1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 
27 package java.lang;
28 
29 import java.lang.annotation.Native;
30 import java.math.*;
31 
32 
33 /**
34  * The {@code Long} class wraps a value of the primitive type {@code
35  * long} in an object. An object of type {@code Long} contains a
36  * single field whose type is {@code long}.
37  *
38  * <p> In addition, this class provides several methods for converting
39  * a {@code long} to a {@code String} and a {@code String} to a {@code
40  * long}, as well as other constants and methods useful when dealing
41  * with a {@code long}.
42  *
43  * <p>Implementation note: The implementations of the "bit twiddling"
44  * methods (such as {@link #highestOneBit(long) highestOneBit} and
45  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
46  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
47  * Delight</i>, (Addison Wesley, 2002).
48  *
49  * @author  Lee Boynton
50  * @author  Arthur van Hoff
51  * @author  Josh Bloch
52  * @author  Joseph D. Darcy
53  * @since   JDK1.0
54  */
55 public final class Long extends Number implements Comparable<Long> {
56     /**
57      * A constant holding the minimum value a {@code long} can
58      * have, -2<sup>63</sup>.
59      */
60     @Native public static final long MIN_VALUE = 0x8000000000000000L;
61 
62     /**
63      * A constant holding the maximum value a {@code long} can
64      * have, 2<sup>63</sup>-1.
65      */
66     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
67 
68     /**
69      * The {@code Class} instance representing the primitive type
70      * {@code long}.
71      *
72      * @since   JDK1.1
73      */
74     @SuppressWarnings("unchecked")
75     public static final Class<Long>     TYPE = (Class<Long>) Class.getPrimitiveClass("long");
76 
77     /**
78      * Returns a string representation of the first argument in the
79      * radix specified by the second argument.
80      *
81      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
82      * or larger than {@code Character.MAX_RADIX}, then the radix
83      * {@code 10} is used instead.
84      *
85      * <p>If the first argument is negative, the first element of the
86      * result is the ASCII minus sign {@code '-'}
87      * ({@code '\u005Cu002d'}). If the first argument is not
88      * negative, no sign character appears in the result.
89      *
90      * <p>The remaining characters of the result represent the magnitude
91      * of the first argument. If the magnitude is zero, it is
92      * represented by a single zero character {@code '0'}
93      * ({@code '\u005Cu0030'}); otherwise, the first character of
94      * the representation of the magnitude will not be the zero
95      * character.  The following ASCII characters are used as digits:
96      *
97      * <blockquote>
98      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
99      * </blockquote>
100      *
101      * These are {@code '\u005Cu0030'} through
102      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
103      * {@code '\u005Cu007a'}. If {@code radix} is
104      * <var>N</var>, then the first <var>N</var> of these characters
105      * are used as radix-<var>N</var> digits in the order shown. Thus,
106      * the digits for hexadecimal (radix 16) are
107      * {@code 0123456789abcdef}. If uppercase letters are
108      * desired, the {@link java.lang.String#toUpperCase()} method may
109      * be called on the result:
110      *
111      * <blockquote>
112      *  {@code Long.toString(n, 16).toUpperCase()}
113      * </blockquote>
114      *
115      * @param   i       a {@code long} to be converted to a string.
116      * @param   radix   the radix to use in the string representation.
117      * @return  a string representation of the argument in the specified radix.
118      * @see     java.lang.Character#MAX_RADIX
119      * @see     java.lang.Character#MIN_RADIX
120      */
toString(long i, int radix)121     public static String toString(long i, int radix) {
122         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
123             radix = 10;
124         if (radix == 10)
125             return toString(i);
126         char[] buf = new char[65];
127         int charPos = 64;
128         boolean negative = (i < 0);
129 
130         if (!negative) {
131             i = -i;
132         }
133 
134         while (i <= -radix) {
135             buf[charPos--] = Integer.digits[(int)(-(i % radix))];
136             i = i / radix;
137         }
138         buf[charPos] = Integer.digits[(int)(-i)];
139 
140         if (negative) {
141             buf[--charPos] = '-';
142         }
143 
144         return new String(buf, charPos, (65 - charPos));
145     }
146 
147     /**
148      * Returns a string representation of the first argument as an
149      * unsigned integer value in the radix specified by the second
150      * argument.
151      *
152      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
153      * or larger than {@code Character.MAX_RADIX}, then the radix
154      * {@code 10} is used instead.
155      *
156      * <p>Note that since the first argument is treated as an unsigned
157      * value, no leading sign character is printed.
158      *
159      * <p>If the magnitude is zero, it is represented by a single zero
160      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
161      * the first character of the representation of the magnitude will
162      * not be the zero character.
163      *
164      * <p>The behavior of radixes and the characters used as digits
165      * are the same as {@link #toString(long, int) toString}.
166      *
167      * @param   i       an integer to be converted to an unsigned string.
168      * @param   radix   the radix to use in the string representation.
169      * @return  an unsigned string representation of the argument in the specified radix.
170      * @see     #toString(long, int)
171      * @since 1.8
172      */
toUnsignedString(long i, int radix)173     public static String toUnsignedString(long i, int radix) {
174         if (i >= 0)
175             return toString(i, radix);
176         else {
177             switch (radix) {
178             case 2:
179                 return toBinaryString(i);
180 
181             case 4:
182                 return toUnsignedString0(i, 2);
183 
184             case 8:
185                 return toOctalString(i);
186 
187             case 10:
188                 /*
189                  * We can get the effect of an unsigned division by 10
190                  * on a long value by first shifting right, yielding a
191                  * positive value, and then dividing by 5.  This
192                  * allows the last digit and preceding digits to be
193                  * isolated more quickly than by an initial conversion
194                  * to BigInteger.
195                  */
196                 long quot = (i >>> 1) / 5;
197                 long rem = i - quot * 10;
198                 return toString(quot) + rem;
199 
200             case 16:
201                 return toHexString(i);
202 
203             case 32:
204                 return toUnsignedString0(i, 5);
205 
206             default:
207                 return toUnsignedBigInteger(i).toString(radix);
208             }
209         }
210     }
211 
212     /**
213      * Return a BigInteger equal to the unsigned value of the
214      * argument.
215      */
toUnsignedBigInteger(long i)216     private static BigInteger toUnsignedBigInteger(long i) {
217         if (i >= 0L)
218             return BigInteger.valueOf(i);
219         else {
220             int upper = (int) (i >>> 32);
221             int lower = (int) i;
222 
223             // return (upper << 32) + lower
224             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
225                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
226         }
227     }
228 
229     /**
230      * Returns a string representation of the {@code long}
231      * argument as an unsigned integer in base&nbsp;16.
232      *
233      * <p>The unsigned {@code long} value is the argument plus
234      * 2<sup>64</sup> if the argument is negative; otherwise, it is
235      * equal to the argument.  This value is converted to a string of
236      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
237      * leading {@code 0}s.
238      *
239      * <p>The value of the argument can be recovered from the returned
240      * string {@code s} by calling {@link
241      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
242      * 16)}.
