1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread.h"
18
19 #include <limits.h> // for INT_MAX
20 #include <pthread.h>
21 #include <signal.h>
22 #include <sys/resource.h>
23 #include <sys/time.h>
24
25 #if __has_feature(hwaddress_sanitizer)
26 #include <sanitizer/hwasan_interface.h>
27 #else
28 #define __hwasan_tag_pointer(p, t) (p)
29 #endif
30
31 #include <algorithm>
32 #include <bitset>
33 #include <cerrno>
34 #include <iostream>
35 #include <list>
36 #include <sstream>
37
38 #include "android-base/file.h"
39 #include "android-base/stringprintf.h"
40 #include "android-base/strings.h"
41
42 #include "arch/context-inl.h"
43 #include "arch/context.h"
44 #include "art_field-inl.h"
45 #include "art_method-inl.h"
46 #include "base/atomic.h"
47 #include "base/bit_utils.h"
48 #include "base/casts.h"
49 #include "base/file_utils.h"
50 #include "base/memory_tool.h"
51 #include "base/mutex.h"
52 #include "base/stl_util.h"
53 #include "base/systrace.h"
54 #include "base/time_utils.h"
55 #include "base/timing_logger.h"
56 #include "base/to_str.h"
57 #include "base/utils.h"
58 #include "class_linker-inl.h"
59 #include "class_root-inl.h"
60 #include "debugger.h"
61 #include "dex/descriptors_names.h"
62 #include "dex/dex_file-inl.h"
63 #include "dex/dex_file_annotations.h"
64 #include "dex/dex_file_types.h"
65 #include "entrypoints/entrypoint_utils.h"
66 #include "entrypoints/quick/quick_alloc_entrypoints.h"
67 #include "gc/accounting/card_table-inl.h"
68 #include "gc/accounting/heap_bitmap-inl.h"
69 #include "gc/allocator/rosalloc.h"
70 #include "gc/heap.h"
71 #include "gc/space/space-inl.h"
72 #include "gc_root.h"
73 #include "handle_scope-inl.h"
74 #include "indirect_reference_table-inl.h"
75 #include "instrumentation.h"
76 #include "interpreter/interpreter.h"
77 #include "interpreter/mterp/mterp.h"
78 #include "interpreter/shadow_frame-inl.h"
79 #include "java_frame_root_info.h"
80 #include "jni/java_vm_ext.h"
81 #include "jni/jni_internal.h"
82 #include "mirror/class-alloc-inl.h"
83 #include "mirror/class_loader.h"
84 #include "mirror/object_array-alloc-inl.h"
85 #include "mirror/object_array-inl.h"
86 #include "mirror/stack_trace_element.h"
87 #include "monitor.h"
88 #include "monitor_objects_stack_visitor.h"
89 #include "native_stack_dump.h"
90 #include "nativehelper/scoped_local_ref.h"
91 #include "nativehelper/scoped_utf_chars.h"
92 #include "nterp_helpers.h"
93 #include "nth_caller_visitor.h"
94 #include "oat_quick_method_header.h"
95 #include "obj_ptr-inl.h"
96 #include "object_lock.h"
97 #include "palette/palette.h"
98 #include "quick/quick_method_frame_info.h"
99 #include "quick_exception_handler.h"
100 #include "read_barrier-inl.h"
101 #include "reflection.h"
102 #include "reflective_handle_scope-inl.h"
103 #include "runtime-inl.h"
104 #include "runtime.h"
105 #include "runtime_callbacks.h"
106 #include "scoped_thread_state_change-inl.h"
107 #include "scoped_disable_public_sdk_checker.h"
108 #include "stack.h"
109 #include "stack_map.h"
110 #include "thread-inl.h"
111 #include "thread_list.h"
112 #include "verifier/method_verifier.h"
113 #include "verify_object.h"
114 #include "well_known_classes.h"
115
116 #if ART_USE_FUTEXES
117 #include "linux/futex.h"
118 #include "sys/syscall.h"
119 #ifndef SYS_futex
120 #define SYS_futex __NR_futex
121 #endif
122 #endif // ART_USE_FUTEXES
123
124 #pragma clang diagnostic push
125 #pragma clang diagnostic error "-Wconversion"
126
127 namespace art {
128
129 using android::base::StringAppendV;
130 using android::base::StringPrintf;
131
132 extern "C" NO_RETURN void artDeoptimize(Thread* self);
133
134 bool Thread::is_started_ = false;
135 pthread_key_t Thread::pthread_key_self_;
136 ConditionVariable* Thread::resume_cond_ = nullptr;
137 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
138 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
139 Thread* Thread::jit_sensitive_thread_ = nullptr;
140 #ifndef __BIONIC__
141 thread_local Thread* Thread::self_tls_ = nullptr;
142 #endif
143
144 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
145
146 // For implicit overflow checks we reserve an extra piece of memory at the bottom
147 // of the stack (lowest memory). The higher portion of the memory
148 // is protected against reads and the lower is available for use while
149 // throwing the StackOverflow exception.
150 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
151
152 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
153
InitCardTable()154 void Thread::InitCardTable() {
155 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
156 }
157
UnimplementedEntryPoint()158 static void UnimplementedEntryPoint() {
159 UNIMPLEMENTED(FATAL);
160 }
161
162 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
163 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
164
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)165 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
166 CHECK(kUseReadBarrier);
167 tls32_.is_gc_marking = is_marking;
168 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active= */ is_marking);
169 }
170
InitTlsEntryPoints()171 void Thread::InitTlsEntryPoints() {
172 ScopedTrace trace("InitTlsEntryPoints");
173 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
174 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
175 uintptr_t* end = reinterpret_cast<uintptr_t*>(
176 reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
177 for (uintptr_t* it = begin; it != end; ++it) {
178 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
179 }
180 InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
181 }
182
ResetQuickAllocEntryPointsForThread()183 void Thread::ResetQuickAllocEntryPointsForThread() {
184 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
185 }
186
187 class DeoptimizationContextRecord {
188 public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationMethodType method_type,DeoptimizationContextRecord * link)189 DeoptimizationContextRecord(const JValue& ret_val,
190 bool is_reference,
191 bool from_code,
192 ObjPtr<mirror::Throwable> pending_exception,
193 DeoptimizationMethodType method_type,
194 DeoptimizationContextRecord* link)
195 : ret_val_(ret_val),
196 is_reference_(is_reference),
197 from_code_(from_code),
198 pending_exception_(pending_exception.Ptr()),
199 deopt_method_type_(method_type),
200 link_(link) {}
201
GetReturnValue() const202 JValue GetReturnValue() const { return ret_val_; }
IsReference() const203 bool IsReference() const { return is_reference_; }
GetFromCode() const204 bool GetFromCode() const { return from_code_; }
GetPendingException() const205 ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
GetLink() const206 DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()207 mirror::Object** GetReturnValueAsGCRoot() {
208 DCHECK(is_reference_);
209 return ret_val_.GetGCRoot();
210 }
GetPendingExceptionAsGCRoot()211 mirror::Object** GetPendingExceptionAsGCRoot() {
212 return reinterpret_cast<mirror::Object**>(&pending_exception_);
213 }
GetDeoptimizationMethodType() const214 DeoptimizationMethodType GetDeoptimizationMethodType() const {
215 return deopt_method_type_;
216 }
217
218 private:
219 // The value returned by the method at the top of the stack before deoptimization.
220 JValue ret_val_;
221
222 // Indicates whether the returned value is a reference. If so, the GC will visit it.
223 const bool is_reference_;
224
225 // Whether the context was created from an explicit deoptimization in the code.
226 const bool from_code_;
227
228 // The exception that was pending before deoptimization (or null if there was no pending
229 // exception).
230 mirror::Throwable* pending_exception_;
231
232 // Whether the context was created for an (idempotent) runtime method.
233 const DeoptimizationMethodType deopt_method_type_;
234
235 // A link to the previous DeoptimizationContextRecord.
236 DeoptimizationContextRecord* const link_;
237
238 DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
239 };
240
241 class StackedShadowFrameRecord {
242 public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)243 StackedShadowFrameRecord(ShadowFrame* shadow_frame,
244 StackedShadowFrameType type,
245 StackedShadowFrameRecord* link)
246 : shadow_frame_(shadow_frame),
247 type_(type),
248 link_(link) {}
249
GetShadowFrame() const250 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const251 StackedShadowFrameType GetType() const { return type_; }
GetLink() const252 StackedShadowFrameRecord* GetLink() const { return link_; }
253
254 private:
255 ShadowFrame* const shadow_frame_;
256 const StackedShadowFrameType type_;
257 StackedShadowFrameRecord* const link_;
258
259 DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
260 };
261
PushDeoptimizationContext(const JValue & return_value,bool is_reference,ObjPtr<mirror::Throwable> exception,bool from_code,DeoptimizationMethodType method_type)262 void Thread::PushDeoptimizationContext(const JValue& return_value,
263 bool is_reference,
264 ObjPtr<mirror::Throwable> exception,
265 bool from_code,
266 DeoptimizationMethodType method_type) {
267 DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
268 return_value,
269 is_reference,
270 from_code,
271 exception,
272 method_type,
273 tlsPtr_.deoptimization_context_stack);
274 tlsPtr_.deoptimization_context_stack = record;
275 }
276
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code,DeoptimizationMethodType * method_type)277 void Thread::PopDeoptimizationContext(JValue* result,
278 ObjPtr<mirror::Throwable>* exception,
279 bool* from_code,
280 DeoptimizationMethodType* method_type) {
281 AssertHasDeoptimizationContext();
282 DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
283 tlsPtr_.deoptimization_context_stack = record->GetLink();
284 result->SetJ(record->GetReturnValue().GetJ());
285 *exception = record->GetPendingException();
286 *from_code = record->GetFromCode();
287 *method_type = record->GetDeoptimizationMethodType();
288 delete record;
289 }
290
AssertHasDeoptimizationContext()291 void Thread::AssertHasDeoptimizationContext() {
292 CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
293 << "No deoptimization context for thread " << *this;
294 }
295
296 enum {
297 kPermitAvailable = 0, // Incrementing consumes the permit
298 kNoPermit = 1, // Incrementing marks as waiter waiting
299 kNoPermitWaiterWaiting = 2
300 };
301
Park(bool is_absolute,int64_t time)302 void Thread::Park(bool is_absolute, int64_t time) {
303 DCHECK(this == Thread::Current());
304 #if ART_USE_FUTEXES
305 // Consume the permit, or mark as waiting. This cannot cause park_state to go
306 // outside of its valid range (0, 1, 2), because in all cases where 2 is
307 // assigned it is set back to 1 before returning, and this method cannot run
308 // concurrently with itself since it operates on the current thread.
309 int old_state = tls32_.park_state_.fetch_add(1, std::memory_order_relaxed);
310 if (old_state == kNoPermit) {
311 // no permit was available. block thread until later.
312 Runtime::Current()->GetRuntimeCallbacks()->ThreadParkStart(is_absolute, time);
313 bool timed_out = false;
314 if (!is_absolute && time == 0) {
315 // Thread.getState() is documented to return waiting for untimed parks.
316 ScopedThreadSuspension sts(this, ThreadState::kWaiting);
317 DCHECK_EQ(NumberOfHeldMutexes(), 0u);
318 int result = futex(tls32_.park_state_.Address(),
319 FUTEX_WAIT_PRIVATE,
320 /* sleep if val = */ kNoPermitWaiterWaiting,
321 /* timeout */ nullptr,
322 nullptr,
323 0);
324 // This errno check must happen before the scope is closed, to ensure that
325 // no destructors (such as ScopedThreadSuspension) overwrite errno.
326 if (result == -1) {
327 switch (errno) {
328 case EAGAIN:
329 FALLTHROUGH_INTENDED;
330 case EINTR: break; // park() is allowed to spuriously return
331 default: PLOG(FATAL) << "Failed to park";
332 }
333 }
334 } else if (time > 0) {
335 // Only actually suspend and futex_wait if we're going to wait for some
336 // positive amount of time - the kernel will reject negative times with
337 // EINVAL, and a zero time will just noop.
338
339 // Thread.getState() is documented to return timed wait for timed parks.
340 ScopedThreadSuspension sts(this, ThreadState::kTimedWaiting);
341 DCHECK_EQ(NumberOfHeldMutexes(), 0u);
342 timespec timespec;
343 int result = 0;
344 if (is_absolute) {
345 // Time is millis when scheduled for an absolute time
346 timespec.tv_nsec = (time % 1000) * 1000000;
347 timespec.tv_sec = SaturatedTimeT(time / 1000);
348 // This odd looking pattern is recommended by futex documentation to
349 // wait until an absolute deadline, with otherwise identical behavior to
350 // FUTEX_WAIT_PRIVATE. This also allows parkUntil() to return at the
351 // correct time when the system clock changes.
352 result = futex(tls32_.park_state_.Address(),
353 FUTEX_WAIT_BITSET_PRIVATE | FUTEX_CLOCK_REALTIME,
354 /* sleep if val = */ kNoPermitWaiterWaiting,
355 ×pec,
356 nullptr,
357 static_cast<int>(FUTEX_BITSET_MATCH_ANY));
358 } else {
359 // Time is nanos when scheduled for a relative time
360 timespec.tv_sec = SaturatedTimeT(time / 1000000000);
361 timespec.tv_nsec = time % 1000000000;
362 result = futex(tls32_.park_state_.Address(),
363 FUTEX_WAIT_PRIVATE,
364 /* sleep if val = */ kNoPermitWaiterWaiting,
365 ×pec,
366 nullptr,
367 0);
368 }
369 // This errno check must happen before the scope is closed, to ensure that
370 // no destructors (such as ScopedThreadSuspension) overwrite errno.
371 if (result == -1) {
372 switch (errno) {
373 case ETIMEDOUT:
374 timed_out = true;
375 FALLTHROUGH_INTENDED;
376 case EAGAIN:
377 case EINTR: break; // park() is allowed to spuriously return
378 default: PLOG(FATAL) << "Failed to park";
379 }
380 }
381 }
382 // Mark as no longer waiting, and consume permit if there is one.
383 tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
384 // TODO: Call to signal jvmti here
385 Runtime::Current()->GetRuntimeCallbacks()->ThreadParkFinished(timed_out);
386 } else {
387 // the fetch_add has consumed the permit. immediately return.
388 DCHECK_EQ(old_state, kPermitAvailable);
389 }
390 #else
391 #pragma clang diagnostic push
392 #pragma clang diagnostic warning "-W#warnings"
393 #warning "LockSupport.park/unpark implemented as noops without FUTEX support."
394 #pragma clang diagnostic pop
395 UNUSED(is_absolute, time);
396 UNIMPLEMENTED(WARNING);
397 sched_yield();
398 #endif
399 }
400
Unpark()401 void Thread::Unpark() {
402 #if ART_USE_FUTEXES
403 // Set permit available; will be consumed either by fetch_add (when the thread
404 // tries to park) or store (when the parked thread is woken up)
405 if (tls32_.park_state_.exchange(kPermitAvailable, std::memory_order_relaxed)
406 == kNoPermitWaiterWaiting) {
407 int result = futex(tls32_.park_state_.Address(),
408 FUTEX_WAKE_PRIVATE,
409 /* number of waiters = */ 1,
410 nullptr,
411 nullptr,
412 0);
413 if (result == -1) {
414 PLOG(FATAL) << "Failed to unpark";
415 }
416 }
417 #else
418 UNIMPLEMENTED(WARNING);
419 #endif
420 }
421
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)422 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
423 StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
424 sf, type, tlsPtr_.stacked_shadow_frame_record);
425 tlsPtr_.stacked_shadow_frame_record = record;
426 }
427
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)428 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
429 StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
430 if (must_be_present) {
431 DCHECK(record != nullptr);
432 } else {
433 if (record == nullptr || record->GetType() != type) {
434 return nullptr;
435 }
436 }
437 tlsPtr_.stacked_shadow_frame_record = record->GetLink();
438 ShadowFrame* shadow_frame = record->GetShadowFrame();
439 delete record;
440 return shadow_frame;
441 }
442
443 class FrameIdToShadowFrame {
444 public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)445 static FrameIdToShadowFrame* Create(size_t frame_id,
446 ShadowFrame* shadow_frame,
447 FrameIdToShadowFrame* next,
448 size_t num_vregs) {
449 // Append a bool array at the end to keep track of what vregs are updated by the debugger.
450 uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
451 return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
452 }
453
Delete(FrameIdToShadowFrame * f)454 static void Delete(FrameIdToShadowFrame* f) {
455 uint8_t* memory = reinterpret_cast<uint8_t*>(f);
456 delete[] memory;
457 }
458
GetFrameId() const459 size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const460 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const461 FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)462 void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()463 bool* GetUpdatedVRegFlags() {
464 return updated_vreg_flags_;
465 }
466
467 private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)468 FrameIdToShadowFrame(size_t frame_id,
469 ShadowFrame* shadow_frame,
470 FrameIdToShadowFrame* next)
471 : frame_id_(frame_id),
472 shadow_frame_(shadow_frame),
473 next_(next) {}
474
475 const size_t frame_id_;
476 ShadowFrame* const shadow_frame_;
477 FrameIdToShadowFrame* next_;
478 bool updated_vreg_flags_[0];
479
480 DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
481 };
482
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)483 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
484 size_t frame_id) {
485 FrameIdToShadowFrame* found = nullptr;
486 for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
487 if (record->GetFrameId() == frame_id) {
488 if (kIsDebugBuild) {
489 // Check we have at most one record for this frame.
490 CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
491 found = record;
492 } else {
493 return record;
494 }
495 }
496 }
497 return found;
498 }
499
FindDebuggerShadowFrame(size_t frame_id)500 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
501 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
502 tlsPtr_.frame_id_to_shadow_frame, frame_id);
503 if (record != nullptr) {
504 return record->GetShadowFrame();
505 }
506 return nullptr;
507 }
508
509 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)510 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
511 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
512 tlsPtr_.frame_id_to_shadow_frame, frame_id);
513 CHECK(record != nullptr);
514 return record->GetUpdatedVRegFlags();
515 }
516
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)517 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
518 uint32_t num_vregs,
519 ArtMethod* method,
520 uint32_t dex_pc) {
521 ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
522 if (shadow_frame != nullptr) {
523 return shadow_frame;
524 }
525 VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
526 shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
527 FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
528 shadow_frame,
529 tlsPtr_.frame_id_to_shadow_frame,
530 num_vregs);
531 for (uint32_t i = 0; i < num_vregs; i++) {
532 // Do this to clear all references for root visitors.
533 shadow_frame->SetVRegReference(i, nullptr);
534 // This flag will be changed to true if the debugger modifies the value.
535 record->GetUpdatedVRegFlags()[i] = false;
536 }
537 tlsPtr_.frame_id_to_shadow_frame = record;
538 return shadow_frame;
539 }
540
GetCustomTLS(const char * key)541 TLSData* Thread::GetCustomTLS(const char* key) {
542 MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
543 auto it = custom_tls_.find(key);
544 return (it != custom_tls_.end()) ? it->second.get() : nullptr;
545 }
546
SetCustomTLS(const char * key,TLSData * data)547 void Thread::SetCustomTLS(const char* key, TLSData* data) {
548 // We will swap the old data (which might be nullptr) with this and then delete it outside of the
549 // custom_tls_lock_.
