1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "large_object_space.h"
18
19 #include <sys/mman.h>
20
21 #include <memory>
22
23 #include <android-base/logging.h>
24
25 #include "base/macros.h"
26 #include "base/memory_tool.h"
27 #include "base/mutex-inl.h"
28 #include "base/os.h"
29 #include "base/stl_util.h"
30 #include "gc/accounting/heap_bitmap-inl.h"
31 #include "gc/accounting/space_bitmap-inl.h"
32 #include "gc/heap.h"
33 #include "image.h"
34 #include "mirror/object-readbarrier-inl.h"
35 #include "scoped_thread_state_change-inl.h"
36 #include "space-inl.h"
37 #include "thread-current-inl.h"
38
39 namespace art {
40 namespace gc {
41 namespace space {
42
43 class MemoryToolLargeObjectMapSpace final : public LargeObjectMapSpace {
44 public:
MemoryToolLargeObjectMapSpace(const std::string & name)45 explicit MemoryToolLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) {
46 }
47
~MemoryToolLargeObjectMapSpace()48 ~MemoryToolLargeObjectMapSpace() override {
49 // Historical note: We were deleting large objects to keep Valgrind happy if there were
50 // any large objects such as Dex cache arrays which aren't freed since they are held live
51 // by the class linker.
52 }
53
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)54 mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
55 size_t* usable_size, size_t* bytes_tl_bulk_allocated)
56 override {
57 mirror::Object* obj =
58 LargeObjectMapSpace::Alloc(self, num_bytes + kMemoryToolRedZoneBytes * 2, bytes_allocated,
59 usable_size, bytes_tl_bulk_allocated);
60 mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>(
61 reinterpret_cast<uintptr_t>(obj) + kMemoryToolRedZoneBytes);
62 MEMORY_TOOL_MAKE_NOACCESS(reinterpret_cast<void*>(obj), kMemoryToolRedZoneBytes);
63 MEMORY_TOOL_MAKE_NOACCESS(
64 reinterpret_cast<uint8_t*>(object_without_rdz) + num_bytes,
65 kMemoryToolRedZoneBytes);
66 if (usable_size != nullptr) {
67 *usable_size = num_bytes; // Since we have redzones, shrink the usable size.
68 }
69 return object_without_rdz;
70 }
71
AllocationSize(mirror::Object * obj,size_t * usable_size)72 size_t AllocationSize(mirror::Object* obj, size_t* usable_size) override {
73 return LargeObjectMapSpace::AllocationSize(ObjectWithRedzone(obj), usable_size);
74 }
75
IsZygoteLargeObject(Thread * self,mirror::Object * obj) const76 bool IsZygoteLargeObject(Thread* self, mirror::Object* obj) const override {
77 return LargeObjectMapSpace::IsZygoteLargeObject(self, ObjectWithRedzone(obj));
78 }
79
Free(Thread * self,mirror::Object * obj)80 size_t Free(Thread* self, mirror::Object* obj) override {
81 mirror::Object* object_with_rdz = ObjectWithRedzone(obj);
82 MEMORY_TOOL_MAKE_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr));
83 return LargeObjectMapSpace::Free(self, object_with_rdz);
84 }
85
Contains(const mirror::Object * obj) const86 bool Contains(const mirror::Object* obj) const override {
87 return LargeObjectMapSpace::Contains(ObjectWithRedzone(obj));
88 }
89
90 private:
ObjectWithRedzone(const mirror::Object * obj)91 static const mirror::Object* ObjectWithRedzone(const mirror::Object* obj) {
92 return reinterpret_cast<const mirror::Object*>(
93 reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
94 }
95
ObjectWithRedzone(mirror::Object * obj)96 static mirror::Object* ObjectWithRedzone(mirror::Object* obj) {
97 return reinterpret_cast<mirror::Object*>(
98 reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
99 }
100
101 static constexpr size_t kMemoryToolRedZoneBytes = kPageSize;
102 };
103
SwapBitmaps()104 void LargeObjectSpace::SwapBitmaps() {
105 std::swap(live_bitmap_, mark_bitmap_);
106 // Preserve names to get more descriptive diagnostics.
