1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread_list.h"
18
19 #include <dirent.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <sstream>
24 #include <vector>
25
26 #include "android-base/stringprintf.h"
27 #include "backtrace/BacktraceMap.h"
28 #include "nativehelper/scoped_local_ref.h"
29 #include "nativehelper/scoped_utf_chars.h"
30
31 #include "base/aborting.h"
32 #include "base/histogram-inl.h"
33 #include "base/mutex-inl.h"
34 #include "base/systrace.h"
35 #include "base/time_utils.h"
36 #include "base/timing_logger.h"
37 #include "debugger.h"
38 #include "gc/collector/concurrent_copying.h"
39 #include "gc/gc_pause_listener.h"
40 #include "gc/heap.h"
41 #include "gc/reference_processor.h"
42 #include "gc_root.h"
43 #include "jni/jni_internal.h"
44 #include "lock_word.h"
45 #include "monitor.h"
46 #include "native_stack_dump.h"
47 #include "scoped_thread_state_change-inl.h"
48 #include "thread.h"
49 #include "trace.h"
50 #include "well_known_classes.h"
51
52 #if ART_USE_FUTEXES
53 #include "linux/futex.h"
54 #include "sys/syscall.h"
55 #ifndef SYS_futex
56 #define SYS_futex __NR_futex
57 #endif
58 #endif // ART_USE_FUTEXES
59
60 namespace art {
61
62 using android::base::StringPrintf;
63
64 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
65 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
66 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
67 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
68 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
69
70 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
71 // some history.
72 static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = true;
73
ThreadList(uint64_t thread_suspend_timeout_ns)74 ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
75 : suspend_all_count_(0),
76 unregistering_count_(0),
77 suspend_all_historam_("suspend all histogram", 16, 64),
78 long_suspend_(false),
79 shut_down_(false),
80 thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
81 empty_checkpoint_barrier_(new Barrier(0)) {
82 CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
83 }
84
~ThreadList()85 ThreadList::~ThreadList() {
86 CHECK(shut_down_);
87 }
88
ShutDown()89 void ThreadList::ShutDown() {
90 ScopedTrace trace(__PRETTY_FUNCTION__);
91 // Detach the current thread if necessary. If we failed to start, there might not be any threads.
92 // We need to detach the current thread here in case there's another thread waiting to join with
93 // us.
94 bool contains = false;
95 Thread* self = Thread::Current();
96 {
97 MutexLock mu(self, *Locks::thread_list_lock_);
98 contains = Contains(self);
99 }
100 if (contains) {
101 Runtime::Current()->DetachCurrentThread();
102 }
103 WaitForOtherNonDaemonThreadsToExit();
104 // Disable GC and wait for GC to complete in case there are still daemon threads doing
105 // allocations.
106 gc::Heap* const heap = Runtime::Current()->GetHeap();
107 heap->DisableGCForShutdown();
108 // In case a GC is in progress, wait for it to finish.
109 heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current());
110 // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
111 // Thread::Init.
112 SuspendAllDaemonThreadsForShutdown();
113
114 shut_down_ = true;
115 }
116
Contains(Thread * thread)117 bool ThreadList::Contains(Thread* thread) {
118 return find(list_.begin(), list_.end(), thread) != list_.end();
119 }
120
GetLockOwner()121 pid_t ThreadList::GetLockOwner() {
122 return Locks::thread_list_lock_->GetExclusiveOwnerTid();
123 }
124
DumpNativeStacks(std::ostream & os)125 void ThreadList::DumpNativeStacks(std::ostream& os) {
126 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
127 std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
128 for (const auto& thread : list_) {
129 os << "DUMPING THREAD " << thread->GetTid() << "\n";
130 DumpNativeStack(os, thread->GetTid(), map.get(), "\t");
131 os << "\n";
132 }
133 }
134
DumpForSigQuit(std::ostream & os)135 void ThreadList::DumpForSigQuit(std::ostream& os) {
136 {
137 ScopedObjectAccess soa(Thread::Current());
138 // Only print if we have samples.
139 if (suspend_all_historam_.SampleSize() > 0) {
140 Histogram<uint64_t>::CumulativeData data;
141 suspend_all_historam_.CreateHistogram(&data);
142 suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data); // Dump time to suspend.
143 }
144 }
145 bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
146 Dump(os, dump_native_stack);
147 DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
148 }
149
DumpUnattachedThread(std::ostream & os,pid_t tid,bool dump_native_stack)150 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
151 NO_THREAD_SAFETY_ANALYSIS {
152 // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
153 // refactor DumpState to avoid skipping analysis.
154 Thread::DumpState(os, nullptr, tid);
155 if (dump_native_stack) {
156 DumpNativeStack(os, tid, nullptr, " native: ");
157 }
158 os << std::endl;
159 }
160
DumpUnattachedThreads(std::ostream & os,bool dump_native_stack)161 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
162 DIR* d = opendir("/proc/self/task");
163 if (!d) {
164 return;
165 }
166
167 Thread* self = Thread::Current();
168 dirent* e;
169 while ((e = readdir(d)) != nullptr) {
170 char* end;
171 pid_t tid = strtol(e->d_name, &end, 10);
172 if (!*end) {
173 Thread* thread;
174 {
175 MutexLock mu(self, *Locks::thread_list_lock_);
176 thread = FindThreadByTid(tid);
177 }
178 if (thread == nullptr) {
179 DumpUnattachedThread(os, tid, dump_native_stack);
180 }
181 }
182 }
183 closedir(d);
184 }
185
186 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
187 // overloaded with ANR dumps.
188 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
189
190 // A closure used by Thread::Dump.
191 class DumpCheckpoint final : public Closure {
192 public:
DumpCheckpoint(std::ostream * os,bool dump_native_stack)193 DumpCheckpoint(std::ostream* os, bool dump_native_stack)
194 : os_(os),
195 // Avoid verifying count in case a thread doesn't end up passing through the barrier.
196 // This avoids a SIGABRT that would otherwise happen in the destructor.
197 barrier_(0, /*verify_count_on_shutdown=*/false),
198 backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr),
199 dump_native_stack_(dump_native_stack) {
200 if (backtrace_map_ != nullptr) {
201 backtrace_map_->SetSuffixesToIgnore(std::vector<std::string> { "oat", "odex" });
202 }
203 }
204
Run(Thread * thread)205 void Run(Thread* thread) override {
206 // Note thread and self may not be equal if thread was already suspended at the point of the
207 // request.