550 std::unique_ptr<TLSData> old_data(data);
551 {
552 MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
553 custom_tls_.GetOrCreate(key, []() { return std::unique_ptr<TLSData>(); }).swap(old_data);
554 }
555 }
556
RemoveDebuggerShadowFrameMapping(size_t frame_id)557 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
558 FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
559 if (head->GetFrameId() == frame_id) {
560 tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
561 FrameIdToShadowFrame::Delete(head);
562 return;
563 }
564 FrameIdToShadowFrame* prev = head;
565 for (FrameIdToShadowFrame* record = head->GetNext();
566 record != nullptr;
567 prev = record, record = record->GetNext()) {
568 if (record->GetFrameId() == frame_id) {
569 prev->SetNext(record->GetNext());
570 FrameIdToShadowFrame::Delete(record);
571 return;
572 }
573 }
574 LOG(FATAL) << "No shadow frame for frame " << frame_id;
575 UNREACHABLE();
576 }
577
InitTid()578 void Thread::InitTid() {
579 tls32_.tid = ::art::GetTid();
580 }
581
InitAfterFork()582 void Thread::InitAfterFork() {
583 // One thread (us) survived the fork, but we have a new tid so we need to
584 // update the value stashed in this Thread*.
585 InitTid();
586 }
587
DeleteJPeer(JNIEnv * env)588 void Thread::DeleteJPeer(JNIEnv* env) {
589 // Make sure nothing can observe both opeer and jpeer set at the same time.
590 jobject old_jpeer = tlsPtr_.jpeer;
591 CHECK(old_jpeer != nullptr);
592 tlsPtr_.jpeer = nullptr;
593 env->DeleteGlobalRef(old_jpeer);
594 }
595
CreateCallback(void * arg)596 void* Thread::CreateCallback(void* arg) {
597 Thread* self = reinterpret_cast<Thread*>(arg);
598 Runtime* runtime = Runtime::Current();
599 if (runtime == nullptr) {
600 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
601 return nullptr;
602 }
603 {
604 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
605 // after self->Init().
606 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
607 // Check that if we got here we cannot be shutting down (as shutdown should never have started
608 // while threads are being born).
609 CHECK(!runtime->IsShuttingDownLocked());
610 // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
611 // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
612 // the runtime in such a case. In case this ever changes, we need to make sure here to
613 // delete the tmp_jni_env, as we own it at this point.
614 CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
615 self->tlsPtr_.tmp_jni_env = nullptr;
616 Runtime::Current()->EndThreadBirth();
617 }
618 {
619 ScopedObjectAccess soa(self);
620 self->InitStringEntryPoints();
621
622 // Copy peer into self, deleting global reference when done.
623 CHECK(self->tlsPtr_.jpeer != nullptr);
624 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
625 // Make sure nothing can observe both opeer and jpeer set at the same time.
626 self->DeleteJPeer(self->GetJniEnv());
627 self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
628
629 ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
630 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
631
632 runtime->GetRuntimeCallbacks()->ThreadStart(self);
633
634 // Unpark ourselves if the java peer was unparked before it started (see
635 // b/28845097#comment49 for more information)
636
637 ArtField* unparkedField = jni::DecodeArtField(
638 WellKnownClasses::java_lang_Thread_unparkedBeforeStart);
639 bool should_unpark = false;
640 {
641 // Hold the lock here, so that if another thread calls unpark before the thread starts
642 // we don't observe the unparkedBeforeStart field before the unparker writes to it,
643 // which could cause a lost unpark.
644 art::MutexLock mu(soa.Self(), *art::Locks::thread_list_lock_);
645 should_unpark = unparkedField->GetBoolean(self->tlsPtr_.opeer) == JNI_TRUE;
646 }
647 if (should_unpark) {
648 self->Unpark();
649 }
650 // Invoke the 'run' method of our java.lang.Thread.
651 ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
652 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
653 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
654 InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
655 }
656 // Detach and delete self.
657 Runtime::Current()->GetThreadList()->Unregister(self);
658
659 return nullptr;
660 }
661
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> thread_peer)662 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
663 ObjPtr<mirror::Object> thread_peer) {
664 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
665 Thread* result = reinterpret_cast64<Thread*>(f->GetLong(thread_peer));
666 // Check that if we have a result it is either suspended or we hold the thread_list_lock_
667 // to stop it from going away.
668 if (kIsDebugBuild) {
669 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
670 if (result != nullptr && !result->IsSuspended()) {
671 Locks::thread_list_lock_->AssertHeld(soa.Self());
672 }
673 }
674 return result;
675 }
676
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)677 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
678 jobject java_thread) {
679 return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread));
680 }
681
FixStackSize(size_t stack_size)682 static size_t FixStackSize(size_t stack_size) {
683 // A stack size of zero means "use the default".
684 if (stack_size == 0) {
685 stack_size = Runtime::Current()->GetDefaultStackSize();
686 }
687
688 // Dalvik used the bionic pthread default stack size for native threads,
689 // so include that here to support apps that expect large native stacks.
690 stack_size += 1 * MB;
691
692 // Under sanitization, frames of the interpreter may become bigger, both for C code as
693 // well as the ShadowFrame. Ensure a larger minimum size. Otherwise initialization
694 // of all core classes cannot be done in all test circumstances.
695 if (kMemoryToolIsAvailable) {
696 stack_size = std::max(2 * MB, stack_size);
697 }
698
699 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
700 if (stack_size < PTHREAD_STACK_MIN) {
701 stack_size = PTHREAD_STACK_MIN;
702 }
703
704 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
705 // It's likely that callers are trying to ensure they have at least a certain amount of
706 // stack space, so we should add our reserved space on top of what they requested, rather
707 // than implicitly take it away from them.
708 stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
709 } else {
710 // If we are going to use implicit stack checks, allocate space for the protected
711 // region at the bottom of the stack.
712 stack_size += Thread::kStackOverflowImplicitCheckSize +
713 GetStackOverflowReservedBytes(kRuntimeISA);
714 }
715
716 // Some systems require the stack size to be a multiple of the system page size, so round up.
717 stack_size = RoundUp(stack_size, kPageSize);
718
719 return stack_size;
720 }
721
722 // Return the nearest page-aligned address below the current stack top.
723 NO_INLINE
FindStackTop()724 static uint8_t* FindStackTop() {
725 return reinterpret_cast<uint8_t*>(
726 AlignDown(__builtin_frame_address(0), kPageSize));
727 }
728
729 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
730 // overflow is detected. It is located right below the stack_begin_.
731 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()732 void Thread::InstallImplicitProtection() {
733 uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
734 // Page containing current top of stack.
735 uint8_t* stack_top = FindStackTop();
736
737 // Try to directly protect the stack.
738 VLOG(threads) << "installing stack protected region at " << std::hex <<
739 static_cast<void*>(pregion) << " to " <<
740 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
741 if (ProtectStack(/* fatal_on_error= */ false)) {
742 // Tell the kernel that we won't be needing these pages any more.
743 // NB. madvise will probably write zeroes into the memory (on linux it does).
744 size_t unwanted_size =
745 reinterpret_cast<uintptr_t>(stack_top) - reinterpret_cast<uintptr_t>(pregion) - kPageSize;
746 madvise(pregion, unwanted_size, MADV_DONTNEED);
747 return;
748 }
749
750 // There is a little complexity here that deserves a special mention. On some
751 // architectures, the stack is created using a VM_GROWSDOWN flag
752 // to prevent memory being allocated when it's not needed. This flag makes the
753 // kernel only allocate memory for the stack by growing down in memory. Because we
754 // want to put an mprotected region far away from that at the stack top, we need
755 // to make sure the pages for the stack are mapped in before we call mprotect.
756 //
757 // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
758 // with a non-mapped stack (usually only the main thread).
759 //
760 // We map in the stack by reading every page from the stack bottom (highest address)
761 // to the stack top. (We then madvise this away.) This must be done by reading from the
762 // current stack pointer downwards.
763 //
764 // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
765 // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
766 // thus have to move the stack pointer. We do this portably by using a recursive function with a
767 // large stack frame size.
768
769 // (Defensively) first remove the protection on the protected region as we'll want to read
770 // and write it. Ignore errors.
771 UnprotectStack();
772
773 VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
774 static_cast<void*>(pregion);
775
776 struct RecurseDownStack {
777 // This function has an intentionally large stack size.
778 #pragma GCC diagnostic push
779 #pragma GCC diagnostic ignored "-Wframe-larger-than="
780 NO_INLINE
781 static void Touch(uintptr_t target) {
782 volatile size_t zero = 0;
783 // Use a large local volatile array to ensure a large frame size. Do not use anything close
784 // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
785 // there is no pragma support for this.
786 // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
787 constexpr size_t kAsanMultiplier =
788 #ifdef ADDRESS_SANITIZER
789 2u;
790 #else
791 1u;
792 #endif
793 // Keep space uninitialized as it can overflow the stack otherwise (should Clang actually
794 // auto-initialize this local variable).
795 volatile char space[kPageSize - (kAsanMultiplier * 256)] __attribute__((uninitialized));
796 char sink ATTRIBUTE_UNUSED = space[zero]; // NOLINT
797 // Remove tag from the pointer. Nop in non-hwasan builds.
798 uintptr_t addr = reinterpret_cast<uintptr_t>(__hwasan_tag_pointer(space, 0));
799 if (addr >= target + kPageSize) {
800 Touch(target);
801 }
802 zero *= 2; // Try to avoid tail recursion.
803 }
804 #pragma GCC diagnostic pop
805 };
806 RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
807
808 VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
809 static_cast<void*>(pregion) << " to " <<
810 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
811
812 // Protect the bottom of the stack to prevent read/write to it.
813 ProtectStack(/* fatal_on_error= */ true);
814
815 // Tell the kernel that we won't be needing these pages any more.
816 // NB. madvise will probably write zeroes into the memory (on linux it does).
817 size_t unwanted_size =
818 reinterpret_cast<uintptr_t>(stack_top) - reinterpret_cast<uintptr_t>(pregion) - kPageSize;
819 madvise(pregion, unwanted_size, MADV_DONTNEED);
820 }
821
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)822 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
823 CHECK(java_peer != nullptr);
824 Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
825
826 if (VLOG_IS_ON(threads)) {
827 ScopedObjectAccess soa(env);
828
829 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
830 ObjPtr<mirror::String> java_name =
831 f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
832 std::string thread_name;
833 if (java_name != nullptr) {
834 thread_name = java_name->ToModifiedUtf8();
835 } else {
836 thread_name = "(Unnamed)";
837 }
838
839 VLOG(threads) << "Creating native thread for " << thread_name;
840 self->Dump(LOG_STREAM(INFO));
841 }
842
843 Runtime* runtime = Runtime::Current();
844
845 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
846 bool thread_start_during_shutdown = false;
847 {
848 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
849 if (runtime->IsShuttingDownLocked()) {
850 thread_start_during_shutdown = true;
851 } else {
852 runtime->StartThreadBirth();
853 }
854 }
855 if (thread_start_during_shutdown) {
856 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
857 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
858 return;
859 }
860
861 Thread* child_thread = new Thread(is_daemon);
862 // Use global JNI ref to hold peer live while child thread starts.
863 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
864 stack_size = FixStackSize(stack_size);
865
866 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
867 // to assign it.
868 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
869 reinterpret_cast<jlong>(child_thread));
870
871 // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
872 // do not have a good way to report this on the child's side.
873 std::string error_msg;
874 std::unique_ptr<JNIEnvExt> child_jni_env_ext(
875 JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
876
877 int pthread_create_result = 0;
878 if (child_jni_env_ext.get() != nullptr) {
879 pthread_t new_pthread;
880 pthread_attr_t attr;
881 child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
882 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
883 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
884 "PTHREAD_CREATE_DETACHED");
885 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
886 pthread_create_result = pthread_create(&new_pthread,
887 &attr,
888 Thread::CreateCallback,
889 child_thread);
890 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
891
892 if (pthread_create_result == 0) {
893 // pthread_create started the new thread. The child is now responsible for managing the
894 // JNIEnvExt we created.
895 // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
896 // between the threads.
897 child_jni_env_ext.release(); // NOLINT pthreads API.
898 return;
899 }
900 }
901
902 // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
903 {
904 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
905 runtime->EndThreadBirth();
906 }
907 // Manually delete the global reference since Thread::Init will not have been run. Make sure
908 // nothing can observe both opeer and jpeer set at the same time.
909 child_thread->DeleteJPeer(env);
910 delete child_thread;
911 child_thread = nullptr;
912 // TODO: remove from thread group?
913 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
914 {
915 std::string msg(child_jni_env_ext.get() == nullptr ?
916 StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
917 StringPrintf("pthread_create (%s stack) failed: %s",
918 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
919 ScopedObjectAccess soa(env);
920 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
921 }
922 }
923
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)924 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
925 // This function does all the initialization that must be run by the native thread it applies to.
926 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
927 // we can handshake with the corresponding native thread when it's ready.) Check this native
928 // thread hasn't been through here already...
929 CHECK(Thread::Current() == nullptr);
930
931 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
932 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
933 tlsPtr_.pthread_self = pthread_self();
934 CHECK(is_started_);
935
936 ScopedTrace trace("Thread::Init");
937
938 SetUpAlternateSignalStack();
939 if (!InitStackHwm()) {
940 return false;
941 }
942 InitCpu();
943 InitTlsEntryPoints();
944 RemoveSuspendTrigger();
945 InitCardTable();
946 InitTid();
947 {
948 ScopedTrace trace2("InitInterpreterTls");
949 interpreter::InitInterpreterTls(this);
950 }
951
952 #ifdef __BIONIC__
953 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
954 #else
955 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
956 Thread::self_tls_ = this;
957 #endif
958 DCHECK_EQ(Thread::Current(), this);
959
960 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
961
962 if (jni_env_ext != nullptr) {
963 DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
964 DCHECK_EQ(jni_env_ext->GetSelf(), this);
965 tlsPtr_.jni_env = jni_env_ext;
966 } else {
967 std::string error_msg;
968 tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
969 if (tlsPtr_.jni_env == nullptr) {
970 LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
971 return false;
972 }
973 }
974
975 ScopedTrace trace3("ThreadList::Register");
976 thread_list->Register(this);
977 return true;
978 }
979
980 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action)981 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
982 Runtime* runtime = Runtime::Current();
983 ScopedTrace trace("Thread::Attach");
984 if (runtime == nullptr) {
985 LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
986 ((thread_name != nullptr) ? thread_name : "(Unnamed)");
987 return nullptr;
988 }
989 Thread* self;
990 {
991 ScopedTrace trace2("Thread birth");
992 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
993 if (runtime->IsShuttingDownLocked()) {
994 LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
995 ((thread_name != nullptr) ? thread_name : "(Unnamed)");
996 return nullptr;
997 } else {
998 Runtime::Current()->StartThreadBirth();
999 self = new Thread(as_daemon);
1000 bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
1001 Runtime::Current()->EndThreadBirth();
1002 if (!init_success) {
1003 delete self;
1004 return nullptr;
1005 }
1006 }
1007 }
1008
1009 self->InitStringEntryPoints();
1010
1011 CHECK_NE(self->GetState(), kRunnable);
1012 self->SetState(kNative);
1013
1014 // Run the action that is acting on the peer.
1015 if (!peer_action(self)) {
1016 runtime->GetThreadList()->Unregister(self);
1017 // Unregister deletes self, no need to do this here.
1018 return nullptr;
1019 }
1020
1021 if (VLOG_IS_ON(threads)) {
1022 if (thread_name != nullptr) {
1023 VLOG(threads) << "Attaching thread " << thread_name;
1024 } else {
1025 VLOG(threads) << "Attaching unnamed thread.";
1026 }
1027 ScopedObjectAccess soa(self);
1028 self->Dump(LOG_STREAM(INFO));
1029 }
1030
1031 {
1032 ScopedObjectAccess soa(self);
1033 runtime->GetRuntimeCallbacks()->ThreadStart(self);
1034 }
1035
1036 return self;
1037 }
1038
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)1039 Thread* Thread::Attach(const char* thread_name,
1040 bool as_daemon,
1041 jobject thread_group,
1042 bool create_peer) {
1043 auto create_peer_action = [&](Thread* self) {
1044 // If we're the main thread, ClassLinker won't be created until after we're attached,
1045 // so that thread needs a two-stage attach. Regular threads don't need this hack.
1046 // In the compiler, all threads need this hack, because no-one's going to be getting
1047 // a native peer!
1048 if (create_peer) {
1049 self->CreatePeer(thread_name, as_daemon, thread_group);
1050 if (self->IsExceptionPending()) {
1051 // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
1052 // the failure but do not dump the exception details. If we fail to allocate the peer, we
1053 // usually also fail to allocate an exception object and throw a pre-allocated OOME without
1054 // any useful information. If we do manage to allocate the exception object, the memory
1055 // information in the message could have been collected too late and therefore misleading.
1056 {
1057 ScopedObjectAccess soa(self);
1058 LOG(ERROR) << "Exception creating thread peer: "
1059 << ((thread_name != nullptr) ? thread_name : "<null>");
1060 self->ClearException();
1061 }
1062 return false;
1063 }
1064 } else {
1065 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
1066 if (thread_name != nullptr) {
1067 self->tlsPtr_.name->assign(thread_name);
1068 ::art::SetThreadName(thread_name);
1069 } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
1070 LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
1071 }
1072 }
1073 return true;
1074 };
1075 return Attach(thread_name, as_daemon, create_peer_action);
1076 }
1077
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)1078 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
1079 auto set_peer_action = [&](Thread* self) {
1080 // Install the given peer.
1081 {
1082 DCHECK(self == Thread::Current());
1083 ScopedObjectAccess soa(self);
1084 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
1085 }
1086 self->GetJniEnv()->SetLongField(thread_peer,
1087 WellKnownClasses::java_lang_Thread_nativePeer,
1088 reinterpret_cast64<jlong>(self));
1089 return true;
1090 };
1091 return Attach(thread_name, as_daemon, set_peer_action);
1092 }
1093
CreatePeer(const char * name,bool as_daemon,jobject thread_group)1094 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
1095 Runtime* runtime = Runtime::Current();
1096 CHECK(runtime->IsStarted());
1097 JNIEnv* env = tlsPtr_.jni_env;
1098
1099 if (thread_group == nullptr) {
1100 thread_group = runtime->GetMainThreadGroup();
1101 }
1102 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
1103 // Add missing null check in case of OOM b/18297817
1104 if (name != nullptr && thread_name.get() == nullptr) {
1105 CHECK(IsExceptionPending());
1106 return;
1107 }
1108 jint thread_priority = GetNativePriority();
1109 jboolean thread_is_daemon = as_daemon;
1110
1111 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
1112 if (peer.get() == nullptr) {
1113 CHECK(IsExceptionPending());
1114 return;
1115 }
1116 {
1117 ScopedObjectAccess soa(this);
1118 tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
1119 }
1120 env->CallNonvirtualVoidMethod(peer.get(),
1121 WellKnownClasses::java_lang_Thread,
1122 WellKnownClasses::java_lang_Thread_init,
1123 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
1124 if (IsExceptionPending()) {
1125 return;
1126 }
1127
1128 Thread* self = this;
1129 DCHECK_EQ(self, Thread::Current());
1130 env->SetLongField(peer.get(),
1131 WellKnownClasses::java_lang_Thread_nativePeer,
1132 reinterpret_cast64<jlong>(self));
1133
1134 ScopedObjectAccess soa(self);
1135 StackHandleScope<1> hs(self);
1136 MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
1137 if (peer_thread_name == nullptr) {
1138 // The Thread constructor should have set the Thread.name to a
1139 // non-null value. However, because we can run without code
1140 // available (in the compiler, in tests), we manually assign the
1141 // fields the constructor should have set.
