1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include "HidRawSensor.h"
17 #include "HidSensorDef.h"
18
19 #include <utils/Errors.h>
20 #include "HidLog.h"
21
22 #include <HidUtils.h>
23
24 #include <algorithm>
25 #include <cfloat>
26 #include <codecvt>
27 #include <iomanip>
28 #include <sstream>
29
30 namespace android {
31 namespace SensorHalExt {
32
33 namespace {
34 const std::string CUSTOM_TYPE_PREFIX("com.google.hardware.sensor.hid_dynamic.");
35 }
36
HidRawSensor(SP (HidDevice)device,uint32_t usage,const std::vector<HidParser::ReportPacket> & packets)37 HidRawSensor::HidRawSensor(
38 SP(HidDevice) device, uint32_t usage, const std::vector<HidParser::ReportPacket> &packets)
39 : mReportingStateId(-1), mPowerStateId(-1), mReportIntervalId(-1), mInputReportId(-1),
40 mEnabled(false), mSamplingPeriod(1000LL*1000*1000), mBatchingPeriod(0),
41 mDevice(device), mValid(false) {
42 if (device == nullptr) {
43 return;
44 }
45 memset(&mSensor, 0, sizeof(mSensor));
46
47 const HidDevice::HidDeviceInfo &info = device->getDeviceInfo();
48 initFeatureValueFromHidDeviceInfo(&mFeatureInfo, info);
49
50 if (!populateFeatureValueFromFeatureReport(&mFeatureInfo, packets)) {
51 LOG_E << "populate feature from feature report failed" << LOG_ENDL;
52 return;
53 }
54
55 if (!findSensorControlUsage(packets)) {
56 LOG_E << "finding sensor control usage failed" << LOG_ENDL;
57 return;
58 }
59
60 // build translation table
61 bool translationTableValid = false;
62 switch (usage) {
63 using namespace Hid::Sensor::SensorTypeUsage;
64 using namespace Hid::Sensor::ReportUsage;
65 case ACCELEROMETER_3D:
66 // Hid unit default g
67 // Android unit m/s^2
68 // 1g = 9.81 m/s^2
69 mFeatureInfo.typeString = SENSOR_STRING_TYPE_ACCELEROMETER;
70 mFeatureInfo.type = SENSOR_TYPE_ACCELEROMETER;
71 mFeatureInfo.isWakeUp = false;
72
73 translationTableValid = processTriAxisUsage(packets,
74 ACCELERATION_X_AXIS,
75 ACCELERATION_Y_AXIS,
76 ACCELERATION_Z_AXIS, 9.81);
77 break;
78 case GYROMETER_3D:
79 // Hid unit default degree/s
80 // Android unit rad/s
81 // 1 degree/s = pi/180 rad/s
82 mFeatureInfo.typeString = SENSOR_STRING_TYPE_GYROSCOPE;
83 mFeatureInfo.type = SENSOR_TYPE_GYROSCOPE;
84 mFeatureInfo.isWakeUp = false;
85
86 translationTableValid = processTriAxisUsage(packets,
87 ANGULAR_VELOCITY_X_AXIS,
88 ANGULAR_VELOCITY_Y_AXIS,
89 ANGULAR_VELOCITY_Z_AXIS, M_PI/180);
90 break;
91 case COMPASS_3D: {
92 // Hid unit default mGauss
93 // Android unit uT
94 // 1uT = 0.1 nGauss
95 mFeatureInfo.typeString = SENSOR_STRING_TYPE_MAGNETIC_FIELD;
96 mFeatureInfo.type = SENSOR_TYPE_MAGNETIC_FIELD;
97
98 if (!processTriAxisUsage(packets,
99 MAGNETIC_FLUX_X_AXIS,
100 MAGNETIC_FLUX_Y_AXIS,
101 MAGNETIC_FLUX_Z_AXIS, 0.1)) {
102 break;
103 }
104 const HidParser::ReportItem *pReportAccuracy = find(packets,
105 MAGNETOMETER_ACCURACY,
106 HidParser::REPORT_TYPE_INPUT,
107 mInputReportId);
108
109 if (pReportAccuracy == nullptr) {
110 LOG_E << "Cannot find accuracy field in usage "
111 << std::hex << usage << std::dec << LOG_ENDL;
112 break;
113 }
114 if (!pReportAccuracy->isByteAligned()) {
115 LOG_E << "Accuracy field must align to byte" << LOG_ENDL;
116 break;
117 }
118 if (pReportAccuracy->minRaw != 0 || pReportAccuracy->maxRaw != 2) {
119 LOG_E << "Accuracy field value range must be [0, 2]" << LOG_ENDL;
120 break;
121 }
122 ReportTranslateRecord accuracyRecord = {
123 .type = TYPE_ACCURACY,
124 .maxValue = 2,
125 .minValue = 0,
126 .byteOffset = pReportAccuracy->bitOffset / 8,
127 .byteSize = pReportAccuracy->bitSize / 8,
128 .a = 1,
129 .b = 1};
130 mTranslateTable.push_back(accuracyRecord);
131 translationTableValid = true;
132 break;
133 }
134 case DEVICE_ORIENTATION:
135 translationTableValid = processQuaternionUsage(packets);
136 break;
137 case CUSTOM: {
138 if (!mFeatureInfo.isAndroidCustom) {
139 LOG_E << "Invalid android custom sensor" << LOG_ENDL;
140 break;
141 }
142 const HidParser::ReportPacket *pPacket = nullptr;
143 const uint32_t usages[] = {
144 CUSTOM_VALUE_1, CUSTOM_VALUE_2, CUSTOM_VALUE_3,
145 CUSTOM_VALUE_4, CUSTOM_VALUE_5, CUSTOM_VALUE_6
146 };
147 for (const auto &packet : packets) {
148 if (packet.type == HidParser::REPORT_TYPE_INPUT && std::any_of(
149 packet.reports.begin(), packet.reports.end(),
150 [&usages] (const HidParser::ReportItem &d) {
151 return std::find(std::begin(usages), std::end(usages), d.usage)
152 != std::end(usages);
153 })) {
154 pPacket = &packet;
155 break;
156 }
157 }
158
159 if (pPacket == nullptr) {
160 LOG_E << "Cannot find CUSTOM_VALUE_X in custom sensor" << LOG_ENDL;