208 Thread* self = Thread::Current();
209 CHECK(self != nullptr);
210 std::ostringstream local_os;
211 {
212 ScopedObjectAccess soa(self);
213 thread->Dump(local_os, dump_native_stack_, backtrace_map_.get());
214 }
215 {
216 // Use the logging lock to ensure serialization when writing to the common ostream.
217 MutexLock mu(self, *Locks::logging_lock_);
218 *os_ << local_os.str() << std::endl;
219 }
220 barrier_.Pass(self);
221 }
222
WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint)223 void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
224 Thread* self = Thread::Current();
225 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
226 bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
227 if (timed_out) {
228 // Avoid a recursive abort.
229 LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
230 << "Unexpected time out during dump checkpoint.";
231 }
232 }
233
234 private:
235 // The common stream that will accumulate all the dumps.
236 std::ostream* const os_;
237 // The barrier to be passed through and for the requestor to wait upon.
238 Barrier barrier_;
239 // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
240 std::unique_ptr<BacktraceMap> backtrace_map_;
241 // Whether we should dump the native stack.
242 const bool dump_native_stack_;
243 };
244
Dump(std::ostream & os,bool dump_native_stack)245 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
246 Thread* self = Thread::Current();
247 {
248 MutexLock mu(self, *Locks::thread_list_lock_);
249 os << "DALVIK THREADS (" << list_.size() << "):\n";
250 }
251 if (self != nullptr) {
252 DumpCheckpoint checkpoint(&os, dump_native_stack);
253 size_t threads_running_checkpoint;
254 {
255 // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
256 ScopedObjectAccess soa(self);
257 threads_running_checkpoint = RunCheckpoint(&checkpoint);
258 }
259 if (threads_running_checkpoint != 0) {
260 checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
261 }
262 } else {
263 DumpUnattachedThreads(os, dump_native_stack);
264 }
265 }
266
AssertThreadsAreSuspended(Thread * self,Thread * ignore1,Thread * ignore2)267 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
268 MutexLock mu(self, *Locks::thread_list_lock_);
269 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
270 for (const auto& thread : list_) {
271 if (thread != ignore1 && thread != ignore2) {
272 CHECK(thread->IsSuspended())
273 << "\nUnsuspended thread: <<" << *thread << "\n"
274 << "self: <<" << *Thread::Current();
275 }
276 }
277 }
278
279 #if HAVE_TIMED_RWLOCK
280 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForThreadSuspendAllTimeout()281 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
282 // Increment gAborting before doing the thread list dump since we don't want any failures from
283 // AssertThreadSuspensionIsAllowable in cases where thread suspension is not allowed.
284 // See b/69044468.
285 ++gAborting;
286 Runtime* runtime = Runtime::Current();
287 std::ostringstream ss;
288 ss << "Thread suspend timeout\n";
289 Locks::mutator_lock_->Dump(ss);
290 ss << "\n";
291 runtime->GetThreadList()->Dump(ss);
292 --gAborting;
293 LOG(FATAL) << ss.str();
294 exit(0);
295 }
296 #endif
297
298 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
299 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
300 // we use sched_yield instead of calling usleep.
301 // Although there is the possibility, here and elsewhere, that usleep could return -1 and
302 // errno = EINTR, there should be no problem if interrupted, so we do not check.
ThreadSuspendSleep(useconds_t delay_us)303 static void ThreadSuspendSleep(useconds_t delay_us) {
304 if (delay_us == 0) {
305 sched_yield();
306 } else {
307 usleep(delay_us);
308 }
309 }
310
RunCheckpoint(Closure * checkpoint_function,Closure * callback)311 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) {
312 Thread* self = Thread::Current();
313 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
314 Locks::thread_list_lock_->AssertNotHeld(self);
315 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
316
317 std::vector<Thread*> suspended_count_modified_threads;
318 size_t count = 0;
319 {
320 // Call a checkpoint function for each thread, threads which are suspended get their checkpoint
321 // manually called.
322 MutexLock mu(self, *Locks::thread_list_lock_);
323 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
324 count = list_.size();
325 for (const auto& thread : list_) {
326 if (thread != self) {
327 bool requested_suspend = false;
328 while (true) {
329 if (thread->RequestCheckpoint(checkpoint_function)) {
330 // This thread will run its checkpoint some time in the near future.
331 if (requested_suspend) {
332 // The suspend request is now unnecessary.
333 bool updated =
334 thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
335 DCHECK(updated);
336 requested_suspend = false;
337 }
338 break;
339 } else {
340 // The thread is probably suspended, try to make sure that it stays suspended.
341 if (thread->GetState() == kRunnable) {
342 // Spurious fail, try again.
343 continue;
344 }
345 if (!requested_suspend) {
346 bool updated =
347 thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
348 DCHECK(updated);
349 requested_suspend = true;
350 if (thread->IsSuspended()) {
351 break;
352 }
353 // The thread raced us to become Runnable. Try to RequestCheckpoint() again.
354 } else {
355 // The thread previously raced our suspend request to become Runnable but
356 // since it is suspended again, it must honor that suspend request now.
357 DCHECK(thread->IsSuspended());
358 break;
359 }
360 }
361 }
362 if (requested_suspend) {
363 suspended_count_modified_threads.push_back(thread);
364 }
365 }
366 }
367 // Run the callback to be called inside this critical section.
368 if (callback != nullptr) {
369 callback->Run(self);
370 }
371 }
372
373 // Run the checkpoint on ourself while we wait for threads to suspend.
374 checkpoint_function->Run(self);
375
376 // Run the checkpoint on the suspended threads.
377 for (const auto& thread : suspended_count_modified_threads) {
378 // We know for sure that the thread is suspended at this point.