1142 if (runtime->IsActiveTransaction()) {
1143 InitPeer<true>(soa,
1144 tlsPtr_.opeer,
1145 thread_is_daemon,
1146 thread_group,
1147 thread_name.get(),
1148 thread_priority);
1149 } else {
1150 InitPeer<false>(soa,
1151 tlsPtr_.opeer,
1152 thread_is_daemon,
1153 thread_group,
1154 thread_name.get(),
1155 thread_priority);
1156 }
1157 peer_thread_name.Assign(GetThreadName());
1158 }
1159 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
1160 if (peer_thread_name != nullptr) {
1161 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
1162 }
1163 }
1164
CreateCompileTimePeer(JNIEnv * env,const char * name,bool as_daemon,jobject thread_group)1165 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
1166 const char* name,
1167 bool as_daemon,
1168 jobject thread_group) {
1169 Runtime* runtime = Runtime::Current();
1170 CHECK(!runtime->IsStarted());
1171
1172 if (thread_group == nullptr) {
1173 thread_group = runtime->GetMainThreadGroup();
1174 }
1175 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
1176 // Add missing null check in case of OOM b/18297817
1177 if (name != nullptr && thread_name.get() == nullptr) {
1178 CHECK(Thread::Current()->IsExceptionPending());
1179 return nullptr;
1180 }
1181 jint thread_priority = kNormThreadPriority; // Always normalize to NORM priority.
1182 jboolean thread_is_daemon = as_daemon;
1183
1184 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
1185 if (peer.get() == nullptr) {
1186 CHECK(Thread::Current()->IsExceptionPending());
1187 return nullptr;
1188 }
1189
1190 // We cannot call Thread.init, as it will recursively ask for currentThread.
1191
1192 // The Thread constructor should have set the Thread.name to a
1193 // non-null value. However, because we can run without code
1194 // available (in the compiler, in tests), we manually assign the
1195 // fields the constructor should have set.
1196 ScopedObjectAccessUnchecked soa(Thread::Current());
1197 if (runtime->IsActiveTransaction()) {
1198 InitPeer<true>(soa,
1199 soa.Decode<mirror::Object>(peer.get()),
1200 thread_is_daemon,
1201 thread_group,
1202 thread_name.get(),
1203 thread_priority);
1204 } else {
1205 InitPeer<false>(soa,
1206 soa.Decode<mirror::Object>(peer.get()),
1207 thread_is_daemon,
1208 thread_group,
1209 thread_name.get(),
1210 thread_priority);
1211 }
1212
1213 return peer.release();
1214 }
1215
1216 template<bool kTransactionActive>
InitPeer(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> peer,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)1217 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
1218 ObjPtr<mirror::Object> peer,
1219 jboolean thread_is_daemon,
1220 jobject thread_group,
1221 jobject thread_name,
1222 jint thread_priority) {
1223 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
1224 SetBoolean<kTransactionActive>(peer, thread_is_daemon);
1225 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
1226 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
1227 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
1228 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
1229 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
1230 SetInt<kTransactionActive>(peer, thread_priority);
1231 }
1232
SetThreadName(const char * name)1233 void Thread::SetThreadName(const char* name) {
1234 tlsPtr_.name->assign(name);
1235 ::art::SetThreadName(name);
1236 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1237 }
1238
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)1239 static void GetThreadStack(pthread_t thread,
1240 void** stack_base,
1241 size_t* stack_size,
1242 size_t* guard_size) {
1243 #if defined(__APPLE__)
1244 *stack_size = pthread_get_stacksize_np(thread);
1245 void* stack_addr = pthread_get_stackaddr_np(thread);
1246
1247 // Check whether stack_addr is the base or end of the stack.
1248 // (On Mac OS 10.7, it's the end.)
1249 int stack_variable;
1250 if (stack_addr > &stack_variable) {
1251 *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1252 } else {
1253 *stack_base = stack_addr;
1254 }
1255
1256 // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1257 pthread_attr_t attributes;
1258 CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1259 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1260 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1261 #else
1262 pthread_attr_t attributes;
1263 CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1264 CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1265 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1266 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1267
1268 #if defined(__GLIBC__)
1269 // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1270 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1271 // will be broken because we'll die long before we get close to 2GB.
1272 bool is_main_thread = (::art::GetTid() == static_cast<uint32_t>(getpid()));
1273 if (is_main_thread) {
1274 rlimit stack_limit;
1275 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1276 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1277 }
1278 if (stack_limit.rlim_cur == RLIM_INFINITY) {
1279 size_t old_stack_size = *stack_size;
1280
1281 // Use the kernel default limit as our size, and adjust the base to match.
1282 *stack_size = 8 * MB;
1283 *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1284
1285 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1286 << " to " << PrettySize(*stack_size)
1287 << " with base " << *stack_base;
1288 }
1289 }
1290 #endif
1291
1292 #endif
1293 }
1294
InitStackHwm()1295 bool Thread::InitStackHwm() {
1296 ScopedTrace trace("InitStackHwm");
1297 void* read_stack_base;
1298 size_t read_stack_size;
1299 size_t read_guard_size;
1300 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1301
1302 tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1303 tlsPtr_.stack_size = read_stack_size;
1304
1305 // The minimum stack size we can cope with is the overflow reserved bytes (typically
1306 // 8K) + the protected region size (4K) + another page (4K). Typically this will
1307 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
1308 // between 8K and 12K.
1309 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1310 + 4 * KB;
1311 if (read_stack_size <= min_stack) {
1312 // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1313 LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1314 __LINE__,
1315 ::android::base::ERROR,
1316 "Attempt to attach a thread with a too-small stack");
1317 return false;
1318 }
1319
1320 // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1321 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1322 read_stack_base,
1323 PrettySize(read_stack_size).c_str(),
1324 PrettySize(read_guard_size).c_str());
1325
1326 // Set stack_end_ to the bottom of the stack saving space of stack overflows
1327
1328 Runtime* runtime = Runtime::Current();
1329 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1330
1331 ResetDefaultStackEnd();
1332
1333 // Install the protected region if we are doing implicit overflow checks.
1334 if (implicit_stack_check) {
1335 // The thread might have protected region at the bottom. We need
1336 // to install our own region so we need to move the limits
1337 // of the stack to make room for it.
1338
1339 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1340 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1341 tlsPtr_.stack_size -= read_guard_size + kStackOverflowProtectedSize;
1342
1343 InstallImplicitProtection();
1344 }
1345
1346 // Consistency check.
1347 CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1348
1349 return true;
1350 }
1351
ShortDump(std::ostream & os) const1352 void Thread::ShortDump(std::ostream& os) const {
1353 os << "Thread[";
1354 if (GetThreadId() != 0) {
1355 // If we're in kStarting, we won't have a thin lock id or tid yet.
1356 os << GetThreadId()
1357 << ",tid=" << GetTid() << ',';
1358 }
1359 os << GetState()
1360 << ",Thread*=" << this
1361 << ",peer=" << tlsPtr_.opeer
1362 << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1363 << "]";
1364 }
1365
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1366 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1367 bool force_dump_stack) const {
1368 DumpState(os);
1369 DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1370 }
1371
GetThreadName() const1372 ObjPtr<mirror::String> Thread::GetThreadName() const {
1373 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1374 if (tlsPtr_.opeer == nullptr) {
1375 return nullptr;
1376 }
1377 ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1378 return name == nullptr ? nullptr : name->AsString();
1379 }
1380
GetThreadName(std::string & name) const1381 void Thread::GetThreadName(std::string& name) const {
1382 name.assign(*tlsPtr_.name);
1383 }
1384
GetCpuMicroTime() const1385 uint64_t Thread::GetCpuMicroTime() const {
1386 #if defined(__linux__)
1387 clockid_t cpu_clock_id;
1388 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1389 timespec now;
1390 clock_gettime(cpu_clock_id, &now);
1391 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) +
1392 static_cast<uint64_t>(now.tv_nsec) / UINT64_C(1000);
1393 #else // __APPLE__
1394 UNIMPLEMENTED(WARNING);
1395 return -1;
1396 #endif
1397 }
1398
1399 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1400 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1401 LOG(ERROR) << *thread << " suspend count already zero.";
1402 Locks::thread_suspend_count_lock_->Unlock(self);
1403 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1404 Locks::mutator_lock_->SharedTryLock(self);
1405 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1406 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1407 }
1408 }
1409 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1410 Locks::thread_list_lock_->TryLock(self);
1411 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1412 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1413 }
1414 }
1415 std::ostringstream ss;
1416 Runtime::Current()->GetThreadList()->Dump(ss);
1417 LOG(FATAL) << ss.str();
1418 }
1419
ModifySuspendCountInternal(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)1420 bool Thread::ModifySuspendCountInternal(Thread* self,
1421 int delta,
1422 AtomicInteger* suspend_barrier,
1423 SuspendReason reason) {
1424 if (kIsDebugBuild) {
1425 DCHECK(delta == -1 || delta == +1)
1426 << reason << " " << delta << " " << this;
1427 Locks::thread_suspend_count_lock_->AssertHeld(self);
1428 if (this != self && !IsSuspended()) {
1429 Locks::thread_list_lock_->AssertHeld(self);
1430 }
1431 }
1432 // User code suspensions need to be checked more closely since they originate from code outside of
1433 // the runtime's control.
1434 if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
1435 Locks::user_code_suspension_lock_->AssertHeld(self);
1436 if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
1437 LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
1438 return false;
1439 }
1440 }
1441 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1442 UnsafeLogFatalForSuspendCount(self, this);
1443 return false;
1444 }
1445
1446 if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1447 // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1448 // deadlock. b/31683379.
1449 return false;
1450 }
1451
1452 uint16_t flags = kSuspendRequest;
1453 if (delta > 0 && suspend_barrier != nullptr) {
1454 uint32_t available_barrier = kMaxSuspendBarriers;
1455 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1456 if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1457 available_barrier = i;
1458 break;
1459 }
1460 }
1461 if (available_barrier == kMaxSuspendBarriers) {
1462 // No barrier spaces available, we can't add another.
1463 return false;
1464 }
1465 tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1466 flags |= kActiveSuspendBarrier;
1467 }
1468
1469 tls32_.suspend_count += delta;
1470 switch (reason) {
1471 case SuspendReason::kForUserCode:
1472 tls32_.user_code_suspend_count += delta;
1473 break;
1474 case SuspendReason::kInternal:
1475 break;
1476 }
1477
1478 if (tls32_.suspend_count == 0) {
1479 AtomicClearFlag(kSuspendRequest);
1480 } else {
1481 // Two bits might be set simultaneously.
1482 tls32_.state_and_flags.as_atomic_int.fetch_or(flags, std::memory_order_seq_cst);
1483 TriggerSuspend();
1484 }
1485 return true;
1486 }
1487
PassActiveSuspendBarriers(Thread * self)1488 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1489 // Grab the suspend_count lock and copy the current set of
1490 // barriers. Then clear the list and the flag. The ModifySuspendCount
1491 // function requires the lock so we prevent a race between setting
1492 // the kActiveSuspendBarrier flag and clearing it.
1493 AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1494 {
1495 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1496 if (!ReadFlag(kActiveSuspendBarrier)) {
1497 // quick exit test: the barriers have already been claimed - this is
1498 // possible as there may be a race to claim and it doesn't matter
1499 // who wins.
1500 // All of the callers of this function (except the SuspendAllInternal)
1501 // will first test the kActiveSuspendBarrier flag without lock. Here
1502 // double-check whether the barrier has been passed with the
1503 // suspend_count lock.
1504 return false;
1505 }
1506
1507 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1508 pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1509 tlsPtr_.active_suspend_barriers[i] = nullptr;
1510 }
1511 AtomicClearFlag(kActiveSuspendBarrier);
1512 }
1513
1514 uint32_t barrier_count = 0;
1515 for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1516 AtomicInteger* pending_threads = pass_barriers[i];
1517 if (pending_threads != nullptr) {
1518 bool done = false;
1519 do {
1520 int32_t cur_val = pending_threads->load(std::memory_order_relaxed);
1521 CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1522 // Reduce value by 1.
1523 done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1);
1524 #if ART_USE_FUTEXES
1525 if (done && (cur_val - 1) == 0) { // Weak CAS may fail spuriously.
1526 futex(pending_threads->Address(), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0);
1527 }
1528 #endif
1529 } while (!done);
1530 ++barrier_count;
1531 }
1532 }
1533 CHECK_GT(barrier_count, 0U);
1534 return true;
1535 }
1536
ClearSuspendBarrier(AtomicInteger * target)1537 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1538 CHECK(ReadFlag(kActiveSuspendBarrier));
1539 bool clear_flag = true;
1540 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1541 AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1542 if (ptr == target) {
1543 tlsPtr_.active_suspend_barriers[i] = nullptr;
1544 } else if (ptr != nullptr) {
1545 clear_flag = false;
1546 }
1547 }
1548 if (LIKELY(clear_flag)) {
1549 AtomicClearFlag(kActiveSuspendBarrier);
1550 }
1551 }
1552
RunCheckpointFunction()1553 void Thread::RunCheckpointFunction() {
1554 // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
1555 // there are no more checkpoints we will also clear the kCheckpointRequest flag.
1556 Closure* checkpoint;
1557 {
1558 MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1559 checkpoint = tlsPtr_.checkpoint_function;
1560 if (!checkpoint_overflow_.empty()) {
1561 // Overflow list not empty, copy the first one out and continue.
1562 tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1563 checkpoint_overflow_.pop_front();
1564 } else {
1565 // No overflow checkpoints. Clear the kCheckpointRequest flag
1566 tlsPtr_.checkpoint_function = nullptr;
1567 AtomicClearFlag(kCheckpointRequest);
1568 }
1569 }
1570 // Outside the lock, run the checkpoint function.
1571 ScopedTrace trace("Run checkpoint function");
1572 CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
1573 checkpoint->Run(this);
1574 }
1575
RunEmptyCheckpoint()1576 void Thread::RunEmptyCheckpoint() {
1577 DCHECK_EQ(Thread::Current(), this);
1578 AtomicClearFlag(kEmptyCheckpointRequest);
1579 Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1580 }
1581
RequestCheckpoint(Closure * function)1582 bool Thread::RequestCheckpoint(Closure* function) {
1583 union StateAndFlags old_state_and_flags;
1584 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1585 if (old_state_and_flags.as_struct.state != kRunnable) {
1586 return false; // Fail, thread is suspended and so can't run a checkpoint.
1587 }
1588
1589 // We must be runnable to request a checkpoint.
1590 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1591 union StateAndFlags new_state_and_flags;
1592 new_state_and_flags.as_int = old_state_and_flags.as_int;
1593 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1594 bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1595 old_state_and_flags.as_int, new_state_and_flags.as_int);
1596 if (success) {
1597 // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1598 if (tlsPtr_.checkpoint_function == nullptr) {
1599 tlsPtr_.checkpoint_function = function;
1600 } else {
1601 checkpoint_overflow_.push_back(function);
1602 }
1603 CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1604 TriggerSuspend();
1605 }
1606 return success;
1607 }
1608
RequestEmptyCheckpoint()1609 bool Thread::RequestEmptyCheckpoint() {
1610 union StateAndFlags old_state_and_flags;
1611 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1612 if (old_state_and_flags.as_struct.state != kRunnable) {
1613 // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1614 // heap access (eg. the read barrier).
1615 return false;
1616 }
1617
1618 // We must be runnable to request a checkpoint.
1619 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1620 union StateAndFlags new_state_and_flags;
1621 new_state_and_flags.as_int = old_state_and_flags.as_int;
1622 new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1623 bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1624 old_state_and_flags.as_int, new_state_and_flags.as_int);
1625 if (success) {
1626 TriggerSuspend();
1627 }
1628 return success;
1629 }
1630
1631 class BarrierClosure : public Closure {
1632 public:
BarrierClosure(Closure * wrapped)1633 explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1634
Run(Thread * self)1635 void Run(Thread* self) override {
1636 wrapped_->Run(self);
1637 barrier_.Pass(self);
1638 }
1639
Wait(Thread * self,ThreadState suspend_state)1640 void Wait(Thread* self, ThreadState suspend_state) {
1641 if (suspend_state != ThreadState::kRunnable) {
1642 barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
1643 } else {
1644 barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
1645 }
1646 }
1647
1648 private:
1649 Closure* wrapped_;
1650 Barrier barrier_;
1651 };
1652
1653 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
RequestSynchronousCheckpoint(Closure * function,ThreadState suspend_state)1654 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) {
1655 Thread* self = Thread::Current();
1656 if (this == Thread::Current()) {
1657 Locks::thread_list_lock_->AssertExclusiveHeld(self);
1658 // Unlock the tll before running so that the state is the same regardless of thread.
1659 Locks::thread_list_lock_->ExclusiveUnlock(self);
1660 // Asked to run on this thread. Just run.
1661 function->Run(this);
1662 return true;
1663 }
1664
1665 // The current thread is not this thread.
1666
1667 if (GetState() == ThreadState::kTerminated) {
1668 Locks::thread_list_lock_->ExclusiveUnlock(self);
1669 return false;
1670 }
1671
1672 struct ScopedThreadListLockUnlock {
1673 explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
1674 : self_thread(self_in) {
1675 Locks::thread_list_lock_->AssertHeld(self_thread);
1676 Locks::thread_list_lock_->Unlock(self_thread);
1677 }
1678
1679 ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
1680 Locks::thread_list_lock_->AssertNotHeld(self_thread);
1681 Locks::thread_list_lock_->Lock(self_thread);
1682 }
1683
1684 Thread* self_thread;
1685 };
1686
1687 for (;;) {
1688 Locks::thread_list_lock_->AssertExclusiveHeld(self);
1689 // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1690 // suspend-count lock for too long.
1691 if (GetState() == ThreadState::kRunnable) {
1692 BarrierClosure barrier_closure(function);
1693 bool installed = false;
1694 {
1695 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1696 installed = RequestCheckpoint(&barrier_closure);
1697 }
1698 if (installed) {
1699 // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
1700 // reacquire it since we don't know if 'this' hasn't been deleted yet.
1701 Locks::thread_list_lock_->ExclusiveUnlock(self);
1702 ScopedThreadStateChange sts(self, suspend_state);
1703 barrier_closure.Wait(self, suspend_state);
1704 return true;
1705 }
1706 // Fall-through.
1707 }
1708
1709 // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1710 // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1711 // certain situations.
1712 {
1713 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1714
1715 if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
1716 // Just retry the loop.
1717 sched_yield();
1718 continue;
1719 }
1720 }
1721
1722 {
1723 // Release for the wait. The suspension will keep us from being deleted. Reacquire after so
1724 // that we can call ModifySuspendCount without racing against ThreadList::Unregister.
1725 ScopedThreadListLockUnlock stllu(self);
1726 {
1727 ScopedThreadStateChange sts(self, suspend_state);
1728 while (GetState() == ThreadState::kRunnable) {
1729 // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1730 // moves us to suspended.
1731 sched_yield();
1732 }
1733 }
1734
1735 function->Run(this);
1736 }
1737
1738 {
1739 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1740
1741 DCHECK_NE(GetState(), ThreadState::kRunnable);
1742 bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1743 DCHECK(updated);
1744 }
1745
1746 {
1747 // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
1748 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
1749 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1750 Thread::resume_cond_->Broadcast(self);
1751 }
1752
1753 // Release the thread_list_lock_ to be consistent with the barrier-closure path.
1754 Locks::thread_list_lock_->ExclusiveUnlock(self);
1755
1756 return true; // We're done, break out of the loop.
1757 }
1758 }
1759
GetFlipFunction()1760 Closure* Thread::GetFlipFunction() {
1761 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1762 Closure* func;
1763 do {
1764 func = atomic_func->load(std::memory_order_relaxed);
1765 if (func == nullptr) {
1766 return nullptr;
1767 }
1768 } while (!atomic_func->CompareAndSetWeakSequentiallyConsistent(func, nullptr));
1769 DCHECK(func != nullptr);
1770 return func;
1771 }
1772
SetFlipFunction(Closure * function)1773 void Thread::SetFlipFunction(Closure* function) {
1774 CHECK(function != nullptr);
1775 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1776 atomic_func->store(function, std::memory_order_seq_cst);
1777 }
1778
FullSuspendCheck()1779 void Thread::FullSuspendCheck() {
1780 ScopedTrace trace(__FUNCTION__);
1781 VLOG(threads) << this << " self-suspending";
1782 // Make thread appear suspended to other threads, release mutator_lock_.