161 break;
162 }
163
164 double range = 0;
165 double resolution = 1;
166
167 for (const auto &digest : pPacket->reports) {
168 if (digest.minRaw >= digest.maxRaw) {
169 LOG_E << "Custome usage " << digest.usage << ", min must < max" << LOG_ENDL;
170 return;
171 }
172
173 if (!digest.isByteAligned()
174 || (digest.bitSize != 8 && digest.bitSize != 16 && digest.bitSize != 32)) {
175 LOG_E << "Custome usage " << std::hex << digest.usage << std::hex
176 << ", each input must be 8/16/32 bits and must align to byte boundary"
177 << LOG_ENDL;
178 return;
179 }
180
181 ReportTranslateRecord record = {
182 .type = TYPE_FLOAT,
183 .maxValue = digest.maxRaw,
184 .minValue = digest.minRaw,
185 .byteOffset = digest.bitOffset / 8,
186 .byteSize = digest.bitSize / 8,
187 .a = digest.a,
188 .b = digest.b,
189 };
190 // keep track of range and resolution
191 range = std::max(std::max(std::abs((digest.maxRaw + digest.b) * digest.a),
192 std::abs((digest.minRaw + digest.b) * digest.a)),
193 range);
194 resolution = std::min(digest.a, resolution);
195
196 for (size_t i = 0; i < digest.count; ++i) {
197 if (mTranslateTable.size() == 16) {
198 LOG_I << "Custom usage has more than 16 inputs, ignore the rest" << LOG_ENDL;
199 break;
200 }
201 record.index = mTranslateTable.size();
202 mTranslateTable.push_back(record);
203 record.byteOffset += digest.bitSize / 8;
204 }
205 if (mTranslateTable.size() == 16) {
206 break;
207 }
208 }
209 mFeatureInfo.maxRange = range;
210 mFeatureInfo.resolution = resolution;
211 mInputReportId = pPacket->id;
212 translationTableValid = !mTranslateTable.empty();
213 break;
214 }
215 default:
216 LOG_I << "unsupported sensor usage " << usage << LOG_ENDL;
217 }
218
219 bool sensorValid = validateFeatureValueAndBuildSensor();
220 mValid = translationTableValid && sensorValid;
221 LOG_V << "HidRawSensor init, translationTableValid: " << translationTableValid
222 << ", sensorValid: " << sensorValid << LOG_ENDL;
223 }
224
processQuaternionUsage(const std::vector<HidParser::ReportPacket> & packets)225 bool HidRawSensor::processQuaternionUsage(const std::vector<HidParser::ReportPacket> &packets) {
226 const HidParser::ReportItem *pReportQuaternion
227 = find(packets,
228 Hid::Sensor::ReportUsage::ORIENTATION_QUATERNION,
229 HidParser::REPORT_TYPE_INPUT);
230
231 if (pReportQuaternion == nullptr) {
232 return false;
233 }
234
235 const HidParser::ReportItem &quat = *pReportQuaternion;
236 if ((quat.bitSize != 16 && quat.bitSize != 32) || !quat.isByteAligned()) {
237 LOG_E << "Quaternion usage input must be 16 or 32 bits and aligned at byte boundary" << LOG_ENDL;
238 return false;
239 }
240
241 double min, max;
242 quat.decode(quat.mask(quat.minRaw), &min);
243 quat.decode(quat.mask(quat.maxRaw), &max);
244 if (quat.count != 4 || min > -1 || max < 1) {
245 LOG_E << "Quaternion usage need 4 inputs with range [-1, 1]" << LOG_ENDL;
246 return false;
247 }
248
249 if (quat.minRaw > quat.maxRaw) {
250 LOG_E << "Quaternion usage min must <= max" << LOG_ENDL;
251 return false;
252 }
253
254 ReportTranslateRecord record = {
255 .type = TYPE_FLOAT,
256 .maxValue = quat.maxRaw,
257 .minValue = quat.minRaw,
258 .byteOffset = quat.bitOffset / 8,
259 .byteSize = quat.bitSize / 8,
260 .b = quat.b,
261 };
262
263 // Android X Y Z maps to HID X -Z Y
264 // Android order xyzw, HID order wxyz
265 // X
266 record.index = 0;
267 record.a = quat.a;
268 record.byteOffset = (quat.bitOffset + quat.bitSize) / 8;
269 mTranslateTable.push_back(record);
270 // Y
271 record.index = 1;
272 record.a = -quat.a;
273 record.byteOffset = (quat.bitOffset + 3 * quat.bitSize) / 8;
274 mTranslateTable.push_back(record);
275 // Z
276 record.index = 2;
277 record.a = quat.a;
278 record.byteOffset = (quat.bitOffset + 2 * quat.bitSize) / 8;
279 mTranslateTable.push_back(record);
280 // W
281 record.index = 3;
282 record.a = quat.a;
283 record.byteOffset = quat.bitOffset / 8;
284 mTranslateTable.push_back(record);
285
286 mFeatureInfo.typeString = SENSOR_STRING_TYPE_ROTATION_VECTOR;
287 mFeatureInfo.type = SENSOR_TYPE_ROTATION_VECTOR;
288 mFeatureInfo.maxRange = 1;
289 mFeatureInfo.resolution = quat.a;
290 mFeatureInfo.reportModeFlag = SENSOR_FLAG_CONTINUOUS_MODE;
291
292 mInputReportId = quat.id;
293
294 return true;
295 }
296
processTriAxisUsage(const std::vector<HidParser::ReportPacket> & packets,uint32_t usageX,uint32_t usageY,uint32_t usageZ,double defaultScaling)297 bool HidRawSensor::processTriAxisUsage(const std::vector<HidParser::ReportPacket> &packets,
