a quick follow up optimization on object != null control dependences
266         // that is much cheaper to perform now than in a later phase.
267         if (RemoveNonNullControlDependences(pred, block)) {
268           MaybeRecordStat(stats_, MethodCompilationStat::kRemovedNullCheck);
269         }
270       }
271     }
272   }
273 
274   // We need to re-analyze the graph in order to run DCE afterwards.
275   if (rerun_dominance_and_loop_analysis) {
276     graph_->ClearLoopInformation();
277     graph_->ClearDominanceInformation();
278     graph_->BuildDominatorTree();
279     return true;
280   }
281   return false;
282 }
283 
284 // Simplify the pattern:
285 //
286 //        B1    B2    ...
287 //       goto  goto  goto
288 //         \    |    /
289 //          \   |   /
290 //             B3
291 //     i1 = phi(input, input)
292 //     (i2 = condition on i1)
293 //        if i1 (or i2)
294 //          /     \
295 //         /       \
296 //        B4       B5
297 //
298 // Into:
299 //
300 //       B1      B2    ...
301 //        |      |      |
302 //       B4      B5    B?
303 //
304 // Note that individual edges can be redirected (for example B2->B3
305 // can be redirected as B2->B5) without applying this optimization
306 // to other incoming edges.
307 //
308 // This simplification cannot be applied to catch blocks, because
309 // exception handler edges do not represent normal control flow.
310 // Though in theory this could still apply to normal control flow
311 // going directly to a catch block, we cannot support it at the
312 // moment because the catch Phi's inputs do not correspond to the
313 // catch block's predecessors, so we cannot identify which
314 // predecessor corresponds to a given statically evaluated input.
315 //
316 // We do not apply this optimization to loop headers as this could
317 // create irreducible loops. We rely on the suspend check in the
318 // loop header to prevent the pattern match.
319 //
320 // Note that we rely on the dead code elimination to get rid of B3.
SimplifyIfs()321 bool HDeadCodeElimination::SimplifyIfs() {
322   bool simplified_one_or_more_ifs = false;
323   bool rerun_dominance_and_loop_analysis = false;
324 
325   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
326     HInstruction* last = block->GetLastInstruction();
327     HInstruction* first = block->GetFirstInstruction();
328     if (!block->IsCatchBlock() &&
329         last->IsIf() &&
330         block->HasSinglePhi() &&
331         block->GetFirstPhi()->HasOnlyOneNonEnvironmentUse()) {
332       bool has_only_phi_and_if = (last == first) && (last->InputAt(0) == block->GetFirstPhi());
333       bool has_only_phi_condition_and_if =
334           !has_only_phi_and_if &&
335           first->IsCondition() &&
336           HasInput(first->AsCondition(), block->GetFirstPhi()) &&
337           (first->GetNext() == last) &&
338           (last->InputAt(0) == first) &&
339           first->HasOnlyOneNonEnvironmentUse();
340 
341       if (has_only_phi_and_if || has_only_phi_condition_and_if) {
342         DCHECK(!block->IsLoopHeader());
343         HPhi* phi = block->GetFirstPhi()->AsPhi();
344         bool phi_input_is_left = (first->InputAt(0) == phi);
345 
346         // Walk over all inputs of the phis and update the control flow of
347         // predecessors feeding constants to the phi.
348         // Note that phi->InputCount() may change inside the loop.
349         for (size_t i = 0; i < phi->InputCount();) {
350           HInstruction* input = phi->InputAt(i);
351           HInstruction* value_to_check = nullptr;
352           if (has_only_phi_and_if) {
353             if (input->IsIntConstant()) {
354               value_to_check = input;
355             }
356           } else {
357             DCHECK(has_only_phi_condition_and_if);
358             if (phi_input_is_left) {
359               value_to_check = Evaluate(first->AsCondition(), input, first->InputAt(1));
360             } else {
361               value_to_check = Evaluate(first->AsCondition(), first->InputAt(0), input);
362             }
363           }
364           if (value_to_check == nullptr) {
365             // Could not evaluate to a constant, continue iterating over the inputs.
366             ++i;
367           } else {
368             HBasicBlock* predecessor_to_update = block->GetPredecessors()[i];
369             HBasicBlock* successor_to_update = nullptr;
370             if (value_to_check->AsIntConstant()->IsTrue()) {
371               successor_to_update = last->AsIf()->IfTrueSuccessor();
372             } else {
373               DCHECK(value_to_check->AsIntConstant()->IsFalse())
374                   << value_to_check->AsIntConstant()->GetValue();
375               successor_to_update = last->AsIf()->IfFalseSuccessor();
376             }
377             predecessor_to_update->ReplaceSuccessor(block, successor_to_update);
378             phi->RemoveInputAt(i);
379             simplified_one_or_more_ifs = true;
380             if (block->IsInLoop()) {
381               rerun_dominance_and_loop_analysis = true;
382             }
383             // For simplicity, don't create a dead block, let the dead code elimination
384             // pass deal with it.
385             if (phi->InputCount() == 1) {
386               break;
387             }
388           }
389         }
390         if (block->GetPredecessors().size() == 1) {
391           phi->ReplaceWith(phi->InputAt(0));
392           block->RemovePhi(phi);
393           if (has_only_phi_condition_and_if) {
394             // Evaluate here (and not wait for a constant folding pass) to open
395             // more opportunities for DCE.