1783 // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1784 ScopedThreadSuspension(this, kSuspended); // NOLINT
1785 VLOG(threads) << this << " self-reviving";
1786 }
1787
GetSchedulerGroupName(pid_t tid)1788 static std::string GetSchedulerGroupName(pid_t tid) {
1789 // /proc/<pid>/cgroup looks like this:
1790 // 2:devices:/
1791 // 1:cpuacct,cpu:/
1792 // We want the third field from the line whose second field contains the "cpu" token.
1793 std::string cgroup_file;
1794 if (!android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid),
1795 &cgroup_file)) {
1796 return "";
1797 }
1798 std::vector<std::string> cgroup_lines;
1799 Split(cgroup_file, '\n', &cgroup_lines);
1800 for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1801 std::vector<std::string> cgroup_fields;
1802 Split(cgroup_lines[i], ':', &cgroup_fields);
1803 std::vector<std::string> cgroups;
1804 Split(cgroup_fields[1], ',', &cgroups);
1805 for (size_t j = 0; j < cgroups.size(); ++j) {
1806 if (cgroups[j] == "cpu") {
1807 return cgroup_fields[2].substr(1); // Skip the leading slash.
1808 }
1809 }
1810 }
1811 return "";
1812 }
1813
1814
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1815 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1816 std::string group_name;
1817 int priority;
1818 bool is_daemon = false;
1819 Thread* self = Thread::Current();
1820
1821 // If flip_function is not null, it means we have run a checkpoint
1822 // before the thread wakes up to execute the flip function and the
1823 // thread roots haven't been forwarded. So the following access to
1824 // the roots (opeer or methods in the frames) would be bad. Run it
1825 // here. TODO: clean up.
1826 if (thread != nullptr) {
1827 ScopedObjectAccessUnchecked soa(self);
1828 Thread* this_thread = const_cast<Thread*>(thread);
1829 Closure* flip_func = this_thread->GetFlipFunction();
1830 if (flip_func != nullptr) {
1831 flip_func->Run(this_thread);
1832 }
1833 }
1834
1835 // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1836 // cause ScopedObjectAccessUnchecked to deadlock.
1837 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1838 ScopedObjectAccessUnchecked soa(self);
1839 priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1840 ->GetInt(thread->tlsPtr_.opeer);
1841 is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1842 ->GetBoolean(thread->tlsPtr_.opeer);
1843
1844 ObjPtr<mirror::Object> thread_group =
1845 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1846 ->GetObject(thread->tlsPtr_.opeer);
1847
1848 if (thread_group != nullptr) {
1849 ArtField* group_name_field =
1850 jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1851 ObjPtr<mirror::String> group_name_string =
1852 group_name_field->GetObject(thread_group)->AsString();
1853 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1854 }
1855 } else if (thread != nullptr) {
1856 priority = thread->GetNativePriority();
1857 } else {
1858 palette_status_t status = PaletteSchedGetPriority(tid, &priority);
1859 CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
1860 }
1861
1862 std::string scheduler_group_name(GetSchedulerGroupName(tid));
1863 if (scheduler_group_name.empty()) {
1864 scheduler_group_name = "default";
1865 }
1866
1867 if (thread != nullptr) {
1868 os << '"' << *thread->tlsPtr_.name << '"';
1869 if (is_daemon) {
1870 os << " daemon";
1871 }
1872 os << " prio=" << priority
1873 << " tid=" << thread->GetThreadId()
1874 << " " << thread->GetState();
1875 if (thread->IsStillStarting()) {
1876 os << " (still starting up)";
1877 }
1878 os << "\n";
1879 } else {
1880 os << '"' << ::art::GetThreadName(tid) << '"'
1881 << " prio=" << priority
1882 << " (not attached)\n";
1883 }
1884
1885 if (thread != nullptr) {
1886 auto suspend_log_fn = [&]() REQUIRES(Locks::thread_suspend_count_lock_) {
1887 os << " | group=\"" << group_name << "\""
1888 << " sCount=" << thread->tls32_.suspend_count
1889 << " ucsCount=" << thread->tls32_.user_code_suspend_count
1890 << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1891 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1892 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1893 };
1894 if (Locks::thread_suspend_count_lock_->IsExclusiveHeld(self)) {
1895 Locks::thread_suspend_count_lock_->AssertExclusiveHeld(self); // For annotalysis.
1896 suspend_log_fn();
1897 } else {
1898 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1899 suspend_log_fn();
1900 }
1901 }
1902
1903 os << " | sysTid=" << tid
1904 << " nice=" << getpriority(PRIO_PROCESS, static_cast<id_t>(tid))
1905 << " cgrp=" << scheduler_group_name;
1906 if (thread != nullptr) {
1907 int policy;
1908 sched_param sp;
1909 #if !defined(__APPLE__)
1910 // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1911 policy = sched_getscheduler(tid);
1912 if (policy == -1) {
1913 PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1914 }
1915 int sched_getparam_result = sched_getparam(tid, &sp);
1916 if (sched_getparam_result == -1) {
1917 PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1918 sp.sched_priority = -1;
1919 }
1920 #else
1921 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1922 __FUNCTION__);
1923 #endif
1924 os << " sched=" << policy << "/" << sp.sched_priority
1925 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1926 }
1927 os << "\n";
1928
1929 // Grab the scheduler stats for this thread.
1930 std::string scheduler_stats;
1931 if (android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid),
1932 &scheduler_stats)
1933 && !scheduler_stats.empty()) {
1934 scheduler_stats = android::base::Trim(scheduler_stats); // Lose the trailing '\n'.
1935 } else {
1936 scheduler_stats = "0 0 0";
1937 }
1938
1939 char native_thread_state = '?';
1940 int utime = 0;
1941 int stime = 0;
1942 int task_cpu = 0;
1943 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1944
1945 os << " | state=" << native_thread_state
1946 << " schedstat=( " << scheduler_stats << " )"
1947 << " utm=" << utime
1948 << " stm=" << stime
1949 << " core=" << task_cpu
1950 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1951 if (thread != nullptr) {
1952 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1953 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1954 << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1955 // Dump the held mutexes.
1956 os << " | held mutexes=";
1957 for (size_t i = 0; i < kLockLevelCount; ++i) {
1958 if (i != kMonitorLock) {
1959 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1960 if (mutex != nullptr) {
1961 os << " \"" << mutex->GetName() << "\"";
1962 if (mutex->IsReaderWriterMutex()) {
1963 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1964 if (rw_mutex->GetExclusiveOwnerTid() == tid) {
1965 os << "(exclusive held)";
1966 } else {
1967 os << "(shared held)";
1968 }
1969 }
1970 }
1971 }
1972 }
1973 os << "\n";
1974 }
1975 }
1976
DumpState(std::ostream & os) const1977 void Thread::DumpState(std::ostream& os) const {
1978 Thread::DumpState(os, this, GetTid());
1979 }
1980
1981 struct StackDumpVisitor : public MonitorObjectsStackVisitor {
StackDumpVisitorart::StackDumpVisitor1982 StackDumpVisitor(std::ostream& os_in,
1983 Thread* thread_in,
1984 Context* context,
1985 bool can_allocate,
1986 bool check_suspended = true,
1987 bool dump_locks = true)
1988 REQUIRES_SHARED(Locks::mutator_lock_)
1989 : MonitorObjectsStackVisitor(thread_in,
1990 context,
1991 check_suspended,
1992 can_allocate && dump_locks),
1993 os(os_in),
1994 last_method(nullptr),
1995 last_line_number(0),
1996 repetition_count(0) {}
1997
~StackDumpVisitorart::StackDumpVisitor1998 virtual ~StackDumpVisitor() {
1999 if (frame_count == 0) {
2000 os << " (no managed stack frames)\n";
2001 }
2002 }
2003
2004 static constexpr size_t kMaxRepetition = 3u;
2005
StartMethodart::StackDumpVisitor2006 VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
2007 override
2008 REQUIRES_SHARED(Locks::mutator_lock_) {
2009 m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
2010 ObjPtr<mirror::DexCache> dex_cache = m->GetDexCache();
2011 int line_number = -1;
2012 if (dex_cache != nullptr) { // be tolerant of bad input
2013 const DexFile* dex_file = dex_cache->GetDexFile();
2014 line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
2015 }
2016 if (line_number == last_line_number && last_method == m) {
2017 ++repetition_count;
2018 } else {
2019 if (repetition_count >= kMaxRepetition) {
2020 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
2021 }
2022 repetition_count = 0;
2023 last_line_number = line_number;
2024 last_method = m;
2025 }
2026
2027 if (repetition_count >= kMaxRepetition) {
2028 // Skip visiting=printing anything.
2029 return VisitMethodResult::kSkipMethod;
2030 }
2031
2032 os << " at " << m->PrettyMethod(false);
2033 if (m->IsNative()) {
2034 os << "(Native method)";
2035 } else {
2036 const char* source_file(m->GetDeclaringClassSourceFile());
2037 os << "(" << (source_file != nullptr ? source_file : "unavailable")
2038 << ":" << line_number << ")";
2039 }
2040 os << "\n";
2041 // Go and visit locks.
2042 return VisitMethodResult::kContinueMethod;
2043 }
2044
EndMethodart::StackDumpVisitor2045 VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
2046 return VisitMethodResult::kContinueMethod;
2047 }
2048
VisitWaitingObjectart::StackDumpVisitor2049 void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
2050 override
2051 REQUIRES_SHARED(Locks::mutator_lock_) {
2052 PrintObject(obj, " - waiting on ", ThreadList::kInvalidThreadId);
2053 }
VisitSleepingObjectart::StackDumpVisitor2054 void VisitSleepingObject(ObjPtr<mirror::Object> obj)
2055 override
2056 REQUIRES_SHARED(Locks::mutator_lock_) {
2057 PrintObject(obj, " - sleeping on ", ThreadList::kInvalidThreadId);
2058 }
VisitBlockedOnObjectart::StackDumpVisitor2059 void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
2060 ThreadState state,
2061 uint32_t owner_tid)
2062 override
2063 REQUIRES_SHARED(Locks::mutator_lock_) {
2064 const char* msg;
2065 switch (state) {
2066 case kBlocked:
2067 msg = " - waiting to lock ";
2068 break;
2069
2070 case kWaitingForLockInflation:
2071 msg = " - waiting for lock inflation of ";
2072 break;
2073
2074 default:
2075 LOG(FATAL) << "Unreachable";
2076 UNREACHABLE();
2077 }
2078 PrintObject(obj, msg, owner_tid);
2079 }
VisitLockedObjectart::StackDumpVisitor2080 void VisitLockedObject(ObjPtr<mirror::Object> obj)
2081 override
2082 REQUIRES_SHARED(Locks::mutator_lock_) {
2083 PrintObject(obj, " - locked ", ThreadList::kInvalidThreadId);
2084 }
2085
PrintObjectart::StackDumpVisitor2086 void PrintObject(ObjPtr<mirror::Object> obj,
2087 const char* msg,
2088 uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
2089 if (obj == nullptr) {
2090 os << msg << "an unknown object";
2091 } else {
2092 if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
2093 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
2094 // Getting the identity hashcode here would result in lock inflation and suspension of the
2095 // current thread, which isn't safe if this is the only runnable thread.
2096 os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
2097 reinterpret_cast<intptr_t>(obj.Ptr()),
2098 obj->PrettyTypeOf().c_str());
2099 } else {
2100 // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
2101 // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
2102 // suspension and move pretty_object.
2103 const std::string pretty_type(obj->PrettyTypeOf());
2104 os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str());
2105 }
2106 }
2107 if (owner_tid != ThreadList::kInvalidThreadId) {
2108 os << " held by thread " << owner_tid;
2109 }
2110 os << "\n";
2111 }
2112
2113 std::ostream& os;
2114 ArtMethod* last_method;
2115 int last_line_number;
2116 size_t repetition_count;
2117 };
2118
ShouldShowNativeStack(const Thread * thread)2119 static bool ShouldShowNativeStack(const Thread* thread)
2120 REQUIRES_SHARED(Locks::mutator_lock_) {
2121 ThreadState state = thread->GetState();
2122
2123 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
2124 if (state > kWaiting && state < kStarting) {
2125 return true;
2126 }
2127
2128 // In an Object.wait variant or Thread.sleep? That's not interesting.
2129 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
2130 return false;
2131 }
2132
2133 // Threads with no managed stack frames should be shown.
2134 if (!thread->HasManagedStack()) {
2135 return true;
2136 }
2137
2138 // In some other native method? That's interesting.
2139 // We don't just check kNative because native methods will be in state kSuspended if they're
2140 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
2141 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
2142 ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
2143 return current_method != nullptr && current_method->IsNative();
2144 }
2145
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const2146 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
2147 // If flip_function is not null, it means we have run a checkpoint
2148 // before the thread wakes up to execute the flip function and the
2149 // thread roots haven't been forwarded. So the following access to
2150 // the roots (locks or methods in the frames) would be bad. Run it
2151 // here. TODO: clean up.
2152 {
2153 Thread* this_thread = const_cast<Thread*>(this);
2154 Closure* flip_func = this_thread->GetFlipFunction();
2155 if (flip_func != nullptr) {
2156 flip_func->Run(this_thread);
2157 }
2158 }
2159
2160 // Dumping the Java stack involves the verifier for locks. The verifier operates under the
2161 // assumption that there is no exception pending on entry. Thus, stash any pending exception.
2162 // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
2163 // thread.
2164 ScopedExceptionStorage ses(Thread::Current());
2165
2166 std::unique_ptr<Context> context(Context::Create());
2167 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
2168 !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
2169 dumper.WalkStack();
2170 }
2171
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const2172 void Thread::DumpStack(std::ostream& os,
2173 bool dump_native_stack,
2174 BacktraceMap* backtrace_map,
2175 bool force_dump_stack) const {
2176 // TODO: we call this code when dying but may not have suspended the thread ourself. The
2177 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
2178 // the race with the thread_suspend_count_lock_).
2179 bool dump_for_abort = (gAborting > 0);
2180 bool safe_to_dump = (this == Thread::Current() || IsSuspended());
2181 if (!kIsDebugBuild) {
2182 // We always want to dump the stack for an abort, however, there is no point dumping another
2183 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
2184 safe_to_dump = (safe_to_dump || dump_for_abort);
2185 }
2186 if (safe_to_dump || force_dump_stack) {
2187 // If we're currently in native code, dump that stack before dumping the managed stack.
2188 if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
2189 ArtMethod* method =
2190 GetCurrentMethod(nullptr,
2191 /*check_suspended=*/ !force_dump_stack,
2192 /*abort_on_error=*/ !(dump_for_abort || force_dump_stack));
2193 DumpNativeStack(os, GetTid(), backtrace_map, " native: ", method);
2194 }
2195 DumpJavaStack(os,
2196 /*check_suspended=*/ !force_dump_stack,
2197 /*dump_locks=*/ !force_dump_stack);
2198 } else {
2199 os << "Not able to dump stack of thread that isn't suspended";
2200 }
2201 }
2202
ThreadExitCallback(void * arg)2203 void Thread::ThreadExitCallback(void* arg) {
2204 Thread* self = reinterpret_cast<Thread*>(arg);
2205 if (self->tls32_.thread_exit_check_count == 0) {
2206 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
2207 "going to use a pthread_key_create destructor?): " << *self;
2208 CHECK(is_started_);
2209 #ifdef __BIONIC__
2210 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
2211 #else
2212 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
2213 Thread::self_tls_ = self;
2214 #endif
2215 self->tls32_.thread_exit_check_count = 1;
2216 } else {
2217 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
2218 }
2219 }
2220
Startup()2221 void Thread::Startup() {
2222 CHECK(!is_started_);
2223 is_started_ = true;
2224 {
2225 // MutexLock to keep annotalysis happy.
2226 //
2227 // Note we use null for the thread because Thread::Current can
2228 // return garbage since (is_started_ == true) and
2229 // Thread::pthread_key_self_ is not yet initialized.
2230 // This was seen on glibc.
2231 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
2232 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
2233 *Locks::thread_suspend_count_lock_);
2234 }
2235
2236 // Allocate a TLS slot.
2237 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
2238 "self key");
2239
2240 // Double-check the TLS slot allocation.
2241 if (pthread_getspecific(pthread_key_self_) != nullptr) {
2242 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
2243 }
2244 #ifndef __BIONIC__
2245 CHECK(Thread::self_tls_ == nullptr);
2246 #endif
2247 }
2248
FinishStartup()2249 void Thread::FinishStartup() {
2250 Runtime* runtime = Runtime::Current();
2251 CHECK(runtime->IsStarted());
2252
2253 // Finish attaching the main thread.
2254 ScopedObjectAccess soa(Thread::Current());
2255 soa.Self()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2256 soa.Self()->AssertNoPendingException();
2257
2258 runtime->RunRootClinits(soa.Self());
2259
2260 // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2261 // threads, this is done in Thread.start() on the Java side.
2262 soa.Self()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
2263 soa.Self()->AssertNoPendingException();
2264 }
2265
Shutdown()2266 void Thread::Shutdown() {
2267 CHECK(is_started_);
2268 is_started_ = false;
2269 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2270 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2271 if (resume_cond_ != nullptr) {
2272 delete resume_cond_;
2273 resume_cond_ = nullptr;
2274 }
2275 }
2276
NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable & soa,jobject thread_group)2277 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
2278 ScopedLocalRef<jobject> thread_jobject(
2279 soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
2280 ScopedLocalRef<jobject> thread_group_jobject_scoped(
2281 soa.Env(), nullptr);
2282 jobject thread_group_jobject = thread_group;
2283 if (thread_group == nullptr || kIsDebugBuild) {
2284 // There is always a group set. Retrieve it.
2285 thread_group_jobject_scoped.reset(
2286 soa.Env()->GetObjectField(thread_jobject.get(),
2287 WellKnownClasses::java_lang_Thread_group));
2288 thread_group_jobject = thread_group_jobject_scoped.get();
2289 if (kIsDebugBuild && thread_group != nullptr) {
2290 CHECK(soa.Env()->IsSameObject(thread_group, thread_group_jobject));
2291 }
2292 }
2293 soa.Env()->CallNonvirtualVoidMethod(thread_group_jobject,
2294 WellKnownClasses::java_lang_ThreadGroup,
2295 WellKnownClasses::java_lang_ThreadGroup_add,
2296 thread_jobject.get());
2297 }
2298
Thread(bool daemon)2299 Thread::Thread(bool daemon)
2300 : tls32_(daemon),
2301 wait_monitor_(nullptr),
2302 is_runtime_thread_(false) {
2303 wait_mutex_ = new Mutex("a thread wait mutex", LockLevel::kThreadWaitLock);
2304 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2305 tlsPtr_.instrumentation_stack =
2306 new std::map<uintptr_t, instrumentation::InstrumentationStackFrame>;
2307 tlsPtr_.name = new std::string(kThreadNameDuringStartup);
2308
2309 static_assert((sizeof(Thread) % 4) == 0U,
2310 "art::Thread has a size which is not a multiple of 4.");
2311 tls32_.state_and_flags.as_struct.flags = 0;
2312 tls32_.state_and_flags.as_struct.state = kNative;
2313 tls32_.interrupted.store(false, std::memory_order_relaxed);
2314 // Initialize with no permit; if the java Thread was unparked before being
2315 // started, it will unpark itself before calling into java code.