107 std::string temp_name = live_bitmap_.GetName();
108 live_bitmap_.SetName(mark_bitmap_.GetName());
109 mark_bitmap_.SetName(temp_name);
110 }
111
LargeObjectSpace(const std::string & name,uint8_t * begin,uint8_t * end,const char * lock_name)112 LargeObjectSpace::LargeObjectSpace(const std::string& name, uint8_t* begin, uint8_t* end,
113 const char* lock_name)
114 : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
115 lock_(lock_name, kAllocSpaceLock),
116 num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
117 total_objects_allocated_(0), begin_(begin), end_(end) {
118 }
119
120
CopyLiveToMarked()121 void LargeObjectSpace::CopyLiveToMarked() {
122 mark_bitmap_.CopyFrom(&live_bitmap_);
123 }
124
LargeObjectMapSpace(const std::string & name)125 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
126 : LargeObjectSpace(name, nullptr, nullptr, "large object map space lock") {}
127
Create(const std::string & name)128 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
129 if (Runtime::Current()->IsRunningOnMemoryTool()) {
130 return new MemoryToolLargeObjectMapSpace(name);
131 } else {
132 return new LargeObjectMapSpace(name);
133 }
134 }
135
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)136 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes,
137 size_t* bytes_allocated, size_t* usable_size,
138 size_t* bytes_tl_bulk_allocated) {
139 std::string error_msg;
140 MemMap mem_map = MemMap::MapAnonymous("large object space allocation",
141 num_bytes,
142 PROT_READ | PROT_WRITE,
143 /*low_4gb=*/ true,
144 &error_msg);
145 if (UNLIKELY(!mem_map.IsValid())) {
146 LOG(WARNING) << "Large object allocation failed: " << error_msg;
147 return nullptr;
148 }
149 mirror::Object* const obj = reinterpret_cast<mirror::Object*>(mem_map.Begin());
150 const size_t allocation_size = mem_map.BaseSize();
151 MutexLock mu(self, lock_);
152 large_objects_.Put(obj, LargeObject {std::move(mem_map), false /* not zygote */});
153 DCHECK(bytes_allocated != nullptr);
154
155 if (begin_ == nullptr || begin_ > reinterpret_cast<uint8_t*>(obj)) {
156 begin_ = reinterpret_cast<uint8_t*>(obj);
157 }
158 end_ = std::max(end_, reinterpret_cast<uint8_t*>(obj) + allocation_size);
159
160 *bytes_allocated = allocation_size;
161 if (usable_size != nullptr) {
162 *usable_size = allocation_size;
163 }
164 DCHECK(bytes_tl_bulk_allocated != nullptr);
165 *bytes_tl_bulk_allocated = allocation_size;
166 num_bytes_allocated_ += allocation_size;
167 total_bytes_allocated_ += allocation_size;
168 ++num_objects_allocated_;
169 ++total_objects_allocated_;
170 return obj;
171 }
172
IsZygoteLargeObject(Thread * self,mirror::Object * obj) const173 bool LargeObjectMapSpace::IsZygoteLargeObject(Thread* self, mirror::Object* obj) const {
174 MutexLock mu(self, lock_);
175 auto it = large_objects_.find(obj);
176 CHECK(it != large_objects_.end());
177 return it->second.is_zygote;
178 }
179
SetAllLargeObjectsAsZygoteObjects(Thread * self,bool set_mark_bit)180 void LargeObjectMapSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self, bool set_mark_bit) {
181 MutexLock mu(self, lock_);
182 for (auto& pair : large_objects_) {
183 pair.second.is_zygote = true;
184 if (set_mark_bit) {
185 bool success = pair.first->AtomicSetMarkBit(0, 1);
186 CHECK(success);
187 }
188 }
189 }
190
Free(Thread * self,mirror::Object * ptr)191 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
192 MutexLock mu(self, lock_);
193 auto it = large_objects_.find(ptr);
194 if (UNLIKELY(it == large_objects_.end())) {
195 ScopedObjectAccess soa(self);
196 Runtime::Current()->GetHeap()->DumpSpaces(LOG_STREAM(FATAL_WITHOUT_ABORT));
197 LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live";
198 }
199 const size_t map_size = it->second.mem_map.BaseSize();