298 uint32_t usageX, uint32_t usageY, uint32_t usageZ, double defaultScaling) {
299 const HidParser::ReportItem *pReportX = find(packets, usageX, HidParser::REPORT_TYPE_INPUT);
300 const HidParser::ReportItem *pReportY = find(packets, usageY, HidParser::REPORT_TYPE_INPUT);
301 const HidParser::ReportItem *pReportZ = find(packets, usageZ, HidParser::REPORT_TYPE_INPUT);
302
303 if (pReportX == nullptr || pReportY == nullptr|| pReportZ == nullptr) {
304 LOG_E << "Three axis sensor does not find all 3 axis" << LOG_ENDL;
305 return false;
306 }
307
308 const HidParser::ReportItem &reportX = *pReportX;
309 const HidParser::ReportItem &reportY = *pReportY;
310 const HidParser::ReportItem &reportZ = *pReportZ;
311 if (reportX.id != reportY.id || reportY.id != reportZ.id) {
312 LOG_E << "All 3 axis should be in the same report" << LOG_ENDL;
313 return false;
314 }
315 if (reportX.minRaw >= reportX.maxRaw
316 || reportX.minRaw != reportY.minRaw
317 || reportX.maxRaw != reportY.maxRaw
318 || reportY.minRaw != reportZ.minRaw
319 || reportY.maxRaw != reportZ.maxRaw) {
320 LOG_E << "All 3 axis should have same min and max value and min must < max" << LOG_ENDL;
321 return false;
322 }
323 if (reportX.a != reportY.a || reportY.a != reportY.a) {
324 LOG_E << "All 3 axis should have same resolution" << LOG_ENDL;
325 return false;
326 }
327 if (reportX.count != 1 || reportY.count != 1 || reportZ.count != 1
328 || (reportX.bitSize != 16 && reportX.bitSize != 32)
329 || reportX.bitSize != reportY.bitSize || reportY.bitSize != reportZ.bitSize
330 || !reportX.isByteAligned()
331 || !reportY.isByteAligned()
332 || !reportZ.isByteAligned() ) {
333 LOG_E << "All 3 axis should have count == 1, same size == 16 or 32 "
334 "and align at byte boundary" << LOG_ENDL;
335 return false;
336 }
337
338 if (reportX.unit != 0 || reportY.unit != 0 || reportZ.unit != 0) {
339 LOG_E << "Specified unit for usage is not supported" << LOG_ENDL;
340 return false;
341 }
342
343 if (reportX.a != reportY.a || reportY.a != reportZ.a
344 || reportX.b != reportY.b || reportY.b != reportZ.b) {
345 LOG_W << "Scaling for 3 axis are different. It is recommended to keep them the same" << LOG_ENDL;
346 }
347
348 // set features
349 mFeatureInfo.maxRange = std::max(
350 std::abs((reportX.maxRaw + reportX.b) * reportX.a),
351 std::abs((reportX.minRaw + reportX.b) * reportX.a));
352 mFeatureInfo.resolution = reportX.a * defaultScaling;
353 mFeatureInfo.reportModeFlag = SENSOR_FLAG_CONTINUOUS_MODE;
354
355 ReportTranslateRecord record = {
356 .type = TYPE_FLOAT,
357 .maxValue = reportX.maxRaw,
358 .minValue = reportX.minRaw,
359 .byteSize = reportX.bitSize / 8,
360 };
361
362 // Reorder and swap axis
363 //
364 // HID class devices are encouraged, where possible, to use a right-handed
365 // coordinate system. If a user is facing a device, report values should increase as
366 // controls are moved from left to right (X), from far to near (Y) and from high to
367 // low (Z).
368 //
369
370 // Android X axis = Hid X axis
371 record.index = 0;
372 record.a = reportX.a * defaultScaling;
373 record.b = reportX.b;
374 record.byteOffset = reportX.bitOffset / 8;
375 mTranslateTable.push_back(record);
376
377 // Android Y axis = - Hid Z axis
378 record.index = 1;
379 record.a = -reportZ.a * defaultScaling;
380 record.b = reportZ.b;
381 record.byteOffset = reportZ.bitOffset / 8;
382 mTranslateTable.push_back(record);
383
384 // Android Z axis = Hid Y axis
385 record.index = 2;
386 record.a = reportY.a * defaultScaling;
387 record.b = reportY.b;
388 record.byteOffset = reportY.bitOffset / 8;
389 mTranslateTable.push_back(record);
390
391 mInputReportId = reportX.id;
392 return true;
393 }
394
find(const std::vector<HidParser::ReportPacket> & packets,unsigned int usage,int type,int id)395 const HidParser::ReportItem *HidRawSensor::find(
396 const std::vector<HidParser::ReportPacket> &packets,
397 unsigned int usage, int type, int id) {
398 for (const auto &packet : packets) {
399 if (packet.type != type) {
400 continue;
401 }
402 auto i = std::find_if(
403 packet.reports.begin(), packet.reports.end(),
404 [usage, id](const HidParser::ReportItem &p) {
405 return p.usage == usage
406 && (id == -1 || p.id == static_cast<unsigned int>(id));
407 });
408 if (i != packet.reports.end()) {
409 return &(*i);
410 }
411 }
412 return nullptr;
413 };
414
initFeatureValueFromHidDeviceInfo(FeatureValue * featureValue,const HidDevice::HidDeviceInfo & info)415 void HidRawSensor::initFeatureValueFromHidDeviceInfo(
416 FeatureValue *featureValue, const HidDevice::HidDeviceInfo &info) {
