1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "reference_type_propagation.h"
18 
19 #include "art_field-inl.h"
20 #include "art_method-inl.h"
21 #include "base/arena_allocator.h"
22 #include "base/enums.h"
23 #include "base/scoped_arena_allocator.h"
24 #include "base/scoped_arena_containers.h"
25 #include "class_linker-inl.h"
26 #include "class_root-inl.h"
27 #include "handle_scope-inl.h"
28 #include "mirror/class-inl.h"
29 #include "mirror/dex_cache.h"
30 #include "scoped_thread_state_change-inl.h"
31 
32 namespace art {
33 
FindDexCacheWithHint(Thread * self,const DexFile & dex_file,Handle<mirror::DexCache> hint_dex_cache)34 static inline ObjPtr<mirror::DexCache> FindDexCacheWithHint(
35     Thread* self, const DexFile& dex_file, Handle<mirror::DexCache> hint_dex_cache)
36     REQUIRES_SHARED(Locks::mutator_lock_) {
37   if (LIKELY(hint_dex_cache->GetDexFile() == &dex_file)) {
38     return hint_dex_cache.Get();
39   } else {
40     return Runtime::Current()->GetClassLinker()->FindDexCache(self, dex_file);
41   }
42 }
43 
44 class ReferenceTypePropagation::RTPVisitor : public HGraphDelegateVisitor {
45  public:
RTPVisitor(HGraph * graph,Handle<mirror::ClassLoader> class_loader,Handle<mirror::DexCache> hint_dex_cache,bool is_first_run)46   RTPVisitor(HGraph* graph,
47              Handle<mirror::ClassLoader> class_loader,
48              Handle<mirror::DexCache> hint_dex_cache,
49              bool is_first_run)
50     : HGraphDelegateVisitor(graph),
51       class_loader_(class_loader),
52       hint_dex_cache_(hint_dex_cache),
53       allocator_(graph->GetArenaStack()),
54       worklist_(allocator_.Adapter(kArenaAllocReferenceTypePropagation)),
55       is_first_run_(is_first_run) {
56     worklist_.reserve(kDefaultWorklistSize);
57   }
58 
59   void VisitDeoptimize(HDeoptimize* deopt) override;
60   void VisitNewInstance(HNewInstance* new_instance) override;
61   void VisitLoadClass(HLoadClass* load_class) override;
62   void VisitInstanceOf(HInstanceOf* load_class) override;
63   void VisitClinitCheck(HClinitCheck* clinit_check) override;
64   void VisitLoadMethodHandle(HLoadMethodHandle* instr) override;
65   void VisitLoadMethodType(HLoadMethodType* instr) override;
66   void VisitLoadString(HLoadString* instr) override;
67   void VisitLoadException(HLoadException* instr) override;
68   void VisitNewArray(HNewArray* instr) override;
69   void VisitParameterValue(HParameterValue* instr) override;
70   void VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet* instr) override;
71   void VisitInstanceFieldGet(HInstanceFieldGet* instr) override;
72   void VisitStaticFieldGet(HStaticFieldGet* instr) override;
73   void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instr) override;
74   void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instr) override;
75   void VisitInvoke(HInvoke* instr) override;
76   void VisitArrayGet(HArrayGet* instr) override;
77   void VisitCheckCast(HCheckCast* instr) override;
78   void VisitBoundType(HBoundType* instr) override;
79   void VisitNullCheck(HNullCheck* instr) override;
80   void VisitPhi(HPhi* phi) override;
81 
82   void VisitBasicBlock(HBasicBlock* block) override;
83   void ProcessWorklist();
84 
85  private:
86   void UpdateFieldAccessTypeInfo(HInstruction* instr, const FieldInfo& info);
87   void SetClassAsTypeInfo(HInstruction* instr, ObjPtr<mirror::Class> klass, bool is_exact)
88       REQUIRES_SHARED(Locks::mutator_lock_);
89   void BoundTypeForIfNotNull(HBasicBlock* block);
90   static void BoundTypeForIfInstanceOf(HBasicBlock* block);
91   static bool UpdateNullability(HInstruction* instr);
92   static void UpdateBoundType(HBoundType* bound_type) REQUIRES_SHARED(Locks::mutator_lock_);
93   void UpdateArrayGet(HArrayGet* instr) REQUIRES_SHARED(Locks::mutator_lock_);
94   void UpdatePhi(HPhi* phi) REQUIRES_SHARED(Locks::mutator_lock_);
95   bool UpdateReferenceTypeInfo(HInstruction* instr);
96   void UpdateReferenceTypeInfo(HInstruction* instr,
97                                dex::TypeIndex type_idx,
98                                const DexFile& dex_file,
99                                bool is_exact);
100 
101   // Returns true if this is an instruction we might need to recursively update.
102   // The types are (live) Phi, BoundType, ArrayGet, and NullCheck
103   static constexpr bool IsUpdateable(const HInstruction* instr);
104   void AddToWorklist(HInstruction* instruction);
105   void AddDependentInstructionsToWorklist(HInstruction* instruction);
106 
GetHandleCache()107   HandleCache* GetHandleCache() {
108     return GetGraph()->GetHandleCache();
109   }
110 
111   static constexpr size_t kDefaultWorklistSize = 8;
112 
113   Handle<mirror::ClassLoader> class_loader_;
114   Handle<mirror::DexCache> hint_dex_cache_;
115 
116   // Use local allocator for allocating memory.
117   ScopedArenaAllocator allocator_;
118   ScopedArenaVector<HInstruction*> worklist_;
119   const bool is_first_run_;
120 
121   friend class ReferenceTypePropagation;
122 };
123 
ReferenceTypePropagation(HGraph * graph,Handle<mirror::ClassLoader> class_loader,Handle<mirror::DexCache> hint_dex_cache,bool is_first_run,const char * name)124 ReferenceTypePropagation::ReferenceTypePropagation(HGraph* graph,
125                                                    Handle<mirror::ClassLoader> class_loader,
126                                                    Handle<mirror::DexCache> hint_dex_cache,
127                                                    bool is_first_run,
128                                                    const char* name)
129     : HOptimization(graph, name),
130       class_loader_(class_loader),
131       hint_dex_cache_(hint_dex_cache),
132       is_first_run_(is_first_run) {
133 }
134 
ValidateTypes()135 void ReferenceTypePropagation::ValidateTypes() {
136   // TODO: move this to the graph checker. Note: There may be no Thread for gtests.
