1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_writer.h"
18
19 #include <lz4.h>
20 #include <lz4hc.h>
21 #include <sys/stat.h>
22 #include <zlib.h>
23
24 #include <memory>
25 #include <numeric>
26 #include <vector>
27
28 #include "art_field-inl.h"
29 #include "art_method-inl.h"
30 #include "base/callee_save_type.h"
31 #include "base/enums.h"
32 #include "base/globals.h"
33 #include "base/logging.h" // For VLOG.
34 #include "base/stl_util.h"
35 #include "base/unix_file/fd_file.h"
36 #include "class_linker-inl.h"
37 #include "class_root-inl.h"
38 #include "compiled_method.h"
39 #include "dex/dex_file-inl.h"
40 #include "dex/dex_file_types.h"
41 #include "driver/compiler_options.h"
42 #include "elf/elf_utils.h"
43 #include "elf_file.h"
44 #include "entrypoints/entrypoint_utils-inl.h"
45 #include "gc/accounting/card_table-inl.h"
46 #include "gc/accounting/heap_bitmap.h"
47 #include "gc/accounting/space_bitmap-inl.h"
48 #include "gc/collector/concurrent_copying.h"
49 #include "gc/heap-visit-objects-inl.h"
50 #include "gc/heap.h"
51 #include "gc/space/large_object_space.h"
52 #include "gc/space/region_space.h"
53 #include "gc/space/space-inl.h"
54 #include "gc/verification.h"
55 #include "handle_scope-inl.h"
56 #include "image-inl.h"
57 #include "imt_conflict_table.h"
58 #include "intern_table-inl.h"
59 #include "jni/jni_internal.h"
60 #include "linear_alloc.h"
61 #include "lock_word.h"
62 #include "mirror/array-inl.h"
63 #include "mirror/class-inl.h"
64 #include "mirror/class_ext-inl.h"
65 #include "mirror/class_loader.h"
66 #include "mirror/dex_cache-inl.h"
67 #include "mirror/dex_cache.h"
68 #include "mirror/executable.h"
69 #include "mirror/method.h"
70 #include "mirror/object-inl.h"
71 #include "mirror/object-refvisitor-inl.h"
72 #include "mirror/object_array-alloc-inl.h"
73 #include "mirror/object_array-inl.h"
74 #include "mirror/string-inl.h"
75 #include "nterp_helpers.h"
76 #include "oat.h"
77 #include "oat_file.h"
78 #include "oat_file_manager.h"
79 #include "optimizing/intrinsic_objects.h"
80 #include "runtime.h"
81 #include "scoped_thread_state_change-inl.h"
82 #include "subtype_check.h"
83 #include "well_known_classes.h"
84
85 using ::art::mirror::Class;
86 using ::art::mirror::DexCache;
87 using ::art::mirror::Object;
88 using ::art::mirror::ObjectArray;
89 using ::art::mirror::String;
90
91 namespace art {
92 namespace linker {
93
94 // The actual value of `kImageClassTableMinLoadFactor` is irrelevant because image class tables
95 // are never resized, but we still need to pass a reasonable value to the constructor.
96 constexpr double kImageClassTableMinLoadFactor = 0.5;
97 // We use `kImageClassTableMaxLoadFactor` to determine the buffer size for image class tables
98 // to make them full. We never insert additional elements to them, so we do not want to waste
99 // extra memory. And unlike runtime class tables, we do not want this to depend on runtime
100 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
101 constexpr double kImageClassTableMaxLoadFactor = 0.7;
102
103 // The actual value of `kImageInternTableMinLoadFactor` is irrelevant because image intern tables
104 // are never resized, but we still need to pass a reasonable value to the constructor.
105 constexpr double kImageInternTableMinLoadFactor = 0.5;
106 // We use `kImageInternTableMaxLoadFactor` to determine the buffer size for image intern tables
107 // to make them full. We never insert additional elements to them, so we do not want to waste
108 // extra memory. And unlike runtime intern tables, we do not want this to depend on runtime
109 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
110 constexpr double kImageInternTableMaxLoadFactor = 0.7;
111
MaybeCompressData(ArrayRef<const uint8_t> source,ImageHeader::StorageMode image_storage_mode,std::vector<uint8_t> * storage)112 static ArrayRef<const uint8_t> MaybeCompressData(ArrayRef<const uint8_t> source,
113 ImageHeader::StorageMode image_storage_mode,
114 /*out*/ std::vector<uint8_t>* storage) {
115 const uint64_t compress_start_time = NanoTime();
116
117 switch (image_storage_mode) {
118 case ImageHeader::kStorageModeLZ4: {
119 storage->resize(LZ4_compressBound(source.size()));
120 size_t data_size = LZ4_compress_default(
121 reinterpret_cast<char*>(const_cast<uint8_t*>(source.data())),
122 reinterpret_cast<char*>(storage->data()),
123 source.size(),
124 storage->size());
125 storage->resize(data_size);
126 break;
127 }
128 case ImageHeader::kStorageModeLZ4HC: {
129 // Bound is same as non HC.