417 featureValue->name = info.name;
418
419 std::ostringstream ss;
420 ss << info.busType << " "
421 << std::hex << std::setfill('0') << std::setw(4) << info.vendorId
422 << ":" << std::setw(4) << info.productId;
423 featureValue->vendor = ss.str();
424
425 featureValue->permission = "";
426 featureValue->typeString = "";
427 featureValue->type = -1; // invalid type
428 featureValue->version = 1;
429
430 featureValue->maxRange = -1.f;
431 featureValue->resolution = FLT_MAX;
432 featureValue->power = 1.f; // default value, does not have a valid source yet
433
434 featureValue->minDelay = 0;
435 featureValue->maxDelay = 0;
436
437 featureValue->fifoSize = 0;
438 featureValue->fifoMaxSize = 0;
439
440 featureValue->reportModeFlag = SENSOR_FLAG_SPECIAL_REPORTING_MODE;
441 featureValue->isWakeUp = false;
442 memset(featureValue->uuid, 0, sizeof(featureValue->uuid));
443 featureValue->isAndroidCustom = false;
444 }
445
populateFeatureValueFromFeatureReport(FeatureValue * featureValue,const std::vector<HidParser::ReportPacket> & packets)446 bool HidRawSensor::populateFeatureValueFromFeatureReport(
447 FeatureValue *featureValue, const std::vector<HidParser::ReportPacket> &packets) {
448 SP(HidDevice) device = PROMOTE(mDevice);
449 if (device == nullptr) {
450 return false;
451 }
452
453 std::vector<uint8_t> buffer;
454 for (const auto &packet : packets) {
455 if (packet.type != HidParser::REPORT_TYPE_FEATURE) {
456 continue;
457 }
458
459 if (!device->getFeature(packet.id, &buffer)) {
460 continue;
461 }
462
463 std::string str;
464 using namespace Hid::Sensor::PropertyUsage;
465 for (const auto & r : packet.reports) {
466 switch (r.usage) {
467 case FRIENDLY_NAME:
468 if (!r.isByteAligned() || r.bitSize != 16 || r.count < 1) {
469 // invalid friendly name
470 break;
471 }
472 if (decodeString(r, buffer, &str) && !str.empty()) {
473 featureValue->name = str;
474 }
475 break;
476 case SENSOR_MANUFACTURER:
477 if (!r.isByteAligned() || r.bitSize != 16 || r.count < 1) {
478 // invalid manufacturer
479 break;
480 }
481 if (decodeString(r, buffer, &str) && !str.empty()) {
482 featureValue->vendor = str;
483 }
484 break;
485 case PERSISTENT_UNIQUE_ID:
486 if (!r.isByteAligned() || r.bitSize != 16 || r.count < 1) {
487 // invalid unique id string
488 break;
489 }
490 if (decodeString(r, buffer, &str) && !str.empty()) {
491 featureValue->uniqueId = str;
492 }
493 break;
494 case SENSOR_DESCRIPTION:
495 if (decodeString(r, buffer, &str)) {
496 detectSensorFromDescription(str);
497 }
498 break;
499 default:
500 // do not care about others
501 break;
502 }
503 }
504 }
505 return true;
506 }
507
validateFeatureValueAndBuildSensor()508 bool HidRawSensor::validateFeatureValueAndBuildSensor() {
509 if (mFeatureInfo.name.empty() || mFeatureInfo.vendor.empty() || mFeatureInfo.typeString.empty()
510 || mFeatureInfo.type <= 0 || mFeatureInfo.maxRange <= 0
511 || mFeatureInfo.resolution <= 0) {
512 return false;
513 }
514
515 switch (mFeatureInfo.reportModeFlag) {
516 case SENSOR_FLAG_CONTINUOUS_MODE:
517 case SENSOR_FLAG_ON_CHANGE_MODE:
518 if (mFeatureInfo.minDelay < 0) {
519 return false;
520 }
521 if (mFeatureInfo.maxDelay != 0 && mFeatureInfo.maxDelay < mFeatureInfo.minDelay) {
522 return false;
523 }
524 break;
525 case SENSOR_FLAG_ONE_SHOT_MODE:
526 if (mFeatureInfo.minDelay != -1 && mFeatureInfo.maxDelay != 0) {
527 return false;
528 }
529 break;
530 case SENSOR_FLAG_SPECIAL_REPORTING_MODE:
531 if (mFeatureInfo.minDelay != -1 && mFeatureInfo.maxDelay != 0) {
532 return false;
533 }
534 break;
535 default:
536 break;
537 }
538
539 if (mFeatureInfo.fifoMaxSize < mFeatureInfo.fifoSize) {
540 return false;
541 }
542
543 // initialize uuid field, use name, vendor and uniqueId
544 if (mFeatureInfo.name.size() >= 4
545 && mFeatureInfo.vendor.size() >= 4
546 && mFeatureInfo.typeString.size() >= 4
547 && mFeatureInfo.uniqueId.size() >= 4) {
548 uint32_t tmp[4], h;
549 std::hash<std::string> stringHash;
550 h = stringHash(mFeatureInfo.uniqueId);
551 tmp[0] = stringHash(mFeatureInfo.name) ^ h;
552 tmp[1] = stringHash(mFeatureInfo.vendor) ^ h;
553 tmp[2] = stringHash(mFeatureInfo.typeString) ^ h;
554 tmp[3] = tmp[0] ^ tmp[1] ^ tmp[2];
555 memcpy(mFeatureInfo.uuid, tmp, sizeof(mFeatureInfo.uuid));
556 }
557
558 mSensor = (sensor_t) {
559 mFeatureInfo.name.c_str(), // name
560 mFeatureInfo.vendor.c_str(), // vendor
561 mFeatureInfo.version, // version
562 -1, // handle, dummy number here
563 mFeatureInfo.type,
564 mFeatureInfo.maxRange, // maxRange