379 DCHECK(thread->IsSuspended());
380 checkpoint_function->Run(thread);
381 {
382 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
383 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
384 DCHECK(updated);
385 }
386 }
387
388 {
389 // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
390 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
391 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
392 Thread::resume_cond_->Broadcast(self);
393 }
394
395 return count;
396 }
397
RunEmptyCheckpoint()398 void ThreadList::RunEmptyCheckpoint() {
399 Thread* self = Thread::Current();
400 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
401 Locks::thread_list_lock_->AssertNotHeld(self);
402 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
403 std::vector<uint32_t> runnable_thread_ids;
404 size_t count = 0;
405 Barrier* barrier = empty_checkpoint_barrier_.get();
406 barrier->Init(self, 0);
407 {
408 MutexLock mu(self, *Locks::thread_list_lock_);
409 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
410 for (Thread* thread : list_) {
411 if (thread != self) {
412 while (true) {
413 if (thread->RequestEmptyCheckpoint()) {
414 // This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
415 // some time in the near future.
416 ++count;
417 if (kIsDebugBuild) {
418 runnable_thread_ids.push_back(thread->GetThreadId());
419 }
420 break;
421 }
422 if (thread->GetState() != kRunnable) {
423 // It's seen suspended, we are done because it must not be in the middle of a mutator
424 // heap access.
425 break;
426 }
427 }
428 }
429 }
430 }
431
432 // Wake up the threads blocking for weak ref access so that they will respond to the empty
433 // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
434 Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
435 Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint=*/true);
436 {
437 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
438 uint64_t total_wait_time = 0;
439 bool first_iter = true;
440 while (true) {
441 // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
442 // on a weak ref access, holds (indirectly blocking for weak ref access through another thread
443 // and a mutex.) This needs to be done periodically because the thread may be preempted
444 // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
445 // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
446 // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
447 // handled in the first iteration.
448 for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
449 mutex->WakeupToRespondToEmptyCheckpoint();
450 }
451 static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100; // 100ms
452 static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000; // 10 minutes.
453 size_t barrier_count = first_iter ? count : 0;
454 first_iter = false; // Don't add to the barrier count from the second iteration on.
455 bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
456 if (!timed_out) {
457 break; // Success
458 }
459 // This is a very rare case.
460 total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
461 if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
462 std::ostringstream ss;
463 ss << "Empty checkpoint timeout\n";
464 ss << "Barrier count " << barrier->GetCount(self) << "\n";
465 ss << "Runnable thread IDs";
466 for (uint32_t tid : runnable_thread_ids) {
467 ss << " " << tid;
468 }
469 ss << "\n";
470 Locks::mutator_lock_->Dump(ss);
471 ss << "\n";
472 LOG(FATAL_WITHOUT_ABORT) << ss.str();
473 // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
474 // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
475 {
476 ScopedObjectAccess soa(self);
477 MutexLock mu1(self, *Locks::thread_list_lock_);
478 for (Thread* thread : GetList()) {
479 uint32_t tid = thread->GetThreadId();
480 bool is_in_runnable_thread_ids =
481 std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
482 runnable_thread_ids.end();
483 if (is_in_runnable_thread_ids &&
484 thread->ReadFlag(kEmptyCheckpointRequest)) {
485 // Found a runnable thread that hasn't responded to the empty checkpoint request.
486 // Assume it's stuck and safe to dump its stack.
487 thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
488 /*dump_native_stack=*/ true,
489 /*backtrace_map=*/ nullptr,
490 /*force_dump_stack=*/ true);
491 }
492 }
493 }
494 LOG(FATAL_WITHOUT_ABORT)
495 << "Dumped runnable threads that haven't responded to empty checkpoint.";
496 // Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
497 Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
498 LOG(FATAL) << "Dumped all threads.";
499 }
500 }
501 }
502 }
503
504 // A checkpoint/suspend-all hybrid to switch thread roots from
505 // from-space to to-space refs. Used to synchronize threads at a point
506 // to mark the initiation of marking while maintaining the to-space
507 // invariant.
FlipThreadRoots(Closure * thread_flip_visitor,Closure * flip_callback,gc::collector::GarbageCollector * collector,gc::GcPauseListener * pause_listener)508 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
509 Closure* flip_callback,
510 gc::collector::GarbageCollector* collector,
511 gc::GcPauseListener* pause_listener) {
512 TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
513 Thread* self = Thread::Current();
514 Locks::mutator_lock_->AssertNotHeld(self);
515 Locks::thread_list_lock_->AssertNotHeld(self);
516 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
517 CHECK_NE(self->GetState(), kRunnable);
518
519 collector->GetHeap()->ThreadFlipBegin(self); // Sync with JNI critical calls.
520
521 // ThreadFlipBegin happens before we suspend all the threads, so it does not count towards the
522 // pause.
523 const uint64_t suspend_start_time = NanoTime();
524 SuspendAllInternal(self, self, nullptr);
525 if (pause_listener != nullptr) {
526 pause_listener->StartPause();
527 }
528
529 // Run the flip callback for the collector.
530 Locks::mutator_lock_->ExclusiveLock(self);
531 suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time);
532 flip_callback->Run(self);
533 Locks::mutator_lock_->ExclusiveUnlock(self);
534 collector->RegisterPause(NanoTime() - suspend_start_time);
535 if (pause_listener != nullptr) {
536 pause_listener->EndPause();
537 }
538
539 // Resume runnable threads.
540 size_t runnable_thread_count = 0;
541 std::vector<Thread*> other_threads;
542 {
543 TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
544 MutexLock mu(self, *Locks::thread_list_lock_);
545 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
546 --suspend_all_count_;
547 for (const auto& thread : list_) {
548 // Set the flip function for all threads because Thread::DumpState/DumpJavaStack() (invoked by
549 // a checkpoint) may cause the flip function to be run for a runnable/suspended thread before
550 // a runnable thread runs it for itself or we run it for a suspended thread below.
551 thread->SetFlipFunction(thread_flip_visitor);
552 if (thread == self) {
553 continue;
554 }
555 // Resume early the threads that were runnable but are suspended just for this thread flip or
556 // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to
557 // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting
558 // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip),
559 ThreadState state = thread->GetState();
560 if ((state == kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) &&
561 thread->GetSuspendCount() == 1) {
562 // The thread will resume right after the broadcast.
563 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
564 DCHECK(updated);
565 ++runnable_thread_count;
566 } else {
567 other_threads.push_back(thread);
568 }
569 }
570 Thread::resume_cond_->Broadcast(self);
571 }
572
573 collector->GetHeap()->ThreadFlipEnd(self);
574
575 // Run the closure on the other threads and let them resume.