130 storage->resize(LZ4_compressBound(source.size()));
131 size_t data_size = LZ4_compress_HC(
132 reinterpret_cast<const char*>(const_cast<uint8_t*>(source.data())),
133 reinterpret_cast<char*>(storage->data()),
134 source.size(),
135 storage->size(),
136 LZ4HC_CLEVEL_MAX);
137 storage->resize(data_size);
138 break;
139 }
140 case ImageHeader::kStorageModeUncompressed: {
141 return source;
142 }
143 default: {
144 LOG(FATAL) << "Unsupported";
145 UNREACHABLE();
146 }
147 }
148
149 DCHECK(image_storage_mode == ImageHeader::kStorageModeLZ4 ||
150 image_storage_mode == ImageHeader::kStorageModeLZ4HC);
151 VLOG(compiler) << "Compressed from " << source.size() << " to " << storage->size() << " in "
152 << PrettyDuration(NanoTime() - compress_start_time);
153 if (kIsDebugBuild) {
154 std::vector<uint8_t> decompressed(source.size());
155 const size_t decompressed_size = LZ4_decompress_safe(
156 reinterpret_cast<char*>(storage->data()),
157 reinterpret_cast<char*>(decompressed.data()),
158 storage->size(),
159 decompressed.size());
160 CHECK_EQ(decompressed_size, decompressed.size());
161 CHECK_EQ(memcmp(source.data(), decompressed.data(), source.size()), 0) << image_storage_mode;
162 }
163 return ArrayRef<const uint8_t>(*storage);
164 }
165
166 // Separate objects into multiple bins to optimize dirty memory use.
167 static constexpr bool kBinObjects = true;
168
AllocateBootImageLiveObjects(Thread * self,Runtime * runtime)169 ObjPtr<mirror::ObjectArray<mirror::Object>> AllocateBootImageLiveObjects(
170 Thread* self, Runtime* runtime) REQUIRES_SHARED(Locks::mutator_lock_) {
171 ClassLinker* class_linker = runtime->GetClassLinker();
172 // The objects used for the Integer.valueOf() intrinsic must remain live even if references
173 // to them are removed using reflection. Image roots are not accessible through reflection,
174 // so the array we construct here shall keep them alive.
175 StackHandleScope<1> hs(self);
176 Handle<mirror::ObjectArray<mirror::Object>> integer_cache =
177 hs.NewHandle(IntrinsicObjects::LookupIntegerCache(self, class_linker));
178 size_t live_objects_size =
179 enum_cast<size_t>(ImageHeader::kIntrinsicObjectsStart) +
180 ((integer_cache != nullptr) ? (/* cache */ 1u + integer_cache->GetLength()) : 0u);
181 ObjPtr<mirror::ObjectArray<mirror::Object>> live_objects =
182 mirror::ObjectArray<mirror::Object>::Alloc(
183 self, GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker), live_objects_size);
184 int32_t index = 0u;
185 auto set_entry = [&](ImageHeader::BootImageLiveObjects entry,
186 ObjPtr<mirror::Object> value) REQUIRES_SHARED(Locks::mutator_lock_) {
187 DCHECK_EQ(index, enum_cast<int32_t>(entry));
188 live_objects->Set</*kTransacrionActive=*/ false>(index, value);
189 ++index;
190 };
191 set_entry(ImageHeader::kOomeWhenThrowingException,
192 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
193 set_entry(ImageHeader::kOomeWhenThrowingOome,
194 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
195 set_entry(ImageHeader::kOomeWhenHandlingStackOverflow,
196 runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
197 set_entry(ImageHeader::kNoClassDefFoundError, runtime->GetPreAllocatedNoClassDefFoundError());
198 set_entry(ImageHeader::kClearedJniWeakSentinel, runtime->GetSentinel().Read());
199
200 DCHECK_EQ(index, enum_cast<int32_t>(ImageHeader::kIntrinsicObjectsStart));
201 if (integer_cache != nullptr) {
202 live_objects->Set(index++, integer_cache.Get());
203 for (int32_t i = 0, length = integer_cache->GetLength(); i != length; ++i) {
204 live_objects->Set(index++, integer_cache->Get(i));
205 }
206 }
207 CHECK_EQ(index, live_objects->GetLength());
208
209 if (kIsDebugBuild && integer_cache != nullptr) {
210 CHECK_EQ(integer_cache.Get(), IntrinsicObjects::GetIntegerValueOfCache(live_objects));
211 for (int32_t i = 0, len = integer_cache->GetLength(); i != len; ++i) {
212 CHECK_EQ(integer_cache->GetWithoutChecks(i),
213 IntrinsicObjects::GetIntegerValueOfObject(live_objects, i));
214 }
215 }
216 return live_objects;
217 }
218
GetAppClassLoader() const219 ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const
220 REQUIRES_SHARED(Locks::mutator_lock_) {
221 return compiler_options_.IsAppImage()
222 ? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_))
223 : nullptr;
224 }
225
IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const226 bool ImageWriter::IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
227 // For boot image, we keep all dex caches.
