1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "concurrent_copying.h"
18
19 #include "art_field-inl.h"
20 #include "barrier.h"
21 #include "base/enums.h"
22 #include "base/file_utils.h"
23 #include "base/histogram-inl.h"
24 #include "base/quasi_atomic.h"
25 #include "base/stl_util.h"
26 #include "base/systrace.h"
27 #include "class_root-inl.h"
28 #include "debugger.h"
29 #include "gc/accounting/atomic_stack.h"
30 #include "gc/accounting/heap_bitmap-inl.h"
31 #include "gc/accounting/mod_union_table-inl.h"
32 #include "gc/accounting/read_barrier_table.h"
33 #include "gc/accounting/space_bitmap-inl.h"
34 #include "gc/gc_pause_listener.h"
35 #include "gc/reference_processor.h"
36 #include "gc/space/image_space.h"
37 #include "gc/space/space-inl.h"
38 #include "gc/verification.h"
39 #include "image-inl.h"
40 #include "intern_table.h"
41 #include "mirror/class-inl.h"
42 #include "mirror/object-inl.h"
43 #include "mirror/object-refvisitor-inl.h"
44 #include "mirror/object_reference.h"
45 #include "scoped_thread_state_change-inl.h"
46 #include "thread-inl.h"
47 #include "thread_list.h"
48 #include "well_known_classes.h"
49
50 namespace art {
51 namespace gc {
52 namespace collector {
53
54 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
55 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
56 // union table. Disabled since it does not seem to help the pause much.
57 static constexpr bool kFilterModUnionCards = kIsDebugBuild;
58 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any read barrier that
59 // occur during ConcurrentCopying::Scan in GC thread. May be used to diagnose possibly unnecessary
60 // read barriers. Only enabled for kIsDebugBuild to avoid performance hit.
61 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
62 // Slow path mark stack size, increase this if the stack is getting full and it is causing
63 // performance problems.
64 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
65 // Size (in the number of objects) of the sweep array free buffer.
66 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
67 // Verify that there are no missing card marks.
68 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
69
ConcurrentCopying(Heap * heap,bool young_gen,bool use_generational_cc,const std::string & name_prefix,bool measure_read_barrier_slow_path)70 ConcurrentCopying::ConcurrentCopying(Heap* heap,
71 bool young_gen,
72 bool use_generational_cc,
73 const std::string& name_prefix,
74 bool measure_read_barrier_slow_path)
75 : GarbageCollector(heap,
76 name_prefix + (name_prefix.empty() ? "" : " ") +
77 "concurrent copying"),
78 region_space_(nullptr),
79 gc_barrier_(new Barrier(0)),
80 gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
81 kDefaultGcMarkStackSize,
82 kDefaultGcMarkStackSize)),
83 use_generational_cc_(use_generational_cc),
84 young_gen_(young_gen),
85 rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
86 kReadBarrierMarkStackSize,
87 kReadBarrierMarkStackSize)),
88 rb_mark_bit_stack_full_(false),
89 mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
90 thread_running_gc_(nullptr),
91 is_marking_(false),
92 is_using_read_barrier_entrypoints_(false),
93 is_active_(false),
94 is_asserting_to_space_invariant_(false),
95 region_space_bitmap_(nullptr),
96 heap_mark_bitmap_(nullptr),
97 live_stack_freeze_size_(0),
98 from_space_num_objects_at_first_pause_(0),
99 from_space_num_bytes_at_first_pause_(0),
100 mark_stack_mode_(kMarkStackModeOff),
101 weak_ref_access_enabled_(true),
102 copied_live_bytes_ratio_sum_(0.f),
103 gc_count_(0),
104 reclaimed_bytes_ratio_sum_(0.f),
105 cumulative_bytes_moved_(0),
106 cumulative_objects_moved_(0),
107 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
108 measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
109 mark_from_read_barrier_measurements_(false),
110 rb_slow_path_ns_(0),
111 rb_slow_path_count_(0),
112 rb_slow_path_count_gc_(0),
113 rb_slow_path_histogram_lock_("Read barrier histogram lock"),
114 rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
115 rb_slow_path_count_total_(0),
116 rb_slow_path_count_gc_total_(0),
117 rb_table_(heap_->GetReadBarrierTable()),
118 force_evacuate_all_(false),
119 gc_grays_immune_objects_(false),
120 immune_gray_stack_lock_("concurrent copying immune gray stack lock",
121 kMarkSweepMarkStackLock),
122 num_bytes_allocated_before_gc_(0) {
123 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
124 "The region space size and the read barrier table region size must match");
125 CHECK(use_generational_cc_ || !young_gen_);
126 Thread* self = Thread::Current();
127 {
128 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
129 // Cache this so that we won't have to lock heap_bitmap_lock_ in
130 // Mark() which could cause a nested lock on heap_bitmap_lock_
131 // when GC causes a RB while doing GC or a lock order violation
132 // (class_linker_lock_ and heap_bitmap_lock_).
133 heap_mark_bitmap_ = heap->GetMarkBitmap();
134 }
135 {
136 MutexLock mu(self, mark_stack_lock_);
137 for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
138 accounting::AtomicStack<mirror::Object>* mark_stack =
139 accounting::AtomicStack<mirror::Object>::Create(
140 "thread local mark stack", kMarkStackSize, kMarkStackSize);
141 pooled_mark_stacks_.push_back(mark_stack);
142 }
143 }
144 if (use_generational_cc_) {
145 // Allocate sweep array free buffer.
146 std::string error_msg;
147 sweep_array_free_buffer_mem_map_ = MemMap::MapAnonymous(
148 "concurrent copying sweep array free buffer",
149 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
150 PROT_READ | PROT_WRITE,
151 /*low_4gb=*/ false,
152 &error_msg);
153 CHECK(sweep_array_free_buffer_mem_map_.IsValid())
154 << "Couldn't allocate sweep array free buffer: " << error_msg;
155 }
156 // Return type of these functions are different. And even though the base class
157 // is same, using ternary operator complains.
158 metrics::ArtMetrics* metrics = GetMetrics();
159 are_metrics_initialized_ = true;
160 if (young_gen_) {
161 gc_time_histogram_ = metrics->YoungGcCollectionTime();
162 metrics_gc_count_ = metrics->YoungGcCount();
163 gc_throughput_histogram_ = metrics->YoungGcThroughput();
164 gc_tracing_throughput_hist_ = metrics->YoungGcTracingThroughput();
165 gc_throughput_avg_ = metrics->YoungGcThroughputAvg();
166 gc_tracing_throughput_avg_ = metrics->YoungGcTracingThroughputAvg();
167 } else {
168 gc_time_histogram_ = metrics->FullGcCollectionTime();
169 metrics_gc_count_ = metrics->FullGcCount();
170 gc_throughput_histogram_ = metrics->FullGcThroughput();
171 gc_tracing_throughput_hist_ = metrics->FullGcTracingThroughput();
172 gc_throughput_avg_ = metrics->FullGcThroughputAvg();
173 gc_tracing_throughput_avg_ = metrics->FullGcTracingThroughputAvg();
174 }
175 }
176
MarkHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)177 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
178 bool do_atomic_update) {
179 Thread* const self = Thread::Current();
180 if (UNLIKELY(do_atomic_update)) {
181 // Used to mark the referent in DelayReferenceReferent in transaction mode.
182 mirror::Object* from_ref = field->AsMirrorPtr();
183 if (from_ref == nullptr) {
184 return;
185 }
186 mirror::Object* to_ref = Mark(self, from_ref);
187 if (from_ref != to_ref) {
188 do {
189 if (field->AsMirrorPtr() != from_ref) {
190 // Concurrently overwritten by a mutator.
191 break;
192 }
193 } while (!field->CasWeakRelaxed(from_ref, to_ref));
194 }
195 } else {
196 // Used for preserving soft references, should be OK to not have a CAS here since there should be
197 // no other threads which can trigger read barriers on the same referent during reference
198 // processing.
199 field->Assign(Mark(self, field->AsMirrorPtr()));
200 }
201 }
202
~ConcurrentCopying()203 ConcurrentCopying::~ConcurrentCopying() {
204 STLDeleteElements(&pooled_mark_stacks_);
205 }
206
RunPhases()207 void ConcurrentCopying::RunPhases() {
208 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
209 CHECK(!is_active_);
210 is_active_ = true;
211 Thread* self = Thread::Current();
212 thread_running_gc_ = self;
213 Locks::mutator_lock_->AssertNotHeld(self);
214 {
215 ReaderMutexLock mu(self, *Locks::mutator_lock_);
216 InitializePhase();
217 // In case of forced evacuation, all regions are evacuated and hence no
218 // need to compute live_bytes.
219 if (use_generational_cc_ && !young_gen_ && !force_evacuate_all_) {
220 MarkingPhase();
221 }
222 }
223 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
224 // Switch to read barrier mark entrypoints before we gray the objects. This is required in case
225 // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887).
226 ActivateReadBarrierEntrypoints();
227 // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in
228 // the pause.
229 ReaderMutexLock mu(self, *Locks::mutator_lock_);
230 GrayAllDirtyImmuneObjects();
231 }
232 FlipThreadRoots();
233 {
234 ReaderMutexLock mu(self, *Locks::mutator_lock_);
235 CopyingPhase();
236 }
237 // Verify no from space refs. This causes a pause.
238 if (kEnableNoFromSpaceRefsVerification) {
239 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
240 ScopedPause pause(this, false);
241 CheckEmptyMarkStack();
242 if (kVerboseMode) {
243 LOG(INFO) << "Verifying no from-space refs";
244 }
245 VerifyNoFromSpaceReferences();
246 if (kVerboseMode) {
247 LOG(INFO) << "Done verifying no from-space refs";
248 }
249 CheckEmptyMarkStack();
250 }
251 {
252 ReaderMutexLock mu(self, *Locks::mutator_lock_);
253 ReclaimPhase();
254 }
255 FinishPhase();
256 CHECK(is_active_);
257 is_active_ = false;
258 thread_running_gc_ = nullptr;
259 }
260
261 class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure {
262 public:
ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying * concurrent_copying)263 explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying)
264 : concurrent_copying_(concurrent_copying) {}
265
Run(Thread * thread)266 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
267 // Note: self is not necessarily equal to thread since thread may be suspended.
268 Thread* self = Thread::Current();
269 DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
270 << thread->GetState() << " thread " << thread << " self " << self;
271 // Switch to the read barrier entrypoints.
272 thread->SetReadBarrierEntrypoints();
273 // If thread is a running mutator, then act on behalf of the garbage collector.
274 // See the code in ThreadList::RunCheckpoint.
275 concurrent_copying_->GetBarrier().Pass(self);
276 }
277
278 private:
279 ConcurrentCopying* const concurrent_copying_;
280 };
281
282 class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure {
283 public:
ActivateReadBarrierEntrypointsCallback(ConcurrentCopying * concurrent_copying)284 explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying)
285 : concurrent_copying_(concurrent_copying) {}
286
Run(Thread * self ATTRIBUTE_UNUSED)287 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
288 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
289 // to avoid a race with ThreadList::Register().
290 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
291 concurrent_copying_->is_using_read_barrier_entrypoints_ = true;
292 }
293
294 private:
295 ConcurrentCopying* const concurrent_copying_;
296 };
297
ActivateReadBarrierEntrypoints()298 void ConcurrentCopying::ActivateReadBarrierEntrypoints() {
299 Thread* const self = Thread::Current();
300 ActivateReadBarrierEntrypointsCheckpoint checkpoint(this);
301 ThreadList* thread_list = Runtime::Current()->GetThreadList();
302 gc_barrier_->Init(self, 0);
303 ActivateReadBarrierEntrypointsCallback callback(this);
304 const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback);
305 // If there are no threads to wait which implies that all the checkpoint functions are finished,
306 // then no need to release the mutator lock.
307 if (barrier_count == 0) {
308 return;
309 }
310 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
311 gc_barrier_->Increment(self, barrier_count);
312 }
313
CreateInterRegionRefBitmaps()314 void ConcurrentCopying::CreateInterRegionRefBitmaps() {
315 DCHECK(use_generational_cc_);
316 DCHECK(!region_space_inter_region_bitmap_.IsValid());
317 DCHECK(!non_moving_space_inter_region_bitmap_.IsValid());
318 DCHECK(region_space_ != nullptr);
319 DCHECK(heap_->non_moving_space_ != nullptr);
320 // Region-space
321 region_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
322 "region-space inter region ref bitmap",
323 reinterpret_cast<uint8_t*>(region_space_->Begin()),
324 region_space_->Limit() - region_space_->Begin());
325 CHECK(region_space_inter_region_bitmap_.IsValid())
326 << "Couldn't allocate region-space inter region ref bitmap";
327
328 // non-moving-space
329 non_moving_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
330 "non-moving-space inter region ref bitmap",
331 reinterpret_cast<uint8_t*>(heap_->non_moving_space_->Begin()),
332 heap_->non_moving_space_->Limit() - heap_->non_moving_space_->Begin());
333 CHECK(non_moving_space_inter_region_bitmap_.IsValid())
334 << "Couldn't allocate non-moving-space inter region ref bitmap";
335 }
336
BindBitmaps()337 void ConcurrentCopying::BindBitmaps() {
338 Thread* self = Thread::Current();
339 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
340 // Mark all of the spaces we never collect as immune.
341 for (const auto& space : heap_->GetContinuousSpaces()) {
342 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
343 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
344 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
345 immune_spaces_.AddSpace(space);
346 } else {
347 CHECK(!space->IsZygoteSpace());
348 CHECK(!space->IsImageSpace());
349 CHECK(space == region_space_ || space == heap_->non_moving_space_);
350 if (use_generational_cc_) {
351 if (space == region_space_) {
352 region_space_bitmap_ = region_space_->GetMarkBitmap();
353 } else if (young_gen_ && space->IsContinuousMemMapAllocSpace()) {
354 DCHECK_EQ(space->GetGcRetentionPolicy(), space::kGcRetentionPolicyAlwaysCollect);
355 space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
356 }
357 if (young_gen_) {
358 // Age all of the cards for the region space so that we know which evac regions to scan.
359 heap_->GetCardTable()->ModifyCardsAtomic(space->Begin(),
360 space->End(),
361 AgeCardVisitor(),
362 VoidFunctor());
363 } else {
364 // In a full-heap GC cycle, the card-table corresponding to region-space and
365 // non-moving space can be cleared, because this cycle only needs to
366 // capture writes during the marking phase of this cycle to catch
367 // objects that skipped marking due to heap mutation. Furthermore,
368 // if the next GC is a young-gen cycle, then it only needs writes to
369 // be captured after the thread-flip of this GC cycle, as that is when
370 // the young-gen for the next GC cycle starts getting populated.
371 heap_->GetCardTable()->ClearCardRange(space->Begin(), space->Limit());
372 }
373 } else {
374 if (space == region_space_) {
375 // It is OK to clear the bitmap with mutators running since the only place it is read is
376 // VisitObjects which has exclusion with CC.
377 region_space_bitmap_ = region_space_->GetMarkBitmap();
378 region_space_bitmap_->Clear();
379 }
380 }
381 }
382 }
383 if (use_generational_cc_ && young_gen_) {
384 for (const auto& space : GetHeap()->GetDiscontinuousSpaces()) {
385 CHECK(space->IsLargeObjectSpace());
386 space->AsLargeObjectSpace()->CopyLiveToMarked();
387 }
388 }
389 }
390
InitializePhase()391 void ConcurrentCopying::InitializePhase() {
392 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
393 num_bytes_allocated_before_gc_ = static_cast<int64_t>(heap_->GetBytesAllocated());
394 if (kVerboseMode) {
395 LOG(INFO) << "GC InitializePhase";
396 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
397 << reinterpret_cast<void*>(region_space_->Limit());
398 }
399 CheckEmptyMarkStack();
400 rb_mark_bit_stack_full_ = false;
401 mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
402 if (measure_read_barrier_slow_path_) {
403 rb_slow_path_ns_.store(0, std::memory_order_relaxed);
404 rb_slow_path_count_.store(0, std::memory_order_relaxed);
405 rb_slow_path_count_gc_.store(0, std::memory_order_relaxed);
406 }
407
408 immune_spaces_.Reset();
409 bytes_moved_.store(0, std::memory_order_relaxed);
410 objects_moved_.store(0, std::memory_order_relaxed);
411 bytes_moved_gc_thread_ = 0;
412 objects_moved_gc_thread_ = 0;
413 bytes_scanned_ = 0;
414 GcCause gc_cause = GetCurrentIteration()->GetGcCause();
415
416 force_evacuate_all_ = false;
417 if (!use_generational_cc_ || !young_gen_) {
418 if (gc_cause == kGcCauseExplicit ||
419 gc_cause == kGcCauseCollectorTransition ||
420 GetCurrentIteration()->GetClearSoftReferences()) {
421 force_evacuate_all_ = true;
422 }
423 }
424 if (kUseBakerReadBarrier) {
425 updated_all_immune_objects_.store(false, std::memory_order_relaxed);
426 // GC may gray immune objects in the thread flip.
427 gc_grays_immune_objects_ = true;
428 if (kIsDebugBuild) {
429 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
430 DCHECK(immune_gray_stack_.empty());
431 }
432 }
433 if (use_generational_cc_) {
434 done_scanning_.store(false, std::memory_order_release);
435 }
436 BindBitmaps();
437 if (kVerboseMode) {
438 LOG(INFO) << "young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha;
439 LOG(INFO) << "force_evacuate_all=" << std::boolalpha << force_evacuate_all_ << std::noboolalpha;
440 LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
441 << "-" << immune_spaces_.GetLargestImmuneRegion().End();
442 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
443 LOG(INFO) << "Immune space: " << *space;
444 }
445 LOG(INFO) << "GC end of InitializePhase";
446 }
447 if (use_generational_cc_ && !young_gen_) {
448 region_space_bitmap_->Clear();
449 }
450 mark_stack_mode_.store(ConcurrentCopying::kMarkStackModeThreadLocal, std::memory_order_relaxed);
451 // Mark all of the zygote large objects without graying them.
452 MarkZygoteLargeObjects();
453 }
454
455 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
456 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
457 public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)458 ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
459 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
460 }
461
Run(Thread * thread)462 void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
463 // Note: self is not necessarily equal to thread since thread may be suspended.
464 Thread* self = Thread::Current();
465 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
466 << thread->GetState() << " thread " << thread << " self " << self;
467 thread->SetIsGcMarkingAndUpdateEntrypoints(true);
468 if (use_tlab_ && thread->HasTlab()) {
469 // We should not reuse the partially utilized TLABs revoked here as they
470 // are going to be part of from-space.
471 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
472 // This must come before the revoke.