200 DCHECK_GE(num_bytes_allocated_, map_size);
201 size_t allocation_size = map_size;
202 num_bytes_allocated_ -= allocation_size;
203 --num_objects_allocated_;
204 large_objects_.erase(it);
205 return allocation_size;
206 }
207
AllocationSize(mirror::Object * obj,size_t * usable_size)208 size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
209 MutexLock mu(Thread::Current(), lock_);
210 auto it = large_objects_.find(obj);
211 CHECK(it != large_objects_.end()) << "Attempted to get size of a large object which is not live";
212 size_t alloc_size = it->second.mem_map.BaseSize();
213 if (usable_size != nullptr) {
214 *usable_size = alloc_size;
215 }
216 return alloc_size;
217 }
218
FreeList(Thread * self,size_t num_ptrs,mirror::Object ** ptrs)219 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
220 size_t total = 0;
221 for (size_t i = 0; i < num_ptrs; ++i) {
222 if (kDebugSpaces) {
223 CHECK(Contains(ptrs[i]));
224 }
225 total += Free(self, ptrs[i]);
226 }
227 return total;
228 }
229
Walk(DlMallocSpace::WalkCallback callback,void * arg)230 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
231 MutexLock mu(Thread::Current(), lock_);
232 for (auto& pair : large_objects_) {
233 MemMap* mem_map = &pair.second.mem_map;
234 callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
235 callback(nullptr, nullptr, 0, arg);
236 }
237 }
238
ForEachMemMap(std::function<void (const MemMap &)> func) const239 void LargeObjectMapSpace::ForEachMemMap(std::function<void(const MemMap&)> func) const {
240 MutexLock mu(Thread::Current(), lock_);
241 for (auto& pair : large_objects_) {
242 func(pair.second.mem_map);
243 }
244 }
245
Contains(const mirror::Object * obj) const246 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
247 Thread* self = Thread::Current();
248 if (lock_.IsExclusiveHeld(self)) {
249 // We hold lock_ so do the check.
250 return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
251 } else {
252 MutexLock mu(self, lock_);
253 return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
254 }
255 }
256
257 // Keeps track of allocation sizes + whether or not the previous allocation is free.
258 // Used to coalesce free blocks and find the best fit block for an allocation for best fit object
259 // allocation. Each allocation has an AllocationInfo which contains the size of the previous free
260 // block preceding it. Implemented in such a way that we can also find the iterator for any
261 // allocation info pointer.
262 class AllocationInfo {
263 public:
AllocationInfo()264 AllocationInfo() : prev_free_(0), alloc_size_(0) {
265 }
266 // Return the number of pages that the allocation info covers.
AlignSize() const267 size_t AlignSize() const {
268 return alloc_size_ & kFlagsMask;
269 }
270 // Returns the allocation size in bytes.
ByteSize() const271 size_t ByteSize() const {
272 return AlignSize() * FreeListSpace::kAlignment;
273 }
274 // Updates the allocation size and whether or not it is free.
SetByteSize(size_t size,bool free)275 void SetByteSize(size_t size, bool free) {
276 DCHECK_EQ(size & ~kFlagsMask, 0u);
277 DCHECK_ALIGNED(size, FreeListSpace::kAlignment);
278 alloc_size_ = (size / FreeListSpace::kAlignment) | (free ? kFlagFree : 0u);
279 }
280 // Returns true if the block is free.
IsFree() const281 bool IsFree() const {
282 return (alloc_size_ & kFlagFree) != 0;
283 }
284 // Return true if the large object is a zygote object.
IsZygoteObject() const285 bool IsZygoteObject() const {
286 return (alloc_size_ & kFlagZygote) != 0;
287 }
288 // Change the object to be a zygote object.
SetZygoteObject()289 void SetZygoteObject() {
290 alloc_size_ |= kFlagZygote;
291 }
292 // Return true if this is a zygote large object.