137   if (kIsDebugBuild && Thread::Current() != nullptr) {
138     ScopedObjectAccess soa(Thread::Current());
139     for (HBasicBlock* block : graph_->GetReversePostOrder()) {
140       for (HInstructionIterator iti(block->GetInstructions()); !iti.Done(); iti.Advance()) {
141         HInstruction* instr = iti.Current();
142         if (instr->GetType() == DataType::Type::kReference) {
143           DCHECK(instr->GetReferenceTypeInfo().IsValid())
144               << "Invalid RTI for instruction: " << instr->DebugName();
145           if (instr->IsBoundType()) {
146             DCHECK(instr->AsBoundType()->GetUpperBound().IsValid());
147           } else if (instr->IsLoadClass()) {
148             HLoadClass* cls = instr->AsLoadClass();
149             DCHECK(cls->GetReferenceTypeInfo().IsExact());
150             DCHECK(!cls->GetLoadedClassRTI().IsValid() || cls->GetLoadedClassRTI().IsExact());
151           } else if (instr->IsNullCheck()) {
152             DCHECK(instr->GetReferenceTypeInfo().IsEqual(instr->InputAt(0)->GetReferenceTypeInfo()))
153                 << "NullCheck " << instr->GetReferenceTypeInfo()
154                 << "Input(0) " << instr->InputAt(0)->GetReferenceTypeInfo();
155           }
156         } else if (instr->IsInstanceOf()) {
157           HInstanceOf* iof = instr->AsInstanceOf();
158           DCHECK(!iof->GetTargetClassRTI().IsValid() || iof->GetTargetClassRTI().IsExact());
159         } else if (instr->IsCheckCast()) {
160           HCheckCast* check = instr->AsCheckCast();
161           DCHECK(!check->GetTargetClassRTI().IsValid() || check->GetTargetClassRTI().IsExact());
162         }
163       }
164     }
165   }
166 }
167 
Visit(HInstruction * instruction)168 void ReferenceTypePropagation::Visit(HInstruction* instruction) {
169   RTPVisitor visitor(graph_,
170                      class_loader_,
171                      hint_dex_cache_,
172                      is_first_run_);
173   instruction->Accept(&visitor);
174 }
175 
Visit(ArrayRef<HInstruction * const> instructions)176 void ReferenceTypePropagation::Visit(ArrayRef<HInstruction* const> instructions) {
177   RTPVisitor visitor(graph_,
178                      class_loader_,
179                      hint_dex_cache_,
180                      is_first_run_);
181   for (HInstruction* instruction : instructions) {
182     if (instruction->IsPhi()) {
183       // Need to force phis to recalculate null-ness.
184       instruction->AsPhi()->SetCanBeNull(false);
185     }
186   }
187   for (HInstruction* instruction : instructions) {
188     instruction->Accept(&visitor);
189     // We don't know if the instruction list is ordered in the same way normal
190     // visiting would be so we need to process every instruction manually.
191     if (RTPVisitor::IsUpdateable(instruction)) {
192       visitor.AddToWorklist(instruction);
193     }
194   }
195   visitor.ProcessWorklist();
196 }
197 
198 // Check if we should create a bound type for the given object at the specified
199 // position. Because of inlining and the fact we run RTP more than once and we
200 // might have a HBoundType already. If we do, we should not create a new one.
201 // In this case we also assert that there are no other uses of the object (except
202 // the bound type) dominated by the specified dominator_instr or dominator_block.
ShouldCreateBoundType(HInstruction * position,HInstruction * obj,ReferenceTypeInfo upper_bound,HInstruction * dominator_instr,HBasicBlock * dominator_block)203 static bool ShouldCreateBoundType(HInstruction* position,
204                                   HInstruction* obj,
205                                   ReferenceTypeInfo upper_bound,
206                                   HInstruction* dominator_instr,
207                                   HBasicBlock* dominator_block)
208     REQUIRES_SHARED(Locks::mutator_lock_) {
209   // If the position where we should insert the bound type is not already a
210   // a bound type then we need to create one.
211   if (position == nullptr || !position->IsBoundType()) {
212     return true;
213   }
214 
215   HBoundType* existing_bound_type = position->AsBoundType();
216   if (existing_bound_type->GetUpperBound().IsSupertypeOf(upper_bound)) {
217     if (kIsDebugBuild) {
218       // Check that the existing HBoundType dominates all the uses.
219       for (const HUseListNode<HInstruction*>& use : obj->GetUses()) {
220         HInstruction* user = use.GetUser();
221         if (dominator_instr != nullptr) {
222           DCHECK(!dominator_instr->StrictlyDominates(user)
223               || user == existing_bound_type
224               || existing_bound_type->StrictlyDominates(user));
225         } else if (dominator_block != nullptr) {
226           DCHECK(!dominator_block->Dominates(user->GetBlock())
227               || user == existing_bound_type
228               || existing_bound_type->StrictlyDominates(user));
229         }
230       }
231     }
232   } else {
233     // TODO: if the current bound type is a refinement we could update the
234     // existing_bound_type with the a new upper limit. However, we also need to
235     // update its users and have access to the work list.
236   }
237   return false;
238 }
239 
240 // Helper method to bound the type of `receiver` for all instructions dominated
241 // by `start_block`, or `start_instruction` if `start_block` is null. The new
242 // bound type will have its upper bound be `class_rti`.
BoundTypeIn(HInstruction * receiver,HBasicBlock * start_block,HInstruction * start_instruction,const ReferenceTypeInfo & class_rti)243 static void BoundTypeIn(HInstruction* receiver,
244                         HBasicBlock* start_block,
245                         HInstruction* start_instruction,
246                         const ReferenceTypeInfo& class_rti) {
247   // We only need to bound the type if we have uses in the relevant block.
248   // So start with null and create the HBoundType lazily, only if it's needed.