576 {
577 TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings());
578 ReaderMutexLock mu(self, *Locks::mutator_lock_);
579 for (const auto& thread : other_threads) {
580 Closure* flip_func = thread->GetFlipFunction();
581 if (flip_func != nullptr) {
582 flip_func->Run(thread);
583 }
584 }
585 // Run it for self.
586 Closure* flip_func = self->GetFlipFunction();
587 if (flip_func != nullptr) {
588 flip_func->Run(self);
589 }
590 }
591
592 // Resume other threads.
593 {
594 TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings());
595 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
596 for (const auto& thread : other_threads) {
597 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
598 DCHECK(updated);
599 }
600 Thread::resume_cond_->Broadcast(self);
601 }
602
603 return runnable_thread_count + other_threads.size() + 1; // +1 for self.
604 }
605
SuspendAll(const char * cause,bool long_suspend)606 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
607 Thread* self = Thread::Current();
608
609 if (self != nullptr) {
610 VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
611 } else {
612 VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
613 }
614 {
615 ScopedTrace trace("Suspending mutator threads");
616 const uint64_t start_time = NanoTime();
617
618 SuspendAllInternal(self, self);
619 // All threads are known to have suspended (but a thread may still own the mutator lock)
620 // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
621 #if HAVE_TIMED_RWLOCK
622 while (true) {
623 if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
624 NsToMs(thread_suspend_timeout_ns_),
625 0)) {
626 break;
627 } else if (!long_suspend_) {
628 // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
629 // could result in a thread suspend timeout.
630 // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
631 UnsafeLogFatalForThreadSuspendAllTimeout();
632 }
633 }
634 #else
635 Locks::mutator_lock_->ExclusiveLock(self);
636 #endif
637
638 long_suspend_ = long_suspend;
639
640 const uint64_t end_time = NanoTime();
641 const uint64_t suspend_time = end_time - start_time;
642 suspend_all_historam_.AdjustAndAddValue(suspend_time);
643 if (suspend_time > kLongThreadSuspendThreshold) {
644 LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
645 }
646
647 if (kDebugLocking) {
648 // Debug check that all threads are suspended.
649 AssertThreadsAreSuspended(self, self);
650 }
651 }
652 ATraceBegin((std::string("Mutator threads suspended for ") + cause).c_str());
653
654 if (self != nullptr) {
655 VLOG(threads) << *self << " SuspendAll complete";
656 } else {
657 VLOG(threads) << "Thread[null] SuspendAll complete";
658 }
659 }
660
661 // Ensures all threads running Java suspend and that those not running Java don't start.
SuspendAllInternal(Thread * self,Thread * ignore1,Thread * ignore2,SuspendReason reason)662 void ThreadList::SuspendAllInternal(Thread* self,
663 Thread* ignore1,
664 Thread* ignore2,
665 SuspendReason reason) {
666 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
667 Locks::thread_list_lock_->AssertNotHeld(self);
668 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
669 if (kDebugLocking && self != nullptr) {
670 CHECK_NE(self->GetState(), kRunnable);
671 }
672
673 // First request that all threads suspend, then wait for them to suspend before
674 // returning. This suspension scheme also relies on other behaviour:
675 // 1. Threads cannot be deleted while they are suspended or have a suspend-
676 // request flag set - (see Unregister() below).
677 // 2. When threads are created, they are created in a suspended state (actually
678 // kNative) and will never begin executing Java code without first checking
679 // the suspend-request flag.
680
681 // The atomic counter for number of threads that need to pass the barrier.
682 AtomicInteger pending_threads;
683 uint32_t num_ignored = 0;
684 if (ignore1 != nullptr) {
685 ++num_ignored;
686 }
687 if (ignore2 != nullptr && ignore1 != ignore2) {
688 ++num_ignored;
689 }
690 {
691 MutexLock mu(self, *Locks::thread_list_lock_);
692 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
693 // Update global suspend all state for attaching threads.
694 ++suspend_all_count_;
695 pending_threads.store(list_.size() - num_ignored, std::memory_order_relaxed);
696 // Increment everybody's suspend count (except those that should be ignored).
697 for (const auto& thread : list_) {
698 if (thread == ignore1 || thread == ignore2) {
699 continue;
700 }
701 VLOG(threads) << "requesting thread suspend: " << *thread;
702 bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, reason);
703 DCHECK(updated);
704
705 // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
706 // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
707 // that can lead a thread to miss a call to PassActiveSuspendBarriers().
708 if (thread->IsSuspended()) {
709 // Only clear the counter for the current thread.
710 thread->ClearSuspendBarrier(&pending_threads);
711 pending_threads.fetch_sub(1, std::memory_order_seq_cst);
712 }
713 }
714 }
715
716 // Wait for the barrier to be passed by all runnable threads. This wait
717 // is done with a timeout so that we can detect problems.
718 #if ART_USE_FUTEXES
719 timespec wait_timeout;
720 InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout);
721 #endif
722 const uint64_t start_time = NanoTime();
723 while (true) {
724 int32_t cur_val = pending_threads.load(std::memory_order_relaxed);
725 if (LIKELY(cur_val > 0)) {
726 #if ART_USE_FUTEXES
727 if (futex(pending_threads.Address(), FUTEX_WAIT_PRIVATE, cur_val, &wait_timeout, nullptr, 0)
728 != 0) {
729 if ((errno == EAGAIN) || (errno == EINTR)) {
730 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
731 continue;
732 }
733 if (errno == ETIMEDOUT) {
734 const uint64_t wait_time = NanoTime() - start_time;
735 MutexLock mu(self, *Locks::thread_list_lock_);
736 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
737 std::ostringstream oss;
738 for (const auto& thread : list_) {
739 if (thread == ignore1 || thread == ignore2) {
740 continue;
741 }
742 if (!thread->IsSuspended()) {
743 oss << std::endl << "Thread not suspended: " << *thread;
744 }
745 }
746 LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR)
747 << "Timed out waiting for threads to suspend, waited for "
748 << PrettyDuration(wait_time)
749 << oss.str();
750 } else {
751 PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
752 }
753 } // else re-check pending_threads in the next iteration (this may be a spurious wake-up).