243      *
244      * <p>If the unsigned magnitude is zero, it is represented by a
245      * single zero character {@code '0'} ({@code '\u005Cu0030'});
246      * otherwise, the first character of the representation of the
247      * unsigned magnitude will not be the zero character. The
248      * following characters are used as hexadecimal digits:
249      *
250      * <blockquote>
251      *  {@code 0123456789abcdef}
252      * </blockquote>
253      *
254      * These are the characters {@code '\u005Cu0030'} through
255      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
256      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
257      * the {@link java.lang.String#toUpperCase()} method may be called
258      * on the result:
259      *
260      * <blockquote>
261      *  {@code Long.toHexString(n).toUpperCase()}
262      * </blockquote>
263      *
264      * @param   i   a {@code long} to be converted to a string.
265      * @return  the string representation of the unsigned {@code long}
266      *          value represented by the argument in hexadecimal
267      *          (base&nbsp;16).
268      * @see #parseUnsignedLong(String, int)
269      * @see #toUnsignedString(long, int)
270      * @since   JDK 1.0.2
271      */
toHexString(long i)272     public static String toHexString(long i) {
273         return toUnsignedString0(i, 4);
274     }
275 
276     /**
277      * Returns a string representation of the {@code long}
278      * argument as an unsigned integer in base&nbsp;8.
279      *
280      * <p>The unsigned {@code long} value is the argument plus
281      * 2<sup>64</sup> if the argument is negative; otherwise, it is
282      * equal to the argument.  This value is converted to a string of
283      * ASCII digits in octal (base&nbsp;8) with no extra leading
284      * {@code 0}s.
285      *
286      * <p>The value of the argument can be recovered from the returned
287      * string {@code s} by calling {@link
288      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
289      * 8)}.
290      *
291      * <p>If the unsigned magnitude is zero, it is represented by a
292      * single zero character {@code '0'} ({@code '\u005Cu0030'});
293      * otherwise, the first character of the representation of the
294      * unsigned magnitude will not be the zero character. The
295      * following characters are used as octal digits:
296      *
297      * <blockquote>
298      *  {@code 01234567}
299      * </blockquote>
300      *
301      * These are the characters {@code '\u005Cu0030'} through
302      * {@code '\u005Cu0037'}.
303      *
304      * @param   i   a {@code long} to be converted to a string.
305      * @return  the string representation of the unsigned {@code long}
306      *          value represented by the argument in octal (base&nbsp;8).
307      * @see #parseUnsignedLong(String, int)
308      * @see #toUnsignedString(long, int)
309      * @since   JDK 1.0.2
310      */
toOctalString(long i)311     public static String toOctalString(long i) {
312         return toUnsignedString0(i, 3);
313     }
314 
315     /**
316      * Returns a string representation of the {@code long}
317      * argument as an unsigned integer in base&nbsp;2.
318      *
319      * <p>The unsigned {@code long} value is the argument plus
320      * 2<sup>64</sup> if the argument is negative; otherwise, it is
321      * equal to the argument.  This value is converted to a string of
322      * ASCII digits in binary (base&nbsp;2) with no extra leading
323      * {@code 0}s.
324      *
325      * <p>The value of the argument can be recovered from the returned
326      * string {@code s} by calling {@link
327      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
328      * 2)}.
329      *
330      * <p>If the unsigned magnitude is zero, it is represented by a
331      * single zero character {@code '0'} ({@code '\u005Cu0030'});
332      * otherwise, the first character of the representation of the
333      * unsigned magnitude will not be the zero character. The
334      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
335      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
336      *
337      * @param   i   a {@code long} to be converted to a string.
338      * @return  the string representation of the unsigned {@code long}
339      *          value represented by the argument in binary (base&nbsp;2).
340      * @see #parseUnsignedLong(String, int)
341      * @see #toUnsignedString(long, int)
342      * @since   JDK 1.0.2
343      */
toBinaryString(long i)344     public static String toBinaryString(long i) {
345         return toUnsignedString0(i, 1);
346     }
347 
348     /**
349      * Format a long (treated as unsigned) into a String.
350      * @param val the value to format
351      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
352      */
toUnsignedString0(long val, int shift)353     static String toUnsignedString0(long val, int shift) {
354         // assert shift > 0 && shift <=5 : "Illegal shift value";
355         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
356         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
357         char[] buf = new char[chars];
358 
359         formatUnsignedLong(val, shift, buf, 0, chars);
360         // Android-changed: Use regular constructor instead of one which takes over "buf".
361         // return new String(buf, true);
362         return new String(buf);
363     }
364 
365     /**
366      * Format a long (treated as unsigned) into a character buffer.
367      * @param val the unsigned long to format
368      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
369      * @param buf the character buffer to write to
370      * @param offset the offset in the destination buffer to start at
371      * @param len the number of characters to write
372      * @return the lowest character location used
373      */
formatUnsignedLong(long val, int shift, char[] buf, int offset, int len)374      static int formatUnsignedLong(long val, int shift, char[] buf, int offset, int len) {
375         int charPos = len;
376         int radix = 1 << shift;
377         int mask = radix - 1;
378         do {
379             buf[offset + --charPos] = Integer.digits[((int) val) & mask];
380             val >>>= shift;
381         } while (val != 0 && charPos > 0);
382 
383         return charPos;
384     }
385 
386     /**
387      * Returns a {@code String} object representing the specified
388      * {@code long}.  The argument is converted to signed decimal
389      * representation and returned as a string, exactly as if the
390      * argument and the radix 10 were given as arguments to the {@link
391      * #toString(long, int)} method.
392      *
393      * @param   i   a {@code long} to be converted.
394      * @return  a string representation of the argument in base&nbsp;10.
395      */
toString(long i)396     public static String toString(long i) {
397         if (i == Long.MIN_VALUE)
398             return "-9223372036854775808";
399         int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
400         char[] buf = new char[size];
401         getChars(i, size, buf);
402         // Android-changed: Use regular constructor instead of one which takes over "buf".
403         // return new String(buf, true);
404         return new String(buf);
405     }
406 
407     /**
408      * Returns a string representation of the argument as an unsigned
409      * decimal value.
410      *
411      * The argument is converted to unsigned decimal representation
412      * and returned as a string exactly as if the argument and radix
413      * 10 were given as arguments to the {@link #toUnsignedString(long,
414      * int)} method.
415      *
416      * @param   i  an integer to be converted to an unsigned string.
417      * @return  an unsigned string representation of the argument.
418      * @see     #toUnsignedString(long, int)
419      * @since 1.8
420      */
toUnsignedString(long i)421     public static String toUnsignedString(long i) {
422         return toUnsignedString(i, 10);
423     }
424 
425     /**
426      * Places characters representing the integer i into the
427      * character array buf. The characters are placed into
428      * the buffer backwards starting with the least significant
429      * digit at the specified index (exclusive), and working
430      * backwards from there.