565 mFeatureInfo.resolution, // resolution
566 mFeatureInfo.power, // power
567 mFeatureInfo.minDelay, // minDelay
568 (uint32_t)mFeatureInfo.fifoSize, // fifoReservedEventCount
569 (uint32_t)mFeatureInfo.fifoMaxSize, // fifoMaxEventCount
570 mFeatureInfo.typeString.c_str(), // type string
571 mFeatureInfo.permission.c_str(), // requiredPermission
572 (long)mFeatureInfo.maxDelay, // maxDelay
573 mFeatureInfo.reportModeFlag | (mFeatureInfo.isWakeUp ? 1 : 0),
574 { NULL, NULL }
575 };
576 return true;
577 }
578
decodeString(const HidParser::ReportItem & report,const std::vector<uint8_t> & buffer,std::string * d)579 bool HidRawSensor::decodeString(
580 const HidParser::ReportItem &report, const std::vector<uint8_t> &buffer, std::string *d) {
581 if (!report.isByteAligned() ||
582 (report.bitSize != 8 && report.bitSize != 16) || report.count < 1) {
583 return false;
584 }
585
586 size_t charSize = report.bitSize / 8;
587 size_t offset = report.bitOffset / 8;
588 if (offset + report.count * charSize > buffer.size()) {
589 return false;
590 }
591
592 if (charSize == 1) {
593 *d = std::string(buffer.begin() + offset,
594 buffer.begin() + offset + report.count);
595 } else {
596 std::vector<uint16_t> data(report.count);
597 auto i = data.begin();
598 auto j = buffer.begin() + offset;
599 for ( ; i != data.end(); ++i, j += sizeof(uint16_t)) {
600 // hid specified little endian
601 *i = *j + (*(j + 1) << 8);
602 }
603 std::wstring wstr(data.begin(), data.end());
604
605 std::wstring_convert<std::codecvt_utf8<wchar_t>, wchar_t> converter;
606 *d = converter.to_bytes(wstr);
607 }
608
609 return true;
610 }
611
split(const std::string & text,char sep)612 std::vector<std::string> split(const std::string &text, char sep) {
613 std::vector<std::string> tokens;
614 size_t start = 0, end = 0;
615 while ((end = text.find(sep, start)) != std::string::npos) {
616 if (end != start) {
617 tokens.push_back(text.substr(start, end - start));
618 }
619 start = end + 1;
620 }
621 if (end != start) {
622 tokens.push_back(text.substr(start));
623 }
624 return tokens;
625 }
626
detectSensorFromDescription(const std::string & description)627 void HidRawSensor::detectSensorFromDescription(const std::string &description) {
628 if (detectAndroidHeadTrackerSensor(description) ||
629 detectAndroidCustomSensor(description)) {
630 mFeatureInfo.isAndroidCustom = true;
631 }
632 }
633
detectAndroidHeadTrackerSensor(const std::string & description)634 bool HidRawSensor::detectAndroidHeadTrackerSensor(
635 const std::string &description) {
636 if (description.find("#AndroidHeadTracker#1.") != 0) {
637 return false;
638 }
639
640 mFeatureInfo.type = SENSOR_TYPE_DEVICE_PRIVATE_BASE;
641 mFeatureInfo.typeString = CUSTOM_TYPE_PREFIX + "headtracker";
642 mFeatureInfo.reportModeFlag = SENSOR_FLAG_CONTINUOUS_MODE;
643 mFeatureInfo.permission = "";
644 mFeatureInfo.isWakeUp = false;
645
646 return true;
647 }
648
detectAndroidCustomSensor(const std::string & description)649 bool HidRawSensor::detectAndroidCustomSensor(const std::string &description) {
650 size_t nullPosition = description.find('\0');
651 if (nullPosition == std::string::npos) {
652 return false;
653 }
654 const std::string prefix("#ANDROID#");
655 if (description.find(prefix, nullPosition + 1) != nullPosition + 1) {
656 return false;
657 }
658
659 std::string str(description.c_str() + nullPosition + 1 + prefix.size());
660
661 // Format for predefined sensor types:
662 // #ANDROID#nn,[C|X|T|S],[B|0],[W|N]
663 // Format for vendor type sensor
664 // #ANDROID#xxx.yyy.zzz,[C|X|T|S],[B|0],[W|N]
665 //
666 // C: continuous
667 // X: on-change
668 // T: one-shot
669 // S: special trigger
670 //
671 // B: body permission
672 // 0: no permission required
673 std::vector<std::string> segments;
674 size_t start = 0, end = 0;
675 while ((end = str.find(',', start)) != std::string::npos) {
676 if (end != start) {
677 segments.push_back(str.substr(start, end - start));
678 }
679 start = end + 1;
680 }
681 if (end != start) {
682 segments.push_back(str.substr(start));
683 }
684
685 if (segments.size() < 4) {
686 LOG_E << "Not enough segments in android custom description" << LOG_ENDL;
687 return false;
688 }
689
690 // type
691 bool typeParsed = false;
692 if (!segments[0].empty()) {
693 if (::isdigit(segments[0][0])) {
694 int type = ::atoi(segments[0].c_str());
695 // all supported types here
696 switch (type) {
697 case SENSOR_TYPE_HEART_RATE:
698 mFeatureInfo.type = SENSOR_TYPE_HEART_RATE;
699 mFeatureInfo.typeString = SENSOR_STRING_TYPE_HEART_RATE;