2316 tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
2317 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2318 std::fill(tlsPtr_.rosalloc_runs,
2319 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2320 gc::allocator::RosAlloc::GetDedicatedFullRun());
2321 tlsPtr_.checkpoint_function = nullptr;
2322 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
2323 tlsPtr_.active_suspend_barriers[i] = nullptr;
2324 }
2325 tlsPtr_.flip_function = nullptr;
2326 tlsPtr_.thread_local_mark_stack = nullptr;
2327 tls32_.is_transitioning_to_runnable = false;
2328 tls32_.use_mterp = false;
2329 ResetTlab();
2330 }
2331
NotifyInTheadList()2332 void Thread::NotifyInTheadList() {
2333 tls32_.use_mterp = interpreter::CanUseMterp();
2334 }
2335
CanLoadClasses() const2336 bool Thread::CanLoadClasses() const {
2337 return !IsRuntimeThread() || !Runtime::Current()->IsJavaDebuggable();
2338 }
2339
IsStillStarting() const2340 bool Thread::IsStillStarting() const {
2341 // You might think you can check whether the state is kStarting, but for much of thread startup,
2342 // the thread is in kNative; it might also be in kVmWait.
2343 // You might think you can check whether the peer is null, but the peer is actually created and
2344 // assigned fairly early on, and needs to be.
2345 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2346 // this thread _ever_ entered kRunnable".
2347 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2348 (*tlsPtr_.name == kThreadNameDuringStartup);
2349 }
2350
AssertPendingException() const2351 void Thread::AssertPendingException() const {
2352 CHECK(IsExceptionPending()) << "Pending exception expected.";
2353 }
2354
AssertPendingOOMException() const2355 void Thread::AssertPendingOOMException() const {
2356 AssertPendingException();
2357 auto* e = GetException();
2358 CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2359 << e->Dump();
2360 }
2361
AssertNoPendingException() const2362 void Thread::AssertNoPendingException() const {
2363 if (UNLIKELY(IsExceptionPending())) {
2364 ScopedObjectAccess soa(Thread::Current());
2365 LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2366 }
2367 }
2368
AssertNoPendingExceptionForNewException(const char * msg) const2369 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2370 if (UNLIKELY(IsExceptionPending())) {
2371 ScopedObjectAccess soa(Thread::Current());
2372 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2373 << GetException()->Dump();
2374 }
2375 }
2376
2377 class MonitorExitVisitor : public SingleRootVisitor {
2378 public:
MonitorExitVisitor(Thread * self)2379 explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2380
2381 // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)2382 void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2383 override NO_THREAD_SAFETY_ANALYSIS {
2384 if (self_->HoldsLock(entered_monitor)) {
2385 LOG(WARNING) << "Calling MonitorExit on object "
2386 << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2387 << " left locked by native thread "
2388 << *Thread::Current() << " which is detaching";
2389 entered_monitor->MonitorExit(self_);
2390 }
2391 }
2392
2393 private:
2394 Thread* const self_;
2395 };
2396
Destroy()2397 void Thread::Destroy() {
2398 Thread* self = this;
2399 DCHECK_EQ(self, Thread::Current());
2400
2401 if (tlsPtr_.jni_env != nullptr) {
2402 {
2403 ScopedObjectAccess soa(self);
2404 MonitorExitVisitor visitor(self);
2405 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2406 tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2407 }
2408 // Release locally held global references which releasing may require the mutator lock.
2409 if (tlsPtr_.jpeer != nullptr) {
2410 // If pthread_create fails we don't have a jni env here.
2411 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2412 tlsPtr_.jpeer = nullptr;
2413 }
2414 if (tlsPtr_.class_loader_override != nullptr) {
2415 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2416 tlsPtr_.class_loader_override = nullptr;
2417 }
2418 }
2419
2420 if (tlsPtr_.opeer != nullptr) {
2421 ScopedObjectAccess soa(self);
2422 // We may need to call user-supplied managed code, do this before final clean-up.
2423 HandleUncaughtExceptions(soa);
2424 RemoveFromThreadGroup(soa);
2425 Runtime* runtime = Runtime::Current();
2426 if (runtime != nullptr) {
2427 runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2428 }
2429
2430 // this.nativePeer = 0;
2431 if (Runtime::Current()->IsActiveTransaction()) {
2432 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2433 ->SetLong<true>(tlsPtr_.opeer, 0);
2434 } else {
2435 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2436 ->SetLong<false>(tlsPtr_.opeer, 0);
2437 }
2438
2439 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2440 // who is waiting.
2441 ObjPtr<mirror::Object> lock =
2442 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2443 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2444 if (lock != nullptr) {
2445 StackHandleScope<1> hs(self);
2446 Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2447 ObjectLock<mirror::Object> locker(self, h_obj);
2448 locker.NotifyAll();
2449 }
2450 tlsPtr_.opeer = nullptr;
2451 }
2452
2453 {
2454 ScopedObjectAccess soa(self);
2455 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2456 }
2457 // Mark-stack revocation must be performed at the very end. No
2458 // checkpoint/flip-function or read-barrier should be called after this.
2459 if (kUseReadBarrier) {
2460 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2461 }
2462 }
2463
~Thread()2464 Thread::~Thread() {
2465 CHECK(tlsPtr_.class_loader_override == nullptr);
2466 CHECK(tlsPtr_.jpeer == nullptr);
2467 CHECK(tlsPtr_.opeer == nullptr);
2468 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
2469 if (initialized) {
2470 delete tlsPtr_.jni_env;
2471 tlsPtr_.jni_env = nullptr;
2472 }
2473 CHECK_NE(GetState(), kRunnable);
2474 CHECK(!ReadFlag(kCheckpointRequest));
2475 CHECK(!ReadFlag(kEmptyCheckpointRequest));
2476 CHECK(tlsPtr_.checkpoint_function == nullptr);
2477 CHECK_EQ(checkpoint_overflow_.size(), 0u);
2478 CHECK(tlsPtr_.flip_function == nullptr);
2479 CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2480
2481 // Make sure we processed all deoptimization requests.
2482 CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2483 CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2484 "Not all deoptimized frames have been consumed by the debugger.";
2485
2486 // We may be deleting a still born thread.
2487 SetStateUnsafe(kTerminated);
2488
2489 delete wait_cond_;
2490 delete wait_mutex_;
2491
2492 if (tlsPtr_.long_jump_context != nullptr) {
2493 delete tlsPtr_.long_jump_context;
2494 }
2495
2496 if (initialized) {
2497 CleanupCpu();
2498 }
2499
2500 delete tlsPtr_.instrumentation_stack;
2501 delete tlsPtr_.name;
2502 delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2503
2504 Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2505
2506 TearDownAlternateSignalStack();
2507 }
2508
HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable & soa)2509 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
2510 if (!IsExceptionPending()) {
2511 return;
2512 }
2513 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2514 ScopedThreadStateChange tsc(this, kNative);
2515
2516 // Get and clear the exception.
2517 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2518 tlsPtr_.jni_env->ExceptionClear();
2519
2520 // Call the Thread instance's dispatchUncaughtException(Throwable)
2521 tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2522 WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2523 exception.get());
2524
2525 // If the dispatchUncaughtException threw, clear that exception too.
2526 tlsPtr_.jni_env->ExceptionClear();
2527 }
2528
RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable & soa)2529 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
2530 // this.group.removeThread(this);
2531 // group can be null if we're in the compiler or a test.
2532 ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2533 ->GetObject(tlsPtr_.opeer);
2534 if (ogroup != nullptr) {
2535 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2536 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2537 ScopedThreadStateChange tsc(soa.Self(), kNative);
2538 tlsPtr_.jni_env->CallVoidMethod(group.get(),
2539 WellKnownClasses::java_lang_ThreadGroup_removeThread,
2540 peer.get());
2541 }
2542 }
2543
2544 template <bool kPointsToStack>
2545 class JniTransitionReferenceVisitor : public StackVisitor {
2546 public:
JniTransitionReferenceVisitor(Thread * thread,void * obj)2547 JniTransitionReferenceVisitor(Thread* thread, void* obj) REQUIRES_SHARED(Locks::mutator_lock_)
2548 : StackVisitor(thread, /*context=*/ nullptr, StackVisitor::StackWalkKind::kSkipInlinedFrames),
2549 obj_(obj),
2550 found_(false) {}
2551
VisitFrame()2552 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2553 ArtMethod* m = GetMethod();
2554 if (!m->IsNative() || m->IsCriticalNative()) {
2555 return true;
2556 }
2557 if (kPointsToStack) {
2558 uint8_t* sp = reinterpret_cast<uint8_t*>(GetCurrentQuickFrame());
2559 size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes();
2560 uint32_t* current_vreg = reinterpret_cast<uint32_t*>(sp + frame_size + sizeof(ArtMethod*));
2561 if (!m->IsStatic()) {
2562 if (current_vreg == obj_) {
2563 found_ = true;
2564 return false;
2565 }
2566 current_vreg += 1u;
2567 }
2568 const char* shorty = m->GetShorty();
2569 for (size_t i = 1, len = strlen(shorty); i != len; ++i) {
2570 switch (shorty[i]) {
2571 case 'D':
2572 case 'J':
2573 current_vreg += 2u;
2574 break;
2575 case 'L':
2576 if (current_vreg == obj_) {
2577 found_ = true;
2578 return false;
2579 }
2580 FALLTHROUGH_INTENDED;
2581 default:
2582 current_vreg += 1u;
2583 break;
2584 }
2585 }
2586 // Continue only if the object is somewhere higher on the stack.
2587 return obj_ >= current_vreg;
2588 } else { // if (kPointsToStack)
2589 if (m->IsStatic() && obj_ == m->GetDeclaringClassAddressWithoutBarrier()) {
2590 found_ = true;
2591 return false;
2592 }
2593 return true;
2594 }
2595 }
2596
Found() const2597 bool Found() const {
2598 return found_;
2599 }
2600
2601 private:
2602 void* obj_;
2603 bool found_;
2604 };
2605
IsJniTransitionReference(jobject obj) const2606 bool Thread::IsJniTransitionReference(jobject obj) const {
2607 DCHECK(obj != nullptr);
2608 // We need a non-const pointer for stack walk even if we're not modifying the thread state.
2609 Thread* thread = const_cast<Thread*>(this);
2610 uint8_t* raw_obj = reinterpret_cast<uint8_t*>(obj);
2611 if (static_cast<size_t>(raw_obj - tlsPtr_.stack_begin) < tlsPtr_.stack_size) {
2612 JniTransitionReferenceVisitor</*kPointsToStack=*/ true> visitor(thread, raw_obj);
2613 visitor.WalkStack();
2614 return visitor.Found();
2615 } else {
2616 JniTransitionReferenceVisitor</*kPointsToStack=*/ false> visitor(thread, raw_obj);
2617 visitor.WalkStack();
2618 return visitor.Found();
2619 }
2620 }
2621
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)2622 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
2623 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2624 visitor, RootInfo(kRootNativeStack, thread_id));
2625 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2626 cur->VisitRoots(buffered_visitor);
2627 }
2628 }
2629
DecodeJObject(jobject obj) const2630 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2631 if (obj == nullptr) {
2632 return nullptr;
2633 }
2634 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2635 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2636 ObjPtr<mirror::Object> result;
2637 bool expect_null = false;
2638 // The "kinds" below are sorted by the frequency we expect to encounter them.
2639 if (kind == kLocal) {
2640 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals_;
2641 // Local references do not need a read barrier.
2642 result = locals.Get<kWithoutReadBarrier>(ref);
2643 } else if (kind == kJniTransitionOrInvalid) {
2644 // The `jclass` for a static method points to the CompressedReference<> in the
2645 // `ArtMethod::declaring_class_`. Other `jobject` arguments point to spilled stack
2646 // references but a StackReference<> is just a subclass of CompressedReference<>.
2647 DCHECK(IsJniTransitionReference(obj));
2648 result = reinterpret_cast<mirror::CompressedReference<mirror::Object>*>(obj)->AsMirrorPtr();
2649 VerifyObject(result);
2650 } else if (kind == kGlobal) {
2651 result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
2652 } else {
2653 DCHECK_EQ(kind, kWeakGlobal);
2654 result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2655 if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2656 // This is a special case where it's okay to return null.
2657 expect_null = true;
2658 result = nullptr;
2659 }
2660 }
2661
2662 DCHECK(expect_null || result != nullptr)
2663 << "use of deleted " << ToStr<IndirectRefKind>(kind).c_str()
2664 << " " << static_cast<const void*>(obj);
2665 return result;
2666 }
2667
IsJWeakCleared(jweak obj) const2668 bool Thread::IsJWeakCleared(jweak obj) const {
2669 CHECK(obj != nullptr);
2670 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2671 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2672 CHECK_EQ(kind, kWeakGlobal);
2673 return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2674 }
2675
2676 // Implements java.lang.Thread.interrupted.
Interrupted()2677 bool Thread::Interrupted() {
2678 DCHECK_EQ(Thread::Current(), this);
2679 // No other thread can concurrently reset the interrupted flag.
2680 bool interrupted = tls32_.interrupted.load(std::memory_order_seq_cst);
2681 if (interrupted) {
2682 tls32_.interrupted.store(false, std::memory_order_seq_cst);
2683 }
2684 return interrupted;
2685 }
2686
2687 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2688 bool Thread::IsInterrupted() {
2689 return tls32_.interrupted.load(std::memory_order_seq_cst);
2690 }
2691
Interrupt(Thread * self)2692 void Thread::Interrupt(Thread* self) {
2693 {
2694 MutexLock mu(self, *wait_mutex_);
2695 if (tls32_.interrupted.load(std::memory_order_seq_cst)) {
2696 return;
2697 }
2698 tls32_.interrupted.store(true, std::memory_order_seq_cst);
2699 NotifyLocked(self);
2700 }
2701 Unpark();
2702 }
2703
Notify()2704 void Thread::Notify() {
2705 Thread* self = Thread::Current();
2706 MutexLock mu(self, *wait_mutex_);
2707 NotifyLocked(self);
2708 }
2709
NotifyLocked(Thread * self)2710 void Thread::NotifyLocked(Thread* self) {
2711 if (wait_monitor_ != nullptr) {
2712 wait_cond_->Signal(self);
2713 }
2714 }
2715
SetClassLoaderOverride(jobject class_loader_override)2716 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2717 if (tlsPtr_.class_loader_override != nullptr) {
2718 GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2719 }
2720 tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2721 }
2722
2723 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2724
2725 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2726 class FetchStackTraceVisitor : public StackVisitor {
2727 public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2728 explicit FetchStackTraceVisitor(Thread* thread,
2729 ArtMethodDexPcPair* saved_frames = nullptr,
2730 size_t max_saved_frames = 0)
2731 REQUIRES_SHARED(Locks::mutator_lock_)
2732 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2733 saved_frames_(saved_frames),
2734 max_saved_frames_(max_saved_frames) {}
2735
VisitFrame()2736 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2737 // We want to skip frames up to and including the exception's constructor.
2738 // Note we also skip the frame if it doesn't have a method (namely the callee
2739 // save frame)
2740 ArtMethod* m = GetMethod();
2741 if (skipping_ && !m->IsRuntimeMethod() &&
2742 !GetClassRoot<mirror::Throwable>()->IsAssignableFrom(m->GetDeclaringClass())) {
2743 skipping_ = false;
2744 }
2745 if (!skipping_) {
2746 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
2747 if (depth_ < max_saved_frames_) {
2748 saved_frames_[depth_].first = m;
2749 saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
2750 }
2751 ++depth_;
2752 }
2753 } else {
2754 ++skip_depth_;
2755 }
2756 return true;
2757 }
2758
GetDepth() const2759 uint32_t GetDepth() const {
2760 return depth_;
2761 }
2762
GetSkipDepth() const2763 uint32_t GetSkipDepth() const {
2764 return skip_depth_;
2765 }
2766
2767 private:
2768 uint32_t depth_ = 0;
2769 uint32_t skip_depth_ = 0;
2770 bool skipping_ = true;
2771 ArtMethodDexPcPair* saved_frames_;
2772 const size_t max_saved_frames_;
2773
2774 DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2775 };
2776
2777 class BuildInternalStackTraceVisitor : public StackVisitor {
2778 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,uint32_t skip_depth)2779 BuildInternalStackTraceVisitor(Thread* self, Thread* thread, uint32_t skip_depth)
2780 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2781 self_(self),
2782 skip_depth_(skip_depth),
2783 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2784
Init(uint32_t depth)2785 bool Init(uint32_t depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2786 // Allocate method trace as an object array where the first element is a pointer array that
2787 // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2788 // class of the ArtMethod pointers.
2789 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2790 StackHandleScope<1> hs(self_);
2791 ObjPtr<mirror::Class> array_class =
2792 GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker);
2793 // The first element is the methods and dex pc array, the other elements are declaring classes
2794 // for the methods to ensure classes in the stack trace don't get unloaded.
2795 Handle<mirror::ObjectArray<mirror::Object>> trace(
2796 hs.NewHandle(mirror::ObjectArray<mirror::Object>::Alloc(
2797 hs.Self(), array_class, static_cast<int32_t>(depth) + 1)));
2798 if (trace == nullptr) {
2799 // Acquire uninterruptible_ in all paths.
2800 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2801 self_->AssertPendingOOMException();
2802 return false;
2803 }
2804 ObjPtr<mirror::PointerArray> methods_and_pcs =
2805 class_linker->AllocPointerArray(self_, depth * 2);
2806 const char* last_no_suspend_cause =
2807 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2808 if (methods_and_pcs == nullptr) {
2809 self_->AssertPendingOOMException();
2810 return false;
2811 }
2812 trace->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(0, methods_and_pcs);
2813 trace_ = trace.Get();
2814 // If We are called from native, use non-transactional mode.
2815 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2816 return true;
2817 }
2818
RELEASE(Roles::uninterruptible_)2819 virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2820 self_->EndAssertNoThreadSuspension(nullptr);
2821 }
2822
VisitFrame()2823 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2824 if (trace_ == nullptr) {
2825 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2826 }
2827 if (skip_depth_ > 0) {
2828 skip_depth_--;
2829 return true;
2830 }
2831 ArtMethod* m = GetMethod();
2832 if (m->IsRuntimeMethod()) {
2833 return true; // Ignore runtime frames (in particular callee save).
2834 }
2835 AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
2836 return true;
2837 }
2838
AddFrame(ArtMethod * method,uint32_t dex_pc)2839 void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2840 ObjPtr<mirror::PointerArray> methods_and_pcs = GetTraceMethodsAndPCs();
2841 methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
2842 count_, method, pointer_size_);
2843 methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
2844 static_cast<uint32_t>(methods_and_pcs->GetLength()) / 2 + count_, dex_pc, pointer_size_);
2845 // Save the declaring class of the method to ensure that the declaring classes of the methods
2846 // do not get unloaded while the stack trace is live.
2847 trace_->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
2848 static_cast<int32_t>(count_) + 1, method->GetDeclaringClass());
2849 ++count_;
2850 }
2851
GetTraceMethodsAndPCs() const2852 ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2853 return ObjPtr<mirror::PointerArray>::DownCast(trace_->Get(0));
2854 }
2855
GetInternalStackTrace() const2856 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2857 return trace_;
2858 }
2859
2860 private:
2861 Thread* const self_;
2862 // How many more frames to skip.
2863 uint32_t skip_depth_;
2864 // Current position down stack trace.
2865 uint32_t count_ = 0;
2866 // An object array where the first element is a pointer array that contains the ArtMethod
2867 // pointers on the stack and dex PCs. The rest of the elements are the declaring class of
2868 // the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of the
2869 // i'th frame. We're initializing a newly allocated trace, so we do not need to record that
2870 // under a transaction. If the transaction is aborted, the whole trace shall be unreachable.
2871 mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2872 // For cross compilation.
2873 const PointerSize pointer_size_;
2874
2875 DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2876 };
2877
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2878 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2879 // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2880 constexpr size_t kMaxSavedFrames = 256;
2881 std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2882 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2883 &saved_frames[0],
2884 kMaxSavedFrames);
2885 count_visitor.WalkStack();
2886 const uint32_t depth = count_visitor.GetDepth();
2887 const uint32_t skip_depth = count_visitor.GetSkipDepth();
2888
2889 // Build internal stack trace.