228 if (compiler_options_.IsBootImage()) {
229 return true;
230 }
231 // Dex caches already in the boot image do not belong to the image being written.
232 if (IsInBootImage(dex_cache.Ptr())) {
233 return false;
234 }
235 // Dex caches for the boot class path components that are not part of the boot image
236 // cannot be garbage collected in PrepareImageAddressSpace() but we do not want to
237 // include them in the app image.
238 if (!ContainsElement(compiler_options_.GetDexFilesForOatFile(), dex_cache->GetDexFile())) {
239 return false;
240 }
241 return true;
242 }
243
ClearDexFileCookies()244 static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
245 auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
246 DCHECK(obj != nullptr);
247 Class* klass = obj->GetClass();
248 if (klass == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_DexFile)) {
249 ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
250 // Null out the cookie to enable determinism. b/34090128
251 field->SetObject</*kTransactionActive*/false>(obj, nullptr);
252 }
253 };
254 Runtime::Current()->GetHeap()->VisitObjects(visitor);
255 }
256
PrepareImageAddressSpace(TimingLogger * timings)257 bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) {
258 target_ptr_size_ = InstructionSetPointerSize(compiler_options_.GetInstructionSet());
259
260 Thread* const self = Thread::Current();
261
262 gc::Heap* const heap = Runtime::Current()->GetHeap();
263 {
264 ScopedObjectAccess soa(self);
265 {
266 TimingLogger::ScopedTiming t("PruneNonImageClasses", timings);
267 PruneNonImageClasses(); // Remove junk
268 }
269
270 if (compiler_options_.IsAppImage()) {
271 TimingLogger::ScopedTiming t("ClearDexFileCookies", timings);
272 // Clear dex file cookies for app images to enable app image determinism. This is required
273 // since the cookie field contains long pointers to DexFiles which are not deterministic.
274 // b/34090128
275 ClearDexFileCookies();
276 }
277 }
278
279 {
280 TimingLogger::ScopedTiming t("CollectGarbage", timings);
281 heap->CollectGarbage(/* clear_soft_references */ false); // Remove garbage.
282 }
283
284 if (kIsDebugBuild) {
285 ScopedObjectAccess soa(self);
286 CheckNonImageClassesRemoved();
287 }
288
289 {
290 // All remaining weak interns are referenced. Promote them to strong interns. Whether a
291 // string was strongly or weakly interned, we shall make it strongly interned in the image.
292 TimingLogger::ScopedTiming t("PromoteInterns", timings);
293 ScopedObjectAccess soa(self);
294 Runtime::Current()->GetInternTable()->PromoteWeakToStrong();
295 }
296
297 {
298 TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings);
299 ScopedObjectAccess soa(self);
300 CalculateNewObjectOffsets();
301 }
302
303 // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
304 // bin size sums being calculated.
305 TimingLogger::ScopedTiming t("AllocMemory", timings);
306 return AllocMemory();
307 }
308
CopyMetadata()309 void ImageWriter::CopyMetadata() {
310 DCHECK(compiler_options_.IsAppImage());
311 CHECK_EQ(image_infos_.size(), 1u);
312
313 const ImageInfo& image_info = image_infos_.back();
314 std::vector<ImageSection> image_sections = image_info.CreateImageSections().second;
315
316 auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>(
317 image_info.image_.Begin() +
318 image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset());
319
320 std::copy(image_info.string_reference_offsets_.begin(),
321 image_info.string_reference_offsets_.end(),
322 sfo_section_base);
323 }
324
IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const325 bool ImageWriter::IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const {
326 return referred_obj != nullptr &&
327 !IsInBootImage(referred_obj.Ptr()) &&
328 referred_obj->IsString() &&
329 referred_obj == Runtime::Current()->GetInternTable()->LookupStrong(
330 Thread::Current(), referred_obj->AsString());
331 }
332
333 // Helper class that erases the image file if it isn't properly flushed and closed.