431      *
432      * Will fail if i == Long.MIN_VALUE
433      */
getChars(long i, int index, char[] buf)434     static void getChars(long i, int index, char[] buf) {
435         long q;
436         int r;
437         int charPos = index;
438         char sign = 0;
439 
440         if (i < 0) {
441             sign = '-';
442             i = -i;
443         }
444 
445         // Get 2 digits/iteration using longs until quotient fits into an int
446         while (i > Integer.MAX_VALUE) {
447             q = i / 100;
448             // really: r = i - (q * 100);
449             r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
450             i = q;
451             buf[--charPos] = Integer.DigitOnes[r];
452             buf[--charPos] = Integer.DigitTens[r];
453         }
454 
455         // Get 2 digits/iteration using ints
456         int q2;
457         int i2 = (int)i;
458         while (i2 >= 65536) {
459             q2 = i2 / 100;
460             // really: r = i2 - (q * 100);
461             r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
462             i2 = q2;
463             buf[--charPos] = Integer.DigitOnes[r];
464             buf[--charPos] = Integer.DigitTens[r];
465         }
466 
467         // Fall thru to fast mode for smaller numbers
468         // assert(i2 <= 65536, i2);
469         for (;;) {
470             q2 = (i2 * 52429) >>> (16+3);
471             r = i2 - ((q2 << 3) + (q2 << 1));  // r = i2-(q2*10) ...
472             buf[--charPos] = Integer.digits[r];
473             i2 = q2;
474             if (i2 == 0) break;
475         }
476         if (sign != 0) {
477             buf[--charPos] = sign;
478         }
479     }
480 
481     // Requires positive x
stringSize(long x)482     static int stringSize(long x) {
483         long p = 10;
484         for (int i=1; i<19; i++) {
485             if (x < p)
486                 return i;
487             p = 10*p;
488         }
489         return 19;
490     }
491 
492     /**
493      * Parses the string argument as a signed {@code long} in the
494      * radix specified by the second argument. The characters in the
495      * string must all be digits of the specified radix (as determined
496      * by whether {@link java.lang.Character#digit(char, int)} returns
497      * a nonnegative value), except that the first character may be an
498      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
499      * indicate a negative value or an ASCII plus sign {@code '+'}
500      * ({@code '\u005Cu002B'}) to indicate a positive value. The
501      * resulting {@code long} value is returned.
502      *
503      * <p>Note that neither the character {@code L}
504      * ({@code '\u005Cu004C'}) nor {@code l}
505      * ({@code '\u005Cu006C'}) is permitted to appear at the end
506      * of the string as a type indicator, as would be permitted in
507      * Java programming language source code - except that either
508      * {@code L} or {@code l} may appear as a digit for a
509      * radix greater than or equal to 22.
510      *
511      * <p>An exception of type {@code NumberFormatException} is
512      * thrown if any of the following situations occurs:
513      * <ul>
514      *
515      * <li>The first argument is {@code null} or is a string of
516      * length zero.
517      *
518      * <li>The {@code radix} is either smaller than {@link
519      * java.lang.Character#MIN_RADIX} or larger than {@link
520      * java.lang.Character#MAX_RADIX}.
521      *
522      * <li>Any character of the string is not a digit of the specified
523      * radix, except that the first character may be a minus sign
524      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
525      * '+'} ({@code '\u005Cu002B'}) provided that the string is
526      * longer than length 1.
527      *
528      * <li>The value represented by the string is not a value of type
529      *      {@code long}.
530      * </ul>
531      *
532      * <p>Examples:
533      * <blockquote><pre>
534      * parseLong("0", 10) returns 0L
535      * parseLong("473", 10) returns 473L
536      * parseLong("+42", 10) returns 42L
537      * parseLong("-0", 10) returns 0L
538      * parseLong("-FF", 16) returns -255L
539      * parseLong("1100110", 2) returns 102L
540      * parseLong("99", 8) throws a NumberFormatException
541      * parseLong("Hazelnut", 10) throws a NumberFormatException
542      * parseLong("Hazelnut", 36) returns 1356099454469L
543      * </pre></blockquote>
544      *
545      * @param      s       the {@code String} containing the
546      *                     {@code long} representation to be parsed.
547      * @param      radix   the radix to be used while parsing {@code s}.
548      * @return     the {@code long} represented by the string argument in
549      *             the specified radix.
550      * @throws     NumberFormatException  if the string does not contain a
551      *             parsable {@code long}.
552      */
parseLong(String s, int radix)553     public static long parseLong(String s, int radix)
554               throws NumberFormatException
555     {
556         if (s == null) {
557             throw new NumberFormatException("null");
558         }
559 
560         if (radix < Character.MIN_RADIX) {
561             throw new NumberFormatException("radix " + radix +
562                                             " less than Character.MIN_RADIX");
563         }
564         if (radix > Character.MAX_RADIX) {
565             throw new NumberFormatException("radix " + radix +
566                                             " greater than Character.MAX_RADIX");
567         }
568 
569         long result = 0;
570         boolean negative = false;
571         int i = 0, len = s.length();
572         long limit = -Long.MAX_VALUE;
573         long multmin;
574         int digit;
575 
576         if (len > 0) {
577             char firstChar = s.charAt(0);
578             if (firstChar < '0') { // Possible leading "+" or "-"
579                 if (firstChar == '-') {
580                     negative = true;
581                     limit = Long.MIN_VALUE;
582                 } else if (firstChar != '+')
583                     throw NumberFormatException.forInputString(s);
584 
585                 if (len == 1) // Cannot have lone "+" or "-"
586                     throw NumberFormatException.forInputString(s);
587                 i++;
588             }
589             multmin = limit / radix;
590             while (i < len) {
591                 // Accumulating negatively avoids surprises near MAX_VALUE
592                 digit = Character.digit(s.charAt(i++),radix);
593                 if (digit < 0) {
594                     throw NumberFormatException.forInputString(s);
595                 }
596                 if (result < multmin) {
597                     throw NumberFormatException.forInputString(s);
598                 }
599                 result *= radix;
600                 if (result < limit + digit) {
601                     throw NumberFormatException.forInputString(s);
602                 }
603                 result -= digit;
604             }
605         } else {
606             throw NumberFormatException.forInputString(s);
607         }
608         return negative ? result : -result;
609     }
610 
611     /**
612      * Parses the string argument as a signed decimal {@code long}.
613      * The characters in the string must all be decimal digits, except
614      * that the first character may be an ASCII minus sign {@code '-'}
615      * ({@code \u005Cu002D'}) to indicate a negative value or an
616      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
617      * indicate a positive value. The resulting {@code long} value is
618      * returned, exactly as if the argument and the radix {@code 10}
619      * were given as arguments to the {@link
620      * #parseLong(java.lang.String, int)} method.
621      *
622      * <p>Note that neither the character {@code L}
623      * ({@code '\u005Cu004C'}) nor {@code l}
624      * ({@code '\u005Cu006C'}) is permitted to appear at the end
625      * of the string as a type indicator, as would be permitted in
626      * Java programming language source code.
627      *
628      * @param      s   a {@code String} containing the {@code long}
629      *             representation to be parsed
630      * @return     the {@code long} represented by the argument in
631      *             decimal.
632      * @throws     NumberFormatException  if the string does not contain a
633      *             parsable {@code long}.
634      */
parseLong(String s)635     public static long parseLong(String s) throws NumberFormatException {
636         return parseLong(s, 10);
637     }
638 
639     /**
640      * Parses the string argument as an unsigned {@code long} in the
641      * radix specified by the second argument.  An unsigned integer
642      * maps the values usually associated with negative numbers to
643      * positive numbers larger than {@code MAX_VALUE}.