700 typeParsed = true;
701 break;
702 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
703 mFeatureInfo.type = SENSOR_TYPE_AMBIENT_TEMPERATURE;
704 mFeatureInfo.typeString = SENSOR_STRING_TYPE_AMBIENT_TEMPERATURE;
705 typeParsed = true;
706 break;
707 case SENSOR_TYPE_LIGHT:
708 mFeatureInfo.type = SENSOR_TYPE_LIGHT;
709 mFeatureInfo.typeString = SENSOR_STRING_TYPE_LIGHT;
710 typeParsed = true;
711 break;
712 case SENSOR_TYPE_PRESSURE:
713 mFeatureInfo.type = SENSOR_TYPE_PRESSURE;
714 mFeatureInfo.typeString = SENSOR_STRING_TYPE_PRESSURE;
715 typeParsed = true;
716 break;
717 default:
718 LOG_W << "Android type " << type << " has not been supported yet" << LOG_ENDL;
719 break;
720 }
721 } else {
722 // assume a xxx.yyy.zzz format
723 std::ostringstream s;
724 bool lastIsDot = true;
725 for (auto c : segments[0]) {
726 if (::isalpha(c)) {
727 s << static_cast<char>(c);
728 lastIsDot = false;
729 } else if (!lastIsDot && c == '.') {
730 s << static_cast<char>(c);
731 lastIsDot = true;
732 } else {
733 break;
734 }
735 }
736 if (s.str() == segments[0]) {
737 mFeatureInfo.type = SENSOR_TYPE_DEVICE_PRIVATE_BASE;
738 mFeatureInfo.typeString = CUSTOM_TYPE_PREFIX + s.str();
739 typeParsed = true;
740 }
741 }
742 }
743
744 // reporting type
745 bool reportingModeParsed = false;
746 if (segments[1].size() == 1) {
747 switch (segments[1][0]) {
748 case 'C':
749 mFeatureInfo.reportModeFlag = SENSOR_FLAG_CONTINUOUS_MODE;
750 reportingModeParsed = true;
751 break;
752 case 'X':
753 mFeatureInfo.reportModeFlag = SENSOR_FLAG_ON_CHANGE_MODE;
754 reportingModeParsed = true;
755 break;
756 case 'T':
757 mFeatureInfo.reportModeFlag = SENSOR_FLAG_ONE_SHOT_MODE;
758 reportingModeParsed = true;
759 break;
760 case 'S':
761 mFeatureInfo.reportModeFlag = SENSOR_FLAG_SPECIAL_REPORTING_MODE;
762 reportingModeParsed = true;
763 break;
764 default:
765 LOG_E << "Undefined reporting mode designation " << segments[1] << LOG_ENDL;
766 }
767 }
768
769 // permission parsed
770 bool permissionParsed = false;
771 if (segments[2].size() == 1) {
772 switch (segments[2][0]) {
773 case 'B':
774 mFeatureInfo.permission = SENSOR_PERMISSION_BODY_SENSORS;
775 permissionParsed = true;
776 break;
777 case '0':
778 mFeatureInfo.permission = "";
779 permissionParsed = true;
780 break;
781 default:
782 LOG_E << "Undefined permission designation " << segments[2] << LOG_ENDL;
783 }
784 }
785
786 // wake up
787 bool wakeUpParsed = false;
788 if (segments[3].size() == 1) {
789 switch (segments[3][0]) {
790 case 'W':
791 mFeatureInfo.isWakeUp = true;
792 wakeUpParsed = true;
793 break;
794 case 'N':
795 mFeatureInfo.isWakeUp = false;
796 wakeUpParsed = true;
797 break;
798 default:
799 LOG_E << "Undefined wake up designation " << segments[3] << LOG_ENDL;
800 }
801 }
802
803 int ret = typeParsed && reportingModeParsed && permissionParsed && wakeUpParsed;
804 if (!ret) {
805 LOG_D << "detectAndroidCustomSensor typeParsed: " << typeParsed
806 << " reportingModeParsed: " << reportingModeParsed
807 << " permissionParsed: " << permissionParsed
808 << " wakeUpParsed: " << wakeUpParsed << LOG_ENDL;
809 }
810 return ret;
811 }
812
findSensorControlUsage(const std::vector<HidParser::ReportPacket> & packets)813 bool HidRawSensor::findSensorControlUsage(const std::vector<HidParser::ReportPacket> &packets) {
814 using namespace Hid::Sensor::PowerStateUsage;
815 using namespace Hid::Sensor::PropertyUsage;
816 using namespace Hid::Sensor::ReportingStateUsage;
817
818 //REPORTING_STATE
819 const HidParser::ReportItem *reportingState
820 = find(packets, REPORTING_STATE, HidParser::REPORT_TYPE_FEATURE);
821
822 if (reportingState == nullptr) {
823 LOG_W << "Cannot find valid reporting state feature" << LOG_ENDL;
824 } else {
825 mReportingStateId = reportingState->id;
826 mReportingStateBitOffset = reportingState->bitOffset;
827 mReportingStateBitSize = reportingState->bitSize;
828
829 mReportingStateDisableIndex = -1;
830 mReportingStateEnableIndex = -1;
831 for (unsigned i = 0; i < reportingState->usageVector.size(); ++i) {
832 if (reportingState->usageVector[i] == REPORTING_STATE_NO_EVENTS) {
833 mReportingStateDisableIndex = i;
834 }
835 if (reportingState->usageVector[i] == REPORTING_STATE_ALL_EVENTS) {
836 mReportingStateEnableIndex = i;
837 }
838 }
839 if (mReportingStateDisableIndex < 0) {
840 LOG_W << "Cannot find reporting state to disable sensor"
841 << LOG_ENDL;
842 mReportingStateId = -1;
843 }
844 if (mReportingStateEnableIndex < 0) {
845 LOG_W << "Cannot find reporting state to enable sensor" << LOG_ENDL;