396             HInstruction* result = first->AsCondition()->TryStaticEvaluation();
397             if (result != nullptr) {
398               first->ReplaceWith(result);
399               block->RemoveInstruction(first);
400             }
401           }
402         }
403         if (simplified_one_or_more_ifs) {
404           MaybeRecordSimplifyIf();
405         }
406       }
407     }
408   }
409   // We need to re-analyze the graph in order to run DCE afterwards.
410   if (simplified_one_or_more_ifs) {
411     if (rerun_dominance_and_loop_analysis) {
412       graph_->ClearLoopInformation();
413       graph_->ClearDominanceInformation();
414       graph_->BuildDominatorTree();
415     } else {
416       graph_->ClearDominanceInformation();
417       // We have introduced critical edges, remove them.
418       graph_->SimplifyCFG();
419       graph_->ComputeDominanceInformation();
420       graph_->ComputeTryBlockInformation();
421     }
422   }
423 
424   return simplified_one_or_more_ifs;
425 }
426 
ConnectSuccessiveBlocks()427 void HDeadCodeElimination::ConnectSuccessiveBlocks() {
428   // Order does not matter. Skip the entry block by starting at index 1 in reverse post order.
429   for (size_t i = 1u, size = graph_->GetReversePostOrder().size(); i != size; ++i) {
430     HBasicBlock* block  = graph_->GetReversePostOrder()[i];
431     DCHECK(!block->IsEntryBlock());
432     while (block->GetLastInstruction()->IsGoto()) {
433       HBasicBlock* successor = block->GetSingleSuccessor();
434       if (successor->IsExitBlock() || successor->GetPredecessors().size() != 1u) {
435         break;
436       }
437       DCHECK_LT(i, IndexOfElement(graph_->GetReversePostOrder(), successor));
438       block->MergeWith(successor);
439       --size;
440       DCHECK_EQ(size, graph_->GetReversePostOrder().size());
441       DCHECK_EQ(block, graph_->GetReversePostOrder()[i]);
442       // Reiterate on this block in case it can be merged with its new successor.
443     }
444   }
445 }
446 
RemoveDeadBlocks()447 bool HDeadCodeElimination::RemoveDeadBlocks() {
448   // Use local allocator for allocating memory.
449   ScopedArenaAllocator allocator(graph_->GetArenaStack());
450 
451   // Classify blocks as reachable/unreachable.
452   ArenaBitVector live_blocks(&allocator, graph_->GetBlocks().size(), false, kArenaAllocDCE);
453   live_blocks.ClearAllBits();
454 
455   MarkReachableBlocks(graph_, &live_blocks);
456   bool removed_one_or_more_blocks = false;
457   bool rerun_dominance_and_loop_analysis = false;
458 
459   // Remove all dead blocks. Iterate in post order because removal needs the
460   // block's chain of dominators and nested loops need to be updated from the
461   // inside out.
462   for (HBasicBlock* block : graph_->GetPostOrder()) {
463     int id = block->GetBlockId();
464     if (!live_blocks.IsBitSet(id)) {
465       MaybeRecordDeadBlock(block);
466       block->DisconnectAndDelete();
467       removed_one_or_more_blocks = true;
468       if (block->IsInLoop()) {
469         rerun_dominance_and_loop_analysis = true;
470       }
471     }
472   }
473 
474   // If we removed at least one block, we need to recompute the full
475   // dominator tree and try block membership.
476   if (removed_one_or_more_blocks) {
477     if (rerun_dominance_and_loop_analysis) {
478       graph_->ClearLoopInformation();
479       graph_->ClearDominanceInformation();
480       graph_->BuildDominatorTree();
481     } else {
482       graph_->ClearDominanceInformation();
483       graph_->ComputeDominanceInformation();
484       graph_->ComputeTryBlockInformation();
485     }
486   }
487   return removed_one_or_more_blocks;
488 }
489 
RemoveDeadInstructions()490 void HDeadCodeElimination::RemoveDeadInstructions() {
491   // Process basic blocks in post-order in the dominator tree, so that
492   // a dead instruction depending on another dead instruction is removed.
493   for (HBasicBlock* block : graph_->GetPostOrder()) {
494     // Traverse this block's instructions in backward order and remove
495     // the unused ones.
496     HBackwardInstructionIterator i(block->GetInstructions());
497     // Skip the first iteration, as the last instruction of a block is
498     // a branching instruction.
499     DCHECK(i.Current()->IsControlFlow());
500     for (i.Advance(); !i.Done(); i.Advance()) {
501       HInstruction* inst = i.Current();
502       DCHECK(!inst->IsControlFlow());
503       if (inst->IsDeadAndRemovable()) {
504         block->RemoveInstruction(inst);
505         MaybeRecordStat(stats_, MethodCompilationStat::kRemovedDeadInstruction);
506       }
507     }
508   }
509 }
510 
Run()511 bool HDeadCodeElimination::Run() {
512   // Do not eliminate dead blocks if the graph has irreducible loops. We could
513   // support it, but that would require changes in our loop representation to handle
514   // multiple entry points. We decided it was not worth the complexity.
515   if (!graph_->HasIrreducibleLoops()) {
516     // Simplify graph to generate more dead block patterns.
517     ConnectSuccessiveBlocks();
518     bool did_any_simplification = false;
519     did_any_simplification |= SimplifyAlwaysThrows();
520     did_any_simplification |= SimplifyIfs();
521     did_any_simplification |= RemoveDeadBlocks();
522     if (did_any_simplification) {
523       // Connect successive blocks created by dead branches.
524       ConnectSuccessiveBlocks();
525     }
526   }
527   SsaRedundantPhiElimination(graph_).Run();
528   RemoveDeadInstructions();
529   return true;
530 }
531 
532 }  // namespace art
533