293 // Finds and returns the next non free allocation info after ourself.
GetNextInfo()294 AllocationInfo* GetNextInfo() {
295 return this + AlignSize();
296 }
GetNextInfo() const297 const AllocationInfo* GetNextInfo() const {
298 return this + AlignSize();
299 }
300 // Returns the previous free allocation info by using the prev_free_ member to figure out
301 // where it is. This is only used for coalescing so we only need to be able to do it if the
302 // previous allocation info is free.
GetPrevFreeInfo()303 AllocationInfo* GetPrevFreeInfo() {
304 DCHECK_NE(prev_free_, 0U);
305 return this - prev_free_;
306 }
307 // Returns the address of the object associated with this allocation info.
GetObjectAddress()308 mirror::Object* GetObjectAddress() {
309 return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this));
310 }
311 // Return how many kAlignment units there are before the free block.
GetPrevFree() const312 size_t GetPrevFree() const {
313 return prev_free_;
314 }
315 // Returns how many free bytes there is before the block.
GetPrevFreeBytes() const316 size_t GetPrevFreeBytes() const {
317 return GetPrevFree() * FreeListSpace::kAlignment;
318 }
319 // Update the size of the free block prior to the allocation.
SetPrevFreeBytes(size_t bytes)320 void SetPrevFreeBytes(size_t bytes) {
321 DCHECK_ALIGNED(bytes, FreeListSpace::kAlignment);
322 prev_free_ = bytes / FreeListSpace::kAlignment;
323 }
324
325 private:
326 static constexpr uint32_t kFlagFree = 0x80000000; // If block is free.
327 static constexpr uint32_t kFlagZygote = 0x40000000; // If the large object is a zygote object.
328 static constexpr uint32_t kFlagsMask = ~(kFlagFree | kFlagZygote); // Combined flags for masking.
329 // Contains the size of the previous free block with kAlignment as the unit. If 0 then the
330 // allocation before us is not free.
331 // These variables are undefined in the middle of allocations / free blocks.
332 uint32_t prev_free_;
333 // Allocation size of this object in kAlignment as the unit.
334 uint32_t alloc_size_;
335 };
336
GetSlotIndexForAllocationInfo(const AllocationInfo * info) const337 size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const {
338 DCHECK_GE(info, allocation_info_);
339 DCHECK_LT(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_.End()));
340 return info - allocation_info_;
341 }
342
GetAllocationInfoForAddress(uintptr_t address)343 AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) {
344 return &allocation_info_[GetSlotIndexForAddress(address)];
345 }
346
GetAllocationInfoForAddress(uintptr_t address) const347 const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const {
348 return &allocation_info_[GetSlotIndexForAddress(address)];
349 }
350
operator ()(const AllocationInfo * a,const AllocationInfo * b) const351 inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a,
352 const AllocationInfo* b) const {
353 if (a->GetPrevFree() < b->GetPrevFree()) return true;
354 if (a->GetPrevFree() > b->GetPrevFree()) return false;
355 if (a->AlignSize() < b->AlignSize()) return true;
356 if (a->AlignSize() > b->AlignSize()) return false;
357 return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b);
358 }
359
Create(const std::string & name,size_t size)360 FreeListSpace* FreeListSpace::Create(const std::string& name, size_t size) {
361 CHECK_EQ(size % kAlignment, 0U);
362 std::string error_msg;
363 MemMap mem_map = MemMap::MapAnonymous(name.c_str(),
364 size,
365 PROT_READ | PROT_WRITE,
366 /*low_4gb=*/ true,
367 &error_msg);
368 CHECK(mem_map.IsValid()) << "Failed to allocate large object space mem map: " << error_msg;
369 return new FreeListSpace(name, std::move(mem_map), mem_map.Begin(), mem_map.End());
370 }
371
FreeListSpace(const std::string & name,MemMap && mem_map,uint8_t * begin,uint8_t * end)372 FreeListSpace::FreeListSpace(const std::string& name,
373 MemMap&& mem_map,
374 uint8_t* begin,
375 uint8_t* end)
376 : LargeObjectSpace(name, begin, end, "free list space lock"),