334 class ImageWriter::ImageFileGuard {
335 public:
336 ImageFileGuard() noexcept = default;
337 ImageFileGuard(ImageFileGuard&& other) noexcept = default;
338 ImageFileGuard& operator=(ImageFileGuard&& other) noexcept = default;
339
~ImageFileGuard()340 ~ImageFileGuard() {
341 if (image_file_ != nullptr) {
342 // Failure, erase the image file.
343 image_file_->Erase();
344 }
345 }
346
reset(File * image_file)347 void reset(File* image_file) {
348 image_file_.reset(image_file);
349 }
350
operator ==(std::nullptr_t)351 bool operator==(std::nullptr_t) {
352 return image_file_ == nullptr;
353 }
354
operator !=(std::nullptr_t)355 bool operator!=(std::nullptr_t) {
356 return image_file_ != nullptr;
357 }
358
operator ->() const359 File* operator->() const {
360 return image_file_.get();
361 }
362
WriteHeaderAndClose(const std::string & image_filename,const ImageHeader * image_header)363 bool WriteHeaderAndClose(const std::string& image_filename, const ImageHeader* image_header) {
364 // The header is uncompressed since it contains whether the image is compressed or not.
365 if (!image_file_->PwriteFully(image_header, sizeof(ImageHeader), 0)) {
366 PLOG(ERROR) << "Failed to write image file header " << image_filename;
367 return false;
368 }
369
370 // FlushCloseOrErase() takes care of erasing, so the destructor does not need
371 // to do that whether the FlushCloseOrErase() succeeds or fails.
372 std::unique_ptr<File> image_file = std::move(image_file_);
373 if (image_file->FlushCloseOrErase() != 0) {
374 PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
375 return false;
376 }
377
378 return true;
379 }
380
381 private:
382 std::unique_ptr<File> image_file_;
383 };
384
Write(int image_fd,const std::vector<std::string> & image_filenames,size_t component_count)385 bool ImageWriter::Write(int image_fd,
386 const std::vector<std::string>& image_filenames,
387 size_t component_count) {
388 // If image_fd or oat_fd are not File::kInvalidFd then we may have empty strings in
389 // image_filenames or oat_filenames.
390 CHECK(!image_filenames.empty());
391 if (image_fd != File::kInvalidFd) {
392 CHECK_EQ(image_filenames.size(), 1u);
393 }
394 DCHECK(!oat_filenames_.empty());
395 CHECK_EQ(image_filenames.size(), oat_filenames_.size());
396
397 Thread* const self = Thread::Current();
398 {
399 ScopedObjectAccess soa(self);
400 for (size_t i = 0; i < oat_filenames_.size(); ++i) {
401 CreateHeader(i, component_count);
402 CopyAndFixupNativeData(i);
403 }
404 }
405
406 {
407 // TODO: heap validation can't handle these fix up passes.
408 ScopedObjectAccess soa(self);
409 Runtime::Current()->GetHeap()->DisableObjectValidation();
410 CopyAndFixupObjects();
411 }
412
413 if (compiler_options_.IsAppImage()) {
414 CopyMetadata();
415 }
416
417 // Primary image header shall be written last for two reasons. First, this ensures
418 // that we shall not end up with a valid primary image and invalid secondary image.
419 // Second, its checksum shall include the checksums of the secondary images (XORed).
420 // This way only the primary image checksum needs to be checked to determine whether
421 // any of the images or oat files are out of date. (Oat file checksums are included
422 // in the image checksum calculation.)
423 ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin());
424 ImageFileGuard primary_image_file;
425 for (size_t i = 0; i < image_filenames.size(); ++i) {
426 const std::string& image_filename = image_filenames[i];
427 ImageInfo& image_info = GetImageInfo(i);
428 ImageFileGuard image_file;
429 if (image_fd != File::kInvalidFd) {
430 // Ignore image_filename, it is supplied only for better diagnostic.
431 image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
432 // Empty the file in case it already exists.
433 if (image_file != nullptr) {
434 TEMP_FAILURE_RETRY(image_file->SetLength(0));
435 TEMP_FAILURE_RETRY(image_file->Flush());
436 }
437 } else {
438 image_file.reset(OS::CreateEmptyFile(image_filename.c_str()));
439 }
440
441 if (image_file == nullptr) {
442 LOG(ERROR) << "Failed to open image file " << image_filename;
443 return false;
444 }
445
446 // Make file world readable if we have created it, i.e. when not passed as file descriptor.