754 #else
755 // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
756 UNUSED(start_time);
757 #endif
758 } else {
759 CHECK_EQ(cur_val, 0);
760 break;
761 }
762 }
763 }
764
ResumeAll()765 void ThreadList::ResumeAll() {
766 Thread* self = Thread::Current();
767
768 if (self != nullptr) {
769 VLOG(threads) << *self << " ResumeAll starting";
770 } else {
771 VLOG(threads) << "Thread[null] ResumeAll starting";
772 }
773
774 ATraceEnd();
775
776 ScopedTrace trace("Resuming mutator threads");
777
778 if (kDebugLocking) {
779 // Debug check that all threads are suspended.
780 AssertThreadsAreSuspended(self, self);
781 }
782
783 long_suspend_ = false;
784
785 Locks::mutator_lock_->ExclusiveUnlock(self);
786 {
787 MutexLock mu(self, *Locks::thread_list_lock_);
788 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
789 // Update global suspend all state for attaching threads.
790 --suspend_all_count_;
791 // Decrement the suspend counts for all threads.
792 for (const auto& thread : list_) {
793 if (thread == self) {
794 continue;
795 }
796 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
797 DCHECK(updated);
798 }
799
800 // Broadcast a notification to all suspended threads, some or all of
801 // which may choose to wake up. No need to wait for them.
802 if (self != nullptr) {
803 VLOG(threads) << *self << " ResumeAll waking others";
804 } else {
805 VLOG(threads) << "Thread[null] ResumeAll waking others";
806 }
807 Thread::resume_cond_->Broadcast(self);
808 }
809
810 if (self != nullptr) {
811 VLOG(threads) << *self << " ResumeAll complete";
812 } else {
813 VLOG(threads) << "Thread[null] ResumeAll complete";
814 }
815 }
816
Resume(Thread * thread,SuspendReason reason)817 bool ThreadList::Resume(Thread* thread, SuspendReason reason) {
818 // This assumes there was an ATraceBegin when we suspended the thread.
819 ATraceEnd();
820
821 Thread* self = Thread::Current();
822 DCHECK_NE(thread, self);
823 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..." << reason;
824
825 {
826 // To check Contains.
827 MutexLock mu(self, *Locks::thread_list_lock_);
828 // To check IsSuspended.
829 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
830 if (UNLIKELY(!thread->IsSuspended())) {
831 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
832 << ") thread not suspended";
833 return false;
834 }
835 if (!Contains(thread)) {
836 // We only expect threads within the thread-list to have been suspended otherwise we can't
837 // stop such threads from delete-ing themselves.
838 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
839 << ") thread not within thread list";
840 return false;
841 }
842 if (UNLIKELY(!thread->ModifySuspendCount(self, -1, nullptr, reason))) {
843 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
844 << ") could not modify suspend count.";
845 return false;
846 }
847 }
848
849 {
850 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
851 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
852 Thread::resume_cond_->Broadcast(self);
853 }
854
855 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
856 return true;
857 }
858
ThreadSuspendByPeerWarning(Thread * self,LogSeverity severity,const char * message,jobject peer)859 static void ThreadSuspendByPeerWarning(Thread* self,
860 LogSeverity severity,
861 const char* message,
862 jobject peer) {
863 JNIEnvExt* env = self->GetJniEnv();
864 ScopedLocalRef<jstring>
865 scoped_name_string(env, static_cast<jstring>(env->GetObjectField(
866 peer, WellKnownClasses::java_lang_Thread_name)));
867 ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
868 if (scoped_name_chars.c_str() == nullptr) {
869 LOG(severity) << message << ": " << peer;
870 env->ExceptionClear();
871 } else {
872 LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str();
873 }
874 }
875
SuspendThreadByPeer(jobject peer,SuspendReason reason,bool * timed_out)876 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
877 SuspendReason reason,
878 bool* timed_out) {
879 bool request_suspension = true;
880 const uint64_t start_time = NanoTime();
881 int self_suspend_count = 0;
882 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
883 *timed_out = false;
884 Thread* const self = Thread::Current();
885 Thread* suspended_thread = nullptr;
886 VLOG(threads) << "SuspendThreadByPeer starting";
887 while (true) {
888 Thread* thread;
889 {
890 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
891 // is requesting another suspend, to avoid deadlock, by requiring this function be called
892 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
893 // than request thread suspension, to avoid potential cycles in threads requesting each other
894 // suspend.
895 ScopedObjectAccess soa(self);
896 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
897 thread = Thread::FromManagedThread(soa, peer);
898 if (thread == nullptr) {
899 if (suspended_thread != nullptr) {
900 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
901 // If we incremented the suspend count but the thread reset its peer, we need to
902 // re-decrement it since it is shutting down and may deadlock the runtime in
903 // ThreadList::WaitForOtherNonDaemonThreadsToExit.
904 bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
905 -1,
906 nullptr,
907 reason);
908 DCHECK(updated);
909 }
910 ThreadSuspendByPeerWarning(self,
911 ::android::base::WARNING,
912 "No such thread for suspend",
913 peer);
914 return nullptr;
915 }
916 if (!Contains(thread)) {
917 CHECK(suspended_thread == nullptr);
918 VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
919 << reinterpret_cast<void*>(thread);
920 return nullptr;
921 }
922 VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
923 {
924 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
925 if (request_suspension) {
926 if (self->GetSuspendCount() > 0) {
927 // We hold the suspend count lock but another thread is trying to suspend us. Its not
928 // safe to try to suspend another thread in case we get a cycle. Start the loop again
929 // which will allow this thread to be suspended.
930 ++self_suspend_count;
931 continue;
932 }
933 CHECK(suspended_thread == nullptr);
934 suspended_thread = thread;
935 bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, reason);
936 DCHECK(updated);
937 request_suspension = false;
938 } else {
939 // If the caller isn't requesting suspension, a suspension should have already occurred.
940 CHECK_GT(thread->GetSuspendCount(), 0);
941 }
942 // IsSuspended on the current thread will fail as the current thread is changed into
943 // Runnable above. As the suspend count is now raised if this is the current thread
944 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
945 // to just explicitly handle the current thread in the callers to this code.
946 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
947 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
948 // count, or else we've waited and it has self suspended) or is the current thread, we're
949 // done.