473 size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
474 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
475 reinterpret_cast<Atomic<size_t>*>(
476 &concurrent_copying_->from_space_num_objects_at_first_pause_)->
477 fetch_add(thread_local_objects, std::memory_order_relaxed);
478 } else {
479 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
480 }
481 }
482 if (kUseThreadLocalAllocationStack) {
483 thread->RevokeThreadLocalAllocationStack();
484 }
485 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
486 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
487 // only.
488 thread->VisitRoots(this, kVisitRootFlagAllRoots);
489 concurrent_copying_->GetBarrier().Pass(self);
490 }
491
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)492 void VisitRoots(mirror::Object*** roots,
493 size_t count,
494 const RootInfo& info ATTRIBUTE_UNUSED) override
495 REQUIRES_SHARED(Locks::mutator_lock_) {
496 Thread* self = Thread::Current();
497 for (size_t i = 0; i < count; ++i) {
498 mirror::Object** root = roots[i];
499 mirror::Object* ref = *root;
500 if (ref != nullptr) {
501 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
502 if (to_ref != ref) {
503 *root = to_ref;
504 }
505 }
506 }
507 }
508
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)509 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
510 size_t count,
511 const RootInfo& info ATTRIBUTE_UNUSED) override
512 REQUIRES_SHARED(Locks::mutator_lock_) {
513 Thread* self = Thread::Current();
514 for (size_t i = 0; i < count; ++i) {
515 mirror::CompressedReference<mirror::Object>* const root = roots[i];
516 if (!root->IsNull()) {
517 mirror::Object* ref = root->AsMirrorPtr();
518 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
519 if (to_ref != ref) {
520 root->Assign(to_ref);
521 }
522 }
523 }
524 }
525
526 private:
527 ConcurrentCopying* const concurrent_copying_;
528 const bool use_tlab_;
529 };
530
531 // Called back from Runtime::FlipThreadRoots() during a pause.
532 class ConcurrentCopying::FlipCallback : public Closure {
533 public:
FlipCallback(ConcurrentCopying * concurrent_copying)534 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
535 : concurrent_copying_(concurrent_copying) {
536 }
537
Run(Thread * thread)538 void Run(Thread* thread) override REQUIRES(Locks::mutator_lock_) {
539 ConcurrentCopying* cc = concurrent_copying_;
540 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
541 // Note: self is not necessarily equal to thread since thread may be suspended.
542 Thread* self = Thread::Current();
543 if (kVerifyNoMissingCardMarks && cc->young_gen_) {
544 cc->VerifyNoMissingCardMarks();
545 }
546 CHECK_EQ(thread, self);
547 Locks::mutator_lock_->AssertExclusiveHeld(self);
548 space::RegionSpace::EvacMode evac_mode = space::RegionSpace::kEvacModeLivePercentNewlyAllocated;
549 if (cc->young_gen_) {
550 CHECK(!cc->force_evacuate_all_);
551 evac_mode = space::RegionSpace::kEvacModeNewlyAllocated;
552 } else if (cc->force_evacuate_all_) {
553 evac_mode = space::RegionSpace::kEvacModeForceAll;
554 }
555 {
556 TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings());
557 // Only change live bytes for 1-phase full heap CC.
558 cc->region_space_->SetFromSpace(
559 cc->rb_table_,
560 evac_mode,
561 /*clear_live_bytes=*/ !cc->use_generational_cc_);
562 }
563 cc->SwapStacks();
564 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
565 cc->RecordLiveStackFreezeSize(self);
566 cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
567 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
568 }
569 cc->is_marking_ = true;
570 if (kIsDebugBuild && !cc->use_generational_cc_) {
571 cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
572 }
573 if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
574 CHECK(Runtime::Current()->IsAotCompiler());
575 TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings());
576 Runtime::Current()->VisitTransactionRoots(cc);
577 }
578 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
579 cc->GrayAllNewlyDirtyImmuneObjects();
580 if (kIsDebugBuild) {
581 // Check that all non-gray immune objects only reference immune objects.
582 cc->VerifyGrayImmuneObjects();
583 }
584 }
585 // May be null during runtime creation, in this case leave java_lang_Object null.
586 // This is safe since single threaded behavior should mean FillWithFakeObject does not
587 // happen when java_lang_Object_ is null.
588 if (WellKnownClasses::java_lang_Object != nullptr) {
589 cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(thread,
590 WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr()));
591 } else {
592 cc->java_lang_Object_ = nullptr;
593 }
594 }
595
596 private:
597 ConcurrentCopying* const concurrent_copying_;
598 };
599
600 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
601 public:
VerifyGrayImmuneObjectsVisitor(ConcurrentCopying * collector)602 explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
603 : collector_(collector) {}
604
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool) const605 void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
606 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
607 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
608 CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
609 obj, offset);
610 }
611
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const612 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
613 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
614 CHECK(klass->IsTypeOfReferenceClass());
615 CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
616 ref,
617 mirror::Reference::ReferentOffset());
618 }
619
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const620 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
621 ALWAYS_INLINE
622 REQUIRES_SHARED(Locks::mutator_lock_) {
623 if (!root->IsNull()) {
624 VisitRoot(root);
625 }
626 }
627
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const628 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
629 ALWAYS_INLINE
630 REQUIRES_SHARED(Locks::mutator_lock_) {
631 CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
632 }
633
634 private:
635 ConcurrentCopying* const collector_;
636
CheckReference(ObjPtr<mirror::Object> ref,ObjPtr<mirror::Object> holder,MemberOffset offset) const637 void CheckReference(ObjPtr<mirror::Object> ref,
638 ObjPtr<mirror::Object> holder,
639 MemberOffset offset) const
640 REQUIRES_SHARED(Locks::mutator_lock_) {
641 if (ref != nullptr) {
642 if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
643 // Not immune, must be a zygote large object.
644 space::LargeObjectSpace* large_object_space =
645 Runtime::Current()->GetHeap()->GetLargeObjectsSpace();
646 CHECK(large_object_space->Contains(ref.Ptr()) &&
647 large_object_space->IsZygoteLargeObject(Thread::Current(), ref.Ptr()))
648 << "Non gray object references non immune, non zygote large object "<< ref << " "
649 << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
650 << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
651 } else {
652 // Make sure the large object class is immune since we will never scan the large object.
653 CHECK(collector_->immune_spaces_.ContainsObject(
654 ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
655 }
656 }
657 }
658 };
659
VerifyGrayImmuneObjects()660 void ConcurrentCopying::VerifyGrayImmuneObjects() {
661 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
662 for (auto& space : immune_spaces_.GetSpaces()) {
663 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
664 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
665 VerifyGrayImmuneObjectsVisitor visitor(this);
666 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
667 reinterpret_cast<uintptr_t>(space->Limit()),
668 [&visitor](mirror::Object* obj)
669 REQUIRES_SHARED(Locks::mutator_lock_) {
670 // If an object is not gray, it should only have references to things in the immune spaces.
671 if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
672 obj->VisitReferences</*kVisitNativeRoots=*/true,
673 kDefaultVerifyFlags,
674 kWithoutReadBarrier>(visitor, visitor);
675 }
676 });
677 }
678 }
679
680 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
681 public:
VerifyNoMissingCardMarkVisitor(ConcurrentCopying * cc,ObjPtr<mirror::Object> holder)682 VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
683 : cc_(cc),
684 holder_(holder) {}
685
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const686 void operator()(ObjPtr<mirror::Object> obj,
687 MemberOffset offset,
688 bool is_static ATTRIBUTE_UNUSED) const
689 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
690 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
691 CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
692 offset), offset.Uint32Value());
693 }
694 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const695 void operator()(ObjPtr<mirror::Class> klass,
696 ObjPtr<mirror::Reference> ref) const
697 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
698 CHECK(klass->IsTypeOfReferenceClass());
699 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
700 }
701
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const702 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
703 REQUIRES_SHARED(Locks::mutator_lock_) {
704 if (!root->IsNull()) {
705 VisitRoot(root);
706 }
707 }
708
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const709 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
710 REQUIRES_SHARED(Locks::mutator_lock_) {
711 CheckReference(root->AsMirrorPtr());
712 }
713
CheckReference(mirror::Object * ref,int32_t offset=-1) const714 void CheckReference(mirror::Object* ref, int32_t offset = -1) const
715 REQUIRES_SHARED(Locks::mutator_lock_) {
716 if (ref != nullptr && cc_->region_space_->IsInNewlyAllocatedRegion(ref)) {
717 LOG(FATAL_WITHOUT_ABORT)
718 << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
719 << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
720 LOG(FATAL_WITHOUT_ABORT) << "time=" << cc_->region_space_->Time();
721 constexpr const char* kIndent = " ";
722 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(holder_.Ptr(), "holder_", kIndent);
723 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(ref, "ref", kIndent);
724 LOG(FATAL) << "Unexpected reference to newly allocated region.";
725 }
726 }
727
728 private:
729 ConcurrentCopying* const cc_;
730 const ObjPtr<mirror::Object> holder_;
731 };
732
VerifyNoMissingCardMarks()733 void ConcurrentCopying::VerifyNoMissingCardMarks() {
734 auto visitor = [&](mirror::Object* obj)
735 REQUIRES(Locks::mutator_lock_)
736 REQUIRES(!mark_stack_lock_) {
737 // Objects on clean cards should never have references to newly allocated regions. Note
738 // that aged cards are also not clean.
739 if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) {
740 VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder=*/ obj);
741 obj->VisitReferences</*kVisitNativeRoots=*/true, kVerifyNone, kWithoutReadBarrier>(
742 internal_visitor, internal_visitor);
743 }
744 };
745 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
746 region_space_->Walk(visitor);
747 {
748 ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
749 heap_->GetLiveBitmap()->Visit(visitor);
750 }
751 }
752
753 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()754 void ConcurrentCopying::FlipThreadRoots() {
755 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
756 if (kVerboseMode || heap_->dump_region_info_before_gc_) {
757 LOG(INFO) << "time=" << region_space_->Time();
758 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
759 }
760 Thread* self = Thread::Current();
761 Locks::mutator_lock_->AssertNotHeld(self);
762 gc_barrier_->Init(self, 0);
763 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
764 FlipCallback flip_callback(this);
765
766 size_t barrier_count = Runtime::Current()->GetThreadList()->FlipThreadRoots(
767 &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener());
768
769 {
770 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
771 gc_barrier_->Increment(self, barrier_count);
772 }
773 is_asserting_to_space_invariant_ = true;
774 QuasiAtomic::ThreadFenceForConstructor();
775 if (kVerboseMode) {
776 LOG(INFO) << "time=" << region_space_->Time();
777 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
778 LOG(INFO) << "GC end of FlipThreadRoots";
779 }
780 }
781
782 template <bool kConcurrent>
783 class ConcurrentCopying::GrayImmuneObjectVisitor {
784 public:
GrayImmuneObjectVisitor(Thread * self)785 explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {}
786
operator ()(mirror::Object * obj) const787 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
788 if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::NonGrayState()) {
789 if (kConcurrent) {
790 Locks::mutator_lock_->AssertSharedHeld(self_);
791 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
792 // Mod union table VisitObjects may visit the same object multiple times so we can't check
793 // the result of the atomic set.
794 } else {
795 Locks::mutator_lock_->AssertExclusiveHeld(self_);
796 obj->SetReadBarrierState(ReadBarrier::GrayState());
797 }
798 }
799 }
800
Callback(mirror::Object * obj,void * arg)801 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
802 reinterpret_cast<GrayImmuneObjectVisitor<kConcurrent>*>(arg)->operator()(obj);
803 }
804
805 private:
806 Thread* const self_;
807 };
808
GrayAllDirtyImmuneObjects()809 void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
810 TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings());
811 accounting::CardTable* const card_table = heap_->GetCardTable();
812 Thread* const self = Thread::Current();
813 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ true>;
814 VisitorType visitor(self);
815 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
816 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
817 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
818 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
819 // Mark all the objects on dirty cards since these may point to objects in other space.
820 // Once these are marked, the GC will eventually clear them later.
821 // Table is non null for boot image and zygote spaces. It is only null for application image
822 // spaces.
823 if (table != nullptr) {
824 table->ProcessCards();
825 table->VisitObjects(&VisitorType::Callback, &visitor);
826 // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here,
827 // there would be races with the mutator marking new cards.
828 } else {
829 // Keep cards aged if we don't have a mod-union table since we may need to scan them in future
830 // GCs. This case is for app images.
831 card_table->ModifyCardsAtomic(
832 space->Begin(),
833 space->End(),
834 [](uint8_t card) {
835 return (card != gc::accounting::CardTable::kCardClean)
836 ? gc::accounting::CardTable::kCardAged
837 : card;
838 },
839 /* card modified visitor */ VoidFunctor());
840 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
841 space->Begin(),
842 space->End(),
843 visitor,
844 gc::accounting::CardTable::kCardAged);
845 }
846 }
847 }
848
GrayAllNewlyDirtyImmuneObjects()849 void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() {
850 TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings());
851 accounting::CardTable* const card_table = heap_->GetCardTable();
852 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ false>;
853 Thread* const self = Thread::Current();
854 VisitorType visitor(self);
855 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
856 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
857 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
858 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
859
860 // Don't need to scan aged cards since we did these before the pause. Note that scanning cards
861 // also handles the mod-union table cards.
862 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
863 space->Begin(),
864 space->End(),
865 visitor,
866 gc::accounting::CardTable::kCardDirty);
867 if (table != nullptr) {
868 // Add the cards to the mod-union table so that we can clear cards to save RAM.
869 table->ProcessCards();
870 TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
871 card_table->ClearCardRange(space->Begin(),
872 AlignDown(space->End(), accounting::CardTable::kCardSize));
873 }
874 }
875 // Since all of the objects that may point to other spaces are gray, we can avoid all the read
876 // barriers in the immune spaces.
877 updated_all_immune_objects_.store(true, std::memory_order_relaxed);
878 }
879
SwapStacks()880 void ConcurrentCopying::SwapStacks() {
881 heap_->SwapStacks();
882 }
883
RecordLiveStackFreezeSize(Thread * self)884 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
885 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
886 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
887 }
888
889 // Used to visit objects in the immune spaces.
ScanImmuneObject(mirror::Object * obj)890 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
891 DCHECK(obj != nullptr);
892 DCHECK(immune_spaces_.ContainsObject(obj));
893 // Update the fields without graying it or pushing it onto the mark stack.
894 if (use_generational_cc_ && young_gen_) {
895 // Young GC does not care about references to unevac space. It is safe to not gray these as
896 // long as scan immune objects happens after scanning the dirty cards.
897 Scan<true>(obj);
898 } else {
899 Scan<false>(obj);
900 }
901 }
902
903 class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
904 public:
ImmuneSpaceScanObjVisitor(ConcurrentCopying * cc)905 explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
906 : collector_(cc) {}
907
operator ()(mirror::Object * obj) const908 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
909 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
910 // Only need to scan gray objects.
911 if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
912 collector_->ScanImmuneObject(obj);
913 // Done scanning the object, go back to black (non-gray).
914 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
915 ReadBarrier::NonGrayState());
916 CHECK(success)
917 << Runtime::Current()->GetHeap()->GetVerification()->DumpObjectInfo(obj, "failed CAS");
918 }
919 } else {
920 collector_->ScanImmuneObject(obj);
921 }
922 }
923
Callback(mirror::Object * obj,void * arg)924 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
925 reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
926 }
927
928 private:
929 ConcurrentCopying* const collector_;
930 };
931
932 template <bool kAtomicTestAndSet>
933 class ConcurrentCopying::CaptureRootsForMarkingVisitor : public RootVisitor {
934 public:
CaptureRootsForMarkingVisitor(ConcurrentCopying * cc,Thread * self)935 explicit CaptureRootsForMarkingVisitor(ConcurrentCopying* cc, Thread* self)
936 : collector_(cc), self_(self) {}
937
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)938 void VisitRoots(mirror::Object*** roots,
939 size_t count,
940 const RootInfo& info ATTRIBUTE_UNUSED) override
941 REQUIRES_SHARED(Locks::mutator_lock_) {
942 for (size_t i = 0; i < count; ++i) {
943 mirror::Object** root = roots[i];
944 mirror::Object* ref = *root;
945 if (ref != nullptr && !collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
946 collector_->PushOntoMarkStack(self_, ref);
947 }
948 }
949 }
950
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)951 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
952 size_t count,
953 const RootInfo& info ATTRIBUTE_UNUSED) override
954 REQUIRES_SHARED(Locks::mutator_lock_) {
955 for (size_t i = 0; i < count; ++i) {
956 mirror::CompressedReference<mirror::Object>* const root = roots[i];
957 if (!root->IsNull()) {
958 mirror::Object* ref = root->AsMirrorPtr();
959 if (!collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
960 collector_->PushOntoMarkStack(self_, ref);
961 }
962 }
963 }
964 }
965
966 private:
967 ConcurrentCopying* const collector_;
968 Thread* const self_;
969 };
970
971 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
972 public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)973 RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
974 bool disable_weak_ref_access)
975 : concurrent_copying_(concurrent_copying),
976 disable_weak_ref_access_(disable_weak_ref_access) {
977 }
978
Run(Thread * thread)979 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
980 // Note: self is not necessarily equal to thread since thread may be suspended.
981 Thread* const self = Thread::Current();
982 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
983 << thread->GetState() << " thread " << thread << " self " << self;
984 // Revoke thread local mark stacks.
985 {
986 MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
987 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
988 if (tl_mark_stack != nullptr) {
989 concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
990 thread->SetThreadLocalMarkStack(nullptr);
991 }
992 }
993 // Disable weak ref access.
994 if (disable_weak_ref_access_) {
995 thread->SetWeakRefAccessEnabled(false);
996 }
997 // If thread is a running mutator, then act on behalf of the garbage collector.
998 // See the code in ThreadList::RunCheckpoint.
999 concurrent_copying_->GetBarrier().Pass(self);
1000 }
1001
1002 protected:
1003 ConcurrentCopying* const concurrent_copying_;
1004
1005 private:
1006 const bool disable_weak_ref_access_;
1007 };
1008
1009 class ConcurrentCopying::CaptureThreadRootsForMarkingAndCheckpoint :
1010 public RevokeThreadLocalMarkStackCheckpoint {
1011 public:
CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying * cc)1012 explicit CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying* cc) :
1013 RevokeThreadLocalMarkStackCheckpoint(cc, /* disable_weak_ref_access */ false) {}
1014
Run(Thread * thread)1015 void Run(Thread* thread) override
1016 REQUIRES_SHARED(Locks::mutator_lock_) {
1017 Thread* const self = Thread::Current();
1018 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1019 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
1020 // only.
1021 CaptureRootsForMarkingVisitor</*kAtomicTestAndSet*/ true> visitor(concurrent_copying_, self);
1022 thread->VisitRoots(&visitor, kVisitRootFlagAllRoots);
1023 // If thread_running_gc_ performed the root visit then its thread-local
1024 // mark-stack should be null as we directly push to gc_mark_stack_.