846 mReportingStateId = -1;
847 }
848 }
849
850 //POWER_STATE
851 const HidParser::ReportItem *powerState
852 = find(packets, POWER_STATE, HidParser::REPORT_TYPE_FEATURE);
853 if (powerState == nullptr) {
854 LOG_W << "Cannot find valid power state feature" << LOG_ENDL;
855 } else {
856 mPowerStateId = powerState->id;
857 mPowerStateBitOffset = powerState->bitOffset;
858 mPowerStateBitSize = powerState->bitSize;
859
860 mPowerStateOffIndex = -1;
861 mPowerStateOnIndex = -1;
862 for (unsigned i = 0; i < powerState->usageVector.size(); ++i) {
863 if (powerState->usageVector[i] == POWER_STATE_D4_POWER_OFF) {
864 mPowerStateOffIndex = i;
865 }
866 if (powerState->usageVector[i] == POWER_STATE_D0_FULL_POWER) {
867 mPowerStateOnIndex = i;
868 }
869 }
870 if (mPowerStateOffIndex < 0) {
871 LOG_W << "Cannot find power state to power off sensor"
872 << LOG_ENDL;
873 mPowerStateId = -1;
874 }
875 if (mPowerStateOnIndex < 0) {
876 LOG_W << "Cannot find power state to power on sensor" << LOG_ENDL;
877 mPowerStateId = -1;
878 }
879 }
880
881 //REPORT_INTERVAL
882 const HidParser::ReportItem *reportInterval
883 = find(packets, REPORT_INTERVAL, HidParser::REPORT_TYPE_FEATURE);
884 if (reportInterval == nullptr
885 || reportInterval->minRaw < 0) {
886 LOG_W << "Cannot find valid report interval feature" << LOG_ENDL;
887 } else {
888 mReportIntervalId = reportInterval->id;
889 mReportIntervalBitOffset = reportInterval->bitOffset;
890 mReportIntervalBitSize = reportInterval->bitSize;
891
892 mFeatureInfo.minDelay = std::max(static_cast<int64_t>(1), reportInterval->minRaw) * 1000;
893 mFeatureInfo.maxDelay = std::min(static_cast<int64_t>(1000000),
894 reportInterval->maxRaw) * 1000; // maximum 1000 second
895 }
896 return true;
897 return (mPowerStateId >= 0 || mReportingStateId >= 0) && mReportIntervalId >= 0;
898 }
899
getSensor() const900 const sensor_t* HidRawSensor::getSensor() const {
901 return &mSensor;
902 }
903
getUuid(uint8_t * uuid) const904 void HidRawSensor::getUuid(uint8_t* uuid) const {
905 memcpy(uuid, mFeatureInfo.uuid, sizeof(mFeatureInfo.uuid));
906 }
907
enable(bool enable)908 int HidRawSensor::enable(bool enable) {
909 SP(HidDevice) device = PROMOTE(mDevice);
910
911 if (device == nullptr) {
912 return NO_INIT;
913 }
914
915 if (enable == mEnabled) {
916 return NO_ERROR;
917 }
918
919 std::vector<uint8_t> buffer;
920 bool setPowerOk = true;
921 if (mPowerStateId >= 0) {
922 setPowerOk = false;
923 uint8_t id = static_cast<uint8_t>(mPowerStateId);
924 if (device->getFeature(id, &buffer)
925 && (8 * buffer.size()) >=
926 (mPowerStateBitOffset + mPowerStateBitSize)) {
927 uint8_t index = enable ? mPowerStateOnIndex : mPowerStateOffIndex;
928 HidUtil::copyBits(&index, &(buffer[0]), buffer.size(),
929 0, mPowerStateBitOffset, mPowerStateBitSize);
930 setPowerOk = device->setFeature(id, buffer);
931 } else {
932 LOG_E << "enable: changing POWER STATE failed" << LOG_ENDL;
933 }
934 }
935
936 bool setReportingOk = true;
937 if (mReportingStateId >= 0) {
938 setReportingOk = false;
939 uint8_t id = static_cast<uint8_t>(mReportingStateId);
940 if (device->getFeature(id, &buffer)
941 && (8 * buffer.size()) >
942 (mReportingStateBitOffset + mReportingStateBitSize)) {
943 uint8_t index = enable ? mReportingStateEnableIndex :
944 mReportingStateDisableIndex;
945 HidUtil::copyBits(&index, &(buffer[0]), buffer.size(),0,
946 mReportingStateBitOffset, mReportingStateBitSize);
947 setReportingOk = device->setFeature(id, buffer);
948 } else {
949 LOG_E << "enable: changing REPORTING STATE failed" << LOG_ENDL;
950 }
951 }
952
953 if (setPowerOk && setReportingOk) {
954 mEnabled = enable;
955 return NO_ERROR;
956 } else {
957 return INVALID_OPERATION;
958 }
959 }
960
batch(int64_t samplingPeriod,int64_t batchingPeriod)961 int HidRawSensor::batch(int64_t samplingPeriod, int64_t batchingPeriod) {
962 SP(HidDevice) device = PROMOTE(mDevice);
963 if (device == nullptr) {
964 return NO_INIT;
965 }
966
967 if (samplingPeriod < 0 || batchingPeriod < 0) {
968 return BAD_VALUE;
969 }
970
971 bool needRefresh = mSamplingPeriod != samplingPeriod || mBatchingPeriod != batchingPeriod;
972 std::vector<uint8_t> buffer;
973
974 bool ok = true;
975 if (needRefresh && mReportIntervalId >= 0) {
976 ok = false;
977 uint8_t id = static_cast<uint8_t>(mReportIntervalId);
978 if (device->getFeature(id, &buffer)
979 && (8 * buffer.size()) >=
980 (mReportIntervalBitOffset + mReportIntervalBitSize)) {
981 int64_t periodMs = samplingPeriod / 1000000; //ns -> ms
982 int64_t maxPeriodMs =