249   HBoundType* bound_type = nullptr;
250   DCHECK(!receiver->IsLoadClass()) << "We should not replace HLoadClass instructions";
251   const HUseList<HInstruction*>& uses = receiver->GetUses();
252   for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
253     HInstruction* user = it->GetUser();
254     size_t index = it->GetIndex();
255     // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
256     ++it;
257     bool dominates = (start_instruction != nullptr)
258         ? start_instruction->StrictlyDominates(user)
259         : start_block->Dominates(user->GetBlock());
260     if (!dominates) {
261       continue;
262     }
263     if (bound_type == nullptr) {
264       ScopedObjectAccess soa(Thread::Current());
265       HInstruction* insert_point = (start_instruction != nullptr)
266           ? start_instruction->GetNext()
267           : start_block->GetFirstInstruction();
268       if (ShouldCreateBoundType(
269             insert_point, receiver, class_rti, start_instruction, start_block)) {
270         bound_type = new (receiver->GetBlock()->GetGraph()->GetAllocator()) HBoundType(receiver);
271         bound_type->SetUpperBound(class_rti, /* can_be_null= */ false);
272         start_block->InsertInstructionBefore(bound_type, insert_point);
273         // To comply with the RTP algorithm, don't type the bound type just yet, it will
274         // be handled in RTPVisitor::VisitBoundType.
275       } else {
276         // We already have a bound type on the position we would need to insert
277         // the new one. The existing bound type should dominate all the users
278         // (dchecked) so there's no need to continue.
279         break;
280       }
281     }
282     user->ReplaceInput(bound_type, index);
283   }
284   // If the receiver is a null check, also bound the type of the actual
285   // receiver.
286   if (receiver->IsNullCheck()) {
287     BoundTypeIn(receiver->InputAt(0), start_block, start_instruction, class_rti);
288   }
289 }
290 
291 // Recognize the patterns:
292 // if (obj.shadow$_klass_ == Foo.class) ...
293 // deoptimize if (obj.shadow$_klass_ == Foo.class)
BoundTypeForClassCheck(HInstruction * check)294 static void BoundTypeForClassCheck(HInstruction* check) {
295   if (!check->IsIf() && !check->IsDeoptimize()) {
296     return;
297   }
298   HInstruction* compare = check->InputAt(0);
299   if (!compare->IsEqual() && !compare->IsNotEqual()) {
300     return;
301   }
302   HInstruction* input_one = compare->InputAt(0);
303   HInstruction* input_two = compare->InputAt(1);
304   HLoadClass* load_class = input_one->IsLoadClass()
305       ? input_one->AsLoadClass()
306       : input_two->AsLoadClass();
307   if (load_class == nullptr) {
308     return;
309   }
310 
311   ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
312   if (!class_rti.IsValid()) {
313     // We have loaded an unresolved class. Don't bother bounding the type.
314     return;
315   }
316 
317   HInstruction* field_get = (load_class == input_one) ? input_two : input_one;
318   if (!field_get->IsInstanceFieldGet() && !field_get->IsPredicatedInstanceFieldGet()) {
319     return;
320   }
321   HInstruction* receiver = field_get->InputAt(0);
322   ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
323   if (receiver_type.IsExact()) {
324     // If we already know the receiver type, don't bother updating its users.
325     return;
326   }
327 
328   {
329     ScopedObjectAccess soa(Thread::Current());
330     ArtField* field = GetClassRoot<mirror::Object>()->GetInstanceField(0);
331     DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
332     if (field_get->GetFieldInfo().GetField() != field) {
333       return;
334     }
335   }
336 
337   if (check->IsIf()) {
338     HBasicBlock* trueBlock = compare->IsEqual()
339         ? check->AsIf()->IfTrueSuccessor()
340         : check->AsIf()->IfFalseSuccessor();
341     BoundTypeIn(receiver, trueBlock, /* start_instruction= */ nullptr, class_rti);
342   } else {
343     DCHECK(check->IsDeoptimize());
344     if (compare->IsEqual() && check->AsDeoptimize()->GuardsAnInput()) {
345       check->SetReferenceTypeInfo(class_rti);
346     }
347   }
348 }
349 
Run()350 bool ReferenceTypePropagation::Run() {
351   RTPVisitor visitor(graph_, class_loader_, hint_dex_cache_, is_first_run_);
352 
353   // To properly propagate type info we need to visit in the dominator-based order.
354   // Reverse post order guarantees a node's dominators are visited first.
355   // We take advantage of this order in `VisitBasicBlock`.
356   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
357     visitor.VisitBasicBlock(block);
358   }
359 
360   visitor.ProcessWorklist();
361   ValidateTypes();
362   return true;
363 }
364 
VisitBasicBlock(HBasicBlock * block)365 void ReferenceTypePropagation::RTPVisitor::VisitBasicBlock(HBasicBlock* block) {
366   // Handle Phis first as there might be instructions in the same block who depend on them.
367   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
368     VisitPhi(it.Current()->AsPhi());
369   }
370 
371   // Handle instructions. Since RTP may add HBoundType instructions just after the
372   // last visited instruction, use `HInstructionIteratorHandleChanges` iterator.
373   for (HInstructionIteratorHandleChanges it(block->GetInstructions()); !it.Done(); it.Advance()) {
374     HInstruction* instr = it.Current();
375     instr->Accept(this);
376   }
377 
378   // Add extra nodes to bound types.
379   BoundTypeForIfNotNull(block);
380   BoundTypeForIfInstanceOf(block);
381   BoundTypeForClassCheck(block->GetLastInstruction());
382 }
383 
BoundTypeForIfNotNull(HBasicBlock * block)384 void ReferenceTypePropagation::RTPVisitor::BoundTypeForIfNotNull(HBasicBlock* block) {
385   HIf* ifInstruction = block->GetLastInstruction()->AsIf();
386   if (ifInstruction == nullptr) {
387     return;
388   }
389   HInstruction* ifInput = ifInstruction->InputAt(0);
390   if (!ifInput->IsNotEqual() && !ifInput->IsEqual()) {
391     return;
392   }
393   HInstruction* input0 = ifInput->InputAt(0);
394   HInstruction* input1 = ifInput->InputAt(1);
395   HInstruction* obj = nullptr;
396 
397   if (input1->IsNullConstant()) {
398     obj = input0;
399   } else if (input0->IsNullConstant()) {
400     obj = input1;
401   } else {
402     return;
403   }
404 
405   if (!obj->CanBeNull() || obj->IsNullConstant()) {
406     // Null check is dead code and will be removed by DCE.
407     return;
408   }
409   DCHECK(!obj->IsLoadClass()) << "We should not replace HLoadClass instructions";
410 
411   // We only need to bound the type if we have uses in the relevant block.