447 if (image_fd == -1 && !compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) {
448 PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
449 return false;
450 }
451
452 // Image data size excludes the bitmap and the header.
453 ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
454
455 // Block sources (from the image).
456 const bool is_compressed = image_storage_mode_ != ImageHeader::kStorageModeUncompressed;
457 std::vector<std::pair<uint32_t, uint32_t>> block_sources;
458 std::vector<ImageHeader::Block> blocks;
459
460 // Add a set of solid blocks such that no block is larger than the maximum size. A solid block
461 // is a block that must be decompressed all at once.
462 auto add_blocks = [&](uint32_t offset, uint32_t size) {
463 while (size != 0u) {
464 const uint32_t cur_size = std::min(size, compiler_options_.MaxImageBlockSize());
465 block_sources.emplace_back(offset, cur_size);
466 offset += cur_size;
467 size -= cur_size;
468 }
469 };
470
471 add_blocks(sizeof(ImageHeader), image_header->GetImageSize() - sizeof(ImageHeader));
472
473 // Checksum of compressed image data and header.
474 uint32_t image_checksum = adler32(0L, Z_NULL, 0);
475 image_checksum = adler32(image_checksum,
476 reinterpret_cast<const uint8_t*>(image_header),
477 sizeof(ImageHeader));
478 // Copy and compress blocks.
479 size_t out_offset = sizeof(ImageHeader);
480 for (const std::pair<uint32_t, uint32_t> block : block_sources) {
481 ArrayRef<const uint8_t> raw_image_data(image_info.image_.Begin() + block.first,
482 block.second);
483 std::vector<uint8_t> compressed_data;
484 ArrayRef<const uint8_t> image_data =
485 MaybeCompressData(raw_image_data, image_storage_mode_, &compressed_data);
486
487 if (!is_compressed) {
488 // For uncompressed, preserve alignment since the image will be directly mapped.
489 out_offset = block.first;
490 }
491
492 // Fill in the compressed location of the block.
493 blocks.emplace_back(ImageHeader::Block(
494 image_storage_mode_,
495 /*data_offset=*/ out_offset,
496 /*data_size=*/ image_data.size(),
497 /*image_offset=*/ block.first,
498 /*image_size=*/ block.second));
499
500 // Write out the image + fields + methods.
501 if (!image_file->PwriteFully(image_data.data(), image_data.size(), out_offset)) {
502 PLOG(ERROR) << "Failed to write image file data " << image_filename;
503 image_file->Erase();
504 return false;
505 }
506 out_offset += image_data.size();
507 image_checksum = adler32(image_checksum, image_data.data(), image_data.size());
508 }
509
510 // Write the block metadata directly after the image sections.
511 // Note: This is not part of the mapped image and is not preserved after decompressing, it's
512 // only used for image loading. For this reason, only write it out for compressed images.
513 if (is_compressed) {
514 // Align up since the compressed data is not necessarily aligned.
515 out_offset = RoundUp(out_offset, alignof(ImageHeader::Block));
516 CHECK(!blocks.empty());
517 const size_t blocks_bytes = blocks.size() * sizeof(blocks[0]);
518 if (!image_file->PwriteFully(&blocks[0], blocks_bytes, out_offset)) {
519 PLOG(ERROR) << "Failed to write image blocks " << image_filename;
520 image_file->Erase();
521 return false;
522 }
523 image_header->blocks_offset_ = out_offset;
524 image_header->blocks_count_ = blocks.size();
525 out_offset += blocks_bytes;
526 }
527
528 // Data size includes everything except the bitmap.
529 image_header->data_size_ = out_offset - sizeof(ImageHeader);
530
531 // Update and write the bitmap section. Note that the bitmap section is relative to the
532 // possibly compressed image.
533 ImageSection& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
534 // Align up since data size may be unaligned if the image is compressed.
535 out_offset = RoundUp(out_offset, kPageSize);
536 bitmap_section = ImageSection(out_offset, bitmap_section.Size());
537
538 if (!image_file->PwriteFully(image_info.image_bitmap_.Begin(),
539 bitmap_section.Size(),
540 bitmap_section.Offset())) {
541 PLOG(ERROR) << "Failed to write image file bitmap " << image_filename;
542 return false;
543 }
544
545 int err = image_file->Flush();
546 if (err < 0) {
547 PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
548 return false;
549 }
550
551 // Calculate the image checksum of the remaining data.