377 mem_map_(std::move(mem_map)) {
378 const size_t space_capacity = end - begin;
379 free_end_ = space_capacity;
380 CHECK_ALIGNED(space_capacity, kAlignment);
381 const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / kAlignment);
382 std::string error_msg;
383 allocation_info_map_ =
384 MemMap::MapAnonymous("large object free list space allocation info map",
385 alloc_info_size,
386 PROT_READ | PROT_WRITE,
387 /*low_4gb=*/ false,
388 &error_msg);
389 CHECK(allocation_info_map_.IsValid()) << "Failed to allocate allocation info map" << error_msg;
390 allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_.Begin());
391 }
392
~FreeListSpace()393 FreeListSpace::~FreeListSpace() {}
394
Walk(DlMallocSpace::WalkCallback callback,void * arg)395 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
396 MutexLock mu(Thread::Current(), lock_);
397 const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
398 AllocationInfo* cur_info = &allocation_info_[0];
399 const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
400 while (cur_info < end_info) {
401 if (!cur_info->IsFree()) {
402 size_t alloc_size = cur_info->ByteSize();
403 uint8_t* byte_start = reinterpret_cast<uint8_t*>(GetAddressForAllocationInfo(cur_info));
404 uint8_t* byte_end = byte_start + alloc_size;
405 callback(byte_start, byte_end, alloc_size, arg);
406 callback(nullptr, nullptr, 0, arg);
407 }
408 cur_info = cur_info->GetNextInfo();
409 }
410 CHECK_EQ(cur_info, end_info);
411 }
412
ForEachMemMap(std::function<void (const MemMap &)> func) const413 void FreeListSpace::ForEachMemMap(std::function<void(const MemMap&)> func) const {
414 MutexLock mu(Thread::Current(), lock_);
415 func(allocation_info_map_);
416 func(mem_map_);
417 }
418
RemoveFreePrev(AllocationInfo * info)419 void FreeListSpace::RemoveFreePrev(AllocationInfo* info) {
420 CHECK_GT(info->GetPrevFree(), 0U);
421 auto it = free_blocks_.lower_bound(info);
422 CHECK(it != free_blocks_.end());
423 CHECK_EQ(*it, info);
424 free_blocks_.erase(it);
425 }
426
Free(Thread * self,mirror::Object * obj)427 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
428 DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " "
429 << reinterpret_cast<void*>(End());
430 DCHECK_ALIGNED(obj, kAlignment);
431 AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
432 DCHECK(!info->IsFree());
433 const size_t allocation_size = info->ByteSize();
434 DCHECK_GT(allocation_size, 0U);
435 DCHECK_ALIGNED(allocation_size, kAlignment);
436
437 // madvise the pages without lock
438 madvise(obj, allocation_size, MADV_DONTNEED);
439 if (kIsDebugBuild) {
440 // Can't disallow reads since we use them to find next chunks during coalescing.
441 CheckedCall(mprotect, __FUNCTION__, obj, allocation_size, PROT_READ);
442 }
443
444 MutexLock mu(self, lock_);
445 info->SetByteSize(allocation_size, true); // Mark as free.
446 // Look at the next chunk.
447 AllocationInfo* next_info = info->GetNextInfo();
448 // Calculate the start of the end free block.
449 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
450 size_t prev_free_bytes = info->GetPrevFreeBytes();
451 size_t new_free_size = allocation_size;
452 if (prev_free_bytes != 0) {
453 // Coalesce with previous free chunk.
454 new_free_size += prev_free_bytes;
455 RemoveFreePrev(info);
456 info = info->GetPrevFreeInfo();
457 // The previous allocation info must not be free since we are supposed to always coalesce.
458 DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free";
459 }
460 uintptr_t next_addr = GetAddressForAllocationInfo(next_info);
461 if (next_addr >= free_end_start) {
462 // Easy case, the next chunk is the end free region.
463 CHECK_EQ(next_addr, free_end_start);
464 free_end_ += new_free_size;
465 } else {
466 AllocationInfo* new_free_info;
467 if (next_info->IsFree()) {
468 AllocationInfo* next_next_info = next_info->GetNextInfo();
469 // Next next info can't be free since we always coalesce.