412   // So start with null and create the HBoundType lazily, only if it's needed.
413   HBasicBlock* notNullBlock = ifInput->IsNotEqual()
414       ? ifInstruction->IfTrueSuccessor()
415       : ifInstruction->IfFalseSuccessor();
416 
417   ReferenceTypeInfo object_rti =
418       ReferenceTypeInfo::Create(GetHandleCache()->GetObjectClassHandle(), /* is_exact= */ false);
419 
420   BoundTypeIn(obj, notNullBlock, /* start_instruction= */ nullptr, object_rti);
421 }
422 
423 // Returns true if one of the patterns below has been recognized. If so, the
424 // InstanceOf instruction together with the true branch of `ifInstruction` will
425 // be returned using the out parameters.
426 // Recognized patterns:
427 //   (1) patterns equivalent to `if (obj instanceof X)`
428 //     (a) InstanceOf -> Equal to 1 -> If
429 //     (b) InstanceOf -> NotEqual to 0 -> If
430 //     (c) InstanceOf -> If
431 //   (2) patterns equivalent to `if (!(obj instanceof X))`
432 //     (a) InstanceOf -> Equal to 0 -> If
433 //     (b) InstanceOf -> NotEqual to 1 -> If
434 //     (c) InstanceOf -> BooleanNot -> If
MatchIfInstanceOf(HIf * ifInstruction,HInstanceOf ** instanceOf,HBasicBlock ** trueBranch)435 static bool MatchIfInstanceOf(HIf* ifInstruction,
436                               /* out */ HInstanceOf** instanceOf,
437                               /* out */ HBasicBlock** trueBranch) {
438   HInstruction* input = ifInstruction->InputAt(0);
439 
440   if (input->IsEqual()) {
441     HInstruction* rhs = input->AsEqual()->GetConstantRight();
442     if (rhs != nullptr) {
443       HInstruction* lhs = input->AsEqual()->GetLeastConstantLeft();
444       if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
445         if (rhs->AsIntConstant()->IsTrue()) {
446           // Case (1a)
447           *trueBranch = ifInstruction->IfTrueSuccessor();
448         } else {
449           // Case (2a)
450           DCHECK(rhs->AsIntConstant()->IsFalse()) << rhs->AsIntConstant()->GetValue();
451           *trueBranch = ifInstruction->IfFalseSuccessor();
452         }
453         *instanceOf = lhs->AsInstanceOf();
454         return true;
455       }
456     }
457   } else if (input->IsNotEqual()) {
458     HInstruction* rhs = input->AsNotEqual()->GetConstantRight();
459     if (rhs != nullptr) {
460       HInstruction* lhs = input->AsNotEqual()->GetLeastConstantLeft();
461       if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
462         if (rhs->AsIntConstant()->IsFalse()) {
463           // Case (1b)
464           *trueBranch = ifInstruction->IfTrueSuccessor();
465         } else {
466           // Case (2b)
467           DCHECK(rhs->AsIntConstant()->IsTrue()) << rhs->AsIntConstant()->GetValue();
468           *trueBranch = ifInstruction->IfFalseSuccessor();
469         }
470         *instanceOf = lhs->AsInstanceOf();
471         return true;
472       }
473     }
474   } else if (input->IsInstanceOf()) {
475     // Case (1c)
476     *instanceOf = input->AsInstanceOf();
477     *trueBranch = ifInstruction->IfTrueSuccessor();
478     return true;
479   } else if (input->IsBooleanNot()) {
480     HInstruction* not_input = input->InputAt(0);
481     if (not_input->IsInstanceOf()) {
482       // Case (2c)
483       *instanceOf = not_input->AsInstanceOf();
484       *trueBranch = ifInstruction->IfFalseSuccessor();
485       return true;
486     }
487   }
488 
489   return false;
490 }
491 
492 // Detects if `block` is the True block for the pattern
493 // `if (x instanceof ClassX) { }`
494 // If that's the case insert an HBoundType instruction to bound the type of `x`
495 // to `ClassX` in the scope of the dominated blocks.
BoundTypeForIfInstanceOf(HBasicBlock * block)496 void ReferenceTypePropagation::RTPVisitor::BoundTypeForIfInstanceOf(HBasicBlock* block) {
497   HIf* ifInstruction = block->GetLastInstruction()->AsIf();
498   if (ifInstruction == nullptr) {
499     return;
500   }
501 
502   // Try to recognize common `if (instanceof)` and `if (!instanceof)` patterns.
503   HInstanceOf* instanceOf = nullptr;
504   HBasicBlock* instanceOfTrueBlock = nullptr;
505   if (!MatchIfInstanceOf(ifInstruction, &instanceOf, &instanceOfTrueBlock)) {
506     return;
507   }
508 
509   ReferenceTypeInfo class_rti = instanceOf->GetTargetClassRTI();
510   if (!class_rti.IsValid()) {
511     // We have loaded an unresolved class. Don't bother bounding the type.
512     return;
513   }
514 
515   HInstruction* obj = instanceOf->InputAt(0);
516   if (obj->GetReferenceTypeInfo().IsExact() && !obj->IsPhi()) {
517     // This method is being called while doing a fixed-point calculation
518     // over phis. Non-phis instruction whose type is already known do
519     // not need to be bound to another type.
520     // Not that this also prevents replacing `HLoadClass` with a `HBoundType`.
521     // `HCheckCast` and `HInstanceOf` expect a `HLoadClass` as a second
522     // input.
523     return;
524   }
525 
526   {
527     ScopedObjectAccess soa(Thread::Current());
528     if (!class_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes()) {
529       class_rti = ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact= */ false);
530     }
531   }
532   BoundTypeIn(obj, instanceOfTrueBlock, /* start_instruction= */ nullptr, class_rti);
533 }
534 
SetClassAsTypeInfo(HInstruction * instr,ObjPtr<mirror::Class> klass,bool is_exact)535 void ReferenceTypePropagation::RTPVisitor::SetClassAsTypeInfo(HInstruction* instr,
536                                                               ObjPtr<mirror::Class> klass,
537                                                               bool is_exact) {
538   if (instr->IsInvokeStaticOrDirect() && instr->AsInvokeStaticOrDirect()->IsStringInit()) {
539     // Calls to String.<init> are replaced with a StringFactory.