644      *
645      * The characters in the string must all be digits of the
646      * specified radix (as determined by whether {@link
647      * java.lang.Character#digit(char, int)} returns a nonnegative
648      * value), except that the first character may be an ASCII plus
649      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
650      * integer value is returned.
651      *
652      * <p>An exception of type {@code NumberFormatException} is
653      * thrown if any of the following situations occurs:
654      * <ul>
655      * <li>The first argument is {@code null} or is a string of
656      * length zero.
657      *
658      * <li>The radix is either smaller than
659      * {@link java.lang.Character#MIN_RADIX} or
660      * larger than {@link java.lang.Character#MAX_RADIX}.
661      *
662      * <li>Any character of the string is not a digit of the specified
663      * radix, except that the first character may be a plus sign
664      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
665      * string is longer than length 1.
666      *
667      * <li>The value represented by the string is larger than the
668      * largest unsigned {@code long}, 2<sup>64</sup>-1.
669      *
670      * </ul>
671      *
672      *
673      * @param      s   the {@code String} containing the unsigned integer
674      *                  representation to be parsed
675      * @param      radix   the radix to be used while parsing {@code s}.
676      * @return     the unsigned {@code long} represented by the string
677      *             argument in the specified radix.
678      * @throws     NumberFormatException if the {@code String}
679      *             does not contain a parsable {@code long}.
680      * @since 1.8
681      */
parseUnsignedLong(String s, int radix)682     public static long parseUnsignedLong(String s, int radix)
683                 throws NumberFormatException {
684         if (s == null)  {
685             throw new NumberFormatException("null");
686         }
687 
688         int len = s.length();
689         if (len > 0) {
690             char firstChar = s.charAt(0);
691             if (firstChar == '-') {
692                 throw new
693                     NumberFormatException(String.format("Illegal leading minus sign " +
694                                                        "on unsigned string %s.", s));
695             } else {
696                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
697                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
698                     return parseLong(s, radix);
699                 }
700 
701                 // No need for range checks on len due to testing above.
702                 long first = parseLong(s.substring(0, len - 1), radix);
703                 int second = Character.digit(s.charAt(len - 1), radix);
704                 if (second < 0) {
705                     throw new NumberFormatException("Bad digit at end of " + s);
706                 }
707                 long result = first * radix + second;
708                 if (compareUnsigned(result, first) < 0) {
709                     /*
710                      * The maximum unsigned value, (2^64)-1, takes at
711                      * most one more digit to represent than the
712                      * maximum signed value, (2^63)-1.  Therefore,
713                      * parsing (len - 1) digits will be appropriately
714                      * in-range of the signed parsing.  In other
715                      * words, if parsing (len -1) digits overflows
716                      * signed parsing, parsing len digits will
717                      * certainly overflow unsigned parsing.
718                      *
719                      * The compareUnsigned check above catches
720                      * situations where an unsigned overflow occurs
721                      * incorporating the contribution of the final
722                      * digit.
723                      */
724                     throw new NumberFormatException(String.format("String value %s exceeds " +
725                                                                   "range of unsigned long.", s));
726                 }
727                 return result;
728             }
729         } else {
730             throw NumberFormatException.forInputString(s);
731         }
732     }
733 
734     /**
735      * Parses the string argument as an unsigned decimal {@code long}. The
736      * characters in the string must all be decimal digits, except
737      * that the first character may be an an ASCII plus sign {@code
738      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
739      * is returned, exactly as if the argument and the radix 10 were
740      * given as arguments to the {@link
741      * #parseUnsignedLong(java.lang.String, int)} method.
742      *
743      * @param s   a {@code String} containing the unsigned {@code long}
744      *            representation to be parsed
745      * @return    the unsigned {@code long} value represented by the decimal string argument
746      * @throws    NumberFormatException  if the string does not contain a
747      *            parsable unsigned integer.
748      * @since 1.8
749      */
parseUnsignedLong(String s)750     public static long parseUnsignedLong(String s) throws NumberFormatException {
751         return parseUnsignedLong(s, 10);
752     }
753 
754     /**
755      * Returns a {@code Long} object holding the value
756      * extracted from the specified {@code String} when parsed
757      * with the radix given by the second argument.  The first
758      * argument is interpreted as representing a signed
759      * {@code long} in the radix specified by the second
760      * argument, exactly as if the arguments were given to the {@link
761      * #parseLong(java.lang.String, int)} method. The result is a
762      * {@code Long} object that represents the {@code long}
763      * value specified by the string.
764      *
765      * <p>In other words, this method returns a {@code Long} object equal
766      * to the value of:
767      *
768      * <blockquote>
769      *  {@code new Long(Long.parseLong(s, radix))}
770      * </blockquote>
771      *
772      * @param      s       the string to be parsed
773      * @param      radix   the radix to be used in interpreting {@code s}
774      * @return     a {@code Long} object holding the value
775      *             represented by the string argument in the specified
776      *             radix.
777      * @throws     NumberFormatException  If the {@code String} does not
778      *             contain a parsable {@code long}.
779      */
valueOf(String s, int radix)780     public static Long valueOf(String s, int radix) throws NumberFormatException {
781         return Long.valueOf(parseLong(s, radix));
782     }
783 
784     /**
785      * Returns a {@code Long} object holding the value
786      * of the specified {@code String}. The argument is
787      * interpreted as representing a signed decimal {@code long},
788      * exactly as if the argument were given to the {@link
789      * #parseLong(java.lang.String)} method. The result is a
790      * {@code Long} object that represents the integer value
791      * specified by the string.
792      *
793      * <p>In other words, this method returns a {@code Long} object
794      * equal to the value of:
795      *
796      * <blockquote>
797      *  {@code new Long(Long.parseLong(s))}
798      * </blockquote>
799      *
800      * @param      s   the string to be parsed.
801      * @return     a {@code Long} object holding the value
802      *             represented by the string argument.
803      * @throws     NumberFormatException  If the string cannot be parsed
804      *             as a {@code long}.
805      */
valueOf(String s)806     public static Long valueOf(String s) throws NumberFormatException
807     {
808         return Long.valueOf(parseLong(s, 10));
809     }
810 
811     private static class LongCache {
LongCache()812         private LongCache(){}
813 
814         static final Long cache[] = new Long[-(-128) + 127 + 1];
815 
816         static {
817             for(int i = 0; i < cache.length; i++)
818                 cache[i] = new Long(i - 128);
819         }
820     }
821 
822     /**
823      * Returns a {@code Long} instance representing the specified
824      * {@code long} value.
825      * If a new {@code Long} instance is not required, this method
826      * should generally be used in preference to the constructor
827      * {@link #Long(long)}, as this method is likely to yield
828      * significantly better space and time performance by caching
829      * frequently requested values.
830      *
831      * Note that unlike the {@linkplain Integer#valueOf(int)
832      * corresponding method} in the {@code Integer} class, this method
833      * is <em>not</em> required to cache values within a particular
834      * range.
835      *
836      * @param  l a long value.
837      * @return a {@code Long} instance representing {@code l}.