1025 CHECK(self == thread || self->GetThreadLocalMarkStack() == nullptr);
1026 // Barrier handling is done in the base class' Run() below.
1027 RevokeThreadLocalMarkStackCheckpoint::Run(thread);
1028 }
1029 };
1030
CaptureThreadRootsForMarking()1031 void ConcurrentCopying::CaptureThreadRootsForMarking() {
1032 TimingLogger::ScopedTiming split("CaptureThreadRootsForMarking", GetTimings());
1033 if (kVerboseMode) {
1034 LOG(INFO) << "time=" << region_space_->Time();
1035 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1036 }
1037 Thread* const self = Thread::Current();
1038 CaptureThreadRootsForMarkingAndCheckpoint check_point(this);
1039 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1040 gc_barrier_->Init(self, 0);
1041 size_t barrier_count = thread_list->RunCheckpoint(&check_point, /* callback */ nullptr);
1042 // If there are no threads to wait which implys that all the checkpoint functions are finished,
1043 // then no need to release the mutator lock.
1044 if (barrier_count == 0) {
1045 return;
1046 }
1047 Locks::mutator_lock_->SharedUnlock(self);
1048 {
1049 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1050 gc_barrier_->Increment(self, barrier_count);
1051 }
1052 Locks::mutator_lock_->SharedLock(self);
1053 if (kVerboseMode) {
1054 LOG(INFO) << "time=" << region_space_->Time();
1055 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1056 LOG(INFO) << "GC end of CaptureThreadRootsForMarking";
1057 }
1058 }
1059
1060 // Used to scan ref fields of an object.
1061 template <bool kHandleInterRegionRefs>
1062 class ConcurrentCopying::ComputeLiveBytesAndMarkRefFieldsVisitor {
1063 public:
ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying * collector,size_t obj_region_idx)1064 explicit ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying* collector,
1065 size_t obj_region_idx)
1066 : collector_(collector),
1067 obj_region_idx_(obj_region_idx),
1068 contains_inter_region_idx_(false) {}
1069
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1070 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1071 ALWAYS_INLINE
1072 REQUIRES_SHARED(Locks::mutator_lock_)
1073 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
1074 DCHECK_EQ(collector_->RegionSpace()->RegionIdxForRef(obj), obj_region_idx_);
1075 DCHECK(kHandleInterRegionRefs || collector_->immune_spaces_.ContainsObject(obj));
1076 mirror::Object* ref =
1077 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1078 // TODO(lokeshgidra): Remove the following condition once b/173676071 is fixed.
1079 if (UNLIKELY(ref == nullptr && offset == mirror::Object::ClassOffset())) {
1080 // It has been verified as a race condition (see b/173676071)! After a small
1081 // wait when we reload the class pointer, it turns out to be a valid class
1082 // object. So as a workaround, we can continue execution and log an error
1083 // that this happened.
1084 for (size_t i = 0; i < 1000; i++) {
1085 // Wait for 1ms at a time. Don't wait for more than 1 second in total.
1086 usleep(1000);
1087 ref = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
1088 if (ref != nullptr) {
1089 LOG(ERROR) << "klass pointer for obj: "
1090 << obj << " (" << mirror::Object::PrettyTypeOf(obj)
1091 << ") found to be null first. Reloading after a small wait fetched klass: "
1092 << ref << " (" << mirror::Object::PrettyTypeOf(ref) << ")";
1093 break;
1094 }
1095 }
1096
1097 if (UNLIKELY(ref == nullptr)) {
1098 // It must be heap corruption. Remove memory protection and dump data.
1099 collector_->region_space_->Unprotect();
1100 LOG(FATAL_WITHOUT_ABORT) << "klass pointer for ref: " << obj << " found to be null.";
1101 collector_->heap_->GetVerification()->LogHeapCorruption(obj, offset, ref, /* fatal */ true);
1102 }
1103 }
1104 CheckReference(ref);
1105 }
1106
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1107 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1108 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1109 DCHECK(klass->IsTypeOfReferenceClass());
1110 // If the referent is not null, then we must re-visit the object during
1111 // copying phase to enqueue it for delayed processing and setting
1112 // read-barrier state to gray to ensure that call to GetReferent() triggers
1113 // the read-barrier. We use same data structure that is used to remember
1114 // objects with inter-region refs for this purpose too.
1115 if (kHandleInterRegionRefs
1116 && !contains_inter_region_idx_
1117 && ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr) {
1118 contains_inter_region_idx_ = true;
1119 }
1120 }
1121
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1122 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1123 ALWAYS_INLINE
1124 REQUIRES_SHARED(Locks::mutator_lock_) {
1125 if (!root->IsNull()) {
1126 VisitRoot(root);
1127 }
1128 }
1129
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1130 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1131 ALWAYS_INLINE
1132 REQUIRES_SHARED(Locks::mutator_lock_) {
1133 CheckReference(root->AsMirrorPtr());
1134 }
1135
ContainsInterRegionRefs() const1136 bool ContainsInterRegionRefs() const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) {
1137 return contains_inter_region_idx_;
1138 }
1139
1140 private:
CheckReference(mirror::Object * ref) const1141 void CheckReference(mirror::Object* ref) const
1142 REQUIRES_SHARED(Locks::mutator_lock_) {
1143 if (ref == nullptr) {
1144 // Nothing to do.
1145 return;
1146 }
1147 if (!collector_->TestAndSetMarkBitForRef(ref)) {
1148 collector_->PushOntoLocalMarkStack(ref);
1149 }
1150 if (kHandleInterRegionRefs && !contains_inter_region_idx_) {
1151 size_t ref_region_idx = collector_->RegionSpace()->RegionIdxForRef(ref);
1152 // If a region-space object refers to an outside object, we will have a
1153 // mismatch of region idx, but the object need not be re-visited in
1154 // copying phase.
1155 if (ref_region_idx != static_cast<size_t>(-1) && obj_region_idx_ != ref_region_idx) {
1156 contains_inter_region_idx_ = true;
1157 }
1158 }
1159 }
1160
1161 ConcurrentCopying* const collector_;
1162 const size_t obj_region_idx_;
1163 mutable bool contains_inter_region_idx_;
1164 };
1165
AddLiveBytesAndScanRef(mirror::Object * ref)1166 void ConcurrentCopying::AddLiveBytesAndScanRef(mirror::Object* ref) {
1167 DCHECK(ref != nullptr);
1168 DCHECK(!immune_spaces_.ContainsObject(ref));
1169 DCHECK(TestMarkBitmapForRef(ref));
1170 size_t obj_region_idx = static_cast<size_t>(-1);
1171 if (LIKELY(region_space_->HasAddress(ref))) {
1172 obj_region_idx = region_space_->RegionIdxForRefUnchecked(ref);
1173 // Add live bytes to the corresponding region
1174 if (!region_space_->IsRegionNewlyAllocated(obj_region_idx)) {
1175 // Newly Allocated regions are always chosen for evacuation. So no need
1176 // to update live_bytes_.
1177 size_t obj_size = ref->SizeOf<kDefaultVerifyFlags>();
1178 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1179 region_space_->AddLiveBytes(ref, alloc_size);
1180 }
1181 }
1182 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ true>
1183 visitor(this, obj_region_idx);
1184 ref->VisitReferences</*kVisitNativeRoots=*/ true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1185 visitor, visitor);
1186 // Mark the corresponding card dirty if the object contains any
1187 // inter-region reference.
1188 if (visitor.ContainsInterRegionRefs()) {
1189 if (obj_region_idx == static_cast<size_t>(-1)) {
1190 // If an inter-region ref has been found in a non-region-space, then it
1191 // must be non-moving-space. This is because this function cannot be
1192 // called on a immune-space object, and a large-object-space object has
1193 // only class object reference, which is either in some immune-space, or
1194 // in non-moving-space.
1195 DCHECK(heap_->non_moving_space_->HasAddress(ref));
1196 non_moving_space_inter_region_bitmap_.Set(ref);
1197 } else {
1198 region_space_inter_region_bitmap_.Set(ref);
1199 }
1200 }
1201 }
1202
1203 template <bool kAtomic>
TestAndSetMarkBitForRef(mirror::Object * ref)1204 bool ConcurrentCopying::TestAndSetMarkBitForRef(mirror::Object* ref) {
1205 accounting::ContinuousSpaceBitmap* bitmap = nullptr;
1206 accounting::LargeObjectBitmap* los_bitmap = nullptr;
1207 if (LIKELY(region_space_->HasAddress(ref))) {
1208 bitmap = region_space_bitmap_;
1209 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1210 bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
1211 } else if (immune_spaces_.ContainsObject(ref)) {
1212 // References to immune space objects are always live.
1213 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1214 return true;
1215 } else {
1216 // Should be a large object. Must be page aligned and the LOS must exist.
1217 if (kIsDebugBuild
1218 && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
1219 // It must be heap corruption. Remove memory protection and dump data.
1220 region_space_->Unprotect();
1221 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1222 MemberOffset(0),
1223 ref,
1224 /* fatal */ true);
1225 }
1226 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
1227 }
1228 if (kAtomic) {
1229 return (bitmap != nullptr) ? bitmap->AtomicTestAndSet(ref) : los_bitmap->AtomicTestAndSet(ref);
1230 } else {
1231 return (bitmap != nullptr) ? bitmap->Set(ref) : los_bitmap->Set(ref);
1232 }
1233 }
1234
TestMarkBitmapForRef(mirror::Object * ref)1235 bool ConcurrentCopying::TestMarkBitmapForRef(mirror::Object* ref) {
1236 if (LIKELY(region_space_->HasAddress(ref))) {
1237 return region_space_bitmap_->Test(ref);
1238 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1239 return heap_->GetNonMovingSpace()->GetMarkBitmap()->Test(ref);
1240 } else if (immune_spaces_.ContainsObject(ref)) {
1241 // References to immune space objects are always live.
1242 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1243 return true;
1244 } else {
1245 // Should be a large object. Must be page aligned and the LOS must exist.
1246 if (kIsDebugBuild
1247 && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
1248 // It must be heap corruption. Remove memory protection and dump data.
1249 region_space_->Unprotect();
1250 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1251 MemberOffset(0),
1252 ref,
1253 /* fatal */ true);
1254 }
1255 return heap_->GetLargeObjectsSpace()->GetMarkBitmap()->Test(ref);
1256 }
1257 }
1258
PushOntoLocalMarkStack(mirror::Object * ref)1259 void ConcurrentCopying::PushOntoLocalMarkStack(mirror::Object* ref) {
1260 if (kIsDebugBuild) {
1261 Thread *self = Thread::Current();
1262 DCHECK_EQ(thread_running_gc_, self);
1263 DCHECK(self->GetThreadLocalMarkStack() == nullptr);
1264 }
1265 DCHECK_EQ(mark_stack_mode_.load(std::memory_order_relaxed), kMarkStackModeThreadLocal);
1266 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1267 ExpandGcMarkStack();
1268 }
1269 gc_mark_stack_->PushBack(ref);
1270 }
1271
ProcessMarkStackForMarkingAndComputeLiveBytes()1272 void ConcurrentCopying::ProcessMarkStackForMarkingAndComputeLiveBytes() {
1273 // Process thread-local mark stack containing thread roots
1274 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ false,
1275 /* checkpoint_callback */ nullptr,
1276 [this] (mirror::Object* ref)
1277 REQUIRES_SHARED(Locks::mutator_lock_) {
1278 AddLiveBytesAndScanRef(ref);
1279 });
1280 {
1281 MutexLock mu(thread_running_gc_, mark_stack_lock_);
1282 CHECK(revoked_mark_stacks_.empty());
1283 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
1284 }
1285
1286 while (!gc_mark_stack_->IsEmpty()) {
1287 mirror::Object* ref = gc_mark_stack_->PopBack();
1288 AddLiveBytesAndScanRef(ref);
1289 }
1290 }
1291
1292 class ConcurrentCopying::ImmuneSpaceCaptureRefsVisitor {
1293 public:
ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying * cc)1294 explicit ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying* cc) : collector_(cc) {}
1295
operator ()(mirror::Object * obj) const1296 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
1297 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ false>
1298 visitor(collector_, /*obj_region_idx*/ static_cast<size_t>(-1));
1299 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1300 visitor, visitor);
1301 }
1302
Callback(mirror::Object * obj,void * arg)1303 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
1304 reinterpret_cast<ImmuneSpaceCaptureRefsVisitor*>(arg)->operator()(obj);
1305 }
1306
1307 private:
1308 ConcurrentCopying* const collector_;
1309 };
1310
1311 /* Invariants for two-phase CC
1312 * ===========================
1313 * A) Definitions
1314 * ---------------
1315 * 1) Black: marked in bitmap, rb_state is non-gray, and not in mark stack
1316 * 2) Black-clean: marked in bitmap, and corresponding card is clean/aged
1317 * 3) Black-dirty: marked in bitmap, and corresponding card is dirty
1318 * 4) Gray: marked in bitmap, and exists in mark stack
1319 * 5) Gray-dirty: marked in bitmap, rb_state is gray, corresponding card is
1320 * dirty, and exists in mark stack
1321 * 6) White: unmarked in bitmap, rb_state is non-gray, and not in mark stack
1322 *
1323 * B) Before marking phase
1324 * -----------------------
1325 * 1) All objects are white
1326 * 2) Cards are either clean or aged (cannot be asserted without a STW pause)
1327 * 3) Mark bitmap is cleared
1328 * 4) Mark stack is empty
1329 *
1330 * C) During marking phase
1331 * ------------------------
1332 * 1) If a black object holds an inter-region or white reference, then its
1333 * corresponding card is dirty. In other words, it changes from being
1334 * black-clean to black-dirty
1335 * 2) No black-clean object points to a white object
1336 *
1337 * D) After marking phase
1338 * -----------------------
1339 * 1) There are no gray objects
1340 * 2) All newly allocated objects are in from space
1341 * 3) No white object can be reachable, directly or otherwise, from a
1342 * black-clean object
1343 *
1344 * E) During copying phase
1345 * ------------------------
1346 * 1) Mutators cannot observe white and black-dirty objects
1347 * 2) New allocations are in to-space (newly allocated regions are part of to-space)
1348 * 3) An object in mark stack must have its rb_state = Gray
1349 *
1350 * F) During card table scan
1351 * --------------------------
1352 * 1) Referents corresponding to root references are gray or in to-space
1353 * 2) Every path from an object that is read or written by a mutator during
1354 * this period to a dirty black object goes through some gray object.
1355 * Mutators preserve this by graying black objects as needed during this
1356 * period. Ensures that a mutator never encounters a black dirty object.
1357 *
1358 * G) After card table scan
1359 * ------------------------
1360 * 1) There are no black-dirty objects
1361 * 2) Referents corresponding to root references are gray, black-clean or in
1362 * to-space
1363 *
1364 * H) After copying phase
1365 * -----------------------
1366 * 1) Mark stack is empty
1367 * 2) No references into evacuated from-space
1368 * 3) No reference to an object which is unmarked and is also not in newly
1369 * allocated region. In other words, no reference to white objects.
1370 */
1371
MarkingPhase()1372 void ConcurrentCopying::MarkingPhase() {
1373 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
1374 if (kVerboseMode) {
1375 LOG(INFO) << "GC MarkingPhase";
1376 }
1377 accounting::CardTable* const card_table = heap_->GetCardTable();
1378 Thread* const self = Thread::Current();
1379 CHECK_EQ(self, thread_running_gc_);
1380 // Clear live_bytes_ of every non-free region, except the ones that are newly
1381 // allocated.
1382 region_space_->SetAllRegionLiveBytesZero();
1383 if (kIsDebugBuild) {
1384 region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1385 }
1386 // Scan immune spaces
1387 {
1388 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1389 for (auto& space : immune_spaces_.GetSpaces()) {
1390 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1391 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1392 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1393 ImmuneSpaceCaptureRefsVisitor visitor(this);
1394 if (table != nullptr) {
1395 table->VisitObjects(ImmuneSpaceCaptureRefsVisitor::Callback, &visitor);
1396 } else {
1397 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1398 card_table->Scan<false>(
1399 live_bitmap,
1400 space->Begin(),
1401 space->Limit(),
1402 visitor,
1403 accounting::CardTable::kCardDirty - 1);
1404 }
1405 }
1406 }
1407 // Scan runtime roots
1408 {
1409 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1410 CaptureRootsForMarkingVisitor visitor(this, self);
1411 Runtime::Current()->VisitConcurrentRoots(&visitor, kVisitRootFlagAllRoots);
1412 }
1413 {
1414 // TODO: don't visit the transaction roots if it's not active.
1415 TimingLogger::ScopedTiming split2("VisitNonThreadRoots", GetTimings());
1416 CaptureRootsForMarkingVisitor visitor(this, self);
1417 Runtime::Current()->VisitNonThreadRoots(&visitor);
1418 }
1419 // Capture thread roots
1420 CaptureThreadRootsForMarking();
1421 // Process mark stack
1422 ProcessMarkStackForMarkingAndComputeLiveBytes();
1423
1424 if (kVerboseMode) {
1425 LOG(INFO) << "GC end of MarkingPhase";
1426 }
1427 }
1428
1429 template <bool kNoUnEvac>
ScanDirtyObject(mirror::Object * obj)1430 void ConcurrentCopying::ScanDirtyObject(mirror::Object* obj) {
1431 Scan<kNoUnEvac>(obj);
1432 // Set the read-barrier state of a reference-type object to gray if its
1433 // referent is not marked yet. This is to ensure that if GetReferent() is
1434 // called, it triggers the read-barrier to process the referent before use.
1435 if (UNLIKELY((obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass()))) {
1436 mirror::Object* referent =
1437 obj->AsReference<kVerifyNone, kWithoutReadBarrier>()->GetReferent<kWithoutReadBarrier>();
1438 if (referent != nullptr && !IsInToSpace(referent)) {
1439 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
1440 }
1441 }
1442 }
1443
1444 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
CopyingPhase()1445 void ConcurrentCopying::CopyingPhase() {
1446 TimingLogger::ScopedTiming split("CopyingPhase", GetTimings());
1447 if (kVerboseMode) {
1448 LOG(INFO) << "GC CopyingPhase";
1449 }
1450 Thread* self = Thread::Current();
1451 accounting::CardTable* const card_table = heap_->GetCardTable();
1452 if (kIsDebugBuild) {
1453 MutexLock mu(self, *Locks::thread_list_lock_);
1454 CHECK(weak_ref_access_enabled_);
1455 }
1456
1457 // Scan immune spaces.
1458 // Update all the fields in the immune spaces first without graying the objects so that we
1459 // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
1460 // of the objects.