540     if (kIsDebugBuild) {
541       HInvokeStaticOrDirect* invoke = instr->AsInvokeStaticOrDirect();
542       ClassLinker* cl = Runtime::Current()->GetClassLinker();
543       Thread* self = Thread::Current();
544       StackHandleScope<2> hs(self);
545       const DexFile& dex_file = *invoke->GetResolvedMethodReference().dex_file;
546       uint32_t dex_method_index = invoke->GetResolvedMethodReference().index;
547       Handle<mirror::DexCache> dex_cache(
548           hs.NewHandle(FindDexCacheWithHint(self, dex_file, hint_dex_cache_)));
549       // Use a null loader, the target method is in a boot classpath dex file.
550       Handle<mirror::ClassLoader> loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
551       ArtMethod* method = cl->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
552           dex_method_index, dex_cache, loader, /* referrer= */ nullptr, kDirect);
553       DCHECK(method != nullptr);
554       ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
555       DCHECK(declaring_class != nullptr);
556       DCHECK(declaring_class->IsStringClass())
557           << "Expected String class: " << declaring_class->PrettyDescriptor();
558       DCHECK(method->IsConstructor())
559           << "Expected String.<init>: " << method->PrettyMethod();
560     }
561     instr->SetReferenceTypeInfo(
562         ReferenceTypeInfo::Create(GetHandleCache()->GetStringClassHandle(), /* is_exact= */ true));
563   } else if (IsAdmissible(klass)) {
564     ReferenceTypeInfo::TypeHandle handle = GetHandleCache()->NewHandle(klass);
565     is_exact = is_exact || handle->CannotBeAssignedFromOtherTypes();
566     instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(handle, is_exact));
567   } else {
568     instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
569   }
570 }
571 
VisitDeoptimize(HDeoptimize * instr)572 void ReferenceTypePropagation::RTPVisitor::VisitDeoptimize(HDeoptimize* instr) {
573   BoundTypeForClassCheck(instr);
574 }
575 
UpdateReferenceTypeInfo(HInstruction * instr,dex::TypeIndex type_idx,const DexFile & dex_file,bool is_exact)576 void ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr,
577                                                                    dex::TypeIndex type_idx,
578                                                                    const DexFile& dex_file,
579                                                                    bool is_exact) {
580   DCHECK_EQ(instr->GetType(), DataType::Type::kReference);
581 
582   ScopedObjectAccess soa(Thread::Current());
583   ObjPtr<mirror::DexCache> dex_cache = FindDexCacheWithHint(soa.Self(), dex_file, hint_dex_cache_);
584   ObjPtr<mirror::Class> klass = Runtime::Current()->GetClassLinker()->LookupResolvedType(
585       type_idx, dex_cache, class_loader_.Get());
586   SetClassAsTypeInfo(instr, klass, is_exact);
587 }
588 
VisitNewInstance(HNewInstance * instr)589 void ReferenceTypePropagation::RTPVisitor::VisitNewInstance(HNewInstance* instr) {
590   ScopedObjectAccess soa(Thread::Current());
591   SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact= */ true);
592 }
593 
VisitNewArray(HNewArray * instr)594 void ReferenceTypePropagation::RTPVisitor::VisitNewArray(HNewArray* instr) {
595   ScopedObjectAccess soa(Thread::Current());
596   SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact= */ true);
597 }
598 
VisitParameterValue(HParameterValue * instr)599 void ReferenceTypePropagation::RTPVisitor::VisitParameterValue(HParameterValue* instr) {
600   // We check if the existing type is valid: the inliner may have set it.
601   if (instr->GetType() == DataType::Type::kReference && !instr->GetReferenceTypeInfo().IsValid()) {
602     UpdateReferenceTypeInfo(instr,
603                             instr->GetTypeIndex(),
604                             instr->GetDexFile(),
605                             /* is_exact= */ false);
606   }
607 }
608 
UpdateFieldAccessTypeInfo(HInstruction * instr,const FieldInfo & info)609 void ReferenceTypePropagation::RTPVisitor::UpdateFieldAccessTypeInfo(HInstruction* instr,
610                                                                      const FieldInfo& info) {
611   if (instr->GetType() != DataType::Type::kReference) {
612     return;
613   }
614 
615   ScopedObjectAccess soa(Thread::Current());
616   ObjPtr<mirror::Class> klass;
617 
618   // The field is unknown only during tests.
619   if (info.GetField() != nullptr) {
620     klass = info.GetField()->LookupResolvedType();
621   }
622 
623   SetClassAsTypeInfo(instr, klass, /* is_exact= */ false);
624 }
625 
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instr)626 void ReferenceTypePropagation::RTPVisitor::VisitPredicatedInstanceFieldGet(
627     HPredicatedInstanceFieldGet* instr) {
628   UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
629 }
630 
VisitInstanceFieldGet(HInstanceFieldGet * instr)631 void ReferenceTypePropagation::RTPVisitor::VisitInstanceFieldGet(HInstanceFieldGet* instr) {
632   UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
633 }
634 
VisitStaticFieldGet(HStaticFieldGet * instr)635 void ReferenceTypePropagation::RTPVisitor::VisitStaticFieldGet(HStaticFieldGet* instr) {
636   UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
637 }
638 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instr)639 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedInstanceFieldGet(
640     HUnresolvedInstanceFieldGet* instr) {
641   // TODO: Use descriptor to get the actual type.
642   if (instr->GetFieldType() == DataType::Type::kReference) {
643     instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
644   }
645 }
646 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instr)647 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedStaticFieldGet(
648     HUnresolvedStaticFieldGet* instr) {
649   // TODO: Use descriptor to get the actual type.