838      * @since  1.5
839      */
valueOf(long l)840     public static Long valueOf(long l) {
841         final int offset = 128;
842         if (l >= -128 && l <= 127) { // will cache
843             return LongCache.cache[(int)l + offset];
844         }
845         return new Long(l);
846     }
847 
848     /**
849      * Decodes a {@code String} into a {@code Long}.
850      * Accepts decimal, hexadecimal, and octal numbers given by the
851      * following grammar:
852      *
853      * <blockquote>
854      * <dl>
855      * <dt><i>DecodableString:</i>
856      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
857      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
858      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
859      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
860      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
861      *
862      * <dt><i>Sign:</i>
863      * <dd>{@code -}
864      * <dd>{@code +}
865      * </dl>
866      * </blockquote>
867      *
868      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
869      * are as defined in section 3.10.1 of
870      * <cite>The Java&trade; Language Specification</cite>,
871      * except that underscores are not accepted between digits.
872      *
873      * <p>The sequence of characters following an optional
874      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
875      * "{@code #}", or leading zero) is parsed as by the {@code
876      * Long.parseLong} method with the indicated radix (10, 16, or 8).
877      * This sequence of characters must represent a positive value or
878      * a {@link NumberFormatException} will be thrown.  The result is
879      * negated if first character of the specified {@code String} is
880      * the minus sign.  No whitespace characters are permitted in the
881      * {@code String}.
882      *
883      * @param     nm the {@code String} to decode.
884      * @return    a {@code Long} object holding the {@code long}
885      *            value represented by {@code nm}
886      * @throws    NumberFormatException  if the {@code String} does not
887      *            contain a parsable {@code long}.
888      * @see java.lang.Long#parseLong(String, int)
889      * @since 1.2
890      */
decode(String nm)891     public static Long decode(String nm) throws NumberFormatException {
892         int radix = 10;
893         int index = 0;
894         boolean negative = false;
895         Long result;
896 
897         if (nm.length() == 0)
898             throw new NumberFormatException("Zero length string");
899         char firstChar = nm.charAt(0);
900         // Handle sign, if present
901         if (firstChar == '-') {
902             negative = true;
903             index++;
904         } else if (firstChar == '+')
905             index++;
906 
907         // Handle radix specifier, if present
908         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
909             index += 2;
910             radix = 16;
911         }
912         else if (nm.startsWith("#", index)) {
913             index ++;
914             radix = 16;
915         }
916         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
917             index ++;
918             radix = 8;
919         }
920 
921         if (nm.startsWith("-", index) || nm.startsWith("+", index))
922             throw new NumberFormatException("Sign character in wrong position");
923 
924         try {
925             result = Long.valueOf(nm.substring(index), radix);
926             result = negative ? Long.valueOf(-result.longValue()) : result;
927         } catch (NumberFormatException e) {
928             // If number is Long.MIN_VALUE, we'll end up here. The next line
929             // handles this case, and causes any genuine format error to be
930             // rethrown.
931             String constant = negative ? ("-" + nm.substring(index))
932                                        : nm.substring(index);
933             result = Long.valueOf(constant, radix);
934         }
935         return result;
936     }
937 
938     /**
939      * The value of the {@code Long}.
940      *
941      * @serial
942      */
943     private final long value;
944 
945     /**
946      * Constructs a newly allocated {@code Long} object that
947      * represents the specified {@code long} argument.
948      *
949      * @param   value   the value to be represented by the
950      *          {@code Long} object.
951      */
Long(long value)952     public Long(long value) {
953         this.value = value;
954     }
955 
956     /**
957      * Constructs a newly allocated {@code Long} object that
958      * represents the {@code long} value indicated by the
959      * {@code String} parameter. The string is converted to a
960      * {@code long} value in exactly the manner used by the
961      * {@code parseLong} method for radix 10.
962      *
963      * @param      s   the {@code String} to be converted to a
964      *             {@code Long}.
965      * @throws     NumberFormatException  if the {@code String} does not
966      *             contain a parsable {@code long}.
967      * @see        java.lang.Long#parseLong(java.lang.String, int)
968      */
Long(String s)969     public Long(String s) throws NumberFormatException {
970         this.value = parseLong(s, 10);
971     }
972 
973     /**
974      * Returns the value of this {@code Long} as a {@code byte} after
975      * a narrowing primitive conversion.
976      * @jls 5.1.3 Narrowing Primitive Conversions
977      */
byteValue()978     public byte byteValue() {
979         return (byte)value;
980     }
981 
982     /**
983      * Returns the value of this {@code Long} as a {@code short} after
984      * a narrowing primitive conversion.
985      * @jls 5.1.3 Narrowing Primitive Conversions
986      */
shortValue()987     public short shortValue() {
988         return (short)value;
989     }
990 
991     /**
992      * Returns the value of this {@code Long} as an {@code int} after
993      * a narrowing primitive conversion.
994      * @jls 5.1.3 Narrowing Primitive Conversions
995      */
intValue()996     public int intValue() {
997         return (int)value;
998     }
999 
1000     /**
1001      * Returns the value of this {@code Long} as a
1002      * {@code long} value.
1003      */
longValue()1004     public long longValue() {
1005         return value;
1006     }
1007 
1008     /**
1009      * Returns the value of this {@code Long} as a {@code float} after
1010      * a widening primitive conversion.
1011      * @jls 5.1.2 Widening Primitive Conversions
1012      */
floatValue()1013     public float floatValue() {
1014         return (float)value;
1015     }
1016 
1017     /**
1018      * Returns the value of this {@code Long} as a {@code double}
1019      * after a widening primitive conversion.
1020      * @jls 5.1.2 Widening Primitive Conversions
1021      */
doubleValue()1022     public double doubleValue() {
1023         return (double)value;
1024     }
1025 
1026     /**
1027      * Returns a {@code String} object representing this
1028      * {@code Long}'s value.  The value is converted to signed
1029      * decimal representation and returned as a string, exactly as if
1030      * the {@code long} value were given as an argument to the
1031      * {@link java.lang.Long#toString(long)} method.
1032      *
1033      * @return  a string representation of the value of this object in
1034      *          base&nbsp;10.
1035      */
toString()1036     public String toString() {
1037         return toString(value);
1038     }
1039 
1040     /**
1041      * Returns a hash code for this {@code Long}. The result is
1042      * the exclusive OR of the two halves of the primitive
1043      * {@code long} value held by this {@code Long}
1044      * object. That is, the hashcode is the value of the expression:
1045      *
1046      * <blockquote>
1047      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1048      * </blockquote>
1049      *
1050      * @return  a hash code value for this object.
1051      */
1052     @Override
hashCode()1053     public int hashCode() {
1054         return Long.hashCode(value);
1055     }
1056 
1057     /**
1058      * Returns a hash code for a {@code long} value; compatible with
1059      * {@code Long.hashCode()}.
1060      *
1061      * @param value the value to hash
1062      * @return a hash code value for a {@code long} value.
1063      * @since 1.8
1064      */
hashCode(long value)1065     public static int hashCode(long value) {
1066         return (int)(value ^ (value >>> 32));
1067     }
1068 
1069     /**
1070      * Compares this object to the specified object.  The result is
1071      * {@code true} if and only if the argument is not
1072      * {@code null} and is a {@code Long} object that
1073      * contains the same {@code long} value as this object.