1461 if (kUseBakerReadBarrier) {
1462 gc_grays_immune_objects_ = false;
1463 }
1464 if (use_generational_cc_) {
1465 if (kVerboseMode) {
1466 LOG(INFO) << "GC ScanCardsForSpace";
1467 }
1468 TimingLogger::ScopedTiming split2("ScanCardsForSpace", GetTimings());
1469 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1470 CHECK(!done_scanning_.load(std::memory_order_relaxed));
1471 if (kIsDebugBuild) {
1472 // Leave some time for mutators to race ahead to try and find races between the GC card
1473 // scanning and mutators reading references.
1474 usleep(10 * 1000);
1475 }
1476 for (space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) {
1477 if (space->IsImageSpace() || space->IsZygoteSpace()) {
1478 // Image and zygote spaces are already handled since we gray the objects in the pause.
1479 continue;
1480 }
1481 // Scan all of the objects on dirty cards in unevac from space, and non moving space. These
1482 // are from previous GCs (or from marking phase of 2-phase full GC) and may reference things
1483 // in the from space.
1484 //
1485 // Note that we do not need to process the large-object space (the only discontinuous space)
1486 // as it contains only large string objects and large primitive array objects, that have no
1487 // reference to other objects, except their class. There is no need to scan these large
1488 // objects, as the String class and the primitive array classes are expected to never move
1489 // during a collection:
1490 // - In the case where we run with a boot image, these classes are part of the image space,
1491 // which is an immune space.
1492 // - In the case where we run without a boot image, these classes are allocated in the
1493 // non-moving space (see art::ClassLinker::InitWithoutImage).
1494 card_table->Scan<false>(
1495 space->GetMarkBitmap(),
1496 space->Begin(),
1497 space->End(),
1498 [this, space](mirror::Object* obj)
1499 REQUIRES(Locks::heap_bitmap_lock_)
1500 REQUIRES_SHARED(Locks::mutator_lock_) {
1501 // TODO: This code may be refactored to avoid scanning object while
1502 // done_scanning_ is false by setting rb_state to gray, and pushing the
1503 // object on mark stack. However, it will also require clearing the
1504 // corresponding mark-bit and, for region space objects,
1505 // decrementing the object's size from the corresponding region's
1506 // live_bytes.
1507 if (young_gen_) {
1508 // Don't push or gray unevac refs.
1509 if (kIsDebugBuild && space == region_space_) {
1510 // We may get unevac large objects.
1511 if (!region_space_->IsInUnevacFromSpace(obj)) {
1512 CHECK(region_space_bitmap_->Test(obj));
1513 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
1514 LOG(FATAL) << "Scanning " << obj << " not in unevac space";
1515 }
1516 }
1517 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1518 } else if (space != region_space_) {
1519 DCHECK(space == heap_->non_moving_space_);
1520 // We need to process un-evac references as they may be unprocessed,
1521 // if they skipped the marking phase due to heap mutation.
1522 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1523 non_moving_space_inter_region_bitmap_.Clear(obj);
1524 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1525 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1526 region_space_inter_region_bitmap_.Clear(obj);
1527 }
1528 },
1529 accounting::CardTable::kCardAged);
1530
1531 if (!young_gen_) {
1532 auto visitor = [this](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1533 // We don't need to process un-evac references as any unprocessed
1534 // ones will be taken care of in the card-table scan above.
1535 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1536 };
1537 if (space == region_space_) {
1538 region_space_->ScanUnevacFromSpace(®ion_space_inter_region_bitmap_, visitor);
1539 } else {
1540 DCHECK(space == heap_->non_moving_space_);
1541 non_moving_space_inter_region_bitmap_.VisitMarkedRange(
1542 reinterpret_cast<uintptr_t>(space->Begin()),
1543 reinterpret_cast<uintptr_t>(space->End()),
1544 visitor);
1545 }
1546 }
1547 }
1548 // Done scanning unevac space.
1549 done_scanning_.store(true, std::memory_order_release);
1550 // NOTE: inter-region-ref bitmaps can be cleared here to release memory, if needed.
1551 // Currently we do it in ReclaimPhase().
1552 if (kVerboseMode) {
1553 LOG(INFO) << "GC end of ScanCardsForSpace";
1554 }
1555 }
1556 {
1557 // For a sticky-bit collection, this phase needs to be after the card scanning since the
1558 // mutator may read an unevac space object out of an image object. If the image object is no
1559 // longer gray it will trigger a read barrier for the unevac space object.
1560 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1561 for (auto& space : immune_spaces_.GetSpaces()) {
1562 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1563 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1564 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1565 ImmuneSpaceScanObjVisitor visitor(this);
1566 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
1567 table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
1568 } else {
1569 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1570 card_table->Scan<false>(
1571 live_bitmap,
1572 space->Begin(),
1573 space->Limit(),
1574 visitor,
1575 accounting::CardTable::kCardDirty - 1);
1576 }
1577 }
1578 }
1579 if (kUseBakerReadBarrier) {
1580 // This release fence makes the field updates in the above loop visible before allowing mutator
1581 // getting access to immune objects without graying it first.
1582 updated_all_immune_objects_.store(true, std::memory_order_release);
1583 // Now "un-gray" (conceptually blacken) immune objects concurrently accessed and grayed by
1584 // mutators. We can't do this in the above loop because we would incorrectly disable the read
1585 // barrier by un-graying (conceptually blackening) an object which may point to an unscanned,
1586 // white object, breaking the to-space invariant (a mutator shall never observe a from-space
1587 // (white) object).
1588 //
1589 // Make sure no mutators are in the middle of marking an immune object before un-graying
1590 // (blackening) immune objects.
1591 IssueEmptyCheckpoint();
1592 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
1593 if (kVerboseMode) {
1594 LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
1595 }
1596 for (mirror::Object* obj : immune_gray_stack_) {
1597 DCHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::GrayState());
1598 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
1599 ReadBarrier::NonGrayState());
1600 DCHECK(success);
1601 }
1602 immune_gray_stack_.clear();
1603 }
1604
1605 {
1606 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1607 Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
1608 }
1609 {
1610 // TODO: don't visit the transaction roots if it's not active.
1611 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
1612 Runtime::Current()->VisitNonThreadRoots(this);
1613 }
1614
1615 {
1616 TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings());
1617 // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
1618 // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
1619 // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
1620 // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
1621 // reach the point where we process weak references, we can avoid using a lock when accessing
1622 // the GC mark stack, which makes mark stack processing more efficient.
1623
1624 // Process the mark stack once in the thread local stack mode. This marks most of the live
1625 // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
1626 // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
1627 // objects and push refs on the mark stack.
1628 ProcessMarkStack();
1629 // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
1630 // for the last time before transitioning to the shared mark stack mode, which would process new
1631 // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
1632 // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
1633 // important to do these together so that we can ensure that mutators won't
1634 // newly gray objects and push new refs onto the mark stack due to weak ref accesses and
1635 // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
1636 // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
1637 // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
1638 // We must use a stop-the-world pause to disable weak ref access. A checkpoint may lead to a
1639 // deadlock if one mutator acquires a low-level mutex and then gets blocked while accessing
1640 // a weak-ref (after participating in the checkpoint), and another mutator indefinitely waits
1641 // for the mutex before it participates in the checkpoint. Consequently, the gc-thread blocks
1642 // forever as the checkpoint never finishes (See runtime/mutator_gc_coord.md).
1643 SwitchToSharedMarkStackMode();
1644 CHECK(!self->GetWeakRefAccessEnabled());
1645 // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
1646 // (which may be non-empty if there were refs found on thread-local mark stacks during the above
1647 // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
1648 // (via read barriers) have no way to produce any more refs to process. Marking converges once
1649 // before we process weak refs below.
1650 ProcessMarkStack();
1651 CheckEmptyMarkStack();
1652 // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
1653 // lock from this point on.
1654 SwitchToGcExclusiveMarkStackMode();
1655 CheckEmptyMarkStack();
1656 if (kVerboseMode) {
1657 LOG(INFO) << "ProcessReferences";
1658 }
1659 // Process weak references. This may produce new refs to process and have them processed via
1660 // ProcessMarkStack (in the GC exclusive mark stack mode).
1661 ProcessReferences(self);
1662 CheckEmptyMarkStack();
1663 if (kVerboseMode) {
1664 LOG(INFO) << "SweepSystemWeaks";
1665 }
1666 SweepSystemWeaks(self);
1667 if (kVerboseMode) {
1668 LOG(INFO) << "SweepSystemWeaks done";
1669 }
1670 // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
1671 // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
1672 // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
1673 ProcessMarkStack();
1674 CheckEmptyMarkStack();
1675 // Re-enable weak ref accesses.
1676 ReenableWeakRefAccess(self);
1677 // Free data for class loaders that we unloaded.
1678 Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
1679 // Marking is done. Disable marking.
1680 DisableMarking();
1681 CheckEmptyMarkStack();
1682 }
1683
1684 if (kIsDebugBuild) {
1685 MutexLock mu(self, *Locks::thread_list_lock_);
1686 CHECK(weak_ref_access_enabled_);
1687 }
1688 if (kVerboseMode) {
1689 LOG(INFO) << "GC end of CopyingPhase";
1690 }
1691 }
1692
ReenableWeakRefAccess(Thread * self)1693 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
1694 if (kVerboseMode) {
1695 LOG(INFO) << "ReenableWeakRefAccess";
1696 }
1697 // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
1698 {
1699 MutexLock mu(self, *Locks::thread_list_lock_);
1700 weak_ref_access_enabled_ = true; // This is for new threads.
1701 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1702 for (Thread* thread : thread_list) {
1703 thread->SetWeakRefAccessEnabled(true);
1704 }
1705 }
1706 // Unblock blocking threads.
1707 GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
1708 Runtime::Current()->BroadcastForNewSystemWeaks();
1709 }
1710
1711 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
1712 public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)1713 explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
1714 : concurrent_copying_(concurrent_copying) {
1715 }
1716
Run(Thread * thread)1717 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
1718 // Note: self is not necessarily equal to thread since thread may be suspended.
1719 Thread* self = Thread::Current();
1720 DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1721 << thread->GetState() << " thread " << thread << " self " << self;
1722 // Disable the thread-local is_gc_marking flag.
1723 // Note a thread that has just started right before this checkpoint may have already this flag
1724 // set to false, which is ok.
1725 thread->SetIsGcMarkingAndUpdateEntrypoints(false);
1726 // If thread is a running mutator, then act on behalf of the garbage collector.
1727 // See the code in ThreadList::RunCheckpoint.
1728 concurrent_copying_->GetBarrier().Pass(self);
1729 }
1730
1731 private:
1732 ConcurrentCopying* const concurrent_copying_;
1733 };
1734
1735 class ConcurrentCopying::DisableMarkingCallback : public Closure {
1736 public:
DisableMarkingCallback(ConcurrentCopying * concurrent_copying)1737 explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
1738 : concurrent_copying_(concurrent_copying) {
1739 }
1740
Run(Thread * self ATTRIBUTE_UNUSED)1741 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
1742 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
1743 // to avoid a race with ThreadList::Register().
1744 CHECK(concurrent_copying_->is_marking_);
1745 concurrent_copying_->is_marking_ = false;
1746 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
1747 CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_);
1748 concurrent_copying_->is_using_read_barrier_entrypoints_ = false;
1749 } else {
1750 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
1751 }
1752 }
1753
1754 private:
1755 ConcurrentCopying* const concurrent_copying_;
1756 };
1757
IssueDisableMarkingCheckpoint()1758 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
1759 Thread* self = Thread::Current();
1760 DisableMarkingCheckpoint check_point(this);
1761 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1762 gc_barrier_->Init(self, 0);
1763 DisableMarkingCallback dmc(this);
1764 size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
1765 // If there are no threads to wait which implies that all the checkpoint functions are finished,
1766 // then no need to release the mutator lock.
1767 if (barrier_count == 0) {
1768 return;
1769 }
1770 // Release locks then wait for all mutator threads to pass the barrier.
1771 Locks::mutator_lock_->SharedUnlock(self);
1772 {
1773 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1774 gc_barrier_->Increment(self, barrier_count);
1775 }
1776 Locks::mutator_lock_->SharedLock(self);
1777 }
1778
DisableMarking()1779 void ConcurrentCopying::DisableMarking() {
1780 // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
1781 // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
1782 // cached in a local variable.
1783 IssueDisableMarkingCheckpoint();
1784 if (kUseTableLookupReadBarrier) {
1785 heap_->rb_table_->ClearAll();
1786 DCHECK(heap_->rb_table_->IsAllCleared());
1787 }
1788 is_mark_stack_push_disallowed_.store(1, std::memory_order_seq_cst);
1789 mark_stack_mode_.store(kMarkStackModeOff, std::memory_order_seq_cst);
1790 }
1791
IssueEmptyCheckpoint()1792 void ConcurrentCopying::IssueEmptyCheckpoint() {
1793 Thread* self = Thread::Current();
1794 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1795 // Release locks then wait for all mutator threads to pass the barrier.
1796 Locks::mutator_lock_->SharedUnlock(self);
1797 thread_list->RunEmptyCheckpoint();
1798 Locks::mutator_lock_->SharedLock(self);
1799 }
1800
ExpandGcMarkStack()1801 void ConcurrentCopying::ExpandGcMarkStack() {
1802 DCHECK(gc_mark_stack_->IsFull());
1803 const size_t new_size = gc_mark_stack_->Capacity() * 2;
1804 std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
1805 gc_mark_stack_->End());
1806 gc_mark_stack_->Resize(new_size);
1807 for (auto& ref : temp) {
1808 gc_mark_stack_->PushBack(ref.AsMirrorPtr());
1809 }
1810 DCHECK(!gc_mark_stack_->IsFull());
1811 }
1812
PushOntoMarkStack(Thread * const self,mirror::Object * to_ref)1813 void ConcurrentCopying::PushOntoMarkStack(Thread* const self, mirror::Object* to_ref) {
1814 CHECK_EQ(is_mark_stack_push_disallowed_.load(std::memory_order_relaxed), 0)
1815 << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
1816 CHECK(thread_running_gc_ != nullptr);
1817 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
1818 if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
1819 if (LIKELY(self == thread_running_gc_)) {
1820 // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
1821 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1822 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1823 ExpandGcMarkStack();
1824 }
1825 gc_mark_stack_->PushBack(to_ref);
1826 } else {
1827 // Otherwise, use a thread-local mark stack.
1828 accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
1829 if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
1830 MutexLock mu(self, mark_stack_lock_);
1831 // Get a new thread local mark stack.
1832 accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
1833 if (!pooled_mark_stacks_.empty()) {
1834 // Use a pooled mark stack.
1835 new_tl_mark_stack = pooled_mark_stacks_.back();
1836 pooled_mark_stacks_.pop_back();
1837 } else {
1838 // None pooled. Create a new one.
1839 new_tl_mark_stack =
1840 accounting::AtomicStack<mirror::Object>::Create(
1841 "thread local mark stack", 4 * KB, 4 * KB);
1842 }
1843 DCHECK(new_tl_mark_stack != nullptr);
1844 DCHECK(new_tl_mark_stack->IsEmpty());
1845 new_tl_mark_stack->PushBack(to_ref);
1846 self->SetThreadLocalMarkStack(new_tl_mark_stack);
1847 if (tl_mark_stack != nullptr) {
1848 // Store the old full stack into a vector.
1849 revoked_mark_stacks_.push_back(tl_mark_stack);
1850 }
1851 } else {
1852 tl_mark_stack->PushBack(to_ref);
1853 }
1854 }
1855 } else if (mark_stack_mode == kMarkStackModeShared) {
1856 // Access the shared GC mark stack with a lock.
1857 MutexLock mu(self, mark_stack_lock_);
1858 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1859 ExpandGcMarkStack();
1860 }
1861 gc_mark_stack_->PushBack(to_ref);
1862 } else {
1863 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1864 static_cast<uint32_t>(kMarkStackModeGcExclusive))
1865 << "ref=" << to_ref
1866 << " self->gc_marking=" << self->GetIsGcMarking()
1867 << " cc->is_marking=" << is_marking_;
1868 CHECK(self == thread_running_gc_)
1869 << "Only GC-running thread should access the mark stack "
1870 << "in the GC exclusive mark stack mode";
1871 // Access the GC mark stack without a lock.
1872 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1873 ExpandGcMarkStack();
1874 }
1875 gc_mark_stack_->PushBack(to_ref);
1876 }
1877 }
1878
GetAllocationStack()1879 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
1880 return heap_->allocation_stack_.get();
1881 }
1882
GetLiveStack()1883 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
1884 return heap_->live_stack_.get();
1885 }
1886
1887 // The following visitors are used to verify that there's no references to the from-space left after
1888 // marking.
1889 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
1890 public:
VerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)1891 explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
1892 : collector_(collector) {}
1893
operator ()(mirror::Object * ref,MemberOffset offset=MemberOffset (0),mirror::Object * holder=nullptr) const1894 void operator()(mirror::Object* ref,
1895 MemberOffset offset = MemberOffset(0),
1896 mirror::Object* holder = nullptr) const
1897 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1898 if (ref == nullptr) {
1899 // OK.
1900 return;
1901 }
1902 collector_->AssertToSpaceInvariant(holder, offset, ref);
1903 if (kUseBakerReadBarrier) {
1904 CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState())
1905 << "Ref " << ref << " " << ref->PrettyTypeOf() << " has gray rb_state";
1906 }
1907 }
1908
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)1909 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
1910 override REQUIRES_SHARED(Locks::mutator_lock_) {
1911 DCHECK(root != nullptr);
1912 operator()(root);
1913 }
1914
1915 private:
1916 ConcurrentCopying* const collector_;
1917 };
1918
1919 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
1920 public:
VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)1921 explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
1922 : collector_(collector) {}
1923
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1924 void operator()(ObjPtr<mirror::Object> obj,
1925 MemberOffset offset,
1926 bool is_static ATTRIBUTE_UNUSED) const
1927 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1928 mirror::Object* ref =
1929 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1930 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1931 visitor(ref, offset, obj.Ptr());
1932 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1933 void operator()(ObjPtr<mirror::Class> klass,
1934 ObjPtr<mirror::Reference> ref) const
1935 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1936 CHECK(klass->IsTypeOfReferenceClass());
1937 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
1938 }
1939
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1940 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1941 REQUIRES_SHARED(Locks::mutator_lock_) {
1942 if (!root->IsNull()) {
1943 VisitRoot(root);
1944 }
1945 }
1946
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1947 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1948 REQUIRES_SHARED(Locks::mutator_lock_) {
1949 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1950 visitor(root->AsMirrorPtr());
1951 }
1952
1953 private:
1954 ConcurrentCopying* const collector_;
1955 };
1956
1957 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()1958 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
1959 Thread* self = Thread::Current();
1960 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
1961 // Verify all threads have is_gc_marking to be false
1962 {
1963 MutexLock mu(self, *Locks::thread_list_lock_);
1964 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1965 for (Thread* thread : thread_list) {
1966 CHECK(!thread->GetIsGcMarking());
1967 }
1968 }
1969
1970 auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj)
1971 REQUIRES_SHARED(Locks::mutator_lock_) {
1972 CHECK(obj != nullptr);
1973 space::RegionSpace* region_space = RegionSpace();
1974 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
1975 VerifyNoFromSpaceRefsFieldVisitor visitor(this);
1976 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1977 visitor,
1978 visitor);
1979 if (kUseBakerReadBarrier) {
1980 CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::NonGrayState())
1981 << "obj=" << obj << " has gray rb_state " << obj->GetReadBarrierState();
1982 }
1983 };
1984 // Roots.