2890 BuildInternalStackTraceVisitor build_trace_visitor(
2891 soa.Self(), const_cast<Thread*>(this), skip_depth);
2892 if (!build_trace_visitor.Init(depth)) {
2893 return nullptr; // Allocation failed.
2894 }
2895 // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2896 // than doing the stack walk twice.
2897 if (depth < kMaxSavedFrames) {
2898 for (size_t i = 0; i < depth; ++i) {
2899 build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2900 }
2901 } else {
2902 build_trace_visitor.WalkStack();
2903 }
2904
2905 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2906 if (kIsDebugBuild) {
2907 ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2908 // Second half of trace_methods is dex PCs.
2909 for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2910 auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2911 i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2912 CHECK(method != nullptr);
2913 }
2914 }
2915 return soa.AddLocalReference<jobject>(trace);
2916 }
2917
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const2918 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2919 // Only count the depth since we do not pass a stack frame array as an argument.
2920 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2921 count_visitor.WalkStack();
2922 return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2923 }
2924
CreateStackTraceElement(const ScopedObjectAccessAlreadyRunnable & soa,ArtMethod * method,uint32_t dex_pc)2925 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
2926 const ScopedObjectAccessAlreadyRunnable& soa,
2927 ArtMethod* method,
2928 uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2929 int32_t line_number;
2930 StackHandleScope<3> hs(soa.Self());
2931 auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2932 auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2933 if (method->IsProxyMethod()) {
2934 line_number = -1;
2935 class_name_object.Assign(method->GetDeclaringClass()->GetName());
2936 // source_name_object intentionally left null for proxy methods
2937 } else {
2938 line_number = method->GetLineNumFromDexPC(dex_pc);
2939 // Allocate element, potentially triggering GC
2940 // TODO: reuse class_name_object via Class::name_?
2941 const char* descriptor = method->GetDeclaringClassDescriptor();
2942 CHECK(descriptor != nullptr);
2943 std::string class_name(PrettyDescriptor(descriptor));
2944 class_name_object.Assign(
2945 mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2946 if (class_name_object == nullptr) {
2947 soa.Self()->AssertPendingOOMException();
2948 return nullptr;
2949 }
2950 const char* source_file = method->GetDeclaringClassSourceFile();
2951 if (line_number == -1) {
2952 // Make the line_number field of StackTraceElement hold the dex pc.
2953 // source_name_object is intentionally left null if we failed to map the dex pc to
2954 // a line number (most probably because there is no debug info). See b/30183883.
2955 line_number = static_cast<int32_t>(dex_pc);
2956 } else {
2957 if (source_file != nullptr) {
2958 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2959 if (source_name_object == nullptr) {
2960 soa.Self()->AssertPendingOOMException();
2961 return nullptr;
2962 }
2963 }
2964 }
2965 }
2966 const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2967 CHECK(method_name != nullptr);
2968 Handle<mirror::String> method_name_object(
2969 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2970 if (method_name_object == nullptr) {
2971 return nullptr;
2972 }
2973 return mirror::StackTraceElement::Alloc(soa.Self(),
2974 class_name_object,
2975 method_name_object,
2976 source_name_object,
2977 line_number);
2978 }
2979
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2980 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2981 const ScopedObjectAccessAlreadyRunnable& soa,
2982 jobject internal,
2983 jobjectArray output_array,
2984 int* stack_depth) {
2985 // Decode the internal stack trace into the depth, method trace and PC trace.
2986 // Subtract one for the methods and PC trace.
2987 int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2988 DCHECK_GE(depth, 0);
2989
2990 ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2991
2992 jobjectArray result;
2993
2994 if (output_array != nullptr) {
2995 // Reuse the array we were given.
2996 result = output_array;
2997 // ...adjusting the number of frames we'll write to not exceed the array length.
2998 const int32_t traces_length =
2999 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
3000 depth = std::min(depth, traces_length);
3001 } else {
3002 // Create java_trace array and place in local reference table
3003 ObjPtr<mirror::ObjectArray<mirror::StackTraceElement>> java_traces =
3004 class_linker->AllocStackTraceElementArray(soa.Self(), static_cast<size_t>(depth));
3005 if (java_traces == nullptr) {
3006 return nullptr;
3007 }
3008 result = soa.AddLocalReference<jobjectArray>(java_traces);
3009 }
3010
3011 if (stack_depth != nullptr) {
3012 *stack_depth = depth;
3013 }
3014
3015 for (uint32_t i = 0; i < static_cast<uint32_t>(depth); ++i) {
3016 ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
3017 soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
3018 // Methods and dex PC trace is element 0.
3019 DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
3020 const ObjPtr<mirror::PointerArray> method_trace =
3021 ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0));
3022 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
3023 ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
3024 uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
3025 i + static_cast<uint32_t>(method_trace->GetLength()) / 2, kRuntimePointerSize);
3026 const ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
3027 if (obj == nullptr) {
3028 return nullptr;
3029 }
3030 // We are called from native: use non-transactional mode.
3031 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(
3032 static_cast<int32_t>(i), obj);
3033 }
3034 return result;
3035 }
3036
CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const3037 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
3038 // This code allocates. Do not allow it to operate with a pending exception.
3039 if (IsExceptionPending()) {
3040 return nullptr;
3041 }
3042
3043 // If flip_function is not null, it means we have run a checkpoint
3044 // before the thread wakes up to execute the flip function and the
3045 // thread roots haven't been forwarded. So the following access to
3046 // the roots (locks or methods in the frames) would be bad. Run it
3047 // here. TODO: clean up.
3048 // Note: copied from DumpJavaStack.
3049 {
3050 Thread* this_thread = const_cast<Thread*>(this);
3051 Closure* flip_func = this_thread->GetFlipFunction();
3052 if (flip_func != nullptr) {
3053 flip_func->Run(this_thread);
3054 }
3055 }
3056
3057 class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
3058 public:
3059 CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
3060 Thread* self,
3061 Context* context)
3062 : MonitorObjectsStackVisitor(self, context),
3063 wait_jobject_(soaa_in.Env(), nullptr),
3064 block_jobject_(soaa_in.Env(), nullptr),
3065 soaa_(soaa_in) {}
3066
3067 protected:
3068 VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
3069 override
3070 REQUIRES_SHARED(Locks::mutator_lock_) {
3071 ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
3072 soaa_, m, GetDexPc(/* abort on error */ false));
3073 if (obj == nullptr) {
3074 return VisitMethodResult::kEndStackWalk;
3075 }
3076 stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
3077 return VisitMethodResult::kContinueMethod;
3078 }
3079
3080 VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
3081 lock_objects_.push_back({});
3082 lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
3083
3084 DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
3085
3086 return VisitMethodResult::kContinueMethod;
3087 }
3088
3089 void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
3090 override
3091 REQUIRES_SHARED(Locks::mutator_lock_) {
3092 wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3093 }
3094 void VisitSleepingObject(ObjPtr<mirror::Object> obj)
3095 override
3096 REQUIRES_SHARED(Locks::mutator_lock_) {
3097 wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3098 }
3099 void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
3100 ThreadState state ATTRIBUTE_UNUSED,
3101 uint32_t owner_tid ATTRIBUTE_UNUSED)
3102 override
3103 REQUIRES_SHARED(Locks::mutator_lock_) {
3104 block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3105 }
3106 void VisitLockedObject(ObjPtr<mirror::Object> obj)
3107 override
3108 REQUIRES_SHARED(Locks::mutator_lock_) {
3109 frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
3110 }
3111
3112 public:
3113 std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
3114 ScopedLocalRef<jobject> wait_jobject_;
3115 ScopedLocalRef<jobject> block_jobject_;
3116 std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
3117
3118 private:
3119 const ScopedObjectAccessAlreadyRunnable& soaa_;
3120
3121 std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
3122 };
3123
3124 std::unique_ptr<Context> context(Context::Create());
3125 CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
3126 dumper.WalkStack();
3127
3128 // There should not be a pending exception. Otherwise, return with it pending.
3129 if (IsExceptionPending()) {
3130 return nullptr;
3131 }
3132
3133 // Now go and create Java arrays.
3134
3135 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3136
3137 StackHandleScope<6> hs(soa.Self());
3138 Handle<mirror::Class> h_aste_array_class = hs.NewHandle(class_linker->FindSystemClass(
3139 soa.Self(),
3140 "[Ldalvik/system/AnnotatedStackTraceElement;"));
3141 if (h_aste_array_class == nullptr) {
3142 return nullptr;
3143 }
3144 Handle<mirror::Class> h_aste_class = hs.NewHandle(h_aste_array_class->GetComponentType());
3145
3146 Handle<mirror::Class> h_o_array_class =
3147 hs.NewHandle(GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker));
3148 DCHECK(h_o_array_class != nullptr); // Class roots must be already initialized.
3149
3150
3151 // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
3152 class_linker->EnsureInitialized(soa.Self(),
3153 h_aste_class,
3154 /* can_init_fields= */ true,
3155 /* can_init_parents= */ true);
3156 if (soa.Self()->IsExceptionPending()) {
3157 // This should not fail in a healthy runtime.
3158 return nullptr;
3159 }
3160
3161 ArtField* stack_trace_element_field = h_aste_class->FindField(
3162 soa.Self(), h_aste_class.Get(), "stackTraceElement", "Ljava/lang/StackTraceElement;");
3163 DCHECK(stack_trace_element_field != nullptr);
3164 ArtField* held_locks_field = h_aste_class->FindField(
3165 soa.Self(), h_aste_class.Get(), "heldLocks", "[Ljava/lang/Object;");
3166 DCHECK(held_locks_field != nullptr);
3167 ArtField* blocked_on_field = h_aste_class->FindField(
3168 soa.Self(), h_aste_class.Get(), "blockedOn", "Ljava/lang/Object;");
3169 DCHECK(blocked_on_field != nullptr);
3170
3171 int32_t length = static_cast<int32_t>(dumper.stack_trace_elements_.size());
3172 ObjPtr<mirror::ObjectArray<mirror::Object>> array =
3173 mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), h_aste_array_class.Get(), length);
3174 if (array == nullptr) {
3175 soa.Self()->AssertPendingOOMException();
3176 return nullptr;
3177 }
3178
3179 ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
3180
3181 MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
3182 MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
3183 hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
3184 for (size_t i = 0; i != static_cast<size_t>(length); ++i) {
3185 handle.Assign(h_aste_class->AllocObject(soa.Self()));
3186 if (handle == nullptr) {
3187 soa.Self()->AssertPendingOOMException();
3188 return nullptr;
3189 }
3190
3191 // Set stack trace element.
3192 stack_trace_element_field->SetObject<false>(
3193 handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
3194
3195 // Create locked-on array.
3196 if (!dumper.lock_objects_[i].empty()) {
3197 handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(
3198 soa.Self(), h_o_array_class.Get(), static_cast<int32_t>(dumper.lock_objects_[i].size())));
3199 if (handle2 == nullptr) {
3200 soa.Self()->AssertPendingOOMException();
3201 return nullptr;
3202 }
3203 int32_t j = 0;
3204 for (auto& scoped_local : dumper.lock_objects_[i]) {
3205 if (scoped_local == nullptr) {
3206 continue;
3207 }
3208 handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
3209 DCHECK(!soa.Self()->IsExceptionPending());
3210 j++;
3211 }
3212 held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
3213 }
3214
3215 // Set blocked-on object.
3216 if (i == 0) {
3217 if (dumper.block_jobject_ != nullptr) {
3218 blocked_on_field->SetObject<false>(
3219 handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
3220 }
3221 }
3222
3223 ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
3224 soa.Env()->SetObjectArrayElement(result.get(), static_cast<jsize>(i), elem.get());
3225 DCHECK(!soa.Self()->IsExceptionPending());
3226 }
3227
3228 return result.release();
3229 }
3230
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)3231 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
3232 va_list args;
3233 va_start(args, fmt);
3234 ThrowNewExceptionV(exception_class_descriptor, fmt, args);
3235 va_end(args);
3236 }
3237
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)3238 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
3239 const char* fmt, va_list ap) {
3240 std::string msg;
3241 StringAppendV(&msg, fmt, ap);
3242 ThrowNewException(exception_class_descriptor, msg.c_str());
3243 }
3244
ThrowNewException(const char * exception_class_descriptor,const char * msg)3245 void Thread::ThrowNewException(const char* exception_class_descriptor,
3246 const char* msg) {
3247 // Callers should either clear or call ThrowNewWrappedException.
3248 AssertNoPendingExceptionForNewException(msg);
3249 ThrowNewWrappedException(exception_class_descriptor, msg);
3250 }
3251
GetCurrentClassLoader(Thread * self)3252 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
3253 REQUIRES_SHARED(Locks::mutator_lock_) {
3254 ArtMethod* method = self->GetCurrentMethod(nullptr);
3255 return method != nullptr
3256 ? method->GetDeclaringClass()->GetClassLoader()
3257 : nullptr;
3258 }
3259
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)3260 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
3261 const char* msg) {
3262 DCHECK_EQ(this, Thread::Current());
3263 ScopedObjectAccessUnchecked soa(this);
3264 StackHandleScope<3> hs(soa.Self());
3265
3266 // Disable public sdk checks if we need to throw exceptions.
3267 // The checks are only used in AOT compilation and may block (exception) class
3268 // initialization if it needs access to private fields (e.g. serialVersionUID).
3269 //
3270 // Since throwing an exception will EnsureInitialization and the public sdk may
3271 // block that, disable the checks. It's ok to do so, because the thrown exceptions
3272 // are not part of the application code that needs to verified.
3273 ScopedDisablePublicSdkChecker sdpsc;
3274
3275 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
3276 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
3277 ClearException();
3278 Runtime* runtime = Runtime::Current();
3279 auto* cl = runtime->GetClassLinker();
3280 Handle<mirror::Class> exception_class(
3281 hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
3282 if (UNLIKELY(exception_class == nullptr)) {
3283 CHECK(IsExceptionPending());
3284 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
3285 return;
3286 }
3287
3288 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
3289 true))) {
3290 DCHECK(IsExceptionPending());
3291 return;
3292 }
3293 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
3294 Handle<mirror::Throwable> exception(
3295 hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
3296
3297 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
3298 if (exception == nullptr) {
3299 Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
3300 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
3301 return;
3302 }
3303
3304 // Choose an appropriate constructor and set up the arguments.
3305 const char* signature;
3306 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
3307 if (msg != nullptr) {
3308 // Ensure we remember this and the method over the String allocation.
3309 msg_string.reset(
3310 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
3311 if (UNLIKELY(msg_string.get() == nullptr)) {
3312 CHECK(IsExceptionPending()); // OOME.
3313 return;
3314 }
3315 if (cause.get() == nullptr) {
3316 signature = "(Ljava/lang/String;)V";
3317 } else {
3318 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
3319 }
3320 } else {
3321 if (cause.get() == nullptr) {
3322 signature = "()V";
3323 } else {
3324 signature = "(Ljava/lang/Throwable;)V";
3325 }
3326 }
3327 ArtMethod* exception_init_method =
3328 exception_class->FindConstructor(signature, cl->GetImagePointerSize());
3329
3330 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
3331 << PrettyDescriptor(exception_class_descriptor);
3332
3333 if (UNLIKELY(!runtime->IsStarted())) {
3334 // Something is trying to throw an exception without a started runtime, which is the common
3335 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
3336 // the exception fields directly.
3337 if (msg != nullptr) {
3338 exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
3339 }
3340 if (cause.get() != nullptr) {
3341 exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
3342 }
3343 ScopedLocalRef<jobject> trace(GetJniEnv(), CreateInternalStackTrace(soa));
3344 if (trace.get() != nullptr) {
3345 exception->SetStackState(DecodeJObject(trace.get()).Ptr());
3346 }
3347 SetException(exception.Get());
3348 } else {
3349 jvalue jv_args[2];
3350 size_t i = 0;
3351
3352 if (msg != nullptr) {
3353 jv_args[i].l = msg_string.get();
3354 ++i;
3355 }
3356 if (cause.get() != nullptr) {
3357 jv_args[i].l = cause.get();
3358 ++i;
3359 }
3360 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
3361 InvokeWithJValues(soa, ref.get(), exception_init_method, jv_args);
3362 if (LIKELY(!IsExceptionPending())) {
3363 SetException(exception.Get());
3364 }
3365 }
3366 }
3367
ThrowOutOfMemoryError(const char * msg)3368 void Thread::ThrowOutOfMemoryError(const char* msg) {
3369 LOG(WARNING) << "Throwing OutOfMemoryError "
3370 << '"' << msg << '"'
3371 << " (VmSize " << GetProcessStatus("VmSize")
3372 << (tls32_.throwing_OutOfMemoryError ? ", recursive case)" : ")");
3373 if (!tls32_.throwing_OutOfMemoryError) {
3374 tls32_.throwing_OutOfMemoryError = true;
3375 ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
3376 tls32_.throwing_OutOfMemoryError = false;
3377 } else {
3378 Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
3379 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
3380 }
3381 }
3382
CurrentFromGdb()3383 Thread* Thread::CurrentFromGdb() {
3384 return Thread::Current();
3385 }
3386
DumpFromGdb() const3387 void Thread::DumpFromGdb() const {
3388 std::ostringstream ss;
3389 Dump(ss);
3390 std::string str(ss.str());
3391 // log to stderr for debugging command line processes
3392 std::cerr << str;
3393 #ifdef ART_TARGET_ANDROID
3394 // log to logcat for debugging frameworks processes
3395 LOG(INFO) << str;
3396 #endif
3397 }
3398
3399 // Explicitly instantiate 32 and 64bit thread offset dumping support.