470 DCHECK(!next_next_info->IsFree());
471 DCHECK_ALIGNED(next_next_info->ByteSize(), kAlignment);
472 new_free_info = next_next_info;
473 new_free_size += next_next_info->GetPrevFreeBytes();
474 RemoveFreePrev(next_next_info);
475 } else {
476 new_free_info = next_info;
477 }
478 new_free_info->SetPrevFreeBytes(new_free_size);
479 free_blocks_.insert(new_free_info);
480 info->SetByteSize(new_free_size, true);
481 DCHECK_EQ(info->GetNextInfo(), new_free_info);
482 }
483 --num_objects_allocated_;
484 DCHECK_LE(allocation_size, num_bytes_allocated_);
485 num_bytes_allocated_ -= allocation_size;
486 return allocation_size;
487 }
488
AllocationSize(mirror::Object * obj,size_t * usable_size)489 size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
490 DCHECK(Contains(obj));
491 AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
492 DCHECK(!info->IsFree());
493 size_t alloc_size = info->ByteSize();
494 if (usable_size != nullptr) {
495 *usable_size = alloc_size;
496 }
497 return alloc_size;
498 }
499
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)500 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
501 size_t* usable_size, size_t* bytes_tl_bulk_allocated) {
502 MutexLock mu(self, lock_);
503 const size_t allocation_size = RoundUp(num_bytes, kAlignment);
504 AllocationInfo temp_info;
505 temp_info.SetPrevFreeBytes(allocation_size);
506 temp_info.SetByteSize(0, false);
507 AllocationInfo* new_info;
508 // Find the smallest chunk at least num_bytes in size.
509 auto it = free_blocks_.lower_bound(&temp_info);
510 if (it != free_blocks_.end()) {
511 AllocationInfo* info = *it;
512 free_blocks_.erase(it);
513 // Fit our object in the previous allocation info free space.
514 new_info = info->GetPrevFreeInfo();
515 // Remove the newly allocated block from the info and update the prev_free_.
516 info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size);
517 if (info->GetPrevFreeBytes() > 0) {
518 AllocationInfo* new_free = info - info->GetPrevFree();
519 new_free->SetPrevFreeBytes(0);
520 new_free->SetByteSize(info->GetPrevFreeBytes(), true);
521 // If there is remaining space, insert back into the free set.
522 free_blocks_.insert(info);
523 }
524 } else {
525 // Try to steal some memory from the free space at the end of the space.
526 if (LIKELY(free_end_ >= allocation_size)) {
527 // Fit our object at the start of the end free block.
528 new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_);
529 free_end_ -= allocation_size;
530 } else {
531 return nullptr;
532 }
533 }
534 DCHECK(bytes_allocated != nullptr);
535 *bytes_allocated = allocation_size;
536 if (usable_size != nullptr) {
537 *usable_size = allocation_size;
538 }
539 DCHECK(bytes_tl_bulk_allocated != nullptr);
540 *bytes_tl_bulk_allocated = allocation_size;
541 // Need to do these inside of the lock.
542 ++num_objects_allocated_;
543 ++total_objects_allocated_;
544 num_bytes_allocated_ += allocation_size;
545 total_bytes_allocated_ += allocation_size;
546 mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info));
547 // We always put our object at the start of the free block, there cannot be another free block
548 // before it.