1985 {
1986 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1987 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
1988 Runtime::Current()->VisitRoots(&ref_visitor);
1989 }
1990 // The to-space.
1991 region_space_->WalkToSpace(verify_no_from_space_refs_visitor);
1992 // Non-moving spaces.
1993 {
1994 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1995 heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor);
1996 }
1997 // The alloc stack.
1998 {
1999 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
2000 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
2001 it < end; ++it) {
2002 mirror::Object* const obj = it->AsMirrorPtr();
2003 if (obj != nullptr && obj->GetClass() != nullptr) {
2004 // TODO: need to call this only if obj is alive?
2005 ref_visitor(obj);
2006 verify_no_from_space_refs_visitor(obj);
2007 }
2008 }
2009 }
2010 // TODO: LOS. But only refs in LOS are classes.
2011 }
2012
2013 // The following visitors are used to assert the to-space invariant.
2014 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
2015 public:
AssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)2016 explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
2017 : collector_(collector) {}
2018
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2019 void operator()(ObjPtr<mirror::Object> obj,
2020 MemberOffset offset,
2021 bool is_static ATTRIBUTE_UNUSED) const
2022 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2023 mirror::Object* ref =
2024 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
2025 collector_->AssertToSpaceInvariant(obj.Ptr(), offset, ref);
2026 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const2027 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
2028 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2029 CHECK(klass->IsTypeOfReferenceClass());
2030 }
2031
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2032 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2033 REQUIRES_SHARED(Locks::mutator_lock_) {
2034 if (!root->IsNull()) {
2035 VisitRoot(root);
2036 }
2037 }
2038
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2039 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2040 REQUIRES_SHARED(Locks::mutator_lock_) {
2041 mirror::Object* ref = root->AsMirrorPtr();
2042 collector_->AssertToSpaceInvariant(/* obj */ nullptr, MemberOffset(0), ref);
2043 }
2044
2045 private:
2046 ConcurrentCopying* const collector_;
2047 };
2048
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback)2049 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
2050 Closure* checkpoint_callback) {
2051 Thread* self = Thread::Current();
2052 Locks::mutator_lock_->AssertSharedHeld(self);
2053 ThreadList* thread_list = Runtime::Current()->GetThreadList();
2054 RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
2055 if (disable_weak_ref_access) {
2056 // We're the only thread that could possibly ask for exclusive access here.
2057 Locks::mutator_lock_->SharedUnlock(self);
2058 {
2059 ScopedPause pause(this);
2060 MutexLock mu(self, *Locks::thread_list_lock_);
2061 checkpoint_callback->Run(self);
2062 for (Thread* thread : thread_list->GetList()) {
2063 check_point.Run(thread);
2064 }
2065 }
2066 Locks::mutator_lock_->SharedLock(self);
2067 } else {
2068 gc_barrier_->Init(self, 0);
2069 size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
2070 // If there are no threads to wait which implys that all the checkpoint functions are finished,
2071 // then no need to release the mutator lock.
2072 if (barrier_count == 0) {
2073 return;
2074 }
2075 Locks::mutator_lock_->SharedUnlock(self);
2076 {
2077 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
2078 gc_barrier_->Increment(self, barrier_count);
2079 }
2080 Locks::mutator_lock_->SharedLock(self);
2081 }
2082 }
2083
RevokeThreadLocalMarkStack(Thread * thread)2084 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
2085 Thread* self = Thread::Current();
2086 CHECK_EQ(self, thread);
2087 MutexLock mu(self, mark_stack_lock_);
2088 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
2089 if (tl_mark_stack != nullptr) {
2090 CHECK(is_marking_);
2091 revoked_mark_stacks_.push_back(tl_mark_stack);
2092 thread->SetThreadLocalMarkStack(nullptr);
2093 }
2094 }
2095
ProcessMarkStack()2096 void ConcurrentCopying::ProcessMarkStack() {
2097 if (kVerboseMode) {
2098 LOG(INFO) << "ProcessMarkStack. ";
2099 }
2100 bool empty_prev = false;
2101 while (true) {
2102 bool empty = ProcessMarkStackOnce();
2103 if (empty_prev && empty) {
2104 // Saw empty mark stack for a second time, done.
2105 break;
2106 }
2107 empty_prev = empty;
2108 }
2109 }
2110
ProcessMarkStackOnce()2111 bool ConcurrentCopying::ProcessMarkStackOnce() {
2112 DCHECK(thread_running_gc_ != nullptr);
2113 Thread* const self = Thread::Current();
2114 DCHECK(self == thread_running_gc_);
2115 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2116 size_t count = 0;
2117 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2118 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2119 // Process the thread-local mark stacks and the GC mark stack.
2120 count += ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ false,
2121 /* checkpoint_callback= */ nullptr,
2122 [this] (mirror::Object* ref)
2123 REQUIRES_SHARED(Locks::mutator_lock_) {
2124 ProcessMarkStackRef(ref);
2125 });
2126 while (!gc_mark_stack_->IsEmpty()) {
2127 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2128 ProcessMarkStackRef(to_ref);
2129 ++count;
2130 }
2131 gc_mark_stack_->Reset();
2132 } else if (mark_stack_mode == kMarkStackModeShared) {
2133 // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
2134 // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
2135 // disabled at this point.
2136 IssueEmptyCheckpoint();
2137 // Process the shared GC mark stack with a lock.
2138 {
2139 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2140 CHECK(revoked_mark_stacks_.empty());
2141 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2142 }
2143 while (true) {
2144 std::vector<mirror::Object*> refs;
2145 {
2146 // Copy refs with lock. Note the number of refs should be small.
2147 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2148 if (gc_mark_stack_->IsEmpty()) {
2149 break;
2150 }
2151 for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
2152 p != gc_mark_stack_->End(); ++p) {
2153 refs.push_back(p->AsMirrorPtr());
2154 }
2155 gc_mark_stack_->Reset();
2156 }
2157 for (mirror::Object* ref : refs) {
2158 ProcessMarkStackRef(ref);
2159 ++count;
2160 }
2161 }
2162 } else {
2163 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
2164 static_cast<uint32_t>(kMarkStackModeGcExclusive));
2165 {
2166 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2167 CHECK(revoked_mark_stacks_.empty());
2168 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2169 }
2170 // Process the GC mark stack in the exclusive mode. No need to take the lock.
2171 while (!gc_mark_stack_->IsEmpty()) {
2172 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2173 ProcessMarkStackRef(to_ref);
2174 ++count;
2175 }
2176 gc_mark_stack_->Reset();
2177 }
2178
2179 // Return true if the stack was empty.
2180 return count == 0;
2181 }
2182
2183 template <typename Processor>
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback,const Processor & processor)2184 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
2185 Closure* checkpoint_callback,
2186 const Processor& processor) {
2187 // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
2188 RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
2189 if (disable_weak_ref_access) {
2190 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode_.load(std::memory_order_relaxed)),
2191 static_cast<uint32_t>(kMarkStackModeShared));
2192 }
2193 size_t count = 0;
2194 std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
2195 {
2196 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2197 // Make a copy of the mark stack vector.
2198 mark_stacks = revoked_mark_stacks_;
2199 revoked_mark_stacks_.clear();
2200 }
2201 for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
2202 for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
2203 mirror::Object* to_ref = p->AsMirrorPtr();
2204 processor(to_ref);
2205 ++count;
2206 }
2207 {
2208 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2209 if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
2210 // The pool has enough. Delete it.
2211 delete mark_stack;
2212 } else {
2213 // Otherwise, put it into the pool for later reuse.
2214 mark_stack->Reset();
2215 pooled_mark_stacks_.push_back(mark_stack);
2216 }
2217 }
2218 }
2219 if (disable_weak_ref_access) {
2220 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2221 CHECK(revoked_mark_stacks_.empty());
2222 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2223 }
2224 return count;
2225 }
2226
ProcessMarkStackRef(mirror::Object * to_ref)2227 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
2228 DCHECK(!region_space_->IsInFromSpace(to_ref));
2229 size_t obj_size = 0;
2230 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(to_ref);
2231 if (kUseBakerReadBarrier) {
2232 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2233 << " to_ref=" << to_ref
2234 << " rb_state=" << to_ref->GetReadBarrierState()
2235 << " is_marked=" << IsMarked(to_ref)
2236 << " type=" << to_ref->PrettyTypeOf()
2237 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2238 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2239 << " region_type=" << rtype
2240 // TODO: Temporary; remove this when this is no longer needed (b/116087961).
2241 << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
2242 }
2243 bool add_to_live_bytes = false;
2244 // Invariant: There should be no object from a newly-allocated
2245 // region (either large or non-large) on the mark stack.
2246 DCHECK(!region_space_->IsInNewlyAllocatedRegion(to_ref)) << to_ref;
2247 bool perform_scan = false;
2248 switch (rtype) {
2249 case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace:
2250 // Mark the bitmap only in the GC thread here so that we don't need a CAS.
2251 if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
2252 // It may be already marked if we accidentally pushed the same object twice due to the racy
2253 // bitmap read in MarkUnevacFromSpaceRegion.
2254 if (use_generational_cc_ && young_gen_) {
2255 CHECK(region_space_->IsLargeObject(to_ref));
2256 region_space_->ZeroLiveBytesForLargeObject(to_ref);
2257 }
2258 perform_scan = true;
2259 // Only add to the live bytes if the object was not already marked and we are not the young
2260 // GC.
2261 // Why add live bytes even after 2-phase GC?
2262 // We need to ensure that if there is a unevac region with any live
2263 // objects, then its live_bytes must be non-zero. Otherwise,
2264 // ClearFromSpace() will clear the region. Considering, that we may skip
2265 // live objects during marking phase of 2-phase GC, we have to take care
2266 // of such objects here.
2267 add_to_live_bytes = true;
2268 }
2269 break;
2270 case space::RegionSpace::RegionType::kRegionTypeToSpace:
2271 if (use_generational_cc_) {
2272 // Copied to to-space, set the bit so that the next GC can scan objects.
2273 region_space_bitmap_->Set(to_ref);
2274 }
2275 perform_scan = true;
2276 break;
2277 default:
2278 DCHECK(!region_space_->HasAddress(to_ref)) << to_ref;
2279 DCHECK(!immune_spaces_.ContainsObject(to_ref));
2280 // Non-moving or large-object space.
2281 if (kUseBakerReadBarrier) {
2282 accounting::ContinuousSpaceBitmap* mark_bitmap =
2283 heap_->GetNonMovingSpace()->GetMarkBitmap();
2284 const bool is_los = !mark_bitmap->HasAddress(to_ref);
2285 if (is_los) {
2286 if (!IsAligned<kPageSize>(to_ref)) {
2287 // Ref is a large object that is not aligned, it must be heap
2288 // corruption. Remove memory protection and dump data before
2289 // AtomicSetReadBarrierState since it will fault if the address is not
2290 // valid.
2291 region_space_->Unprotect();
2292 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
2293 MemberOffset(0),
2294 to_ref,
2295 /* fatal */ true);
2296 }
2297 DCHECK(heap_->GetLargeObjectsSpace())
2298 << "ref=" << to_ref
2299 << " doesn't belong to non-moving space and large object space doesn't exist";
2300 accounting::LargeObjectBitmap* los_bitmap =
2301 heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2302 DCHECK(los_bitmap->HasAddress(to_ref));
2303 // Only the GC thread could be setting the LOS bit map hence doesn't
2304 // need to be atomically done.
2305 perform_scan = !los_bitmap->Set(to_ref);
2306 } else {
2307 // Only the GC thread could be setting the non-moving space bit map
2308 // hence doesn't need to be atomically done.
2309 perform_scan = !mark_bitmap->Set(to_ref);
2310 }
2311 } else {
2312 perform_scan = true;
2313 }
2314 }
2315 if (perform_scan) {
2316 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2317 if (use_generational_cc_ && young_gen_) {
2318 Scan<true>(to_ref, obj_size);
2319 } else {
2320 Scan<false>(to_ref, obj_size);
2321 }
2322 }
2323 if (kUseBakerReadBarrier) {
2324 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2325 << " to_ref=" << to_ref
2326 << " rb_state=" << to_ref->GetReadBarrierState()
2327 << " is_marked=" << IsMarked(to_ref)
2328 << " type=" << to_ref->PrettyTypeOf()
2329 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2330 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2331 << " region_type=" << rtype
2332 // TODO: Temporary; remove this when this is no longer needed (b/116087961).
2333 << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
2334 }
2335 #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
2336 mirror::Object* referent = nullptr;
2337 if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
2338 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
2339 !IsInToSpace(referent)))) {
2340 // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
2341 // will change it to non-gray later in ReferenceQueue::DisableReadBarrierForReference.
2342 DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr)
2343 << "Left unenqueued ref gray " << to_ref;
2344 } else {
2345 // We may occasionally leave a reference non-gray in the queue if its referent happens to be
2346 // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
2347 // above IsInToSpace() evaluates to true and we change the color from gray to non-gray here in
2348 // this else block.
2349 if (kUseBakerReadBarrier) {
2350 bool success = to_ref->AtomicSetReadBarrierState<std::memory_order_release>(
2351 ReadBarrier::GrayState(),
2352 ReadBarrier::NonGrayState());
2353 DCHECK(success) << "Must succeed as we won the race.";
2354 }
2355 }
2356 #else
2357 DCHECK(!kUseBakerReadBarrier);
2358 #endif
2359
2360 if (add_to_live_bytes) {
2361 // Add to the live bytes per unevacuated from-space. Note this code is always run by the
2362 // GC-running thread (no synchronization required).
2363 DCHECK(region_space_bitmap_->Test(to_ref));
2364 if (obj_size == 0) {
2365 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2366 }
2367 region_space_->AddLiveBytes(to_ref, RoundUp(obj_size, space::RegionSpace::kAlignment));
2368 }
2369 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
2370 CHECK(to_ref != nullptr);
2371 space::RegionSpace* region_space = RegionSpace();
2372 CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space";
2373 AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref);
2374 AssertToSpaceInvariantFieldVisitor visitor(this);
2375 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
2376 visitor,
2377 visitor);
2378 }
2379 }
2380
2381 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
2382 public:
DisableWeakRefAccessCallback(ConcurrentCopying * concurrent_copying)2383 explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
2384 : concurrent_copying_(concurrent_copying) {
2385 }
2386
Run(Thread * self ATTRIBUTE_UNUSED)2387 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
2388 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
2389 // to avoid a deadlock b/31500969.
2390 CHECK(concurrent_copying_->weak_ref_access_enabled_);
2391 concurrent_copying_->weak_ref_access_enabled_ = false;
2392 }
2393
2394 private:
2395 ConcurrentCopying* const concurrent_copying_;
2396 };
2397
SwitchToSharedMarkStackMode()2398 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
2399 Thread* self = Thread::Current();
2400 DCHECK(thread_running_gc_ != nullptr);
2401 DCHECK(self == thread_running_gc_);
2402 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2403 MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2404 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
2405 static_cast<uint32_t>(kMarkStackModeThreadLocal));
2406 mark_stack_mode_.store(kMarkStackModeShared, std::memory_order_relaxed);
2407 DisableWeakRefAccessCallback dwrac(this);
2408 // Process the thread local mark stacks one last time after switching to the shared mark stack
2409 // mode and disable weak ref accesses.
2410 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ true,
2411 &dwrac,
2412 [this] (mirror::Object* ref)
2413 REQUIRES_SHARED(Locks::mutator_lock_) {
2414 ProcessMarkStackRef(ref);
2415 });
2416 if (kVerboseMode) {
2417 LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
2418 }
2419 }
2420
SwitchToGcExclusiveMarkStackMode()2421 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
2422 Thread* self = Thread::Current();
2423 DCHECK(thread_running_gc_ != nullptr);
2424 DCHECK(self == thread_running_gc_);
2425 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2426 MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2427 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
2428 static_cast<uint32_t>(kMarkStackModeShared));
2429 mark_stack_mode_.store(kMarkStackModeGcExclusive, std::memory_order_relaxed);
2430 QuasiAtomic::ThreadFenceForConstructor();
2431 if (kVerboseMode) {
2432 LOG(INFO) << "Switched to GC exclusive mark stack mode";
2433 }
2434 }
2435
CheckEmptyMarkStack()2436 void ConcurrentCopying::CheckEmptyMarkStack() {
2437 Thread* self = Thread::Current();
2438 DCHECK(thread_running_gc_ != nullptr);
2439 DCHECK(self == thread_running_gc_);
2440 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2441 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2442 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2443 // Thread-local mark stack mode.
2444 RevokeThreadLocalMarkStacks(false, nullptr);
2445 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2446 if (!revoked_mark_stacks_.empty()) {
2447 for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
2448 while (!mark_stack->IsEmpty()) {
2449 mirror::Object* obj = mark_stack->PopBack();
2450 if (kUseBakerReadBarrier) {
2451 uint32_t rb_state = obj->GetReadBarrierState();
2452 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
2453 << rb_state << " is_marked=" << IsMarked(obj);
2454 } else {
2455 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
2456 << " is_marked=" << IsMarked(obj);
2457 }
2458 }
2459 }
2460 LOG(FATAL) << "mark stack is not empty";
2461 }
2462 } else {
2463 // Shared, GC-exclusive, or off.
2464 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2465 CHECK(gc_mark_stack_->IsEmpty());
2466 CHECK(revoked_mark_stacks_.empty());
2467 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2468 }
2469 }
2470
SweepSystemWeaks(Thread * self)2471 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
2472 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
2473 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2474 Runtime::Current()->SweepSystemWeaks(this);
2475 }
2476
Sweep(bool swap_bitmaps)2477 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
2478 if (use_generational_cc_ && young_gen_) {
2479 // Only sweep objects on the live stack.
2480 SweepArray(heap_->GetLiveStack(), /* swap_bitmaps= */ false);
2481 } else {
2482 {
2483 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
2484 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
2485 if (kEnableFromSpaceAccountingCheck) {
2486 // Ensure that nobody inserted items in the live stack after we swapped the stacks.