3400 template
3401 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
3402 template
3403 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
3404
3405 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)3406 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
3407 #define DO_THREAD_OFFSET(x, y) \
3408 if (offset == (x).Uint32Value()) { \
3409 os << (y); \
3410 return; \
3411 }
3412 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
3413 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
3414 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
3415 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
3416 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
3417 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
3418 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
3419 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
3420 DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
3421 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
3422 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
3423 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
3424 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
3425 #undef DO_THREAD_OFFSET
3426
3427 #define JNI_ENTRY_POINT_INFO(x) \
3428 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3429 os << #x; \
3430 return; \
3431 }
3432 JNI_ENTRY_POINT_INFO(pDlsymLookup)
3433 JNI_ENTRY_POINT_INFO(pDlsymLookupCritical)
3434 #undef JNI_ENTRY_POINT_INFO
3435
3436 #define QUICK_ENTRY_POINT_INFO(x) \
3437 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3438 os << #x; \
3439 return; \
3440 }
3441 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
3442 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
3443 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
3444 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
3445 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
3446 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
3447 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
3448 QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
3449 QUICK_ENTRY_POINT_INFO(pAllocStringObject)
3450 QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
3451 QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
3452 QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
3453 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
3454 QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
3455 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
3456 QUICK_ENTRY_POINT_INFO(pResolveTypeAndVerifyAccess)
3457 QUICK_ENTRY_POINT_INFO(pResolveType)
3458 QUICK_ENTRY_POINT_INFO(pResolveString)
3459 QUICK_ENTRY_POINT_INFO(pSet8Instance)
3460 QUICK_ENTRY_POINT_INFO(pSet8Static)
3461 QUICK_ENTRY_POINT_INFO(pSet16Instance)
3462 QUICK_ENTRY_POINT_INFO(pSet16Static)
3463 QUICK_ENTRY_POINT_INFO(pSet32Instance)
3464 QUICK_ENTRY_POINT_INFO(pSet32Static)
3465 QUICK_ENTRY_POINT_INFO(pSet64Instance)
3466 QUICK_ENTRY_POINT_INFO(pSet64Static)
3467 QUICK_ENTRY_POINT_INFO(pSetObjInstance)
3468 QUICK_ENTRY_POINT_INFO(pSetObjStatic)
3469 QUICK_ENTRY_POINT_INFO(pGetByteInstance)
3470 QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
3471 QUICK_ENTRY_POINT_INFO(pGetByteStatic)
3472 QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
3473 QUICK_ENTRY_POINT_INFO(pGetShortInstance)
3474 QUICK_ENTRY_POINT_INFO(pGetCharInstance)
3475 QUICK_ENTRY_POINT_INFO(pGetShortStatic)
3476 QUICK_ENTRY_POINT_INFO(pGetCharStatic)
3477 QUICK_ENTRY_POINT_INFO(pGet32Instance)
3478 QUICK_ENTRY_POINT_INFO(pGet32Static)
3479 QUICK_ENTRY_POINT_INFO(pGet64Instance)
3480 QUICK_ENTRY_POINT_INFO(pGet64Static)
3481 QUICK_ENTRY_POINT_INFO(pGetObjInstance)
3482 QUICK_ENTRY_POINT_INFO(pGetObjStatic)
3483 QUICK_ENTRY_POINT_INFO(pAputObject)
3484 QUICK_ENTRY_POINT_INFO(pJniMethodStart)
3485 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
3486 QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
3487 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
3488 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
3489 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
3490 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
3491 QUICK_ENTRY_POINT_INFO(pLockObject)
3492 QUICK_ENTRY_POINT_INFO(pUnlockObject)
3493 QUICK_ENTRY_POINT_INFO(pCmpgDouble)
3494 QUICK_ENTRY_POINT_INFO(pCmpgFloat)
3495 QUICK_ENTRY_POINT_INFO(pCmplDouble)
3496 QUICK_ENTRY_POINT_INFO(pCmplFloat)
3497 QUICK_ENTRY_POINT_INFO(pCos)
3498 QUICK_ENTRY_POINT_INFO(pSin)
3499 QUICK_ENTRY_POINT_INFO(pAcos)
3500 QUICK_ENTRY_POINT_INFO(pAsin)
3501 QUICK_ENTRY_POINT_INFO(pAtan)
3502 QUICK_ENTRY_POINT_INFO(pAtan2)
3503 QUICK_ENTRY_POINT_INFO(pCbrt)
3504 QUICK_ENTRY_POINT_INFO(pCosh)
3505 QUICK_ENTRY_POINT_INFO(pExp)
3506 QUICK_ENTRY_POINT_INFO(pExpm1)
3507 QUICK_ENTRY_POINT_INFO(pHypot)
3508 QUICK_ENTRY_POINT_INFO(pLog)
3509 QUICK_ENTRY_POINT_INFO(pLog10)
3510 QUICK_ENTRY_POINT_INFO(pNextAfter)
3511 QUICK_ENTRY_POINT_INFO(pSinh)
3512 QUICK_ENTRY_POINT_INFO(pTan)
3513 QUICK_ENTRY_POINT_INFO(pTanh)
3514 QUICK_ENTRY_POINT_INFO(pFmod)
3515 QUICK_ENTRY_POINT_INFO(pL2d)
3516 QUICK_ENTRY_POINT_INFO(pFmodf)
3517 QUICK_ENTRY_POINT_INFO(pL2f)
3518 QUICK_ENTRY_POINT_INFO(pD2iz)
3519 QUICK_ENTRY_POINT_INFO(pF2iz)
3520 QUICK_ENTRY_POINT_INFO(pIdivmod)
3521 QUICK_ENTRY_POINT_INFO(pD2l)
3522 QUICK_ENTRY_POINT_INFO(pF2l)
3523 QUICK_ENTRY_POINT_INFO(pLdiv)
3524 QUICK_ENTRY_POINT_INFO(pLmod)
3525 QUICK_ENTRY_POINT_INFO(pLmul)
3526 QUICK_ENTRY_POINT_INFO(pShlLong)
3527 QUICK_ENTRY_POINT_INFO(pShrLong)
3528 QUICK_ENTRY_POINT_INFO(pUshrLong)
3529 QUICK_ENTRY_POINT_INFO(pIndexOf)
3530 QUICK_ENTRY_POINT_INFO(pStringCompareTo)
3531 QUICK_ENTRY_POINT_INFO(pMemcpy)
3532 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
3533 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
3534 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
3535 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
3536 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
3537 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
3538 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
3539 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
3540 QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
3541 QUICK_ENTRY_POINT_INFO(pTestSuspend)
3542 QUICK_ENTRY_POINT_INFO(pDeliverException)
3543 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
3544 QUICK_ENTRY_POINT_INFO(pThrowDivZero)
3545 QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3546 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3547 QUICK_ENTRY_POINT_INFO(pDeoptimize)
3548 QUICK_ENTRY_POINT_INFO(pA64Load)
3549 QUICK_ENTRY_POINT_INFO(pA64Store)
3550 QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3551 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3552 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3553 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3554 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3555 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3556 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3557 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3558 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3559 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3560 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3561 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3562 QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3563 QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3564 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3565 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3566 QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
3567 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3568 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3569 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3570 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3571 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3572 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3573 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3574 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3575 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3576 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3577 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3578 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3579 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3580 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3581 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3582 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3583 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3584 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3585 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3586 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3587 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3588 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3589 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3590 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3591 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3592 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3593 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3594 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3595 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3596 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3597 QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3598 QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3599
3600 QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
3601 QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
3602 #undef QUICK_ENTRY_POINT_INFO
3603
3604 os << offset;
3605 }
3606
QuickDeliverException()3607 void Thread::QuickDeliverException() {
3608 // Get exception from thread.
3609 ObjPtr<mirror::Throwable> exception = GetException();
3610 CHECK(exception != nullptr);
3611 if (exception == GetDeoptimizationException()) {
3612 artDeoptimize(this);
3613 UNREACHABLE();
3614 }
3615
3616 ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
3617
3618 // This is a real exception: let the instrumentation know about it.
3619 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3620 if (instrumentation->HasExceptionThrownListeners() &&
3621 IsExceptionThrownByCurrentMethod(exception)) {
3622 // Instrumentation may cause GC so keep the exception object safe.
3623 StackHandleScope<1> hs(this);
3624 HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3625 instrumentation->ExceptionThrownEvent(this, exception);
3626 }
3627 // Does instrumentation need to deoptimize the stack or otherwise go to interpreter for something?
3628 // Note: we do this *after* reporting the exception to instrumentation in case it now requires
3629 // deoptimization. It may happen if a debugger is attached and requests new events (single-step,
3630 // breakpoint, ...) when the exception is reported.
3631 //
3632 // Note we need to check for both force_frame_pop and force_retry_instruction. The first is
3633 // expected to happen fairly regularly but the second can only happen if we are using
3634 // instrumentation trampolines (for example with DDMS tracing). That forces us to do deopt later
3635 // and see every frame being popped. We don't need to handle it any differently.
3636 ShadowFrame* cf;
3637 bool force_deopt = false;
3638 if (Runtime::Current()->AreNonStandardExitsEnabled() || kIsDebugBuild) {
3639 NthCallerVisitor visitor(this, 0, false);
3640 visitor.WalkStack();
3641 cf = visitor.GetCurrentShadowFrame();
3642 if (cf == nullptr) {
3643 cf = FindDebuggerShadowFrame(visitor.GetFrameId());
3644 }
3645 bool force_frame_pop = cf != nullptr && cf->GetForcePopFrame();
3646 bool force_retry_instr = cf != nullptr && cf->GetForceRetryInstruction();
3647 if (kIsDebugBuild && force_frame_pop) {
3648 DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
3649 NthCallerVisitor penultimate_visitor(this, 1, false);
3650 penultimate_visitor.WalkStack();
3651 ShadowFrame* penultimate_frame = penultimate_visitor.GetCurrentShadowFrame();
3652 if (penultimate_frame == nullptr) {
3653 penultimate_frame = FindDebuggerShadowFrame(penultimate_visitor.GetFrameId());
3654 }
3655 }
3656 if (force_retry_instr) {
3657 DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
3658 }
3659 force_deopt = force_frame_pop || force_retry_instr;
3660 }
3661 if (Dbg::IsForcedInterpreterNeededForException(this) || force_deopt || IsForceInterpreter()) {
3662 NthCallerVisitor visitor(this, 0, false);
3663 visitor.WalkStack();
3664 if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3665 // method_type shouldn't matter due to exception handling.
3666 const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
3667 // Save the exception into the deoptimization context so it can be restored
3668 // before entering the interpreter.
3669 if (force_deopt) {
3670 VLOG(deopt) << "Deopting " << cf->GetMethod()->PrettyMethod() << " for frame-pop";
3671 DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
3672 // Get rid of the exception since we are doing a framepop instead.
3673 LOG(WARNING) << "Suppressing pending exception for retry-instruction/frame-pop: "
3674 << exception->Dump();
3675 ClearException();
3676 }
3677 PushDeoptimizationContext(
3678 JValue(),
3679 /* is_reference= */ false,
3680 (force_deopt ? nullptr : exception),
3681 /* from_code= */ false,
3682 method_type);
3683 artDeoptimize(this);
3684 UNREACHABLE();
3685 } else if (visitor.caller != nullptr) {
3686 LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3687 << visitor.caller->PrettyMethod();
3688 }
3689 }
3690
3691 // Don't leave exception visible while we try to find the handler, which may cause class
3692 // resolution.
3693 ClearException();
3694 QuickExceptionHandler exception_handler(this, false);
3695 exception_handler.FindCatch(exception);
3696 if (exception_handler.GetClearException()) {
3697 // Exception was cleared as part of delivery.
3698 DCHECK(!IsExceptionPending());
3699 } else {
3700 // Exception was put back with a throw location.
3701 DCHECK(IsExceptionPending());
3702 // Check the to-space invariant on the re-installed exception (if applicable).
3703 ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
3704 }
3705 exception_handler.DoLongJump();
3706 }
3707
GetLongJumpContext()3708 Context* Thread::GetLongJumpContext() {
3709 Context* result = tlsPtr_.long_jump_context;
3710 if (result == nullptr) {
3711 result = Context::Create();
3712 } else {
3713 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
3714 result->Reset();
3715 }
3716 return result;
3717 }
3718
GetCurrentMethod(uint32_t * dex_pc_out,bool check_suspended,bool abort_on_error) const3719 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc_out,
3720 bool check_suspended,
3721 bool abort_on_error) const {
3722 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3723 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java
3724 // stack.
3725 ArtMethod* method = nullptr;
3726 uint32_t dex_pc = dex::kDexNoIndex;
3727 StackVisitor::WalkStack(
3728 [&](const StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
3729 ArtMethod* m = visitor->GetMethod();
3730 if (m->IsRuntimeMethod()) {
3731 // Continue if this is a runtime method.
3732 return true;
3733 }
3734 method = m;
3735 dex_pc = visitor->GetDexPc(abort_on_error);
3736 return false;
3737 },
3738 const_cast<Thread*>(this),
3739 /* context= */ nullptr,
3740 StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3741 check_suspended);
3742
3743 if (dex_pc_out != nullptr) {
3744 *dex_pc_out = dex_pc;
3745 }
3746 return method;
3747 }
3748
HoldsLock(ObjPtr<mirror::Object> object) const3749 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3750 return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3751 }
3752
3753 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
3754 REQUIRES_SHARED(Locks::mutator_lock_);
3755
3756 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3757 template <typename RootVisitor, bool kPrecise = false>
3758 class ReferenceMapVisitor : public StackVisitor {
3759 public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)3760 ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3761 REQUIRES_SHARED(Locks::mutator_lock_)
3762 // We are visiting the references in compiled frames, so we do not need
3763 // to know the inlined frames.
3764 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3765 visitor_(visitor) {}
3766
VisitFrame()3767 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
3768 if (false) {
3769 LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3770 << StringPrintf("@ PC:%04x", GetDexPc());
3771 }
3772 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3773 if (shadow_frame != nullptr) {
3774 VisitShadowFrame(shadow_frame);
3775 } else if (GetCurrentOatQuickMethodHeader()->IsNterpMethodHeader()) {
3776 VisitNterpFrame();
3777 } else {
3778 VisitQuickFrame();
3779 }
3780 return true;
3781 }
3782
VisitShadowFrame(ShadowFrame * shadow_frame)3783 void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3784 ArtMethod* m = shadow_frame->GetMethod();
3785 VisitDeclaringClass(m);
3786 DCHECK(m != nullptr);
3787 size_t num_regs = shadow_frame->NumberOfVRegs();
3788 // handle scope for JNI or References for interpreter.
3789 for (size_t reg = 0; reg < num_regs; ++reg) {
3790 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3791 if (ref != nullptr) {
3792 mirror::Object* new_ref = ref;
3793 visitor_(&new_ref, reg, this);
3794 if (new_ref != ref) {
3795 shadow_frame->SetVRegReference(reg, new_ref);
3796 }
3797 }
3798 }
3799 // Mark lock count map required for structured locking checks.
3800 shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg= */ -1, this);
3801 }
3802
3803 private:
3804 // Visiting the declaring class is necessary so that we don't unload the class of a method that
3805 // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3806 // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)3807 void VisitDeclaringClass(ArtMethod* method)
3808 REQUIRES_SHARED(Locks::mutator_lock_)
3809 NO_THREAD_SAFETY_ANALYSIS {
3810 ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3811 // klass can be null for runtime methods.
3812 if (klass != nullptr) {
3813 if (kVerifyImageObjectsMarked) {
3814 gc::Heap* const heap = Runtime::Current()->GetHeap();
3815 gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3816 /*fail_ok=*/true);
3817 if (space != nullptr && space->IsImageSpace()) {
3818 bool failed = false;
3819 if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3820 failed = true;
3821 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3822 } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3823 failed = true;
3824 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3825 }
3826 if (failed) {
3827 GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3828 space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3829 LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3830 << " klass@" << klass.Ptr();
3831 // Pretty info last in case it crashes.
3832 LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3833 << klass->PrettyClass();
3834 }
3835 }
3836 }
3837 mirror::Object* new_ref = klass.Ptr();
3838 visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kMethodDeclaringClass, this);
3839 if (new_ref != klass) {
3840 method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3841 }
3842 }
3843 }
3844
VisitNterpFrame()3845 void VisitNterpFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3846 ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3847 StackReference<mirror::Object>* vreg_ref_base =
3848 reinterpret_cast<StackReference<mirror::Object>*>(NterpGetReferenceArray(cur_quick_frame));
3849 StackReference<mirror::Object>* vreg_int_base =
3850 reinterpret_cast<StackReference<mirror::Object>*>(NterpGetRegistersArray(cur_quick_frame));
3851 CodeItemDataAccessor accessor((*cur_quick_frame)->DexInstructionData());
3852 const uint16_t num_regs = accessor.RegistersSize();
3853 // An nterp frame has two arrays: a dex register array and a reference array
3854 // that shadows the dex register array but only containing references
3855 // (non-reference dex registers have nulls). See nterp_helpers.cc.
3856 for (size_t reg = 0; reg < num_regs; ++reg) {
3857 StackReference<mirror::Object>* ref_addr = vreg_ref_base + reg;
3858 mirror::Object* ref = ref_addr->AsMirrorPtr();
3859 if (ref != nullptr) {
3860 mirror::Object* new_ref = ref;
3861 visitor_(&new_ref, reg, this);
3862 if (new_ref != ref) {
3863 ref_addr->Assign(new_ref);
3864 StackReference<mirror::Object>* int_addr = vreg_int_base + reg;
3865 int_addr->Assign(new_ref);
3866 }
3867 }
3868 }
3869 }
3870
3871 template <typename T>
3872 ALWAYS_INLINE
VisitQuickFrameWithVregCallback()3873 inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3874 ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3875 DCHECK(cur_quick_frame != nullptr);
3876 ArtMethod* m = *cur_quick_frame;
3877 VisitDeclaringClass(m);
3878
3879 if (m->IsNative()) {
3880 // TODO: Spill the `this` reference in the AOT-compiled String.charAt()
3881 // slow-path for throwing SIOOBE, so that we can remove this carve-out.
3882 if (UNLIKELY(m->IsIntrinsic()) &&
3883 m->GetIntrinsic() == enum_cast<uint32_t>(Intrinsics::kStringCharAt)) {
3884 // The String.charAt() method is AOT-compiled with an intrinsic implementation
3885 // instead of a JNI stub. It has a slow path that constructs a runtime frame
3886 // for throwing SIOOBE and in that path we do not get the `this` pointer
3887 // spilled on the stack, so there is nothing to visit. We can distinguish
3888 // this from the GenericJni path by checking that the PC is in the boot image
3889 // (PC shall be known thanks to the runtime frame for throwing SIOOBE).
3890 // Note that JIT does not emit that intrinic implementation.
3891 const void* pc = reinterpret_cast<const void*>(GetCurrentQuickFramePc());
3892 if (pc != 0u && Runtime::Current()->GetHeap()->IsInBootImageOatFile(pc)) {
3893 return;
3894 }
3895 }
3896 // Native methods spill their arguments to the reserved vregs in the caller's frame
3897 // and use pointers to these stack references as jobject, jclass, jarray, etc.
3898 // Note: We can come here for a @CriticalNative method when it needs to resolve the
3899 // target native function but there would be no references to visit below.
3900 const size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes();
3901 const size_t method_pointer_size = static_cast<size_t>(kRuntimePointerSize);
3902 uint32_t* current_vreg = reinterpret_cast<uint32_t*>(
3903 reinterpret_cast<uint8_t*>(cur_quick_frame) + frame_size + method_pointer_size);
3904 auto visit = [&]() REQUIRES_SHARED(Locks::mutator_lock_) {
3905 auto* ref_addr = reinterpret_cast<StackReference<mirror::Object>*>(current_vreg);
3906 mirror::Object* ref = ref_addr->AsMirrorPtr();
3907 if (ref != nullptr) {
3908 mirror::Object* new_ref = ref;
3909 visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kNativeReferenceArgument, this);
3910 if (ref != new_ref) {
3911 ref_addr->Assign(new_ref);
3912 }
3913 }
3914 };
3915 const char* shorty = m->GetShorty();
3916 if (!m->IsStatic()) {
3917 visit();
3918 current_vreg += 1u;
3919 }
3920 for (shorty += 1u; *shorty != 0; ++shorty) {
3921 switch (*shorty) {
3922 case 'D':
3923 case 'J':
3924 current_vreg += 2u;
3925 break;
3926 case 'L':
3927 visit();
3928 FALLTHROUGH_INTENDED;
3929 default:
3930 current_vreg += 1u;
3931 break;
3932 }
3933 }
3934 } else if (!m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3935 // Process register map (which native, runtime and proxy methods don't have)
3936 const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3937 DCHECK(method_header->IsOptimized());
3938 StackReference<mirror::Object>* vreg_base =
3939 reinterpret_cast<StackReference<mirror::Object>*>(cur_quick_frame);
3940 uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3941 CodeInfo code_info = kPrecise
3942 ? CodeInfo(method_header) // We will need dex register maps.
3943 : CodeInfo::DecodeGcMasksOnly(method_header);
3944 StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
3945 DCHECK(map.IsValid());
3946
3947 T vreg_info(m, code_info, map, visitor_);
3948
3949 // Visit stack entries that hold pointers.
3950 BitMemoryRegion stack_mask = code_info.GetStackMaskOf(map);
3951 for (size_t i = 0; i < stack_mask.size_in_bits(); ++i) {
3952 if (stack_mask.LoadBit(i)) {
3953 StackReference<mirror::Object>* ref_addr = vreg_base + i;
3954 mirror::Object* ref = ref_addr->AsMirrorPtr();
3955 if (ref != nullptr) {
3956 mirror::Object* new_ref = ref;
3957 vreg_info.VisitStack(&new_ref, i, this);
3958 if (ref != new_ref) {
3959 ref_addr->Assign(new_ref);
3960 }
3961 }
3962 }
3963 }
3964 // Visit callee-save registers that hold pointers.