950 if (thread->IsSuspended()) {
951 VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
952 if (ATraceEnabled()) {
953 std::string name;
954 thread->GetThreadName(name);
955 ATraceBegin(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
956 peer).c_str());
957 }
958 return thread;
959 }
960 const uint64_t total_delay = NanoTime() - start_time;
961 if (total_delay >= thread_suspend_timeout_ns_) {
962 if (suspended_thread == nullptr) {
963 ThreadSuspendByPeerWarning(self,
964 ::android::base::FATAL,
965 "Failed to issue suspend request",
966 peer);
967 } else {
968 CHECK_EQ(suspended_thread, thread);
969 LOG(WARNING) << "Suspended thread state_and_flags: "
970 << suspended_thread->StateAndFlagsAsHexString()
971 << ", self_suspend_count = " << self_suspend_count;
972 ThreadSuspendByPeerWarning(self,
973 ::android::base::FATAL,
974 "Thread suspension timed out",
975 peer);
976 }
977 UNREACHABLE();
978 } else if (sleep_us == 0 &&
979 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
980 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
981 // excessive CPU usage.
982 sleep_us = kThreadSuspendMaxYieldUs / 2;
983 }
984 }
985 // Release locks and come out of runnable state.
986 }
987 VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
988 ThreadSuspendSleep(sleep_us);
989 // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
990 // all if possible. This shouldn't be an issue since time to suspend should always be small.
991 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
992 }
993 }
994
ThreadSuspendByThreadIdWarning(LogSeverity severity,const char * message,uint32_t thread_id)995 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
996 const char* message,
997 uint32_t thread_id) {
998 LOG(severity) << StringPrintf("%s: %d", message, thread_id);
999 }
1000
SuspendThreadByThreadId(uint32_t thread_id,SuspendReason reason,bool * timed_out)1001 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
1002 SuspendReason reason,
1003 bool* timed_out) {
1004 const uint64_t start_time = NanoTime();
1005 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
1006 *timed_out = false;
1007 Thread* suspended_thread = nullptr;
1008 Thread* const self = Thread::Current();
1009 CHECK_NE(thread_id, kInvalidThreadId);
1010 VLOG(threads) << "SuspendThreadByThreadId starting";
1011 while (true) {
1012 {
1013 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
1014 // is requesting another suspend, to avoid deadlock, by requiring this function be called
1015 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
1016 // than request thread suspension, to avoid potential cycles in threads requesting each other
1017 // suspend.
1018 ScopedObjectAccess soa(self);
1019 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1020 Thread* thread = nullptr;
1021 for (const auto& it : list_) {
1022 if (it->GetThreadId() == thread_id) {
1023 thread = it;
1024 break;
1025 }
1026 }
1027 if (thread == nullptr) {
1028 CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
1029 << " no longer in thread list";
1030 // There's a race in inflating a lock and the owner giving up ownership and then dying.
1031 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1032 "No such thread id for suspend",
1033 thread_id);
1034 return nullptr;
1035 }
1036 VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
1037 DCHECK(Contains(thread));
1038 {
1039 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1040 if (suspended_thread == nullptr) {
1041 if (self->GetSuspendCount() > 0) {
1042 // We hold the suspend count lock but another thread is trying to suspend us. Its not
1043 // safe to try to suspend another thread in case we get a cycle. Start the loop again
1044 // which will allow this thread to be suspended.
1045 continue;
1046 }
1047 bool updated = thread->ModifySuspendCount(self, +1, nullptr, reason);
1048 DCHECK(updated);
1049 suspended_thread = thread;
1050 } else {
1051 CHECK_EQ(suspended_thread, thread);
1052 // If the caller isn't requesting suspension, a suspension should have already occurred.
1053 CHECK_GT(thread->GetSuspendCount(), 0);
1054 }
1055 // IsSuspended on the current thread will fail as the current thread is changed into
1056 // Runnable above. As the suspend count is now raised if this is the current thread
1057 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
1058 // to just explicitly handle the current thread in the callers to this code.
1059 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
1060 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
1061 // count, or else we've waited and it has self suspended) or is the current thread, we're
1062 // done.
1063 if (thread->IsSuspended()) {
1064 if (ATraceEnabled()) {
1065 std::string name;
1066 thread->GetThreadName(name);
1067 ATraceBegin(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
1068 name.c_str(), thread_id).c_str());
1069 }
1070 VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
1071 return thread;
1072 }
1073 const uint64_t total_delay = NanoTime() - start_time;
1074 if (total_delay >= thread_suspend_timeout_ns_) {
1075 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1076 "Thread suspension timed out",
1077 thread_id);
1078 if (suspended_thread != nullptr) {
1079 bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason);
1080 DCHECK(updated);
1081 }
1082 *timed_out = true;
1083 return nullptr;
1084 } else if (sleep_us == 0 &&
1085 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
1086 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
1087 // excessive CPU usage.
1088 sleep_us = kThreadSuspendMaxYieldUs / 2;
1089 }
1090 }
1091 // Release locks and come out of runnable state.
1092 }
1093 VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
1094 ThreadSuspendSleep(sleep_us);
1095 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1096 }
1097 }
1098
FindThreadByThreadId(uint32_t thread_id)1099 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
1100 for (const auto& thread : list_) {
1101 if (thread->GetThreadId() == thread_id) {
1102 return thread;
1103 }
1104 }
1105 return nullptr;
1106 }
1107
FindThreadByTid(int tid)1108 Thread* ThreadList::FindThreadByTid(int tid) {
1109 for (const auto& thread : list_) {
1110 if (thread->GetTid() == tid) {
1111 return thread;
1112 }
1113 }
1114 return nullptr;
1115 }
1116
WaitForOtherNonDaemonThreadsToExit(bool check_no_birth)1117 void ThreadList::WaitForOtherNonDaemonThreadsToExit(bool check_no_birth) {
1118 ScopedTrace trace(__PRETTY_FUNCTION__);
1119 Thread* self = Thread::Current();
1120 Locks::mutator_lock_->AssertNotHeld(self);
1121 while (true) {
1122 Locks::runtime_shutdown_lock_->Lock(self);
1123 if (check_no_birth) {
1124 // No more threads can be born after we start to shutdown.
1125 CHECK(Runtime::Current()->IsShuttingDownLocked());
1126 CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
1127 } else {
1128 if (Runtime::Current()->NumberOfThreadsBeingBorn() != 0U) {
1129 // Awkward. Shutdown_cond_ is private, but the only live thread may not be registered yet.
1130 // Fortunately, this is used mostly for testing, and not performance-critical.