2487 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
2488 }
2489 heap_->MarkAllocStackAsLive(live_stack);
2490 live_stack->Reset();
2491 }
2492 CheckEmptyMarkStack();
2493 TimingLogger::ScopedTiming split("Sweep", GetTimings());
2494 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
2495 if (space->IsContinuousMemMapAllocSpace() && space != region_space_
2496 && !immune_spaces_.ContainsSpace(space)) {
2497 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2498 TimingLogger::ScopedTiming split2(
2499 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
2500 RecordFree(alloc_space->Sweep(swap_bitmaps));
2501 }
2502 }
2503 SweepLargeObjects(swap_bitmaps);
2504 }
2505 }
2506
2507 // Copied and adapted from MarkSweep::SweepArray.
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)2508 void ConcurrentCopying::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
2509 // This method is only used when Generational CC collection is enabled.
2510 DCHECK(use_generational_cc_);
2511 CheckEmptyMarkStack();
2512 TimingLogger::ScopedTiming t("SweepArray", GetTimings());
2513 Thread* self = Thread::Current();
2514 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
2515 sweep_array_free_buffer_mem_map_.BaseBegin());
2516 size_t chunk_free_pos = 0;
2517 ObjectBytePair freed;
2518 ObjectBytePair freed_los;
2519 // How many objects are left in the array, modified after each space is swept.
2520 StackReference<mirror::Object>* objects = allocations->Begin();
2521 size_t count = allocations->Size();
2522 // Start by sweeping the continuous spaces.
2523 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
2524 if (!space->IsAllocSpace() ||
2525 space == region_space_ ||
2526 immune_spaces_.ContainsSpace(space) ||
2527 space->GetLiveBitmap() == nullptr) {
2528 continue;
2529 }
2530 space::AllocSpace* alloc_space = space->AsAllocSpace();
2531 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
2532 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
2533 if (swap_bitmaps) {
2534 std::swap(live_bitmap, mark_bitmap);
2535 }
2536 StackReference<mirror::Object>* out = objects;
2537 for (size_t i = 0; i < count; ++i) {
2538 mirror::Object* const obj = objects[i].AsMirrorPtr();
2539 if (kUseThreadLocalAllocationStack && obj == nullptr) {
2540 continue;
2541 }
2542 if (space->HasAddress(obj)) {
2543 // This object is in the space, remove it from the array and add it to the sweep buffer
2544 // if needed.
2545 if (!mark_bitmap->Test(obj)) {
2546 if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
2547 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2548 freed.objects += chunk_free_pos;
2549 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2550 chunk_free_pos = 0;
2551 }
2552 chunk_free_buffer[chunk_free_pos++] = obj;
2553 }
2554 } else {
2555 (out++)->Assign(obj);
2556 }
2557 }
2558 if (chunk_free_pos > 0) {
2559 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2560 freed.objects += chunk_free_pos;
2561 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2562 chunk_free_pos = 0;
2563 }
2564 // All of the references which space contained are no longer in the allocation stack, update
2565 // the count.
2566 count = out - objects;
2567 }
2568 // Handle the large object space.
2569 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
2570 if (large_object_space != nullptr) {
2571 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
2572 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
2573 if (swap_bitmaps) {
2574 std::swap(large_live_objects, large_mark_objects);
2575 }
2576 for (size_t i = 0; i < count; ++i) {
2577 mirror::Object* const obj = objects[i].AsMirrorPtr();
2578 // Handle large objects.
2579 if (kUseThreadLocalAllocationStack && obj == nullptr) {
2580 continue;
2581 }
2582 if (!large_mark_objects->Test(obj)) {
2583 ++freed_los.objects;
2584 freed_los.bytes += large_object_space->Free(self, obj);
2585 }
2586 }
2587 }
2588 {
2589 TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
2590 RecordFree(freed);
2591 RecordFreeLOS(freed_los);
2592 t2.NewTiming("ResetStack");
2593 allocations->Reset();
2594 }
2595 sweep_array_free_buffer_mem_map_.MadviseDontNeedAndZero();
2596 }
2597
MarkZygoteLargeObjects()2598 void ConcurrentCopying::MarkZygoteLargeObjects() {
2599 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
2600 Thread* const self = Thread::Current();
2601 WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
2602 space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
2603 if (los != nullptr) {
2604 // Pick the current live bitmap (mark bitmap if swapped).
2605 accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
2606 accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
2607 // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
2608 std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
2609 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
2610 reinterpret_cast<uintptr_t>(range.second),
2611 [mark_bitmap, los, self](mirror::Object* obj)
2612 REQUIRES(Locks::heap_bitmap_lock_)
2613 REQUIRES_SHARED(Locks::mutator_lock_) {
2614 if (los->IsZygoteLargeObject(self, obj)) {
2615 mark_bitmap->Set(obj);
2616 }
2617 });
2618 }
2619 }
2620
SweepLargeObjects(bool swap_bitmaps)2621 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
2622 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
2623 if (heap_->GetLargeObjectsSpace() != nullptr) {
2624 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
2625 }
2626 }
2627
CaptureRssAtPeak()2628 void ConcurrentCopying::CaptureRssAtPeak() {
2629 using range_t = std::pair<void*, void*>;
2630 // This operation is expensive as several calls to mincore() are performed.
2631 // Also, this must be called before clearing regions in ReclaimPhase().
2632 // Therefore, we make it conditional on the flag that enables dumping GC
2633 // performance info on shutdown.
2634 if (Runtime::Current()->GetDumpGCPerformanceOnShutdown()) {
2635 std::list<range_t> gc_ranges;
2636 auto add_gc_range = [&gc_ranges](void* start, size_t size) {
2637 void* end = static_cast<char*>(start) + RoundUp(size, kPageSize);
2638 gc_ranges.emplace_back(range_t(start, end));
2639 };
2640
2641 // region space
2642 DCHECK(IsAligned<kPageSize>(region_space_->Limit()));
2643 gc_ranges.emplace_back(range_t(region_space_->Begin(), region_space_->Limit()));
2644 // mark bitmap
2645 add_gc_range(region_space_bitmap_->Begin(), region_space_bitmap_->Size());
2646
2647 // non-moving space
2648 {
2649 DCHECK(IsAligned<kPageSize>(heap_->non_moving_space_->Limit()));
2650 gc_ranges.emplace_back(range_t(heap_->non_moving_space_->Begin(),
2651 heap_->non_moving_space_->Limit()));
2652 // mark bitmap
2653 accounting::ContinuousSpaceBitmap *bitmap = heap_->non_moving_space_->GetMarkBitmap();
2654 add_gc_range(bitmap->Begin(), bitmap->Size());
2655 // live bitmap. Deal with bound bitmaps.
2656 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2657 if (heap_->non_moving_space_->HasBoundBitmaps()) {
2658 DCHECK_EQ(bitmap, heap_->non_moving_space_->GetLiveBitmap());
2659 bitmap = heap_->non_moving_space_->GetTempBitmap();
2660 } else {
2661 bitmap = heap_->non_moving_space_->GetLiveBitmap();
2662 }
2663 add_gc_range(bitmap->Begin(), bitmap->Size());
2664 }
2665 // large-object space
2666 if (heap_->GetLargeObjectsSpace()) {
2667 heap_->GetLargeObjectsSpace()->ForEachMemMap([&add_gc_range](const MemMap& map) {
2668 DCHECK(IsAligned<kPageSize>(map.BaseSize()));
2669 add_gc_range(map.BaseBegin(), map.BaseSize());
2670 });
2671 // mark bitmap
2672 accounting::LargeObjectBitmap* bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2673 add_gc_range(bitmap->Begin(), bitmap->Size());
2674 // live bitmap
2675 bitmap = heap_->GetLargeObjectsSpace()->GetLiveBitmap();
2676 add_gc_range(bitmap->Begin(), bitmap->Size());
2677 }
2678 // card table
2679 add_gc_range(heap_->GetCardTable()->MemMapBegin(), heap_->GetCardTable()->MemMapSize());
2680 // inter-region refs
2681 if (use_generational_cc_ && !young_gen_) {
2682 // region space
2683 add_gc_range(region_space_inter_region_bitmap_.Begin(),
2684 region_space_inter_region_bitmap_.Size());
2685 // non-moving space
2686 add_gc_range(non_moving_space_inter_region_bitmap_.Begin(),
2687 non_moving_space_inter_region_bitmap_.Size());
2688 }
2689 // Extract RSS using mincore(). Updates the cummulative RSS counter.
2690 ExtractRssFromMincore(&gc_ranges);
2691 }
2692 }
2693
ReclaimPhase()2694 void ConcurrentCopying::ReclaimPhase() {
2695 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
2696 if (kVerboseMode) {
2697 LOG(INFO) << "GC ReclaimPhase";
2698 }
2699 Thread* self = Thread::Current();
2700
2701 {
2702 // Double-check that the mark stack is empty.
2703 // Note: need to set this after VerifyNoFromSpaceRef().
2704 is_asserting_to_space_invariant_ = false;
2705 QuasiAtomic::ThreadFenceForConstructor();
2706 if (kVerboseMode) {
2707 LOG(INFO) << "Issue an empty check point. ";
2708 }
2709 IssueEmptyCheckpoint();
2710 // Disable the check.
2711 is_mark_stack_push_disallowed_.store(0, std::memory_order_seq_cst);
2712 if (kUseBakerReadBarrier) {
2713 updated_all_immune_objects_.store(false, std::memory_order_seq_cst);
2714 }
2715 CheckEmptyMarkStack();
2716 }
2717
2718 // Capture RSS at the time when memory usage is at its peak. All GC related
2719 // memory ranges like java heap, card table, bitmap etc. are taken into
2720 // account.
2721 // TODO: We can fetch resident memory for region space directly by going
2722 // through list of allocated regions. This way we can avoid calling mincore on
2723 // the biggest memory range, thereby reducing the cost of this function.
2724 CaptureRssAtPeak();
2725
2726 // Sweep the malloc spaces before clearing the from space since the memory tool mode might
2727 // access the object classes in the from space for dead objects.
2728 {
2729 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2730 Sweep(/* swap_bitmaps= */ false);
2731 SwapBitmaps();
2732 heap_->UnBindBitmaps();
2733
2734 // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
2735 DCHECK(region_space_bitmap_ != nullptr);
2736 region_space_bitmap_ = nullptr;
2737 }
2738
2739
2740 {
2741 // Record freed objects.
2742 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
2743 // Don't include thread-locals that are in the to-space.
2744 const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
2745 const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
2746 const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
2747 const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
2748 uint64_t to_bytes = bytes_moved_.load(std::memory_order_relaxed) + bytes_moved_gc_thread_;
2749 cumulative_bytes_moved_ += to_bytes;
2750 uint64_t to_objects = objects_moved_.load(std::memory_order_relaxed) + objects_moved_gc_thread_;
2751 cumulative_objects_moved_ += to_objects;
2752 if (kEnableFromSpaceAccountingCheck) {
2753 CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
2754 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
2755 }
2756 CHECK_LE(to_objects, from_objects);
2757 // to_bytes <= from_bytes is only approximately true, because objects expand a little when
2758 // copying to non-moving space in near-OOM situations.
2759 if (from_bytes > 0) {
2760 copied_live_bytes_ratio_sum_ += static_cast<float>(to_bytes) / from_bytes;
2761 gc_count_++;
2762 }
2763
2764 // Cleared bytes and objects, populated by the call to RegionSpace::ClearFromSpace below.
2765 uint64_t cleared_bytes;
2766 uint64_t cleared_objects;
2767 {
2768 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
2769 region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects, /*clear_bitmap*/ !young_gen_);
2770 // `cleared_bytes` and `cleared_objects` may be greater than the from space equivalents since
2771 // RegionSpace::ClearFromSpace may clear empty unevac regions.
2772 CHECK_GE(cleared_bytes, from_bytes);
2773 CHECK_GE(cleared_objects, from_objects);
2774 }
2775 // freed_bytes could conceivably be negative if we fall back to nonmoving space and have to
2776 // pad to a larger size.
2777 int64_t freed_bytes = (int64_t)cleared_bytes - (int64_t)to_bytes;
2778 uint64_t freed_objects = cleared_objects - to_objects;
2779 if (kVerboseMode) {
2780 LOG(INFO) << "RecordFree:"
2781 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
2782 << " unevac_from_bytes=" << unevac_from_bytes
2783 << " unevac_from_objects=" << unevac_from_objects
2784 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
2785 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
2786 << " from_space size=" << region_space_->FromSpaceSize()
2787 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
2788 << " to_space size=" << region_space_->ToSpaceSize();
2789 LOG(INFO) << "(before) num_bytes_allocated="
2790 << heap_->num_bytes_allocated_.load();
2791 }
2792 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
2793 GetCurrentIteration()->SetScannedBytes(bytes_scanned_);
2794 if (kVerboseMode) {
2795 LOG(INFO) << "(after) num_bytes_allocated="
2796 << heap_->num_bytes_allocated_.load();
2797 }
2798
2799 float reclaimed_bytes_ratio = static_cast<float>(freed_bytes) / num_bytes_allocated_before_gc_;
2800 reclaimed_bytes_ratio_sum_ += reclaimed_bytes_ratio;
2801 }
2802
2803 CheckEmptyMarkStack();
2804
2805 if (heap_->dump_region_info_after_gc_) {
2806 LOG(INFO) << "time=" << region_space_->Time();
2807 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
2808 }
2809
2810 if (kVerboseMode) {
2811 LOG(INFO) << "GC end of ReclaimPhase";
2812 }
2813 }
2814
DumpReferenceInfo(mirror::Object * ref,const char * ref_name,const char * indent)2815 std::string ConcurrentCopying::DumpReferenceInfo(mirror::Object* ref,
2816 const char* ref_name,
2817 const char* indent) {
2818 std::ostringstream oss;
2819 oss << indent << heap_->GetVerification()->DumpObjectInfo(ref, ref_name) << '\n';
2820 if (ref != nullptr) {
2821 if (kUseBakerReadBarrier) {
2822 oss << indent << ref_name << "->GetMarkBit()=" << ref->GetMarkBit() << '\n';
2823 oss << indent << ref_name << "->GetReadBarrierState()=" << ref->GetReadBarrierState() << '\n';
2824 }
2825 }
2826 if (region_space_->HasAddress(ref)) {
2827 oss << indent << "Region containing " << ref_name << ":" << '\n';
2828 region_space_->DumpRegionForObject(oss, ref);
2829 if (region_space_bitmap_ != nullptr) {
2830 oss << indent << "region_space_bitmap_->Test(" << ref_name << ")="
2831 << std::boolalpha << region_space_bitmap_->Test(ref) << std::noboolalpha;
2832 }
2833 }
2834 return oss.str();
2835 }
2836
DumpHeapReference(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2837 std::string ConcurrentCopying::DumpHeapReference(mirror::Object* obj,
2838 MemberOffset offset,
2839 mirror::Object* ref) {
2840 std::ostringstream oss;
2841 constexpr const char* kIndent = " ";
2842 oss << kIndent << "Invalid reference: ref=" << ref
2843 << " referenced from: object=" << obj << " offset= " << offset << '\n';
2844 // Information about `obj`.
2845 oss << DumpReferenceInfo(obj, "obj", kIndent) << '\n';
2846 // Information about `ref`.
2847 oss << DumpReferenceInfo(ref, "ref", kIndent);
2848 return oss.str();
2849 }
2850
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2851 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
2852 MemberOffset offset,
2853 mirror::Object* ref) {
2854 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2855 if (is_asserting_to_space_invariant_) {
2856 if (ref == nullptr) {
2857 // OK.
2858 return;
2859 } else if (region_space_->HasAddress(ref)) {
2860 // Check to-space invariant in region space (moving space).
2861 using RegionType = space::RegionSpace::RegionType;
2862 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2863 if (type == RegionType::kRegionTypeToSpace) {
2864 // OK.
2865 return;
2866 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2867 if (!IsMarkedInUnevacFromSpace(ref)) {
2868 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2869 // Remove memory protection from the region space and log debugging information.
2870 region_space_->Unprotect();
2871 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2872 Thread::Current()->DumpJavaStack(LOG_STREAM(FATAL_WITHOUT_ABORT));
2873 }
2874 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2875 } else {
2876 // Not OK: either a from-space ref or a reference in an unused region.
2877 if (type == RegionType::kRegionTypeFromSpace) {
2878 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
2879 } else {
2880 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
2881 }
2882 // Remove memory protection from the region space and log debugging information.
2883 region_space_->Unprotect();
2884 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2885 if (obj != nullptr) {
2886 LogFromSpaceRefHolder(obj, offset);
2887 LOG(FATAL_WITHOUT_ABORT) << "UNEVAC " << region_space_->IsInUnevacFromSpace(obj) << " "
2888 << obj << " " << obj->GetMarkBit();
2889 if (region_space_->HasAddress(obj)) {
2890 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
2891 }
2892 LOG(FATAL_WITHOUT_ABORT) << "CARD " << static_cast<size_t>(
2893 *Runtime::Current()->GetHeap()->GetCardTable()->CardFromAddr(
2894 reinterpret_cast<uint8_t*>(obj)));
2895 if (region_space_->HasAddress(obj)) {
2896 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << region_space_bitmap_->Test(obj);
2897 } else {
2898 accounting::ContinuousSpaceBitmap* mark_bitmap =
2899 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
2900 if (mark_bitmap != nullptr) {
2901 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << mark_bitmap->Test(obj);
2902 } else {
2903 accounting::LargeObjectBitmap* los_bitmap =
2904 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
2905 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << los_bitmap->Test(obj);
2906 }
2907 }
2908 }
2909 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
2910 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
2911 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
2912 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
2913 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
2914 LOG(FATAL) << "Invalid reference " << ref
2915 << " referenced from object " << obj << " at offset " << offset;
2916 }
2917 } else {
2918 // Check to-space invariant in non-moving space.
2919 AssertToSpaceInvariantInNonMovingSpace(obj, ref);
2920 }
2921 }
2922 }
2923
2924 class RootPrinter {
2925 public:
RootPrinter()2926 RootPrinter() { }
2927
2928 template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)2929 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
2930 REQUIRES_SHARED(Locks::mutator_lock_) {
2931 if (!root->IsNull()) {
2932 VisitRoot(root);
2933 }
2934 }
2935
2936 template <class MirrorType>
VisitRoot(mirror::Object ** root)2937 void VisitRoot(mirror::Object** root)
2938 REQUIRES_SHARED(Locks::mutator_lock_) {
2939 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
2940 }
2941
2942 template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)2943 void VisitRoot(mirror::CompressedReference<MirrorType>* root)
2944 REQUIRES_SHARED(Locks::mutator_lock_) {
2945 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
2946 }
2947 };
2948
DumpGcRoot(mirror::Object * ref)2949 std::string ConcurrentCopying::DumpGcRoot(mirror::Object* ref) {
2950 std::ostringstream oss;
2951 constexpr const char* kIndent = " ";
2952 oss << kIndent << "Invalid GC root: ref=" << ref << '\n';
2953 // Information about `ref`.