3965 uint32_t register_mask = code_info.GetRegisterMaskOf(map);
3966 for (uint32_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3967 if (register_mask & (1 << i)) {
3968 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3969 if (kIsDebugBuild && ref_addr == nullptr) {
3970 std::string thread_name;
3971 GetThread()->GetThreadName(thread_name);
3972 LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3973 DescribeStack(GetThread());
3974 LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3975 << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3976 }
3977 if (*ref_addr != nullptr) {
3978 vreg_info.VisitRegister(ref_addr, i, this);
3979 }
3980 }
3981 }
3982 } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
3983 // If this is a proxy method, visit its reference arguments.
3984 DCHECK(!m->IsStatic());
3985 DCHECK(!m->IsNative());
3986 std::vector<StackReference<mirror::Object>*> ref_addrs =
3987 GetProxyReferenceArguments(cur_quick_frame);
3988 for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
3989 mirror::Object* ref = ref_addr->AsMirrorPtr();
3990 if (ref != nullptr) {
3991 mirror::Object* new_ref = ref;
3992 visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kProxyReferenceArgument, this);
3993 if (ref != new_ref) {
3994 ref_addr->Assign(new_ref);
3995 }
3996 }
3997 }
3998 }
3999 }
4000
VisitQuickFrame()4001 void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
4002 if (kPrecise) {
4003 VisitQuickFramePrecise();
4004 } else {
4005 VisitQuickFrameNonPrecise();
4006 }
4007 }
4008
VisitQuickFrameNonPrecise()4009 void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
4010 struct UndefinedVRegInfo {
4011 UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
4012 const CodeInfo& code_info ATTRIBUTE_UNUSED,
4013 const StackMap& map ATTRIBUTE_UNUSED,
4014 RootVisitor& _visitor)
4015 : visitor(_visitor) {
4016 }
4017
4018 ALWAYS_INLINE
4019 void VisitStack(mirror::Object** ref,
4020 size_t stack_index ATTRIBUTE_UNUSED,
4021 const StackVisitor* stack_visitor)
4022 REQUIRES_SHARED(Locks::mutator_lock_) {
4023 visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
4024 }
4025
4026 ALWAYS_INLINE
4027 void VisitRegister(mirror::Object** ref,
4028 size_t register_index ATTRIBUTE_UNUSED,
4029 const StackVisitor* stack_visitor)
4030 REQUIRES_SHARED(Locks::mutator_lock_) {
4031 visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
4032 }
4033
4034 RootVisitor& visitor;
4035 };
4036 VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
4037 }
4038
VisitQuickFramePrecise()4039 void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
4040 struct StackMapVRegInfo {
4041 StackMapVRegInfo(ArtMethod* method,
4042 const CodeInfo& _code_info,
4043 const StackMap& map,
4044 RootVisitor& _visitor)
4045 : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
4046 code_info(_code_info),
4047 dex_register_map(code_info.GetDexRegisterMapOf(map)),
4048 visitor(_visitor) {
4049 DCHECK_EQ(dex_register_map.size(), number_of_dex_registers);
4050 }
4051
4052 // TODO: If necessary, we should consider caching a reverse map instead of the linear
4053 // lookups for each location.
4054 void FindWithType(const size_t index,
4055 const DexRegisterLocation::Kind kind,
4056 mirror::Object** ref,
4057 const StackVisitor* stack_visitor)
4058 REQUIRES_SHARED(Locks::mutator_lock_) {
4059 bool found = false;
4060 for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
4061 DexRegisterLocation location = dex_register_map[dex_reg];
4062 if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
4063 visitor(ref, dex_reg, stack_visitor);
4064 found = true;
4065 }
4066 }
4067
4068 if (!found) {
4069 // If nothing found, report with unknown.
4070 visitor(ref, JavaFrameRootInfo::kUnknownVreg, stack_visitor);
4071 }
4072 }
4073
4074 void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
4075 REQUIRES_SHARED(Locks::mutator_lock_) {
4076 const size_t stack_offset = stack_index * kFrameSlotSize;
4077 FindWithType(stack_offset,
4078 DexRegisterLocation::Kind::kInStack,
4079 ref,
4080 stack_visitor);
4081 }
4082
4083 void VisitRegister(mirror::Object** ref,
4084 size_t register_index,
4085 const StackVisitor* stack_visitor)
4086 REQUIRES_SHARED(Locks::mutator_lock_) {
4087 FindWithType(register_index,
4088 DexRegisterLocation::Kind::kInRegister,
4089 ref,
4090 stack_visitor);
4091 }
4092
4093 size_t number_of_dex_registers;
4094 const CodeInfo& code_info;
4095 DexRegisterMap dex_register_map;
4096 RootVisitor& visitor;
4097 };
4098 VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
4099 }
4100
4101 // Visitor for when we visit a root.
4102 RootVisitor& visitor_;
4103 };
4104
4105 class RootCallbackVisitor {
4106 public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)4107 RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
4108
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const4109 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
4110 REQUIRES_SHARED(Locks::mutator_lock_) {
4111 visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
4112 }
4113
4114 private:
4115 RootVisitor* const visitor_;
4116 const uint32_t tid_;
4117 };
4118
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)4119 void Thread::VisitReflectiveTargets(ReflectiveValueVisitor* visitor) {
4120 for (BaseReflectiveHandleScope* brhs = GetTopReflectiveHandleScope();
4121 brhs != nullptr;
4122 brhs = brhs->GetLink()) {
4123 brhs->VisitTargets(visitor);
4124 }
4125 }
4126
4127 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)4128 void Thread::VisitRoots(RootVisitor* visitor) {
4129 const uint32_t thread_id = GetThreadId();
4130 visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
4131 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
4132 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
4133 RootInfo(kRootNativeStack, thread_id));
4134 }
4135 if (tlsPtr_.async_exception != nullptr) {
4136 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
4137 RootInfo(kRootNativeStack, thread_id));
4138 }
4139 visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
4140 tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
4141 tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
4142 HandleScopeVisitRoots(visitor, thread_id);
4143 // Visit roots for deoptimization.
4144 if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
4145 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4146 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4147 for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
4148 record != nullptr;
4149 record = record->GetLink()) {
4150 for (ShadowFrame* shadow_frame = record->GetShadowFrame();
4151 shadow_frame != nullptr;
4152 shadow_frame = shadow_frame->GetLink()) {
4153 mapper.VisitShadowFrame(shadow_frame);
4154 }
4155 }
4156 }
4157 for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
4158 record != nullptr;
4159 record = record->GetLink()) {
4160 if (record->IsReference()) {
4161 visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
4162 RootInfo(kRootThreadObject, thread_id));
4163 }
4164 visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
4165 RootInfo(kRootThreadObject, thread_id));
4166 }
4167 if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
4168 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4169 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4170 for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
4171 record != nullptr;
4172 record = record->GetNext()) {
4173 mapper.VisitShadowFrame(record->GetShadowFrame());
4174 }
4175 }
4176 for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
4177 verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
4178 }
4179 // Visit roots on this thread's stack
4180 RuntimeContextType context;
4181 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4182 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
4183 mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
4184 for (auto& entry : *GetInstrumentationStack()) {
4185 visitor->VisitRootIfNonNull(&entry.second.this_object_, RootInfo(kRootVMInternal, thread_id));
4186 }
4187 }
4188
SweepInterpreterCache(IsMarkedVisitor * visitor)4189 void Thread::SweepInterpreterCache(IsMarkedVisitor* visitor) {
4190 for (InterpreterCache::Entry& entry : GetInterpreterCache()->GetArray()) {
4191 const Instruction* inst = reinterpret_cast<const Instruction*>(entry.first);
4192 if (inst != nullptr) {
4193 if (inst->Opcode() == Instruction::NEW_INSTANCE ||
4194 inst->Opcode() == Instruction::CHECK_CAST ||
4195 inst->Opcode() == Instruction::INSTANCE_OF ||
4196 inst->Opcode() == Instruction::NEW_ARRAY ||
4197 inst->Opcode() == Instruction::CONST_CLASS) {
4198 mirror::Class* cls = reinterpret_cast<mirror::Class*>(entry.second);
4199 if (cls == nullptr || cls == Runtime::GetWeakClassSentinel()) {
4200 // Entry got deleted in a previous sweep.
4201 continue;
4202 }
4203 Runtime::ProcessWeakClass(
4204 reinterpret_cast<GcRoot<mirror::Class>*>(&entry.second),
4205 visitor,
4206 Runtime::GetWeakClassSentinel());
4207 } else if (inst->Opcode() == Instruction::CONST_STRING ||
4208 inst->Opcode() == Instruction::CONST_STRING_JUMBO) {
4209 mirror::Object* object = reinterpret_cast<mirror::Object*>(entry.second);
4210 mirror::Object* new_object = visitor->IsMarked(object);
4211 // We know the string is marked because it's a strongly-interned string that
4212 // is always alive (see b/117621117 for trying to make those strings weak).
4213 // The IsMarked implementation of the CMS collector returns
4214 // null for newly allocated objects, but we know those haven't moved. Therefore,
4215 // only update the entry if we get a different non-null string.
4216 if (new_object != nullptr && new_object != object) {
4217 entry.second = reinterpret_cast<size_t>(new_object);
4218 }
4219 }
4220 }
4221 }
4222 }
4223
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)4224 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
4225 if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
4226 VisitRoots</* kPrecise= */ true>(visitor);
4227 } else {
4228 VisitRoots</* kPrecise= */ false>(visitor);
4229 }
4230 }
4231
4232 class VerifyRootVisitor : public SingleRootVisitor {
4233 public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)4234 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
4235 override REQUIRES_SHARED(Locks::mutator_lock_) {
4236 VerifyObject(root);
4237 }
4238 };
4239
VerifyStackImpl()4240 void Thread::VerifyStackImpl() {
4241 if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
4242 VerifyRootVisitor visitor;
4243 std::unique_ptr<Context> context(Context::Create());
4244 RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
4245 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
4246 mapper.WalkStack();
4247 }
4248 }
4249
4250 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()4251 void Thread::SetStackEndForStackOverflow() {
4252 // During stack overflow we allow use of the full stack.
4253 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
4254 // However, we seem to have already extended to use the full stack.
4255 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
4256 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
4257 DumpStack(LOG_STREAM(ERROR));
4258 LOG(FATAL) << "Recursive stack overflow.";
4259 }
4260
4261 tlsPtr_.stack_end = tlsPtr_.stack_begin;
4262
4263 // Remove the stack overflow protection if is it set up.
4264 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
4265 if (implicit_stack_check) {
4266 if (!UnprotectStack()) {
4267 LOG(ERROR) << "Unable to remove stack protection for stack overflow";
4268 }
4269 }
4270 }
4271
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)4272 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
4273 DCHECK_LE(start, end);
4274 DCHECK_LE(end, limit);
4275 tlsPtr_.thread_local_start = start;
4276 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
4277 tlsPtr_.thread_local_end = end;
4278 tlsPtr_.thread_local_limit = limit;
4279 tlsPtr_.thread_local_objects = 0;
4280 }
4281
ResetTlab()4282 void Thread::ResetTlab() {
4283 gc::Heap* const heap = Runtime::Current()->GetHeap();
4284 if (heap->GetHeapSampler().IsEnabled()) {
4285 // Note: We always ResetTlab before SetTlab, therefore we can do the sample
4286 // offset adjustment here.
4287 heap->AdjustSampleOffset(GetTlabPosOffset());
4288 VLOG(heap) << "JHP: ResetTlab, Tid: " << GetTid()
4289 << " adjustment = "
4290 << (tlsPtr_.thread_local_pos - tlsPtr_.thread_local_start);
4291 }
4292 SetTlab(nullptr, nullptr, nullptr);
4293 }
4294
HasTlab() const4295 bool Thread::HasTlab() const {
4296 const bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
4297 if (has_tlab) {
4298 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
4299 } else {
4300 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
4301 }
4302 return has_tlab;
4303 }
4304
operator <<(std::ostream & os,const Thread & thread)4305 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
4306 thread.ShortDump(os);
4307 return os;
4308 }
4309
ProtectStack(bool fatal_on_error)4310 bool Thread::ProtectStack(bool fatal_on_error) {
4311 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
4312 VLOG(threads) << "Protecting stack at " << pregion;
4313 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
4314 if (fatal_on_error) {
4315 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
4316 "Reason: "
4317 << strerror(errno) << " size: " << kStackOverflowProtectedSize;
4318 }
4319 return false;
4320 }
4321 return true;
4322 }
4323
UnprotectStack()4324 bool Thread::UnprotectStack() {
4325 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
4326 VLOG(threads) << "Unprotecting stack at " << pregion;
4327 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
4328 }
4329
PushVerifier(verifier::MethodVerifier * verifier)4330 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
4331 verifier->link_ = tlsPtr_.method_verifier;
4332 tlsPtr_.method_verifier = verifier;
4333 }
4334
PopVerifier(verifier::MethodVerifier * verifier)4335 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
4336 CHECK_EQ(tlsPtr_.method_verifier, verifier);
4337 tlsPtr_.method_verifier = verifier->link_;
4338 }
4339
NumberOfHeldMutexes() const4340 size_t Thread::NumberOfHeldMutexes() const {
4341 size_t count = 0;
4342 for (BaseMutex* mu : tlsPtr_.held_mutexes) {
4343 count += mu != nullptr ? 1 : 0;
4344 }
4345 return count;
4346 }
4347
DeoptimizeWithDeoptimizationException(JValue * result)4348 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
4349 DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
4350 ClearException();
4351 ShadowFrame* shadow_frame =
4352 PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
4353 ObjPtr<mirror::Throwable> pending_exception;
4354 bool from_code = false;
4355 DeoptimizationMethodType method_type;
4356 PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
4357 SetTopOfStack(nullptr);
4358 SetTopOfShadowStack(shadow_frame);
4359
4360 // Restore the exception that was pending before deoptimization then interpret the
4361 // deoptimized frames.
4362 if (pending_exception != nullptr) {
4363 SetException(pending_exception);
4364 }
4365 interpreter::EnterInterpreterFromDeoptimize(this,
4366 shadow_frame,
4367 result,
4368 from_code,
4369 method_type);
4370 }
4371
SetAsyncException(ObjPtr<mirror::Throwable> new_exception)4372 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
4373 CHECK(new_exception != nullptr);
4374 Runtime::Current()->SetAsyncExceptionsThrown();
4375 if (kIsDebugBuild) {
4376 // Make sure we are in a checkpoint.
4377 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
4378 CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
4379 << "It doesn't look like this was called in a checkpoint! this: "
4380 << this << " count: " << GetSuspendCount();
4381 }
4382 tlsPtr_.async_exception = new_exception.Ptr();
4383 }
4384
ObserveAsyncException()4385 bool Thread::ObserveAsyncException() {
4386 DCHECK(this == Thread::Current());
4387 if (tlsPtr_.async_exception != nullptr) {
4388 if (tlsPtr_.exception != nullptr) {
4389 LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
4390 << tlsPtr_.exception->Dump();
4391 LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
4392 }
4393 tlsPtr_.exception = tlsPtr_.async_exception;
4394 tlsPtr_.async_exception = nullptr;
4395 return true;
4396 } else {
4397 return IsExceptionPending();
4398 }
4399 }
4400
SetException(ObjPtr<mirror::Throwable> new_exception)4401 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
4402 CHECK(new_exception != nullptr);
4403 // TODO: DCHECK(!IsExceptionPending());
4404 tlsPtr_.exception = new_exception.Ptr();
4405 }
4406
IsAotCompiler()4407 bool Thread::IsAotCompiler() {
4408 return Runtime::Current()->IsAotCompiler();
4409 }
4410
GetPeerFromOtherThread() const4411 mirror::Object* Thread::GetPeerFromOtherThread() const {
4412 DCHECK(tlsPtr_.jpeer == nullptr);
4413 mirror::Object* peer = tlsPtr_.opeer;
4414 if (kUseReadBarrier && Current()->GetIsGcMarking()) {
4415 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
4416 // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
4417 // mark/forward it here.
4418 peer = art::ReadBarrier::Mark(peer);
4419 }
4420 return peer;
4421 }
4422
SetReadBarrierEntrypoints()4423 void Thread::SetReadBarrierEntrypoints() {
4424 // Make sure entrypoints aren't null.
4425 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active=*/ true);
4426 }
4427
ClearAllInterpreterCaches()4428 void Thread::ClearAllInterpreterCaches() {
4429 static struct ClearInterpreterCacheClosure : Closure {
4430 void Run(Thread* thread) override {
4431 thread->GetInterpreterCache()->Clear(thread);
4432 }
4433 } closure;
4434 Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
4435 }
4436
4437
ReleaseLongJumpContextInternal()4438 void Thread::ReleaseLongJumpContextInternal() {
4439 // Each QuickExceptionHandler gets a long jump context and uses
4440 // it for doing the long jump, after finding catch blocks/doing deoptimization.
4441 // Both finding catch blocks and deoptimization can trigger another
4442 // exception such as a result of class loading. So there can be nested
4443 // cases of exception handling and multiple contexts being used.
4444 // ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context
4445 // for reuse so there is no need to always allocate a new one each time when
4446 // getting a context. Since we only keep one context for reuse, delete the
4447 // existing one since the passed in context is yet to be used for longjump.
4448 delete tlsPtr_.long_jump_context;
4449 }
4450
SetNativePriority(int new_priority)4451 void Thread::SetNativePriority(int new_priority) {
4452 palette_status_t status = PaletteSchedSetPriority(GetTid(), new_priority);
4453 CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
4454 }
4455
GetNativePriority() const4456 int Thread::GetNativePriority() const {
4457 int priority = 0;
4458 palette_status_t status = PaletteSchedGetPriority(GetTid(), &priority);
4459 CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
4460 return priority;
4461 }
4462
IsSystemDaemon() const4463 bool Thread::IsSystemDaemon() const {
4464 if (GetPeer() == nullptr) {
4465 return false;
4466 }
4467 return jni::DecodeArtField(
4468 WellKnownClasses::java_lang_Thread_systemDaemon)->GetBoolean(GetPeer());
4469 }
4470
StateAndFlagsAsHexString() const4471 std::string Thread::StateAndFlagsAsHexString() const {
4472 std::stringstream result_stream;
4473 result_stream << std::hex << tls32_.state_and_flags.as_atomic_int.load();
4474 return result_stream.str();
4475 }
4476
ScopedExceptionStorage(art::Thread * self)4477 ScopedExceptionStorage::ScopedExceptionStorage(art::Thread* self)
4478 : self_(self), hs_(self_), excp_(hs_.NewHandle<art::mirror::Throwable>(self_->GetException())) {
4479 self_->ClearException();
4480 }
4481
SuppressOldException(const char * message)4482 void ScopedExceptionStorage::SuppressOldException(const char* message) {
4483 CHECK(self_->IsExceptionPending()) << *self_;
4484 ObjPtr<mirror::Throwable> old_suppressed(excp_.Get());
4485 excp_.Assign(self_->GetException());
4486 LOG(WARNING) << message << "Suppressing old exception: " << old_suppressed->Dump();
4487 self_->ClearException();
4488 }
4489
~ScopedExceptionStorage()4490 ScopedExceptionStorage::~ScopedExceptionStorage() {
4491 CHECK(!self_->IsExceptionPending()) << *self_;
4492 if (!excp_.IsNull()) {
4493 self_->SetException(excp_.Get());
4494 }
4495 }
4496
4497 } // namespace art
4498
4499 #pragma clang diagnostic pop // -Wconversion
4500