1074      *
1075      * @param   obj   the object to compare with.
1076      * @return  {@code true} if the objects are the same;
1077      *          {@code false} otherwise.
1078      */
equals(Object obj)1079     public boolean equals(Object obj) {
1080         if (obj instanceof Long) {
1081             return value == ((Long)obj).longValue();
1082         }
1083         return false;
1084     }
1085 
1086     /**
1087      * Determines the {@code long} value of the system property
1088      * with the specified name.
1089      *
1090      * <p>The first argument is treated as the name of a system
1091      * property.  System properties are accessible through the {@link
1092      * java.lang.System#getProperty(java.lang.String)} method. The
1093      * string value of this property is then interpreted as a {@code
1094      * long} value using the grammar supported by {@link Long#decode decode}
1095      * and a {@code Long} object representing this value is returned.
1096      *
1097      * <p>If there is no property with the specified name, if the
1098      * specified name is empty or {@code null}, or if the property
1099      * does not have the correct numeric format, then {@code null} is
1100      * returned.
1101      *
1102      * <p>In other words, this method returns a {@code Long} object
1103      * equal to the value of:
1104      *
1105      * <blockquote>
1106      *  {@code getLong(nm, null)}
1107      * </blockquote>
1108      *
1109      * @param   nm   property name.
1110      * @return  the {@code Long} value of the property.
1111      * @throws  SecurityException for the same reasons as
1112      *          {@link System#getProperty(String) System.getProperty}
1113      * @see     java.lang.System#getProperty(java.lang.String)
1114      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1115      */
getLong(String nm)1116     public static Long getLong(String nm) {
1117         return getLong(nm, null);
1118     }
1119 
1120     /**
1121      * Determines the {@code long} value of the system property
1122      * with the specified name.
1123      *
1124      * <p>The first argument is treated as the name of a system
1125      * property.  System properties are accessible through the {@link
1126      * java.lang.System#getProperty(java.lang.String)} method. The
1127      * string value of this property is then interpreted as a {@code
1128      * long} value using the grammar supported by {@link Long#decode decode}
1129      * and a {@code Long} object representing this value is returned.
1130      *
1131      * <p>The second argument is the default value. A {@code Long} object
1132      * that represents the value of the second argument is returned if there
1133      * is no property of the specified name, if the property does not have
1134      * the correct numeric format, or if the specified name is empty or null.
1135      *
1136      * <p>In other words, this method returns a {@code Long} object equal
1137      * to the value of:
1138      *
1139      * <blockquote>
1140      *  {@code getLong(nm, new Long(val))}
1141      * </blockquote>
1142      *
1143      * but in practice it may be implemented in a manner such as:
1144      *
1145      * <blockquote><pre>
1146      * Long result = getLong(nm, null);
1147      * return (result == null) ? new Long(val) : result;
1148      * </pre></blockquote>
1149      *
1150      * to avoid the unnecessary allocation of a {@code Long} object when
1151      * the default value is not needed.
1152      *
1153      * @param   nm    property name.
1154      * @param   val   default value.
1155      * @return  the {@code Long} value of the property.
1156      * @throws  SecurityException for the same reasons as
1157      *          {@link System#getProperty(String) System.getProperty}
1158      * @see     java.lang.System#getProperty(java.lang.String)
1159      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1160      */
getLong(String nm, long val)1161     public static Long getLong(String nm, long val) {
1162         Long result = Long.getLong(nm, null);
1163         return (result == null) ? Long.valueOf(val) : result;
1164     }
1165 
1166     /**
1167      * Returns the {@code long} value of the system property with
1168      * the specified name.  The first argument is treated as the name
1169      * of a system property.  System properties are accessible through
1170      * the {@link java.lang.System#getProperty(java.lang.String)}
1171      * method. The string value of this property is then interpreted
1172      * as a {@code long} value, as per the
1173      * {@link Long#decode decode} method, and a {@code Long} object
1174      * representing this value is returned; in summary:
1175      *
1176      * <ul>
1177      * <li>If the property value begins with the two ASCII characters
1178      * {@code 0x} or the ASCII character {@code #}, not followed by
1179      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1180      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1181      * with radix 16.
1182      * <li>If the property value begins with the ASCII character
1183      * {@code 0} followed by another character, it is parsed as
1184      * an octal integer exactly as by the method {@link
1185      * #valueOf(java.lang.String, int)} with radix 8.
1186      * <li>Otherwise the property value is parsed as a decimal
1187      * integer exactly as by the method
1188      * {@link #valueOf(java.lang.String, int)} with radix 10.
1189      * </ul>
1190      *
1191      * <p>Note that, in every case, neither {@code L}
1192      * ({@code '\u005Cu004C'}) nor {@code l}
1193      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1194      * of the property value as a type indicator, as would be
1195      * permitted in Java programming language source code.
1196      *
1197      * <p>The second argument is the default value. The default value is
1198      * returned if there is no property of the specified name, if the
1199      * property does not have the correct numeric format, or if the
1200      * specified name is empty or {@code null}.
1201      *
1202      * @param   nm   property name.
1203      * @param   val   default value.
1204      * @return  the {@code Long} value of the property.
1205      * @throws  SecurityException for the same reasons as
1206      *          {@link System#getProperty(String) System.getProperty}
1207      * @see     System#getProperty(java.lang.String)
1208      * @see     System#getProperty(java.lang.String, java.lang.String)
1209      */
getLong(String nm, Long val)1210     public static Long getLong(String nm, Long val) {
1211         String v = null;
1212         try {
1213             v = System.getProperty(nm);
1214         } catch (IllegalArgumentException | NullPointerException e) {
1215         }
1216         if (v != null) {
1217             try {
1218                 return Long.decode(v);
1219             } catch (NumberFormatException e) {
1220             }
1221         }
1222         return val;
1223     }
1224 
1225     /**
1226      * Compares two {@code Long} objects numerically.
1227      *
1228      * @param   anotherLong   the {@code Long} to be compared.
1229      * @return  the value {@code 0} if this {@code Long} is
1230      *          equal to the argument {@code Long}; a value less than
1231      *          {@code 0} if this {@code Long} is numerically less
1232      *          than the argument {@code Long}; and a value greater
1233      *          than {@code 0} if this {@code Long} is numerically
1234      *           greater than the argument {@code Long} (signed
1235      *           comparison).
1236      * @since   1.2
1237      */
compareTo(Long anotherLong)1238     public int compareTo(Long anotherLong) {
1239         return compare(this.value, anotherLong.value);
1240     }
1241 
1242     /**
1243      * Compares two {@code long} values numerically.
1244      * The value returned is identical to what would be returned by:
1245      * <pre>
1246      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1247      * </pre>
1248      *
1249      * @param  x the first {@code long} to compare
1250      * @param  y the second {@code long} to compare
1251      * @return the value {@code 0} if {@code x == y};
1252      *         a value less than {@code 0} if {@code x < y}; and
1253      *         a value greater than {@code 0} if {@code x > y}
1254      * @since 1.7
1255      */
compare(long x, long y)1256     public static int compare(long x, long y) {
1257         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1258     }
1259 
1260     /**
1261      * Compares two {@code long} values numerically treating the values
1262      * as unsigned.