549 if (kIsDebugBuild) {
550 CheckedCall(mprotect, __FUNCTION__, obj, allocation_size, PROT_READ | PROT_WRITE);
551 }
552 new_info->SetPrevFreeBytes(0);
553 new_info->SetByteSize(allocation_size, false);
554 return obj;
555 }
556
Dump(std::ostream & os) const557 void FreeListSpace::Dump(std::ostream& os) const {
558 MutexLock mu(Thread::Current(), lock_);
559 os << GetName() << " -"
560 << " begin: " << reinterpret_cast<void*>(Begin())
561 << " end: " << reinterpret_cast<void*>(End()) << "\n";
562 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
563 const AllocationInfo* cur_info =
564 GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin()));
565 const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
566 while (cur_info < end_info) {
567 size_t size = cur_info->ByteSize();
568 uintptr_t address = GetAddressForAllocationInfo(cur_info);
569 if (cur_info->IsFree()) {
570 os << "Free block at address: " << reinterpret_cast<const void*>(address)
571 << " of length " << size << " bytes\n";
572 } else {
573 os << "Large object at address: " << reinterpret_cast<const void*>(address)
574 << " of length " << size << " bytes\n";
575 }
576 cur_info = cur_info->GetNextInfo();
577 }
578 if (free_end_) {
579 os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
580 << " of length " << free_end_ << " bytes\n";
581 }
582 }
583
IsZygoteLargeObject(Thread * self ATTRIBUTE_UNUSED,mirror::Object * obj) const584 bool FreeListSpace::IsZygoteLargeObject(Thread* self ATTRIBUTE_UNUSED, mirror::Object* obj) const {
585 const AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
586 DCHECK(info != nullptr);
587 return info->IsZygoteObject();
588 }
589
SetAllLargeObjectsAsZygoteObjects(Thread * self,bool set_mark_bit)590 void FreeListSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self, bool set_mark_bit) {
591 MutexLock mu(self, lock_);
592 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
593 for (AllocationInfo* cur_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())),
594 *end_info = GetAllocationInfoForAddress(free_end_start); cur_info < end_info;
595 cur_info = cur_info->GetNextInfo()) {
596 if (!cur_info->IsFree()) {
597 cur_info->SetZygoteObject();
598 if (set_mark_bit) {
599 ObjPtr<mirror::Object> obj =
600 reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(cur_info));
601 bool success = obj->AtomicSetMarkBit(0, 1);
602 CHECK(success);
603 }
604 }
605 }
606 }
607
SweepCallback(size_t num_ptrs,mirror::Object ** ptrs,void * arg)608 void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) {
609 SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
610 space::LargeObjectSpace* space = context->space->AsLargeObjectSpace();
611 Thread* self = context->self;
612 Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
613 // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap
614 // the bitmaps as an optimization.
615 if (!context->swap_bitmaps) {
616 accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap();
617 for (size_t i = 0; i < num_ptrs; ++i) {
618 bitmap->Clear(ptrs[i]);
619 }
620 }
621 context->freed.objects += num_ptrs;
622 context->freed.bytes += space->FreeList(self, num_ptrs, ptrs);
623 }
624
Sweep(bool swap_bitmaps)625 collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) {
626 if (Begin() >= End()) {
627 return collector::ObjectBytePair(0, 0);
628 }
629 accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap();
630 accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap();
631 if (swap_bitmaps) {
632 std::swap(live_bitmap, mark_bitmap);
633 }
634 AllocSpace::SweepCallbackContext scc(swap_bitmaps, this);
635 std::pair<uint8_t*, uint8_t*> range = GetBeginEndAtomic();
636 accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap,
637 reinterpret_cast<uintptr_t>(range.first),
638 reinterpret_cast<uintptr_t>(range.second),
639 SweepCallback,
640 &scc);
641 return scc.freed;
642 }
643
LogFragmentationAllocFailure(std::ostream &,size_t)644 bool LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/,
645 size_t /*failed_alloc_bytes*/) {
646 UNIMPLEMENTED(FATAL);
647 UNREACHABLE();
648 }
649
GetBeginEndAtomic() const650 std::pair<uint8_t*, uint8_t*> LargeObjectMapSpace::GetBeginEndAtomic() const {
651 MutexLock mu(Thread::Current(), lock_);
652 return std::make_pair(Begin(), End());
653 }
654
GetBeginEndAtomic() const655 std::pair<uint8_t*, uint8_t*> FreeListSpace::GetBeginEndAtomic() const {
656 MutexLock mu(Thread::Current(), lock_);
657 return std::make_pair(Begin(), End());
658 }
659
660 } // namespace space
661 } // namespace gc
662 } // namespace art
663