2954 oss << DumpReferenceInfo(ref, "ref", kIndent);
2955 return oss.str();
2956 }
2957
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)2958 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
2959 mirror::Object* ref) {
2960 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2961 if (is_asserting_to_space_invariant_) {
2962 if (ref == nullptr) {
2963 // OK.
2964 return;
2965 } else if (region_space_->HasAddress(ref)) {
2966 // Check to-space invariant in region space (moving space).
2967 using RegionType = space::RegionSpace::RegionType;
2968 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2969 if (type == RegionType::kRegionTypeToSpace) {
2970 // OK.
2971 return;
2972 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2973 if (!IsMarkedInUnevacFromSpace(ref)) {
2974 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2975 // Remove memory protection from the region space and log debugging information.
2976 region_space_->Unprotect();
2977 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
2978 }
2979 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2980 } else {
2981 // Not OK: either a from-space ref or a reference in an unused region.
2982 if (type == RegionType::kRegionTypeFromSpace) {
2983 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
2984 } else {
2985 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
2986 }
2987 // Remove memory protection from the region space and log debugging information.
2988 region_space_->Unprotect();
2989 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
2990 if (gc_root_source == nullptr) {
2991 // No info.
2992 } else if (gc_root_source->HasArtField()) {
2993 ArtField* field = gc_root_source->GetArtField();
2994 LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
2995 << ArtField::PrettyField(field);
2996 RootPrinter root_printer;
2997 field->VisitRoots(root_printer);
2998 } else if (gc_root_source->HasArtMethod()) {
2999 ArtMethod* method = gc_root_source->GetArtMethod();
3000 LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
3001 << ArtMethod::PrettyMethod(method);
3002 RootPrinter root_printer;
3003 method->VisitRoots(root_printer, kRuntimePointerSize);
3004 }
3005 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3006 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
3007 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
3008 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
3009 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
3010 LOG(FATAL) << "Invalid reference " << ref;
3011 }
3012 } else {
3013 // Check to-space invariant in non-moving space.
3014 AssertToSpaceInvariantInNonMovingSpace(/* obj= */ nullptr, ref);
3015 }
3016 }
3017 }
3018
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)3019 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
3020 if (kUseBakerReadBarrier) {
3021 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
3022 << " holder rb_state=" << obj->GetReadBarrierState();
3023 } else {
3024 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
3025 }
3026 if (region_space_->IsInFromSpace(obj)) {
3027 LOG(INFO) << "holder is in the from-space.";
3028 } else if (region_space_->IsInToSpace(obj)) {
3029 LOG(INFO) << "holder is in the to-space.";
3030 } else if (region_space_->IsInUnevacFromSpace(obj)) {
3031 LOG(INFO) << "holder is in the unevac from-space.";
3032 if (IsMarkedInUnevacFromSpace(obj)) {
3033 LOG(INFO) << "holder is marked in the region space bitmap.";
3034 } else {
3035 LOG(INFO) << "holder is not marked in the region space bitmap.";
3036 }
3037 } else {
3038 // In a non-moving space.
3039 if (immune_spaces_.ContainsObject(obj)) {
3040 LOG(INFO) << "holder is in an immune image or the zygote space.";
3041 } else {
3042 LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
3043 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3044 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3045 const bool is_los = !mark_bitmap->HasAddress(obj);
3046 if (is_los) {
3047 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(obj))
3048 << "obj=" << obj
3049 << " LOS bit map covers the entire lower 4GB address range";
3050 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3051 }
3052 if (!is_los && mark_bitmap->Test(obj)) {
3053 LOG(INFO) << "holder is marked in the non-moving space mark bit map.";
3054 } else if (is_los && los_bitmap->Test(obj)) {
3055 LOG(INFO) << "holder is marked in the los bit map.";
3056 } else {
3057 // If ref is on the allocation stack, then it is considered
3058 // mark/alive (but not necessarily on the live stack.)
3059 if (IsOnAllocStack(obj)) {
3060 LOG(INFO) << "holder is on the alloc stack.";
3061 } else {
3062 LOG(INFO) << "holder is not marked or on the alloc stack.";
3063 }
3064 }
3065 }
3066 }
3067 LOG(INFO) << "offset=" << offset.SizeValue();
3068 }
3069
IsMarkedInNonMovingSpace(mirror::Object * from_ref)3070 bool ConcurrentCopying::IsMarkedInNonMovingSpace(mirror::Object* from_ref) {
3071 DCHECK(!region_space_->HasAddress(from_ref)) << "ref=" << from_ref;
3072 DCHECK(!immune_spaces_.ContainsObject(from_ref)) << "ref=" << from_ref;
3073 if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) {
3074 return true;
3075 } else if (!use_generational_cc_ || done_scanning_.load(std::memory_order_acquire)) {
3076 // Read the comment in IsMarkedInUnevacFromSpace()
3077 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3078 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3079 const bool is_los = !mark_bitmap->HasAddress(from_ref);
3080 if (is_los) {
3081 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(from_ref))
3082 << "ref=" << from_ref
3083 << " doesn't belong to non-moving space and large object space doesn't exist";
3084 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3085 }
3086 if (is_los ? los_bitmap->Test(from_ref) : mark_bitmap->Test(from_ref)) {
3087 return true;
3088 }
3089 }
3090 return IsOnAllocStack(from_ref);
3091 }
3092
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)3093 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
3094 mirror::Object* ref) {
3095 CHECK(ref != nullptr);
3096 CHECK(!region_space_->HasAddress(ref)) << "obj=" << obj << " ref=" << ref;
3097 // In a non-moving space. Check that the ref is marked.
3098 if (immune_spaces_.ContainsObject(ref)) {
3099 // Immune space case.
3100 if (kUseBakerReadBarrier) {
3101 // Immune object may not be gray if called from the GC.
3102 if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
3103 return;
3104 }
3105 bool updated_all_immune_objects = updated_all_immune_objects_.load(std::memory_order_seq_cst);
3106 CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
3107 << "Unmarked immune space ref. obj=" << obj << " rb_state="
3108 << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
3109 << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
3110 << " updated_all_immune_objects=" << updated_all_immune_objects;
3111 }
3112 } else {
3113 // Non-moving space and large-object space (LOS) cases.
3114 // If `ref` is on the allocation stack, then it may not be
3115 // marked live, but considered marked/alive (but not
3116 // necessarily on the live stack).
3117 CHECK(IsMarkedInNonMovingSpace(ref))
3118 << "Unmarked ref that's not on the allocation stack."
3119 << " obj=" << obj
3120 << " ref=" << ref
3121 << " rb_state=" << ref->GetReadBarrierState()
3122 << " is_marking=" << std::boolalpha << is_marking_ << std::noboolalpha
3123 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
3124 << " done_scanning="
3125 << std::boolalpha << done_scanning_.load(std::memory_order_acquire) << std::noboolalpha
3126 << " self=" << Thread::Current();
3127 }
3128 }
3129
3130 // Used to scan ref fields of an object.
3131 template <bool kNoUnEvac>
3132 class ConcurrentCopying::RefFieldsVisitor {
3133 public:
RefFieldsVisitor(ConcurrentCopying * collector,Thread * const thread)3134 explicit RefFieldsVisitor(ConcurrentCopying* collector, Thread* const thread)
3135 : collector_(collector), thread_(thread) {
3136 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3137 DCHECK(!kNoUnEvac || collector_->use_generational_cc_);
3138 }
3139
operator ()(mirror::Object * obj,MemberOffset offset,bool) const3140 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
3141 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
3142 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
3143 collector_->Process<kNoUnEvac>(obj, offset);
3144 }
3145
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3146 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3147 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
3148 CHECK(klass->IsTypeOfReferenceClass());
3149 collector_->DelayReferenceReferent(klass, ref);
3150 }
3151
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3152 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
3153 ALWAYS_INLINE
3154 REQUIRES_SHARED(Locks::mutator_lock_) {
3155 if (!root->IsNull()) {
3156 VisitRoot(root);
3157 }
3158 }
3159
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3160 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
3161 ALWAYS_INLINE
3162 REQUIRES_SHARED(Locks::mutator_lock_) {
3163 collector_->MarkRoot</*kGrayImmuneObject=*/false>(thread_, root);
3164 }
3165
3166 private:
3167 ConcurrentCopying* const collector_;
3168 Thread* const thread_;
3169 };
3170
3171 template <bool kNoUnEvac>
Scan(mirror::Object * to_ref,size_t obj_size)3172 inline void ConcurrentCopying::Scan(mirror::Object* to_ref, size_t obj_size) {
3173 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3174 DCHECK(!kNoUnEvac || use_generational_cc_);
3175 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3176 // Avoid all read barriers during visit references to help performance.
3177 // Don't do this in transaction mode because we may read the old value of an field which may
3178 // trigger read barriers.
3179 Thread::Current()->ModifyDebugDisallowReadBarrier(1);
3180 }
3181 if (obj_size == 0) {
3182 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
3183 }
3184 bytes_scanned_ += obj_size;
3185
3186 DCHECK(!region_space_->IsInFromSpace(to_ref));
3187 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3188 RefFieldsVisitor<kNoUnEvac> visitor(this, thread_running_gc_);
3189 // Disable the read barrier for a performance reason.
3190 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
3191 visitor, visitor);
3192 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3193 thread_running_gc_->ModifyDebugDisallowReadBarrier(-1);
3194 }
3195 }
3196
3197 template <bool kNoUnEvac>
Process(mirror::Object * obj,MemberOffset offset)3198 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
3199 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3200 DCHECK(!kNoUnEvac || use_generational_cc_);
3201 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3202 mirror::Object* ref = obj->GetFieldObject<
3203 mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
3204 mirror::Object* to_ref = Mark</*kGrayImmuneObject=*/false, kNoUnEvac, /*kFromGCThread=*/true>(
3205 thread_running_gc_,
3206 ref,
3207 /*holder=*/ obj,
3208 offset);
3209 if (to_ref == ref) {
3210 return;
3211 }
3212 // This may fail if the mutator writes to the field at the same time. But it's ok.
3213 mirror::Object* expected_ref = ref;
3214 mirror::Object* new_ref = to_ref;
3215 do {
3216 if (expected_ref !=
3217 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
3218 // It was updated by the mutator.
3219 break;
3220 }
3221 // Use release CAS to make sure threads reading the reference see contents of copied objects.
3222 } while (!obj->CasFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(
3223 offset,
3224 expected_ref,
3225 new_ref,
3226 CASMode::kWeak,
3227 std::memory_order_release));
3228 }
3229
3230 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)3231 inline void ConcurrentCopying::VisitRoots(
3232 mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
3233 Thread* const self = Thread::Current();
3234 for (size_t i = 0; i < count; ++i) {
3235 mirror::Object** root = roots[i];
3236 mirror::Object* ref = *root;
3237 mirror::Object* to_ref = Mark(self, ref);
3238 if (to_ref == ref) {
3239 continue;
3240 }
3241 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
3242 mirror::Object* expected_ref = ref;
3243 mirror::Object* new_ref = to_ref;
3244 do {
3245 if (expected_ref != addr->load(std::memory_order_relaxed)) {
3246 // It was updated by the mutator.
3247 break;
3248 }
3249 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3250 }
3251 }
3252
3253 template<bool kGrayImmuneObject>
MarkRoot(Thread * const self,mirror::CompressedReference<mirror::Object> * root)3254 inline void ConcurrentCopying::MarkRoot(Thread* const self,
3255 mirror::CompressedReference<mirror::Object>* root) {
3256 DCHECK(!root->IsNull());
3257 mirror::Object* const ref = root->AsMirrorPtr();
3258 mirror::Object* to_ref = Mark<kGrayImmuneObject>(self, ref);
3259 if (to_ref != ref) {
3260 auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
3261 auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
3262 auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
3263 // If the cas fails, then it was updated by the mutator.
3264 do {
3265 if (ref != addr->load(std::memory_order_relaxed).AsMirrorPtr()) {
3266 // It was updated by the mutator.
3267 break;
3268 }
3269 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3270 }
3271 }
3272
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)3273 inline void ConcurrentCopying::VisitRoots(
3274 mirror::CompressedReference<mirror::Object>** roots, size_t count,
3275 const RootInfo& info ATTRIBUTE_UNUSED) {
3276 Thread* const self = Thread::Current();
3277 for (size_t i = 0; i < count; ++i) {
3278 mirror::CompressedReference<mirror::Object>* const root = roots[i];
3279 if (!root->IsNull()) {
3280 // kGrayImmuneObject is true because this is used for the thread flip.
3281 MarkRoot</*kGrayImmuneObject=*/true>(self, root);
3282 }
3283 }
3284 }
3285
3286 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
3287 class ConcurrentCopying::ScopedGcGraysImmuneObjects {
3288 public:
ScopedGcGraysImmuneObjects(ConcurrentCopying * collector)3289 explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
3290 : collector_(collector), enabled_(false) {
3291 if (kUseBakerReadBarrier &&
3292 collector_->thread_running_gc_ == Thread::Current() &&
3293 !collector_->gc_grays_immune_objects_) {
3294 collector_->gc_grays_immune_objects_ = true;
3295 enabled_ = true;
3296 }
3297 }
3298
~ScopedGcGraysImmuneObjects()3299 ~ScopedGcGraysImmuneObjects() {
3300 if (kUseBakerReadBarrier &&
3301 collector_->thread_running_gc_ == Thread::Current() &&
3302 enabled_) {
3303 DCHECK(collector_->gc_grays_immune_objects_);
3304 collector_->gc_grays_immune_objects_ = false;
3305 }
3306 }
3307
3308 private:
3309 ConcurrentCopying* const collector_;
3310 bool enabled_;
3311 };
3312
3313 // Fill the given memory block with a fake object. Used to fill in a
3314 // copy of objects that was lost in race.
FillWithFakeObject(Thread * const self,mirror::Object * fake_obj,size_t byte_size)3315 void ConcurrentCopying::FillWithFakeObject(Thread* const self,
3316 mirror::Object* fake_obj,
3317 size_t byte_size) {
3318 // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
3319 // barriers here because we need the updated reference to the int array class, etc. Temporary set
3320 // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
3321 ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
3322 CHECK_ALIGNED(byte_size, kObjectAlignment);
3323 memset(fake_obj, 0, byte_size);
3324 // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
3325 // Explicitly mark to make sure to get an object in the to-space.
3326 mirror::Class* int_array_class = down_cast<mirror::Class*>(
3327 Mark(self, GetClassRoot<mirror::IntArray, kWithoutReadBarrier>().Ptr()));
3328 CHECK(int_array_class != nullptr);
3329 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3330 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
3331 }
3332 size_t component_size = int_array_class->GetComponentSize();
3333 CHECK_EQ(component_size, sizeof(int32_t));
3334 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
3335 if (data_offset > byte_size) {
3336 // An int array is too big. Use java.lang.Object.
3337 CHECK(java_lang_Object_ != nullptr);
3338 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3339 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
3340 }
3341 CHECK_EQ(byte_size, java_lang_Object_->GetObjectSize<kVerifyNone>());
3342 fake_obj->SetClass(java_lang_Object_);
3343 CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()));
3344 } else {
3345 // Use an int array.
3346 fake_obj->SetClass(int_array_class);
3347 CHECK(fake_obj->IsArrayInstance<kVerifyNone>());
3348 int32_t length = (byte_size - data_offset) / component_size;
3349 ObjPtr<mirror::Array> fake_arr = fake_obj->AsArray<kVerifyNone>();
3350 fake_arr->SetLength(length);
3351 CHECK_EQ(fake_arr->GetLength(), length)
3352 << "byte_size=" << byte_size << " length=" << length
3353 << " component_size=" << component_size << " data_offset=" << data_offset;
3354 CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()))
3355 << "byte_size=" << byte_size << " length=" << length
3356 << " component_size=" << component_size << " data_offset=" << data_offset;
3357 }
3358 }
3359
3360 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(Thread * const self,size_t alloc_size)3361 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(Thread* const self, size_t alloc_size) {
3362 // Try to reuse the blocks that were unused due to CAS failures.
3363 CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
3364 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
3365 size_t byte_size;
3366 uint8_t* addr;
3367 {
3368 MutexLock mu(self, skipped_blocks_lock_);
3369 auto it = skipped_blocks_map_.lower_bound(alloc_size);
3370 if (it == skipped_blocks_map_.end()) {
3371 // Not found.
3372 return nullptr;
3373 }
3374 byte_size = it->first;
3375 CHECK_GE(byte_size, alloc_size);
3376 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
3377 // If remainder would be too small for a fake object, retry with a larger request size.
3378 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
3379 if (it == skipped_blocks_map_.end()) {
3380 // Not found.
3381 return nullptr;
3382 }
3383 CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
3384 CHECK_GE(it->first - alloc_size, min_object_size)
3385 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
3386 }
3387 // Found a block.
3388 CHECK(it != skipped_blocks_map_.end());
3389 byte_size = it->first;
3390 addr = it->second;
3391 CHECK_GE(byte_size, alloc_size);
3392 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
3393 CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
3394 if (kVerboseMode) {
3395 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
3396 }
3397 skipped_blocks_map_.erase(it);
3398 }
3399 memset(addr, 0, byte_size);
3400 if (byte_size > alloc_size) {
3401 // Return the remainder to the map.
3402 CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
3403 CHECK_GE(byte_size - alloc_size, min_object_size);
3404 // FillWithFakeObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
3405 // violation and possible deadlock. The deadlock case is a recursive case:
3406 // FillWithFakeObject -> Mark(IntArray.class) -> Copy -> AllocateInSkippedBlock.
3407 FillWithFakeObject(self,
3408 reinterpret_cast<mirror::Object*>(addr + alloc_size),
3409 byte_size - alloc_size);
3410 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
3411 {
3412 MutexLock mu(self, skipped_blocks_lock_);
3413 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
3414 }
3415 }
3416 return reinterpret_cast<mirror::Object*>(addr);
3417 }
3418
Copy(Thread * const self,mirror::Object * from_ref,mirror::Object * holder,MemberOffset offset)3419 mirror::Object* ConcurrentCopying::Copy(Thread* const self,
3420 mirror::Object* from_ref,
3421 mirror::Object* holder,
3422 MemberOffset offset) {
3423 DCHECK(region_space_->IsInFromSpace(from_ref));
3424 // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
3425 // from a previous GC that is either inside or outside the allocated region.
3426 mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
3427 if (UNLIKELY(klass == nullptr)) {
3428 // Remove memory protection from the region space and log debugging information.
3429 region_space_->Unprotect();
3430 heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal= */ true);
3431 }
3432 // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
3433 // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
3434 // objects, but it's ok and necessary.