552 image_checksum = adler32(image_checksum,
553 reinterpret_cast<const uint8_t*>(image_info.image_bitmap_.Begin()),
554 bitmap_section.Size());
555 image_header->SetImageChecksum(image_checksum);
556
557 if (VLOG_IS_ON(compiler)) {
558 const size_t separately_written_section_size = bitmap_section.Size();
559 const size_t total_uncompressed_size = image_info.image_size_ +
560 separately_written_section_size;
561 const size_t total_compressed_size = out_offset + separately_written_section_size;
562
563 VLOG(compiler) << "Dex2Oat:uncompressedImageSize = " << total_uncompressed_size;
564 if (total_uncompressed_size != total_compressed_size) {
565 VLOG(compiler) << "Dex2Oat:compressedImageSize = " << total_compressed_size;
566 }
567 }
568
569 CHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength()))
570 << "Bitmap should be at the end of the file";
571
572 // Write header last in case the compiler gets killed in the middle of image writing.
573 // We do not want to have a corrupted image with a valid header.
574 // Delay the writing of the primary image header until after writing secondary images.
575 if (i == 0u) {
576 primary_image_file = std::move(image_file);
577 } else {
578 if (!image_file.WriteHeaderAndClose(image_filename, image_header)) {
579 return false;
580 }
581 // Update the primary image checksum with the secondary image checksum.
582 primary_header->SetImageChecksum(primary_header->GetImageChecksum() ^ image_checksum);
583 }
584 }
585 DCHECK(primary_image_file != nullptr);
586 if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header)) {
587 return false;
588 }
589
590 return true;
591 }
592
GetImageOffset(mirror::Object * object,size_t oat_index) const593 size_t ImageWriter::GetImageOffset(mirror::Object* object, size_t oat_index) const {
594 BinSlot bin_slot = GetImageBinSlot(object, oat_index);
595 const ImageInfo& image_info = GetImageInfo(oat_index);
596 size_t offset = image_info.GetBinSlotOffset(bin_slot.GetBin()) + bin_slot.GetOffset();
597 DCHECK_LT(offset, image_info.image_end_);
598 return offset;
599 }
600
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)601 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
602 DCHECK(object != nullptr);
603 DCHECK(!IsImageBinSlotAssigned(object));
604
605 // Before we stomp over the lock word, save the hash code for later.
606 LockWord lw(object->GetLockWord(false));
607 switch (lw.GetState()) {
608 case LockWord::kFatLocked:
609 FALLTHROUGH_INTENDED;
610 case LockWord::kThinLocked: {
611 std::ostringstream oss;
612 bool thin = (lw.GetState() == LockWord::kThinLocked);
613 oss << (thin ? "Thin" : "Fat")
614 << " locked object " << object << "(" << object->PrettyTypeOf()
615 << ") found during object copy";
616 if (thin) {
617 oss << ". Lock owner:" << lw.ThinLockOwner();
618 }
619 LOG(FATAL) << oss.str();
620 UNREACHABLE();
621 }
622 case LockWord::kUnlocked:
623 // No hash, don't need to save it.
624 break;
625 case LockWord::kHashCode:
626 DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
627 saved_hashcode_map_.insert(std::make_pair(object, lw.GetHashCode()));
628 break;
629 default:
630 LOG(FATAL) << "Unreachable.";
631 UNREACHABLE();
632 }
633 object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()),
634 /*as_volatile=*/ false);
635 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
636 DCHECK(IsImageBinSlotAssigned(object));
637 }
638
AssignImageBinSlot(mirror::Object * object,size_t oat_index)639 ImageWriter::Bin ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
640 DCHECK(object != nullptr);
641
642 // The magic happens here. We segregate objects into different bins based
643 // on how likely they are to get dirty at runtime.
644 //
645 // Likely-to-dirty objects get packed together into the same bin so that
646 // at runtime their page dirtiness ratio (how many dirty objects a page has) is
647 // maximized.
648 //
649 // This means more pages will stay either clean or shared dirty (with zygote) and
650 // the app will use less of its own (private) memory.
651 Bin bin = Bin::kRegular;
652
653 if (kBinObjects) {
654 //
655 // Changing the bin of an object is purely a memory-use tuning.
656 // It has no change on runtime correctness.
657 //
658 // Memory analysis has determined that the following types of objects get dirtied
659 // the most:
660 //
661 // * Class'es which are verified [their clinit runs only at runtime]
662 // - classes in general [because their static fields get overwritten]
663 // - initialized classes with all-final statics are unlikely to be ever dirty,
664 // so bin them separately
665 // * Art Methods that are:
666 // - native [their native entry point is not looked up until runtime]
667 // - have declaring classes that aren't initialized
668 // [their interpreter/quick entry points are trampolines until the class
669 // becomes initialized]
670 //
671 // We also assume the following objects get dirtied either never or extremely rarely:
672 // * Strings (they are immutable)
673 // * Art methods that aren't native and have initialized declared classes
674 //
675 // We assume that "regular" bin objects are highly unlikely to become dirtied,
676 // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
677 //
678 if (object->IsClass()) {
679 bin = Bin::kClassVerified;
680 ObjPtr<mirror::Class> klass = object->AsClass();
681
682 // Move known dirty objects into their own sections. This includes:
683 // - classes with dirty static fields.