983 (1LL << std::min(mReportIntervalBitSize, 63U)) - 1;
984 periodMs = std::min(periodMs, maxPeriodMs);
985 HidUtil::copyBits(&periodMs, &(buffer[0]), buffer.size(),
986 0, mReportIntervalBitOffset,
987 mReportIntervalBitSize);
988 ok = device->setFeature(id, buffer);
989 }
990 }
991
992 if (ok) {
993 mSamplingPeriod = samplingPeriod;
994 mBatchingPeriod = batchingPeriod;
995 return NO_ERROR;
996 } else {
997 return INVALID_OPERATION;
998 }
999 }
1000
handleInput(uint8_t id,const std::vector<uint8_t> & message)1001 void HidRawSensor::handleInput(uint8_t id, const std::vector<uint8_t> &message) {
1002 if (id != mInputReportId || mEnabled == false) {
1003 return;
1004 }
1005 sensors_event_t event = {
1006 .version = sizeof(event),
1007 .sensor = -1,
1008 .type = mSensor.type
1009 };
1010 bool valid = true;
1011 for (const auto &rec : mTranslateTable) {
1012 int64_t v = (message[rec.byteOffset + rec.byteSize - 1] & 0x80) ? -1 : 0;
1013 for (int i = static_cast<int>(rec.byteSize) - 1; i >= 0; --i) {
1014 v = (v << 8) | message[rec.byteOffset + i]; // HID is little endian
1015 }
1016
1017 switch (rec.type) {
1018 case TYPE_FLOAT:
1019 if (v > rec.maxValue || v < rec.minValue) {
1020 valid = false;
1021 }
1022 event.data[rec.index] = rec.a * (v + rec.b);
1023 break;
1024 case TYPE_INT64:
1025 if (v > rec.maxValue || v < rec.minValue) {
1026 valid = false;
1027 }
1028 event.u64.data[rec.index] = v + rec.b;
1029 break;
1030 case TYPE_ACCURACY:
1031 event.magnetic.status = (v & 0xFF) + rec.b;
1032 break;
1033 }
1034 }
1035 if (!valid) {
1036 LOG_V << "Range error observed in decoding, discard" << LOG_ENDL;
1037 }
1038 event.timestamp = -1;
1039 generateEvent(event);
1040 }
1041
dump() const1042 std::string HidRawSensor::dump() const {
1043 std::ostringstream ss;
1044 ss << "Feature Values " << LOG_ENDL
1045 << " name: " << mFeatureInfo.name << LOG_ENDL
1046 << " vendor: " << mFeatureInfo.vendor << LOG_ENDL
1047 << " permission: " << mFeatureInfo.permission << LOG_ENDL
1048 << " typeString: " << mFeatureInfo.typeString << LOG_ENDL
1049 << " type: " << mFeatureInfo.type << LOG_ENDL
1050 << " maxRange: " << mFeatureInfo.maxRange << LOG_ENDL
1051 << " resolution: " << mFeatureInfo.resolution << LOG_ENDL
1052 << " power: " << mFeatureInfo.power << LOG_ENDL
1053 << " minDelay: " << mFeatureInfo.minDelay << LOG_ENDL
1054 << " maxDelay: " << mFeatureInfo.maxDelay << LOG_ENDL
1055 << " fifoSize: " << mFeatureInfo.fifoSize << LOG_ENDL
1056 << " fifoMaxSize: " << mFeatureInfo.fifoMaxSize << LOG_ENDL
1057 << " reportModeFlag: " << mFeatureInfo.reportModeFlag << LOG_ENDL
1058 << " isWakeUp: " << (mFeatureInfo.isWakeUp ? "true" : "false") << LOG_ENDL
1059 << " uniqueId: " << mFeatureInfo.uniqueId << LOG_ENDL
1060 << " uuid: ";
1061
1062 ss << std::hex << std::setfill('0');
1063 for (auto d : mFeatureInfo.uuid) {
1064 ss << std::setw(2) << static_cast<int>(d) << " ";
1065 }
1066 ss << std::dec << std::setfill(' ') << LOG_ENDL;
1067
1068 ss << "Input report id: " << mInputReportId << LOG_ENDL;
1069 for (const auto &t : mTranslateTable) {
1070 ss << " type, index: " << t.type << ", " << t.index
1071 << "; min,max: " << t.minValue << ", " << t.maxValue
1072 << "; byte-offset,size: " << t.byteOffset << ", " << t.byteSize
1073 << "; scaling,bias: " << t.a << ", " << t.b << LOG_ENDL;
1074 }
1075
1076 ss << "Control features: " << LOG_ENDL;
1077 ss << " Power state ";
1078 if (mPowerStateId >= 0) {
1079 ss << "found, id: " << mPowerStateId
1080 << " bit offset: " << mPowerStateBitOffset
1081 << " bit size: " << mPowerStateBitSize
1082 << " power off index: " << mPowerStateOffIndex
1083 << " power on index: " << mPowerStateOnIndex
1084 << LOG_ENDL;
1085 } else {
1086 ss << "not found" << LOG_ENDL;
1087 }
1088
1089 ss << " Reporting state ";
1090 if (mReportingStateId >= 0) {
1091 ss << "found, id: " << mReportingStateId
1092 << " bit offset: " << mReportingStateBitOffset
1093 << " bit size: " << mReportingStateBitSize
1094 << " disable index: " << mReportingStateDisableIndex
1095 << " enable index: " << mReportingStateEnableIndex
1096 << LOG_ENDL;
1097 } else {
1098 ss << "not found" << LOG_ENDL;
1099 }
1100
1101 ss << " Report interval ";
1102 if (mReportIntervalId >= 0) {
1103 ss << "found, id: " << mReportIntervalId
1104 << " bit offset: " << mReportIntervalBitOffset
1105 << " bit size: " << mReportIntervalBitSize << LOG_ENDL;
1106 } else {
1107 ss << "not found" << LOG_ENDL;
1108 }
1109 return ss.str();
1110 }
1111
1112 } // namespace SensorHalExt
1113 } // namespace android
1114