1263      *
1264      * @param  x the first {@code long} to compare
1265      * @param  y the second {@code long} to compare
1266      * @return the value {@code 0} if {@code x == y}; a value less
1267      *         than {@code 0} if {@code x < y} as unsigned values; and
1268      *         a value greater than {@code 0} if {@code x > y} as
1269      *         unsigned values
1270      * @since 1.8
1271      */
compareUnsigned(long x, long y)1272     public static int compareUnsigned(long x, long y) {
1273         return compare(x + MIN_VALUE, y + MIN_VALUE);
1274     }
1275 
1276 
1277     /**
1278      * Returns the unsigned quotient of dividing the first argument by
1279      * the second where each argument and the result is interpreted as
1280      * an unsigned value.
1281      *
1282      * <p>Note that in two's complement arithmetic, the three other
1283      * basic arithmetic operations of add, subtract, and multiply are
1284      * bit-wise identical if the two operands are regarded as both
1285      * being signed or both being unsigned.  Therefore separate {@code
1286      * addUnsigned}, etc. methods are not provided.
1287      *
1288      * @param dividend the value to be divided
1289      * @param divisor the value doing the dividing
1290      * @return the unsigned quotient of the first argument divided by
1291      * the second argument
1292      * @see #remainderUnsigned
1293      * @since 1.8
1294      */
divideUnsigned(long dividend, long divisor)1295     public static long divideUnsigned(long dividend, long divisor) {
1296         if (divisor < 0L) { // signed comparison
1297             // Answer must be 0 or 1 depending on relative magnitude
1298             // of dividend and divisor.
1299             return (compareUnsigned(dividend, divisor)) < 0 ? 0L :1L;
1300         }
1301 
1302         if (dividend > 0) //  Both inputs non-negative
1303             return dividend/divisor;
1304         else {
1305             /*
1306              * For simple code, leveraging BigInteger.  Longer and faster
1307              * code written directly in terms of operations on longs is
1308              * possible; see "Hacker's Delight" for divide and remainder
1309              * algorithms.
1310              */
1311             return toUnsignedBigInteger(dividend).
1312                 divide(toUnsignedBigInteger(divisor)).longValue();
1313         }
1314     }
1315 
1316     /**
1317      * Returns the unsigned remainder from dividing the first argument
1318      * by the second where each argument and the result is interpreted
1319      * as an unsigned value.
1320      *
1321      * @param dividend the value to be divided
1322      * @param divisor the value doing the dividing
1323      * @return the unsigned remainder of the first argument divided by
1324      * the second argument
1325      * @see #divideUnsigned
1326      * @since 1.8
1327      */
remainderUnsigned(long dividend, long divisor)1328     public static long remainderUnsigned(long dividend, long divisor) {
1329         if (dividend > 0 && divisor > 0) { // signed comparisons
1330             return dividend % divisor;
1331         } else {
1332             if (compareUnsigned(dividend, divisor) < 0) // Avoid explicit check for 0 divisor
1333                 return dividend;
1334             else
1335                 return toUnsignedBigInteger(dividend).
1336                     remainder(toUnsignedBigInteger(divisor)).longValue();
1337         }
1338     }
1339 
1340     // Bit Twiddling
1341 
1342     /**
1343      * The number of bits used to represent a {@code long} value in two's
1344      * complement binary form.
1345      *
1346      * @since 1.5
1347      */
1348     @Native public static final int SIZE = 64;
1349 
1350     /**
1351      * The number of bytes used to represent a {@code long} value in two's
1352      * complement binary form.
1353      *
1354      * @since 1.8
1355      */
1356     public static final int BYTES = SIZE / Byte.SIZE;
1357 
1358     /**
1359      * Returns a {@code long} value with at most a single one-bit, in the
1360      * position of the highest-order ("leftmost") one-bit in the specified
1361      * {@code long} value.  Returns zero if the specified value has no
1362      * one-bits in its two's complement binary representation, that is, if it
1363      * is equal to zero.
1364      *
1365      * @param i the value whose highest one bit is to be computed
1366      * @return a {@code long} value with a single one-bit, in the position
1367      *     of the highest-order one-bit in the specified value, or zero if
1368      *     the specified value is itself equal to zero.
1369      * @since 1.5
1370      */
highestOneBit(long i)1371     public static long highestOneBit(long i) {
1372         // HD, Figure 3-1
1373         i |= (i >>  1);
1374         i |= (i >>  2);
1375         i |= (i >>  4);
1376         i |= (i >>  8);
1377         i |= (i >> 16);
1378         i |= (i >> 32);
1379         return i - (i >>> 1);
1380     }
1381 
1382     /**
1383      * Returns a {@code long} value with at most a single one-bit, in the
1384      * position of the lowest-order ("rightmost") one-bit in the specified
1385      * {@code long} value.  Returns zero if the specified value has no
1386      * one-bits in its two's complement binary representation, that is, if it
1387      * is equal to zero.
1388      *
1389      * @param i the value whose lowest one bit is to be computed
1390      * @return a {@code long} value with a single one-bit, in the position
1391      *     of the lowest-order one-bit in the specified value, or zero if
1392      *     the specified value is itself equal to zero.
1393      * @since 1.5
1394      */
lowestOneBit(long i)1395     public static long lowestOneBit(long i) {
1396         // HD, Section 2-1
1397         return i & -i;
1398     }
1399 
1400     /**
1401      * Returns the number of zero bits preceding the highest-order
1402      * ("leftmost") one-bit in the two's complement binary representation
1403      * of the specified {@code long} value.  Returns 64 if the
1404      * specified value has no one-bits in its two's complement representation,
1405      * in other words if it is equal to zero.
1406      *
1407      * <p>Note that this method is closely related to the logarithm base 2.
1408      * For all positive {@code long} values x:
1409      * <ul>
1410      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1411      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1412      * </ul>
1413      *
1414      * @param i the value whose number of leading zeros is to be computed
1415      * @return the number of zero bits preceding the highest-order
1416      *     ("leftmost") one-bit in the two's complement binary representation
1417      *     of the specified {@code long} value, or 64 if the value
1418      *     is equal to zero.
1419      * @since 1.5
1420      */
numberOfLeadingZeros(long i)1421     public static int numberOfLeadingZeros(long i) {
1422         // HD, Figure 5-6
1423          if (i == 0)
1424             return 64;
1425         int n = 1;
1426         int x = (int)(i >>> 32);
1427         if (x == 0) { n += 32; x = (int)i; }
1428         if (x >>> 16 == 0) { n += 16; x <<= 16; }
1429         if (x >>> 24 == 0) { n +=  8; x <<=  8; }
1430         if (x >>> 28 == 0) { n +=  4; x <<=  4; }
1431         if (x >>> 30 == 0) { n +=  2; x <<=  2; }
1432         n -= x >>> 31;
1433         return n;
1434     }
1435 
1436     /**
1437      * Returns the number of zero bits following the lowest-order ("rightmost")
1438      * one-bit in the two's complement binary representation of the specified
1439      * {@code long} value.  Returns 64 if the specified value has no
1440      * one-bits in its two's complement representation, in other words if it is
1441      * equal to zero.