650   if (instr->GetFieldType() == DataType::Type::kReference) {
651     instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
652   }
653 }
654 
VisitLoadClass(HLoadClass * instr)655 void ReferenceTypePropagation::RTPVisitor::VisitLoadClass(HLoadClass* instr) {
656   ScopedObjectAccess soa(Thread::Current());
657   if (IsAdmissible(instr->GetClass().Get())) {
658     instr->SetValidLoadedClassRTI();
659   }
660   instr->SetReferenceTypeInfo(
661       ReferenceTypeInfo::Create(GetHandleCache()->GetClassClassHandle(), /* is_exact= */ true));
662 }
663 
VisitInstanceOf(HInstanceOf * instr)664 void ReferenceTypePropagation::RTPVisitor::VisitInstanceOf(HInstanceOf* instr) {
665   ScopedObjectAccess soa(Thread::Current());
666   if (IsAdmissible(instr->GetClass().Get())) {
667     instr->SetValidTargetClassRTI();
668   }
669 }
670 
VisitClinitCheck(HClinitCheck * instr)671 void ReferenceTypePropagation::RTPVisitor::VisitClinitCheck(HClinitCheck* instr) {
672   instr->SetReferenceTypeInfo(instr->InputAt(0)->GetReferenceTypeInfo());
673 }
674 
VisitLoadMethodHandle(HLoadMethodHandle * instr)675 void ReferenceTypePropagation::RTPVisitor::VisitLoadMethodHandle(HLoadMethodHandle* instr) {
676   instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
677       GetHandleCache()->GetMethodHandleClassHandle(), /* is_exact= */ true));
678 }
679 
VisitLoadMethodType(HLoadMethodType * instr)680 void ReferenceTypePropagation::RTPVisitor::VisitLoadMethodType(HLoadMethodType* instr) {
681   instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
682       GetHandleCache()->GetMethodTypeClassHandle(), /* is_exact= */ true));
683 }
684 
VisitLoadString(HLoadString * instr)685 void ReferenceTypePropagation::RTPVisitor::VisitLoadString(HLoadString* instr) {
686   instr->SetReferenceTypeInfo(
687       ReferenceTypeInfo::Create(GetHandleCache()->GetStringClassHandle(), /* is_exact= */ true));
688 }
689 
VisitLoadException(HLoadException * instr)690 void ReferenceTypePropagation::RTPVisitor::VisitLoadException(HLoadException* instr) {
691   DCHECK(instr->GetBlock()->IsCatchBlock());
692   TryCatchInformation* catch_info = instr->GetBlock()->GetTryCatchInformation();
693 
694   if (catch_info->IsValidTypeIndex()) {
695     UpdateReferenceTypeInfo(instr,
696                             catch_info->GetCatchTypeIndex(),
697                             catch_info->GetCatchDexFile(),
698                             /* is_exact= */ false);
699   } else {
700     instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
701         GetHandleCache()->GetThrowableClassHandle(), /* is_exact= */ false));
702   }
703 }
704 
VisitNullCheck(HNullCheck * instr)705 void ReferenceTypePropagation::RTPVisitor::VisitNullCheck(HNullCheck* instr) {
706   ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
707   if (parent_rti.IsValid()) {
708     instr->SetReferenceTypeInfo(parent_rti);
709   }
710 }
711 
VisitBoundType(HBoundType * instr)712 void ReferenceTypePropagation::RTPVisitor::VisitBoundType(HBoundType* instr) {
713   ReferenceTypeInfo class_rti = instr->GetUpperBound();
714   if (class_rti.IsValid()) {
715     ScopedObjectAccess soa(Thread::Current());
716     // Narrow the type as much as possible.
717     HInstruction* obj = instr->InputAt(0);
718     ReferenceTypeInfo obj_rti = obj->GetReferenceTypeInfo();
719     if (class_rti.IsExact()) {
720       instr->SetReferenceTypeInfo(class_rti);
721     } else if (obj_rti.IsValid()) {
722       if (class_rti.IsSupertypeOf(obj_rti)) {
723         // Object type is more specific.
724         instr->SetReferenceTypeInfo(obj_rti);
725       } else {
726         // Upper bound is more specific, or unrelated to the object's type.
727         // Note that the object might then be exact, and we know the code dominated by this
728         // bound type is dead. To not confuse potential other optimizations, we mark
729         // the bound as non-exact.
730         instr->SetReferenceTypeInfo(
731             ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact= */ false));
732       }
733     } else {
734       // Object not typed yet. Leave BoundType untyped for now rather than
735       // assign the type conservatively.
736     }
737     instr->SetCanBeNull(obj->CanBeNull() && instr->GetUpperCanBeNull());
738   } else {
739     // The owner of the BoundType was already visited. If the class is unresolved,
740     // the BoundType should have been removed from the data flow and this method
741     // should remove it from the graph.
742     DCHECK(!instr->HasUses());
743     instr->GetBlock()->RemoveInstruction(instr);
744   }
745 }
746 
VisitCheckCast(HCheckCast * check_cast)747 void ReferenceTypePropagation::RTPVisitor::VisitCheckCast(HCheckCast* check_cast) {
748   HBoundType* bound_type = check_cast->GetNext()->AsBoundType();
749   if (bound_type == nullptr || bound_type->GetUpperBound().IsValid()) {
750     // The next instruction is not an uninitialized BoundType. This must be
751     // an RTP pass after SsaBuilder and we do not need to do anything.
752     return;
753   }
754   DCHECK_EQ(bound_type->InputAt(0), check_cast->InputAt(0));
755 
756   ScopedObjectAccess soa(Thread::Current());
757   Handle<mirror::Class> klass = check_cast->GetClass();
758   if (IsAdmissible(klass.Get())) {
759     DCHECK(is_first_run_);
760     check_cast->SetValidTargetClassRTI();
761     // This is the first run of RTP and class is resolved.
762     bool is_exact = klass->CannotBeAssignedFromOtherTypes();
763     bound_type->SetUpperBound(ReferenceTypeInfo::Create(klass, is_exact),
764                               /* CheckCast succeeds for nulls. */ true);
765   } else {
766     // This is the first run of RTP and class is unresolved. Remove the binding.
767     // The instruction itself is removed in VisitBoundType so as to not
768     // invalidate HInstructionIterator.
769     bound_type->ReplaceWith(bound_type->InputAt(0));
770   }
771 }
772 
VisitPhi(HPhi * phi)773 void ReferenceTypePropagation::RTPVisitor::VisitPhi(HPhi* phi) {
774   if (phi->IsDead() || phi->GetType() != DataType::Type::kReference) {
775     return;
776   }
777 
778   if (phi->GetBlock()->IsLoopHeader()) {
779     // Set the initial type for the phi. Use the non back edge input for reaching
780     // a fixed point faster.