684 auto is_dirty = [&](ObjPtr<mirror::Class> k) REQUIRES_SHARED(Locks::mutator_lock_) {
685 std::string temp;
686 std::string_view descriptor = k->GetDescriptor(&temp);
687 return dirty_image_objects_->find(descriptor) != dirty_image_objects_->end();
688 };
689 if (dirty_image_objects_ != nullptr && is_dirty(klass)) {
690 bin = Bin::kKnownDirty;
691 } else if (klass->GetStatus() == ClassStatus::kVisiblyInitialized) {
692 bin = Bin::kClassInitialized;
693
694 // If the class's static fields are all final, put it into a separate bin
695 // since it's very likely it will stay clean.
696 uint32_t num_static_fields = klass->NumStaticFields();
697 if (num_static_fields == 0) {
698 bin = Bin::kClassInitializedFinalStatics;
699 } else {
700 // Maybe all the statics are final?
701 bool all_final = true;
702 for (uint32_t i = 0; i < num_static_fields; ++i) {
703 ArtField* field = klass->GetStaticField(i);
704 if (!field->IsFinal()) {
705 all_final = false;
706 break;
707 }
708 }
709
710 if (all_final) {
711 bin = Bin::kClassInitializedFinalStatics;
712 }
713 }
714 }
715 } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
716 bin = Bin::kString; // Strings are almost always immutable (except for object header).
717 } else if (object->GetClass<kVerifyNone>() == GetClassRoot<mirror::Object>()) {
718 // Instance of java lang object, probably a lock object. This means it will be dirty when we
719 // synchronize on it.
720 bin = Bin::kMiscDirty;
721 } else if (object->IsDexCache()) {
722 // Dex file field becomes dirty when the image is loaded.
723 bin = Bin::kMiscDirty;
724 }
725 // else bin = kBinRegular
726 }
727
728 AssignImageBinSlot(object, oat_index, bin);
729 return bin;
730 }
731
AssignImageBinSlot(mirror::Object * object,size_t oat_index,Bin bin)732 void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index, Bin bin) {
733 DCHECK(object != nullptr);
734 size_t object_size = object->SizeOf();
735
736 // Assign the oat index too.
737 if (IsMultiImage()) {
738 DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
739 oat_index_map_.insert(std::make_pair(object, oat_index));
740 } else {
741 DCHECK(oat_index_map_.empty());
742 }
743
744 ImageInfo& image_info = GetImageInfo(oat_index);
745
746 size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment
747 // How many bytes the current bin is at (aligned).
748 size_t current_offset = image_info.GetBinSlotSize(bin);
749 // Move the current bin size up to accommodate the object we just assigned a bin slot.
750 image_info.IncrementBinSlotSize(bin, offset_delta);
751
752 BinSlot new_bin_slot(bin, current_offset);
753 SetImageBinSlot(object, new_bin_slot);
754
755 image_info.IncrementBinSlotCount(bin, 1u);
756
757 // Grow the image closer to the end by the object we just assigned.
758 image_info.image_end_ += offset_delta;
759 }
760
WillMethodBeDirty(ArtMethod * m) const761 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
762 if (m->IsNative()) {
763 return true;
764 }
765 ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass();
766 // Initialized is highly unlikely to dirty since there's no entry points to mutate.
767 return declaring_class == nullptr ||
768 declaring_class->GetStatus() != ClassStatus::kVisiblyInitialized;
769 }
770
IsImageBinSlotAssigned(mirror::Object * object) const771 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
772 DCHECK(object != nullptr);
773
774 // We always stash the bin slot into a lockword, in the 'forwarding address' state.
775 // If it's in some other state, then we haven't yet assigned an image bin slot.