1442      *
1443      * @param i the value whose number of trailing zeros is to be computed
1444      * @return the number of zero bits following the lowest-order ("rightmost")
1445      *     one-bit in the two's complement binary representation of the
1446      *     specified {@code long} value, or 64 if the value is equal
1447      *     to zero.
1448      * @since 1.5
1449      */
numberOfTrailingZeros(long i)1450     public static int numberOfTrailingZeros(long i) {
1451         // HD, Figure 5-14
1452         int x, y;
1453         if (i == 0) return 64;
1454         int n = 63;
1455         y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
1456         y = x <<16; if (y != 0) { n = n -16; x = y; }
1457         y = x << 8; if (y != 0) { n = n - 8; x = y; }
1458         y = x << 4; if (y != 0) { n = n - 4; x = y; }
1459         y = x << 2; if (y != 0) { n = n - 2; x = y; }
1460         return n - ((x << 1) >>> 31);
1461     }
1462 
1463     /**
1464      * Returns the number of one-bits in the two's complement binary
1465      * representation of the specified {@code long} value.  This function is
1466      * sometimes referred to as the <i>population count</i>.
1467      *
1468      * @param i the value whose bits are to be counted
1469      * @return the number of one-bits in the two's complement binary
1470      *     representation of the specified {@code long} value.
1471      * @since 1.5
1472      */
bitCount(long i)1473      public static int bitCount(long i) {
1474         // HD, Figure 5-14
1475         i = i - ((i >>> 1) & 0x5555555555555555L);
1476         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1477         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1478         i = i + (i >>> 8);
1479         i = i + (i >>> 16);
1480         i = i + (i >>> 32);
1481         return (int)i & 0x7f;
1482      }
1483 
1484     /**
1485      * Returns the value obtained by rotating the two's complement binary
1486      * representation of the specified {@code long} value left by the
1487      * specified number of bits.  (Bits shifted out of the left hand, or
1488      * high-order, side reenter on the right, or low-order.)
1489      *
1490      * <p>Note that left rotation with a negative distance is equivalent to
1491      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1492      * distance)}.  Note also that rotation by any multiple of 64 is a
1493      * no-op, so all but the last six bits of the rotation distance can be
1494      * ignored, even if the distance is negative: {@code rotateLeft(val,
1495      * distance) == rotateLeft(val, distance & 0x3F)}.
1496      *
1497      * @param i the value whose bits are to be rotated left
1498      * @param distance the number of bit positions to rotate left
1499      * @return the value obtained by rotating the two's complement binary
1500      *     representation of the specified {@code long} value left by the
1501      *     specified number of bits.
1502      * @since 1.5
1503      */
rotateLeft(long i, int distance)1504     public static long rotateLeft(long i, int distance) {
1505         return (i << distance) | (i >>> -distance);
1506     }
1507 
1508     /**
1509      * Returns the value obtained by rotating the two's complement binary
1510      * representation of the specified {@code long} value right by the
1511      * specified number of bits.  (Bits shifted out of the right hand, or
1512      * low-order, side reenter on the left, or high-order.)
1513      *
1514      * <p>Note that right rotation with a negative distance is equivalent to
1515      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1516      * distance)}.  Note also that rotation by any multiple of 64 is a
1517      * no-op, so all but the last six bits of the rotation distance can be
1518      * ignored, even if the distance is negative: {@code rotateRight(val,
1519      * distance) == rotateRight(val, distance & 0x3F)}.
1520      *
1521      * @param i the value whose bits are to be rotated right
1522      * @param distance the number of bit positions to rotate right
1523      * @return the value obtained by rotating the two's complement binary
1524      *     representation of the specified {@code long} value right by the
1525      *     specified number of bits.
1526      * @since 1.5
1527      */
rotateRight(long i, int distance)1528     public static long rotateRight(long i, int distance) {
1529         return (i >>> distance) | (i << -distance);
1530     }
1531 
1532     /**
1533      * Returns the value obtained by reversing the order of the bits in the
1534      * two's complement binary representation of the specified {@code long}
1535      * value.
1536      *
1537      * @param i the value to be reversed
1538      * @return the value obtained by reversing order of the bits in the
1539      *     specified {@code long} value.
1540      * @since 1.5
1541      */
reverse(long i)1542     public static long reverse(long i) {
1543         // HD, Figure 7-1
1544         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1545         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1546         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1547         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1548         i = (i << 48) | ((i & 0xffff0000L) << 16) |
1549             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1550         return i;
1551     }
1552 
1553     /**
1554      * Returns the signum function of the specified {@code long} value.  (The
1555      * return value is -1 if the specified value is negative; 0 if the
1556      * specified value is zero; and 1 if the specified value is positive.)
1557      *
1558      * @param i the value whose signum is to be computed
1559      * @return the signum function of the specified {@code long} value.
1560      * @since 1.5
1561      */
signum(long i)1562     public static int signum(long i) {
1563         // HD, Section 2-7
1564         return (int) ((i >> 63) | (-i >>> 63));
1565     }
1566 
1567     /**
1568      * Returns the value obtained by reversing the order of the bytes in the
1569      * two's complement representation of the specified {@code long} value.
1570      *
1571      * @param i the value whose bytes are to be reversed
1572      * @return the value obtained by reversing the bytes in the specified
1573      *     {@code long} value.
1574      * @since 1.5
1575      */
reverseBytes(long i)1576     public static long reverseBytes(long i) {
1577         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1578         return (i << 48) | ((i & 0xffff0000L) << 16) |
1579             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1580     }
1581 
1582     /**
1583      * Adds two {@code long} values together as per the + operator.
1584      *
1585      * @param a the first operand
1586      * @param b the second operand
1587      * @return the sum of {@code a} and {@code b}
1588      * @see java.util.function.BinaryOperator
1589      * @since 1.8
1590      */
sum(long a, long b)1591     public static long sum(long a, long b) {
1592         return a + b;
1593     }
1594 
1595     /**
1596      * Returns the greater of two {@code long} values
1597      * as if by calling {@link Math#max(long, long) Math.max}.
1598      *
1599      * @param a the first operand
1600      * @param b the second operand
1601      * @return the greater of {@code a} and {@code b}
1602      * @see java.util.function.BinaryOperator
1603      * @since 1.8
1604      */
max(long a, long b)1605     public static long max(long a, long b) {
1606         return Math.max(a, b);
1607     }
1608 
1609     /**
1610      * Returns the smaller of two {@code long} values
1611      * as if by calling {@link Math#min(long, long) Math.min}.
1612      *
1613      * @param a the first operand
1614      * @param b the second operand
1615      * @return the smaller of {@code a} and {@code b}
1616      * @see java.util.function.BinaryOperator
1617      * @since 1.8
1618      */
min(long a, long b)1619     public static long min(long a, long b) {
1620         return Math.min(a, b);
1621     }
1622 
1623     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1624     @Native private static final long serialVersionUID = 4290774380558885855L;
1625 }
1626