781     HInstruction* first_input = phi->InputAt(0);
782     ReferenceTypeInfo first_input_rti = first_input->GetReferenceTypeInfo();
783     if (first_input_rti.IsValid() && !first_input->IsNullConstant()) {
784       phi->SetCanBeNull(first_input->CanBeNull());
785       phi->SetReferenceTypeInfo(first_input_rti);
786     }
787     AddToWorklist(phi);
788   } else {
789     // Eagerly compute the type of the phi, for quicker convergence. Note
790     // that we don't need to add users to the worklist because we are
791     // doing a reverse post-order visit, therefore either the phi users are
792     // non-loop phi and will be visited later in the visit, or are loop-phis,
793     // and they are already in the work list.
794     UpdateNullability(phi);
795     UpdateReferenceTypeInfo(phi);
796   }
797 }
798 
FixUpInstructionType(HInstruction * instruction,HandleCache * handle_cache)799 void ReferenceTypePropagation::FixUpInstructionType(HInstruction* instruction,
800                                                     HandleCache* handle_cache) {
801   if (instruction->IsSelect()) {
802     ScopedObjectAccess soa(Thread::Current());
803     HSelect* select = instruction->AsSelect();
804     ReferenceTypeInfo false_rti = select->GetFalseValue()->GetReferenceTypeInfo();
805     ReferenceTypeInfo true_rti = select->GetTrueValue()->GetReferenceTypeInfo();
806     select->SetReferenceTypeInfo(MergeTypes(false_rti, true_rti, handle_cache));
807   } else {
808     LOG(FATAL) << "Invalid instruction in FixUpInstructionType";
809   }
810 }
811 
MergeTypes(const ReferenceTypeInfo & a,const ReferenceTypeInfo & b,HandleCache * handle_cache)812 ReferenceTypeInfo ReferenceTypePropagation::MergeTypes(const ReferenceTypeInfo& a,
813                                                        const ReferenceTypeInfo& b,
814                                                        HandleCache* handle_cache) {
815   if (!b.IsValid()) {
816     return a;
817   }
818   if (!a.IsValid()) {
819     return b;
820   }
821 
822   bool is_exact = a.IsExact() && b.IsExact();
823   ReferenceTypeInfo::TypeHandle result_type_handle;
824   ReferenceTypeInfo::TypeHandle a_type_handle = a.GetTypeHandle();
825   ReferenceTypeInfo::TypeHandle b_type_handle = b.GetTypeHandle();
826   bool a_is_interface = a_type_handle->IsInterface();
827   bool b_is_interface = b_type_handle->IsInterface();
828 
829   if (a.GetTypeHandle().Get() == b.GetTypeHandle().Get()) {
830     result_type_handle = a_type_handle;
831   } else if (a.IsSupertypeOf(b)) {
832     result_type_handle = a_type_handle;
833     is_exact = false;
834   } else if (b.IsSupertypeOf(a)) {
835     result_type_handle = b_type_handle;
836     is_exact = false;
837   } else if (!a_is_interface && !b_is_interface) {
838     result_type_handle =
839         handle_cache->NewHandle(a_type_handle->GetCommonSuperClass(b_type_handle));
840     is_exact = false;
841   } else {
842     // This can happen if:
843     //    - both types are interfaces. TODO(calin): implement
844     //    - one is an interface, the other a class, and the type does not implement the interface
845     //      e.g:
846     //        void foo(Interface i, boolean cond) {
847     //          Object o = cond ? i : new Object();
848     //        }
849     result_type_handle = handle_cache->GetObjectClassHandle();
850     is_exact = false;
851   }
852 
853   return ReferenceTypeInfo::Create(result_type_handle, is_exact);
854 }
855 
UpdateArrayGet(HArrayGet * instr)856 void ReferenceTypePropagation::RTPVisitor::UpdateArrayGet(HArrayGet* instr) {
857   DCHECK_EQ(DataType::Type::kReference, instr->GetType());
858 
859   ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
860   if (!parent_rti.IsValid()) {
861     return;
862   }
863 
864   Handle<mirror::Class> handle = parent_rti.GetTypeHandle();
865   if (handle->IsObjectArrayClass() && IsAdmissible(handle->GetComponentType())) {
866     ReferenceTypeInfo::TypeHandle component_handle =
867         GetHandleCache()->NewHandle(handle->GetComponentType());
868     bool is_exact = component_handle->CannotBeAssignedFromOtherTypes();
869     instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(component_handle, is_exact));
870   } else {
871     // We don't know what the parent actually is, so we fallback to object.
872     instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
873   }
874 }
875 
UpdateReferenceTypeInfo(HInstruction * instr)876 bool ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr) {
877   ScopedObjectAccess soa(Thread::Current());
878 
879   ReferenceTypeInfo previous_rti = instr->GetReferenceTypeInfo();
880   if (instr->IsBoundType()) {
881     UpdateBoundType(instr->AsBoundType());
882   } else if (instr->IsPhi()) {
883     UpdatePhi(instr->AsPhi());
884   } else if (instr->IsNullCheck()) {
885     ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
886     if (parent_rti.IsValid()) {
887       instr->SetReferenceTypeInfo(parent_rti);
888     }
889   } else if (instr->IsArrayGet()) {
890     // TODO: consider if it's worth "looking back" and binding the input object
891     // to an array type.
892     UpdateArrayGet(instr->AsArrayGet());
893   } else {
894     LOG(FATAL) << "Invalid instruction (should not get here)";
895   }
896 
897   return !previous_rti.IsEqual(instr->GetReferenceTypeInfo());
898 }
899 
VisitInvoke(HInvoke * instr)900 void ReferenceTypePropagation::RTPVisitor::VisitInvoke(HInvoke* instr) {
901   if (instr->GetType() != DataType::Type::kReference) {
902     return;
903   }
904 
905   ScopedObjectAccess soa(Thread::Current());
906   // FIXME: Treat InvokePolymorphic separately, as we can get a more specific return type from
907   // protoId than the one obtained from the resolved method.