3435 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
3436 size_t region_space_alloc_size = (obj_size <= space::RegionSpace::kRegionSize)
3437 ? RoundUp(obj_size, space::RegionSpace::kAlignment)
3438 : RoundUp(obj_size, space::RegionSpace::kRegionSize);
3439 size_t region_space_bytes_allocated = 0U;
3440 size_t non_moving_space_bytes_allocated = 0U;
3441 size_t bytes_allocated = 0U;
3442 size_t unused_size;
3443 bool fall_back_to_non_moving = false;
3444 mirror::Object* to_ref = region_space_->AllocNonvirtual</*kForEvac=*/ true>(
3445 region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &unused_size);
3446 bytes_allocated = region_space_bytes_allocated;
3447 if (LIKELY(to_ref != nullptr)) {
3448 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
3449 } else {
3450 // Failed to allocate in the region space. Try the skipped blocks.
3451 to_ref = AllocateInSkippedBlock(self, region_space_alloc_size);
3452 if (to_ref != nullptr) {
3453 // Succeeded to allocate in a skipped block.
3454 if (heap_->use_tlab_) {
3455 // This is necessary for the tlab case as it's not accounted in the space.
3456 region_space_->RecordAlloc(to_ref);
3457 }
3458 bytes_allocated = region_space_alloc_size;
3459 heap_->num_bytes_allocated_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3460 to_space_bytes_skipped_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3461 to_space_objects_skipped_.fetch_sub(1, std::memory_order_relaxed);
3462 } else {
3463 // Fall back to the non-moving space.
3464 fall_back_to_non_moving = true;
3465 if (kVerboseMode) {
3466 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
3467 << to_space_bytes_skipped_.load(std::memory_order_relaxed)
3468 << " skipped_objects="
3469 << to_space_objects_skipped_.load(std::memory_order_relaxed);
3470 }
3471 to_ref = heap_->non_moving_space_->Alloc(
3472 self, obj_size, &non_moving_space_bytes_allocated, nullptr, &unused_size);
3473 if (UNLIKELY(to_ref == nullptr)) {
3474 LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
3475 << obj_size << " byte object in region type "
3476 << region_space_->GetRegionType(from_ref);
3477 LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
3478 }
3479 bytes_allocated = non_moving_space_bytes_allocated;
3480 }
3481 }
3482 DCHECK(to_ref != nullptr);
3483
3484 // Copy the object excluding the lock word since that is handled in the loop.
3485 to_ref->SetClass(klass);
3486 const size_t kObjectHeaderSize = sizeof(mirror::Object);
3487 DCHECK_GE(obj_size, kObjectHeaderSize);
3488 static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
3489 sizeof(LockWord),
3490 "Object header size does not match");
3491 // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
3492 // object in the from space is immutable other than the lock word. b/31423258
3493 memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
3494 reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
3495 obj_size - kObjectHeaderSize);
3496
3497 // Attempt to install the forward pointer. This is in a loop as the
3498 // lock word atomic write can fail.
3499 while (true) {
3500 LockWord old_lock_word = from_ref->GetLockWord(false);
3501
3502 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
3503 // Lost the race. Another thread (either GC or mutator) stored
3504 // the forwarding pointer first. Make the lost copy (to_ref)
3505 // look like a valid but dead (fake) object and keep it for
3506 // future reuse.
3507 FillWithFakeObject(self, to_ref, bytes_allocated);
3508 if (!fall_back_to_non_moving) {
3509 DCHECK(region_space_->IsInToSpace(to_ref));
3510 if (bytes_allocated > space::RegionSpace::kRegionSize) {
3511 // Free the large alloc.
3512 region_space_->FreeLarge</*kForEvac=*/ true>(to_ref, bytes_allocated);
3513 } else {
3514 // Record the lost copy for later reuse.
3515 heap_->num_bytes_allocated_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3516 to_space_bytes_skipped_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3517 to_space_objects_skipped_.fetch_add(1, std::memory_order_relaxed);
3518 MutexLock mu(self, skipped_blocks_lock_);
3519 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
3520 reinterpret_cast<uint8_t*>(to_ref)));
3521 }
3522 } else {
3523 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3524 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3525 // Free the non-moving-space chunk.
3526 heap_->non_moving_space_->Free(self, to_ref);
3527 }
3528
3529 // Get the winner's forward ptr.
3530 mirror::Object* lost_fwd_ptr = to_ref;
3531 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
3532 CHECK(to_ref != nullptr);
3533 CHECK_NE(to_ref, lost_fwd_ptr);
3534 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
3535 << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
3536 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3537 return to_ref;
3538 }
3539
3540 // Copy the old lock word over since we did not copy it yet.
3541 to_ref->SetLockWord(old_lock_word, false);
3542 // Set the gray ptr.
3543 if (kUseBakerReadBarrier) {
3544 to_ref->SetReadBarrierState(ReadBarrier::GrayState());
3545 }
3546
3547 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
3548
3549 // Try to atomically write the fwd ptr. Make sure that the copied object is visible to any
3550 // readers of the fwd pointer.
3551 bool success = from_ref->CasLockWord(old_lock_word,
3552 new_lock_word,
3553 CASMode::kWeak,
3554 std::memory_order_release);
3555 if (LIKELY(success)) {
3556 // The CAS succeeded.
3557 DCHECK(thread_running_gc_ != nullptr);
3558 if (LIKELY(self == thread_running_gc_)) {
3559 objects_moved_gc_thread_ += 1;
3560 bytes_moved_gc_thread_ += bytes_allocated;
3561 } else {
3562 objects_moved_.fetch_add(1, std::memory_order_relaxed);
3563 bytes_moved_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3564 }
3565
3566 if (LIKELY(!fall_back_to_non_moving)) {
3567 DCHECK(region_space_->IsInToSpace(to_ref));
3568 } else {
3569 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3570 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3571 if (!use_generational_cc_ || !young_gen_) {
3572 // Mark it in the live bitmap.
3573 CHECK(!heap_->non_moving_space_->GetLiveBitmap()->AtomicTestAndSet(to_ref));
3574 }
3575 if (!kUseBakerReadBarrier) {
3576 // Mark it in the mark bitmap.
3577 CHECK(!heap_->non_moving_space_->GetMarkBitmap()->AtomicTestAndSet(to_ref));
3578 }
3579 }
3580 if (kUseBakerReadBarrier) {
3581 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
3582 }
3583 DCHECK(GetFwdPtr(from_ref) == to_ref);
3584 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3585 // Make sure that anyone who sees to_ref also sees both the object contents and the
3586 // fwd pointer.
3587 QuasiAtomic::ThreadFenceForConstructor();
3588 PushOntoMarkStack(self, to_ref);
3589 return to_ref;
3590 } else {
3591 // The CAS failed. It may have lost the race or may have failed
3592 // due to monitor/hashcode ops. Either way, retry.
3593 }
3594 }
3595 }
3596
IsMarked(mirror::Object * from_ref)3597 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
3598 DCHECK(from_ref != nullptr);
3599 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
3600 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
3601 // It's already marked.
3602 return from_ref;
3603 }
3604 mirror::Object* to_ref;
3605 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
3606 to_ref = GetFwdPtr(from_ref);
3607 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
3608 heap_->non_moving_space_->HasAddress(to_ref))
3609 << "from_ref=" << from_ref << " to_ref=" << to_ref;
3610 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
3611 if (IsMarkedInUnevacFromSpace(from_ref)) {
3612 to_ref = from_ref;
3613 } else {
3614 to_ref = nullptr;
3615 }
3616 } else {
3617 // At this point, `from_ref` should not be in the region space
3618 // (i.e. within an "unused" region).
3619 DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
3620 // from_ref is in a non-moving space.
3621 if (immune_spaces_.ContainsObject(from_ref)) {
3622 // An immune object is alive.
3623 to_ref = from_ref;
3624 } else {
3625 // Non-immune non-moving space. Use the mark bitmap.
3626 if (IsMarkedInNonMovingSpace(from_ref)) {
3627 // Already marked.
3628 to_ref = from_ref;
3629 } else {
3630 to_ref = nullptr;
3631 }
3632 }
3633 }
3634 return to_ref;
3635 }
3636
IsOnAllocStack(mirror::Object * ref)3637 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
3638 // TODO: Explain why this is here. What release operation does it pair with?
3639 std::atomic_thread_fence(std::memory_order_acquire);
3640 accounting::ObjectStack* alloc_stack = GetAllocationStack();
3641 return alloc_stack->Contains(ref);
3642 }
3643
MarkNonMoving(Thread * const self,mirror::Object * ref,mirror::Object * holder,MemberOffset offset)3644 mirror::Object* ConcurrentCopying::MarkNonMoving(Thread* const self,
3645 mirror::Object* ref,
3646 mirror::Object* holder,
3647 MemberOffset offset) {
3648 // ref is in a non-moving space (from_ref == to_ref).
3649 DCHECK(!region_space_->HasAddress(ref)) << ref;
3650 DCHECK(!immune_spaces_.ContainsObject(ref));
3651 // Use the mark bitmap.
3652 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3653 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3654 const bool is_los = !mark_bitmap->HasAddress(ref);
3655 if (is_los) {
3656 if (!IsAligned<kPageSize>(ref)) {
3657 // Ref is a large object that is not aligned, it must be heap
3658 // corruption. Remove memory protection and dump data before
3659 // AtomicSetReadBarrierState since it will fault if the address is not
3660 // valid.
3661 region_space_->Unprotect();
3662 heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal= */ true);
3663 }
3664 DCHECK(heap_->GetLargeObjectsSpace())
3665 << "ref=" << ref
3666 << " doesn't belong to non-moving space and large object space doesn't exist";
3667 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3668 DCHECK(los_bitmap->HasAddress(ref));
3669 }
3670 if (use_generational_cc_) {
3671 // The sticky-bit CC collector is only compatible with Baker-style read barriers.
3672 DCHECK(kUseBakerReadBarrier);
3673 // Not done scanning, use AtomicSetReadBarrierPointer.
3674 if (!done_scanning_.load(std::memory_order_acquire)) {
3675 // Since the mark bitmap is still filled in from last GC, we can not use that or else the
3676 // mutator may see references to the from space. Instead, use the Baker pointer itself as
3677 // the mark bit.
3678 //
3679 // We need to avoid marking objects that are on allocation stack as that will lead to a
3680 // situation (after this GC cycle is finished) where some object(s) are on both allocation
3681 // stack and live bitmap. This leads to visiting the same object(s) twice during a heapdump
3682 // (b/117426281).
3683 if (!IsOnAllocStack(ref) &&
3684 ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState())) {
3685 // TODO: We don't actually need to scan this object later, we just need to clear the gray
3686 // bit.
3687 // We don't need to mark newly allocated objects (those in allocation stack) as they can
3688 // only point to to-space objects. Also, they are considered live till the next GC cycle.
3689 PushOntoMarkStack(self, ref);
3690 }
3691 return ref;
3692 }
3693 }
3694 if (!is_los && mark_bitmap->Test(ref)) {
3695 // Already marked.
3696 } else if (is_los && los_bitmap->Test(ref)) {
3697 // Already marked in LOS.
3698 } else if (IsOnAllocStack(ref)) {
3699 // If it's on the allocation stack, it's considered marked. Keep it white (non-gray).
3700 // Objects on the allocation stack need not be marked.
3701 if (!is_los) {
3702 DCHECK(!mark_bitmap->Test(ref));
3703 } else {
3704 DCHECK(!los_bitmap->Test(ref));
3705 }
3706 if (kUseBakerReadBarrier) {
3707 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState());
3708 }
3709 } else {
3710 // Not marked nor on the allocation stack. Try to mark it.
3711 // This may or may not succeed, which is ok.
3712 bool success = false;
3713 if (kUseBakerReadBarrier) {
3714 success = ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(),
3715 ReadBarrier::GrayState());
3716 } else {
3717 success = is_los ?
3718 !los_bitmap->AtomicTestAndSet(ref) :
3719 !mark_bitmap->AtomicTestAndSet(ref);
3720 }
3721 if (success) {
3722 if (kUseBakerReadBarrier) {
3723 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
3724 }
3725 PushOntoMarkStack(self, ref);
3726 }
3727 }
3728 return ref;
3729 }
3730
FinishPhase()3731 void ConcurrentCopying::FinishPhase() {
3732 Thread* const self = Thread::Current();
3733 {
3734 MutexLock mu(self, mark_stack_lock_);
3735 CHECK(revoked_mark_stacks_.empty());
3736 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
3737 }
3738 // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
3739 // positives.
3740 if (!kVerifyNoMissingCardMarks && !use_generational_cc_) {
3741 TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
3742 // We do not currently use the region space cards at all, madvise them away to save ram.
3743 heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
3744 } else if (use_generational_cc_ && !young_gen_) {
3745 region_space_inter_region_bitmap_.Clear();
3746 non_moving_space_inter_region_bitmap_.Clear();
3747 }
3748 {
3749 MutexLock mu(self, skipped_blocks_lock_);
3750 skipped_blocks_map_.clear();
3751 }
3752 {
3753 ReaderMutexLock mu(self, *Locks::mutator_lock_);
3754 {
3755 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3756 heap_->ClearMarkedObjects();
3757 }
3758 if (kUseBakerReadBarrier && kFilterModUnionCards) {
3759 TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
3760 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3761 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
3762 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
3763 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
3764 // Filter out cards that don't need to be set.
3765 if (table != nullptr) {
3766 table->FilterCards();
3767 }
3768 }
3769 }
3770 if (kUseBakerReadBarrier) {
3771 TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
3772 DCHECK(rb_mark_bit_stack_ != nullptr);
3773 const auto* limit = rb_mark_bit_stack_->End();
3774 for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
3775 CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0))
3776 << "rb_mark_bit_stack_->Begin()" << rb_mark_bit_stack_->Begin() << '\n'
3777 << "rb_mark_bit_stack_->End()" << rb_mark_bit_stack_->End() << '\n'
3778 << "rb_mark_bit_stack_->IsFull()"
3779 << std::boolalpha << rb_mark_bit_stack_->IsFull() << std::noboolalpha << '\n'
3780 << DumpReferenceInfo(it->AsMirrorPtr(), "*it");
3781 }
3782 rb_mark_bit_stack_->Reset();
3783 }
3784 }
3785 if (measure_read_barrier_slow_path_) {
3786 MutexLock mu(self, rb_slow_path_histogram_lock_);
3787 rb_slow_path_time_histogram_.AdjustAndAddValue(
3788 rb_slow_path_ns_.load(std::memory_order_relaxed));
3789 rb_slow_path_count_total_ += rb_slow_path_count_.load(std::memory_order_relaxed);
3790 rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.load(std::memory_order_relaxed);
3791 }
3792 }
3793
IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)3794 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
3795 bool do_atomic_update) {
3796 mirror::Object* from_ref = field->AsMirrorPtr();
3797 if (from_ref == nullptr) {
3798 return true;
3799 }
3800 mirror::Object* to_ref = IsMarked(from_ref);
3801 if (to_ref == nullptr) {
3802 return false;
3803 }
3804 if (from_ref != to_ref) {
3805 if (do_atomic_update) {
3806 do {
3807 if (field->AsMirrorPtr() != from_ref) {
3808 // Concurrently overwritten by a mutator.
3809 break;
3810 }
3811 } while (!field->CasWeakRelaxed(from_ref, to_ref));
3812 } else {
3813 field->Assign(to_ref);
3814 }
3815 }
3816 return true;
3817 }
3818
MarkObject(mirror::Object * from_ref)3819 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
3820 return Mark(Thread::Current(), from_ref);
3821 }
3822
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> reference)3823 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
3824 ObjPtr<mirror::Reference> reference) {
3825 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
3826 }
3827
ProcessReferences(Thread * self)3828 void ConcurrentCopying::ProcessReferences(Thread* self) {
3829 TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
3830 // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
3831 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3832 GetHeap()->GetReferenceProcessor()->ProcessReferences(
3833 /*concurrent=*/ true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
3834 }
3835
RevokeAllThreadLocalBuffers()3836 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
3837 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
3838 region_space_->RevokeAllThreadLocalBuffers();
3839 }
3840
MarkFromReadBarrierWithMeasurements(Thread * const self,mirror::Object * from_ref)3841 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(Thread* const self,
3842 mirror::Object* from_ref) {
3843 if (self != thread_running_gc_) {
3844 rb_slow_path_count_.fetch_add(1u, std::memory_order_relaxed);
3845 } else {
3846 rb_slow_path_count_gc_.fetch_add(1u, std::memory_order_relaxed);
3847 }
3848 ScopedTrace tr(__FUNCTION__);
3849 const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
3850 mirror::Object* ret =
3851 Mark</*kGrayImmuneObject=*/true, /*kNoUnEvac=*/false, /*kFromGCThread=*/false>(self,
3852 from_ref);
3853 if (measure_read_barrier_slow_path_) {
3854 rb_slow_path_ns_.fetch_add(NanoTime() - start_time, std::memory_order_relaxed);
3855 }
3856 return ret;
3857 }
3858
DumpPerformanceInfo(std::ostream & os)3859 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
3860 GarbageCollector::DumpPerformanceInfo(os);
3861 size_t num_gc_cycles = GetCumulativeTimings().GetIterations();
3862 MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
3863 if (rb_slow_path_time_histogram_.SampleSize() > 0) {
3864 Histogram<uint64_t>::CumulativeData cumulative_data;
3865 rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
3866 rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
3867 }
3868 if (rb_slow_path_count_total_ > 0) {
3869 os << "Slow path count " << rb_slow_path_count_total_ << "\n";
3870 }
3871 if (rb_slow_path_count_gc_total_ > 0) {
3872 os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
3873 }
3874
3875 os << "Average " << (young_gen_ ? "minor" : "major") << " GC reclaim bytes ratio "
3876 << (reclaimed_bytes_ratio_sum_ / num_gc_cycles) << " over " << num_gc_cycles
3877 << " GC cycles\n";
3878
3879 os << "Average " << (young_gen_ ? "minor" : "major") << " GC copied live bytes ratio "
3880 << (copied_live_bytes_ratio_sum_ / gc_count_) << " over " << gc_count_
3881 << " " << (young_gen_ ? "minor" : "major") << " GCs\n";
3882
3883 os << "Cumulative bytes moved " << cumulative_bytes_moved_ << "\n";
3884 os << "Cumulative objects moved " << cumulative_objects_moved_ << "\n";
3885
3886 os << "Peak regions allocated "
3887 << region_space_->GetMaxPeakNumNonFreeRegions() << " ("
3888 << PrettySize(region_space_->GetMaxPeakNumNonFreeRegions() * space::RegionSpace::kRegionSize)
3889 << ") / " << region_space_->GetNumRegions() / 2 << " ("
3890 << PrettySize(region_space_->GetNumRegions() * space::RegionSpace::kRegionSize / 2)
3891 << ")\n";
3892 if (!young_gen_) {
3893 os << "Total madvise time " << PrettyDuration(region_space_->GetMadviseTime()) << "\n";
3894 }
3895 }
3896
3897 } // namespace collector
3898 } // namespace gc
3899 } // namespace art
3900