1131 Locks::runtime_shutdown_lock_->Unlock(self);
1132 usleep(1000);
1133 continue;
1134 }
1135 }
1136 MutexLock mu(self, *Locks::thread_list_lock_);
1137 Locks::runtime_shutdown_lock_->Unlock(self);
1138 // Also wait for any threads that are unregistering to finish. This is required so that no
1139 // threads access the thread list after it is deleted. TODO: This may not work for user daemon
1140 // threads since they could unregister at the wrong time.
1141 bool done = unregistering_count_ == 0;
1142 if (done) {
1143 for (const auto& thread : list_) {
1144 if (thread != self && !thread->IsDaemon()) {
1145 done = false;
1146 break;
1147 }
1148 }
1149 }
1150 if (done) {
1151 break;
1152 }
1153 // Wait for another thread to exit before re-checking.
1154 Locks::thread_exit_cond_->Wait(self);
1155 }
1156 }
1157
SuspendAllDaemonThreadsForShutdown()1158 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
1159 ScopedTrace trace(__PRETTY_FUNCTION__);
1160 Thread* self = Thread::Current();
1161 size_t daemons_left = 0;
1162 {
1163 // Tell all the daemons it's time to suspend.
1164 MutexLock mu(self, *Locks::thread_list_lock_);
1165 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1166 for (const auto& thread : list_) {
1167 // This is only run after all non-daemon threads have exited, so the remainder should all be
1168 // daemons.
1169 CHECK(thread->IsDaemon()) << *thread;
1170 if (thread != self) {
1171 bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1172 DCHECK(updated);
1173 ++daemons_left;
1174 }
1175 // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
1176 // the sleep forever one.
1177 thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
1178 }
1179 }
1180 if (daemons_left == 0) {
1181 // No threads left; safe to shut down.
1182 return;
1183 }
1184 // There is not a clean way to shut down if we have daemons left. We have no mechanism for
1185 // killing them and reclaiming thread stacks. We also have no mechanism for waiting until they
1186 // have truly finished touching the memory we are about to deallocate. We do the best we can with
1187 // timeouts.
1188 //
1189 // If we have any daemons left, wait until they are (a) suspended and (b) they are not stuck
1190 // in a place where they are about to access runtime state and are not in a runnable state.
1191 // We attempt to do the latter by just waiting long enough for things to
1192 // quiesce. Examples: Monitor code or waking up from a condition variable.
1193 //
1194 // Give the threads a chance to suspend, complaining if they're slow. (a)
1195 bool have_complained = false;
1196 static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
1197 static constexpr size_t kSleepMicroseconds = 1000;
1198 bool all_suspended = false;
1199 for (size_t i = 0; !all_suspended && i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
1200 bool found_running = false;
1201 {
1202 MutexLock mu(self, *Locks::thread_list_lock_);
1203 for (const auto& thread : list_) {
1204 if (thread != self && thread->GetState() == kRunnable) {
1205 if (!have_complained) {
1206 LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
1207 have_complained = true;
1208 }
1209 found_running = true;
1210 }
1211 }
1212 }
1213 if (found_running) {
1214 // Sleep briefly before checking again. Max total sleep time is kTimeoutMicroseconds.
1215 usleep(kSleepMicroseconds);
1216 } else {
1217 all_suspended = true;
1218 }
1219 }
1220 if (!all_suspended) {
1221 // We can get here if a daemon thread executed a fastnative native call, so that it
1222 // remained in runnable state, and then made a JNI call after we called
1223 // SetFunctionsToRuntimeShutdownFunctions(), causing it to permanently stay in a harmless
1224 // but runnable state. See b/147804269 .
1225 LOG(WARNING) << "timed out suspending all daemon threads";
1226 }
1227 // Assume all threads are either suspended or somehow wedged.
1228 // Wait again for all the now "suspended" threads to actually quiesce. (b)
1229 static constexpr size_t kDaemonSleepTime = 400'000;
1230 usleep(kDaemonSleepTime);
1231 std::list<Thread*> list_copy;
1232 {
1233 MutexLock mu(self, *Locks::thread_list_lock_);
1234 // Half-way through the wait, set the "runtime deleted" flag, causing any newly awoken
1235 // threads to immediately go back to sleep without touching memory. This prevents us from
1236 // touching deallocated memory, but it also prevents mutexes from getting released. Thus we
1237 // only do this once we're reasonably sure that no system mutexes are still held.
1238 for (const auto& thread : list_) {
1239 DCHECK(thread == self || !all_suspended || thread->GetState() != kRunnable);
1240 // In the !all_suspended case, the target is probably sleeping.
1241 thread->GetJniEnv()->SetRuntimeDeleted();
1242 // Possibly contended Mutex acquisitions are unsafe after this.
1243 // Releasing thread_list_lock_ is OK, since it can't block.
1244 }
1245 }
1246 // Finally wait for any threads woken before we set the "runtime deleted" flags to finish
1247 // touching memory.
1248 usleep(kDaemonSleepTime);
1249 #if defined(__has_feature)
1250 #if __has_feature(address_sanitizer) || __has_feature(hwaddress_sanitizer)
1251 // Sleep a bit longer with -fsanitize=address, since everything is slower.
1252 usleep(2 * kDaemonSleepTime);
1253 #endif
1254 #endif
1255 // At this point no threads should be touching our data structures anymore.
1256 }
1257
Register(Thread * self)1258 void ThreadList::Register(Thread* self) {
1259 DCHECK_EQ(self, Thread::Current());
1260 CHECK(!shut_down_);
1261
1262 if (VLOG_IS_ON(threads)) {
1263 std::ostringstream oss;
1264 self->ShortDump(oss); // We don't hold the mutator_lock_ yet and so cannot call Dump.
1265 LOG(INFO) << "ThreadList::Register() " << *self << "\n" << oss.str();
1266 }
1267
1268 // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
1269 // SuspendAll requests.
1270 MutexLock mu(self, *Locks::thread_list_lock_);
1271 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1272 // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
1273 // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
1274 for (int delta = suspend_all_count_; delta > 0; delta--) {
1275 bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1276 DCHECK(updated);
1277 }
1278 CHECK(!Contains(self));
1279 list_.push_back(self);
1280 if (kUseReadBarrier) {
1281 gc::collector::ConcurrentCopying* const cc =
1282 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector();
1283 // Initialize according to the state of the CC collector.