908   ArtMethod* method = instr->GetResolvedMethod();
909   ObjPtr<mirror::Class> klass = (method == nullptr) ? nullptr : method->LookupResolvedReturnType();
910   SetClassAsTypeInfo(instr, klass, /* is_exact= */ false);
911 }
912 
VisitArrayGet(HArrayGet * instr)913 void ReferenceTypePropagation::RTPVisitor::VisitArrayGet(HArrayGet* instr) {
914   if (instr->GetType() != DataType::Type::kReference) {
915     return;
916   }
917 
918   ScopedObjectAccess soa(Thread::Current());
919   UpdateArrayGet(instr);
920   if (!instr->GetReferenceTypeInfo().IsValid()) {
921     worklist_.push_back(instr);
922   }
923 }
924 
UpdateBoundType(HBoundType * instr)925 void ReferenceTypePropagation::RTPVisitor::UpdateBoundType(HBoundType* instr) {
926   ReferenceTypeInfo input_rti = instr->InputAt(0)->GetReferenceTypeInfo();
927   if (!input_rti.IsValid()) {
928     return;  // No new info yet.
929   }
930 
931   ReferenceTypeInfo upper_bound_rti = instr->GetUpperBound();
932   if (upper_bound_rti.IsExact()) {
933     instr->SetReferenceTypeInfo(upper_bound_rti);
934   } else if (upper_bound_rti.IsSupertypeOf(input_rti)) {
935     // input is more specific.
936     instr->SetReferenceTypeInfo(input_rti);
937   } else {
938     // upper_bound is more specific or unrelated.
939     // Note that the object might then be exact, and we know the code dominated by this
940     // bound type is dead. To not confuse potential other optimizations, we mark
941     // the bound as non-exact.
942     instr->SetReferenceTypeInfo(
943         ReferenceTypeInfo::Create(upper_bound_rti.GetTypeHandle(), /* is_exact= */ false));
944   }
945 }
946 
947 // NullConstant inputs are ignored during merging as they do not provide any useful information.
948 // If all the inputs are NullConstants then the type of the phi will be set to Object.
UpdatePhi(HPhi * instr)949 void ReferenceTypePropagation::RTPVisitor::UpdatePhi(HPhi* instr) {
950   DCHECK(instr->IsLive());
951 
952   HInputsRef inputs = instr->GetInputs();
953   size_t first_input_index_not_null = 0;
954   while (first_input_index_not_null < inputs.size() &&
955          inputs[first_input_index_not_null]->IsNullConstant()) {
956     first_input_index_not_null++;
957   }
958   if (first_input_index_not_null == inputs.size()) {
959     // All inputs are NullConstants, set the type to object.
960     // This may happen in the presence of inlining.
961     instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
962     return;
963   }
964 
965   ReferenceTypeInfo new_rti = instr->InputAt(first_input_index_not_null)->GetReferenceTypeInfo();
966 
967   if (new_rti.IsValid() && new_rti.IsObjectClass() && !new_rti.IsExact()) {
968     // Early return if we are Object and inexact.
969     instr->SetReferenceTypeInfo(new_rti);
970     return;
971   }
972 
973   for (size_t i = first_input_index_not_null + 1; i < inputs.size(); i++) {
974     if (inputs[i]->IsNullConstant()) {
975       continue;
976     }
977     new_rti = MergeTypes(new_rti, inputs[i]->GetReferenceTypeInfo(), GetHandleCache());
978     if (new_rti.IsValid() && new_rti.IsObjectClass()) {
979       if (!new_rti.IsExact()) {
980         break;
981       } else {
982         continue;
983       }
984     }
985   }
986 
987   if (new_rti.IsValid()) {
988     instr->SetReferenceTypeInfo(new_rti);
989   }
990 }
991 
IsUpdateable(const HInstruction * instr)992 constexpr bool ReferenceTypePropagation::RTPVisitor::IsUpdateable(const HInstruction* instr) {
993   return (instr->IsPhi() && instr->AsPhi()->IsLive()) ||
994          instr->IsBoundType() ||
995          instr->IsNullCheck() ||
996          instr->IsArrayGet();
997 }
998 
999 // Re-computes and updates the nullability of the instruction. Returns whether or
1000 // not the nullability was changed.
UpdateNullability(HInstruction * instr)1001 bool ReferenceTypePropagation::RTPVisitor::UpdateNullability(HInstruction* instr) {
1002   DCHECK(IsUpdateable(instr));
1003 
1004   if (!instr->IsPhi() && !instr->IsBoundType()) {
1005     return false;
1006   }
1007 
1008   bool existing_can_be_null = instr->CanBeNull();
1009   if (instr->IsPhi()) {
1010     HPhi* phi = instr->AsPhi();
1011     bool new_can_be_null = false;
1012     for (HInstruction* input : phi->GetInputs()) {
1013       if (input->CanBeNull()) {
1014         new_can_be_null = true;
1015         break;
1016       }
1017     }
1018     phi->SetCanBeNull(new_can_be_null);
1019   } else if (instr->IsBoundType()) {
1020     HBoundType* bound_type = instr->AsBoundType();
1021     bound_type->SetCanBeNull(instr->InputAt(0)->CanBeNull() && bound_type->GetUpperCanBeNull());
1022   }
1023   return existing_can_be_null != instr->CanBeNull();
1024 }
1025 
ProcessWorklist()1026 void ReferenceTypePropagation::RTPVisitor::ProcessWorklist() {
1027   while (!worklist_.empty()) {
1028     HInstruction* instruction = worklist_.back();
1029     worklist_.pop_back();
1030     bool updated_nullability = UpdateNullability(instruction);
1031     bool updated_reference_type = UpdateReferenceTypeInfo(instruction);
1032     if (updated_nullability || updated_reference_type) {
1033       AddDependentInstructionsToWorklist(instruction);
1034     }
1035   }
1036 }
1037 
AddToWorklist(HInstruction * instruction)1038 void ReferenceTypePropagation::RTPVisitor::AddToWorklist(HInstruction* instruction) {
1039   DCHECK_EQ(instruction->GetType(), DataType::Type::kReference)
1040       << instruction->DebugName() << ":" << instruction->GetType();
1041   worklist_.push_back(instruction);
1042 }
1043 
AddDependentInstructionsToWorklist(HInstruction * instruction)1044 void ReferenceTypePropagation::RTPVisitor::AddDependentInstructionsToWorklist(
1045     HInstruction* instruction) {
1046   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
1047     HInstruction* user = use.GetUser();
1048     if ((user->IsPhi() && user->AsPhi()->IsLive())
1049        || user->IsBoundType()
1050        || user->IsNullCheck()
1051        || (user->IsArrayGet() && (user->GetType() == DataType::Type::kReference))) {
1052       AddToWorklist(user);
1053     }
1054   }
1055 }
1056 
1057 }  // namespace art
1058