1284 self->SetIsGcMarkingAndUpdateEntrypoints(cc->IsMarking());
1285 if (cc->IsUsingReadBarrierEntrypoints()) {
1286 self->SetReadBarrierEntrypoints();
1287 }
1288 self->SetWeakRefAccessEnabled(cc->IsWeakRefAccessEnabled());
1289 }
1290 self->NotifyInTheadList();
1291 }
1292
Unregister(Thread * self)1293 void ThreadList::Unregister(Thread* self) {
1294 DCHECK_EQ(self, Thread::Current());
1295 CHECK_NE(self->GetState(), kRunnable);
1296 Locks::mutator_lock_->AssertNotHeld(self);
1297
1298 VLOG(threads) << "ThreadList::Unregister() " << *self;
1299
1300 {
1301 MutexLock mu(self, *Locks::thread_list_lock_);
1302 ++unregistering_count_;
1303 }
1304
1305 // Any time-consuming destruction, plus anything that can call back into managed code or
1306 // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
1307 // causes the threads to join. It is important to do this after incrementing unregistering_count_
1308 // since we want the runtime to wait for the daemon threads to exit before deleting the thread
1309 // list.
1310 self->Destroy();
1311
1312 // If tracing, remember thread id and name before thread exits.
1313 Trace::StoreExitingThreadInfo(self);
1314
1315 uint32_t thin_lock_id = self->GetThreadId();
1316 while (true) {
1317 // Remove and delete the Thread* while holding the thread_list_lock_ and
1318 // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
1319 // Note: deliberately not using MutexLock that could hold a stale self pointer.
1320 {
1321 MutexLock mu(self, *Locks::thread_list_lock_);
1322 if (!Contains(self)) {
1323 std::string thread_name;
1324 self->GetThreadName(thread_name);
1325 std::ostringstream os;
1326 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
1327 LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
1328 break;
1329 } else {
1330 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1331 if (!self->IsSuspended()) {
1332 list_.remove(self);
1333 break;
1334 }
1335 }
1336 }
1337 // In the case where we are not suspended yet, sleep to leave other threads time to execute.
1338 // This is important if there are realtime threads. b/111277984
1339 usleep(1);
1340 // We failed to remove the thread due to a suspend request, loop and try again.
1341 }
1342 delete self;
1343
1344 // Release the thread ID after the thread is finished and deleted to avoid cases where we can
1345 // temporarily have multiple threads with the same thread id. When this occurs, it causes
1346 // problems in FindThreadByThreadId / SuspendThreadByThreadId.
1347 ReleaseThreadId(nullptr, thin_lock_id);
1348
1349 // Clear the TLS data, so that the underlying native thread is recognizably detached.
1350 // (It may wish to reattach later.)
1351 #ifdef __BIONIC__
1352 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
1353 #else
1354 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
1355 Thread::self_tls_ = nullptr;
1356 #endif
1357
1358 // Signal that a thread just detached.
1359 MutexLock mu(nullptr, *Locks::thread_list_lock_);
1360 --unregistering_count_;
1361 Locks::thread_exit_cond_->Broadcast(nullptr);
1362 }
1363
ForEach(void (* callback)(Thread *,void *),void * context)1364 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
1365 for (const auto& thread : list_) {
1366 callback(thread, context);
1367 }
1368 }
1369
VisitRootsForSuspendedThreads(RootVisitor * visitor)1370 void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
1371 Thread* const self = Thread::Current();
1372 std::vector<Thread*> threads_to_visit;
1373
1374 // Tell threads to suspend and copy them into list.
1375 {
1376 MutexLock mu(self, *Locks::thread_list_lock_);
1377 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1378 for (Thread* thread : list_) {
1379 bool suspended = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1380 DCHECK(suspended);
1381 if (thread == self || thread->IsSuspended()) {
1382 threads_to_visit.push_back(thread);
1383 } else {
1384 bool resumed = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1385 DCHECK(resumed);
1386 }
1387 }
1388 }
1389
1390 // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
1391 // order violations.
1392 for (Thread* thread : threads_to_visit) {
1393 thread->VisitRoots(visitor, kVisitRootFlagAllRoots);
1394 }
1395
1396 // Restore suspend counts.
1397 {
1398 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1399 for (Thread* thread : threads_to_visit) {
1400 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1401 DCHECK(updated);
1402 }
1403 }
1404 }
1405
VisitRoots(RootVisitor * visitor,VisitRootFlags flags) const1406 void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
1407 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1408 for (const auto& thread : list_) {
1409 thread->VisitRoots(visitor, flags);
1410 }
1411 }
1412
SweepInterpreterCaches(IsMarkedVisitor * visitor) const1413 void ThreadList::SweepInterpreterCaches(IsMarkedVisitor* visitor) const {
1414 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1415 for (const auto& thread : list_) {
1416 thread->SweepInterpreterCache(visitor);
1417 }
1418 }
1419
VisitReflectiveTargets(ReflectiveValueVisitor * visitor) const1420 void ThreadList::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) const {
1421 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1422 for (const auto& thread : list_) {
1423 thread->VisitReflectiveTargets(visitor);
1424 }
1425 }
1426
AllocThreadId(Thread * self)1427 uint32_t ThreadList::AllocThreadId(Thread* self) {
1428 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1429 for (size_t i = 0; i < allocated_ids_.size(); ++i) {
1430 if (!allocated_ids_[i]) {
1431 allocated_ids_.set(i);
1432 return i + 1; // Zero is reserved to mean "invalid".
1433 }
1434 }
1435 LOG(FATAL) << "Out of internal thread ids";
1436 UNREACHABLE();
1437 }
1438
ReleaseThreadId(Thread * self,uint32_t id)1439 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
1440 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1441 --id; // Zero is reserved to mean "invalid".
1442 DCHECK(allocated_ids_[id]) << id;
1443 allocated_ids_.reset(id);
1444 }
1445
ScopedSuspendAll(const char * cause,bool long_suspend)1446 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
1447 Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
1448 }
1449
~ScopedSuspendAll()1450 ScopedSuspendAll::~ScopedSuspendAll() {
1451 Runtime::Current()->GetThreadList()->ResumeAll();
1452 }
1453
1454 } // namespace art
1455