776 if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
777 return false;
778 } else if (kIsDebugBuild) {
779 LockWord lock_word = object->GetLockWord(false);
780 size_t offset = lock_word.ForwardingAddress();
781 BinSlot bin_slot(offset);
782 size_t oat_index = GetOatIndex(object);
783 const ImageInfo& image_info = GetImageInfo(oat_index);
784 DCHECK_LT(bin_slot.GetOffset(), image_info.GetBinSlotSize(bin_slot.GetBin()))
785 << "bin slot offset should not exceed the size of that bin";
786 }
787 return true;
788 }
789
GetImageBinSlot(mirror::Object * object,size_t oat_index) const790 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object, size_t oat_index) const {
791 DCHECK(object != nullptr);
792 DCHECK(IsImageBinSlotAssigned(object));
793
794 LockWord lock_word = object->GetLockWord(false);
795 size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t
796 DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
797
798 BinSlot bin_slot(static_cast<uint32_t>(offset));
799 DCHECK_LT(bin_slot.GetOffset(), GetImageInfo(oat_index).GetBinSlotSize(bin_slot.GetBin()));
800
801 return bin_slot;
802 }
803
UpdateImageBinSlotOffset(mirror::Object * object,size_t oat_index,size_t new_offset)804 void ImageWriter::UpdateImageBinSlotOffset(mirror::Object* object,
805 size_t oat_index,
806 size_t new_offset) {
807 BinSlot old_bin_slot = GetImageBinSlot(object, oat_index);
808 DCHECK_LT(new_offset, GetImageInfo(oat_index).GetBinSlotSize(old_bin_slot.GetBin()));
809 BinSlot new_bin_slot(old_bin_slot.GetBin(), new_offset);
810 object->SetLockWord(LockWord::FromForwardingAddress(new_bin_slot.Uint32Value()),
811 /*as_volatile=*/ false);
812 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
813 DCHECK(IsImageBinSlotAssigned(object));
814 }
815
AllocMemory()816 bool ImageWriter::AllocMemory() {
817 for (ImageInfo& image_info : image_infos_) {
818 const size_t length = RoundUp(image_info.CreateImageSections().first, kPageSize);
819
820 std::string error_msg;
821 image_info.image_ = MemMap::MapAnonymous("image writer image",
822 length,
823 PROT_READ | PROT_WRITE,
824 /*low_4gb=*/ false,
825 &error_msg);
826 if (UNLIKELY(!image_info.image_.IsValid())) {
827 LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
828 return false;
829 }
830
831 // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
832 CHECK_LE(image_info.image_end_, length);
833 image_info.image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create(
834 "image bitmap", image_info.image_.Begin(), RoundUp(image_info.image_end_, kPageSize));
835 if (!image_info.image_bitmap_.IsValid()) {
836 LOG(ERROR) << "Failed to allocate memory for image bitmap";
837 return false;
838 }
839 }
840 return true;
841 }
842
IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)843 static bool IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)
844 REQUIRES_SHARED(Locks::mutator_lock_) {
845 return klass->GetClassLoader() == nullptr;
846 }
847
IsBootClassLoaderNonImageClass(mirror::Class * klass)848 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
849 return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
850 }
851
852 // This visitor follows the references of an instance, recursively then prune this class
853 // if a type of any field is pruned.
854 class ImageWriter::PruneObjectReferenceVisitor {
855 public:
PruneObjectReferenceVisitor(ImageWriter * image_writer,bool * early_exit,HashSet<mirror::Object * > * visited,bool * result)856 PruneObjectReferenceVisitor(ImageWriter* image_writer,
857 bool* early_exit,
858 HashSet<mirror::Object*>* visited,
859 bool* result)
860 : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
861
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const862 ALWAYS_INLINE void VisitRootIfNonNull(
863 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
864 REQUIRES_SHARED(Locks::mutator_lock_) { }
865
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const866 ALWAYS_INLINE void VisitRoot(
867 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
868 REQUIRES_SHARED(Locks::mutator_lock_) { }
869
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const870 ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
871 MemberOffset offset,
872 bool is_static ATTRIBUTE_UNUSED) const
873 REQUIRES_SHARED(Locks::mutator_lock_) {
874 mirror::Object* ref =
875 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
876 if (ref == nullptr || visited_->find(ref) != visited_->end()) {
877 return;
878 }
879
880 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
881 Runtime::Current()->GetClassLinker()->GetClassRoots();
882 ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
883 if (klass == GetClassRoot<mirror::Method>(class_roots) ||
884 klass == GetClassRoot<mirror::Constructor>(class_roots)) {
885 // Prune all classes using reflection because the content they held will not be fixup.
886 *result_ = true;
887 }
888
889 if (ref->IsClass()) {
890 *result_ = *result_ ||
891 image_writer_->PruneImageClassInternal(ref->AsClass(), early_exit_, visited_);
892 } else {
893 // Record the object visited in case of circular reference.
894 visited_->insert(ref);
895 *result_ = *result_ ||
896 image_writer_->PruneImageClassInternal(klass, early_exit_, visited_);
897 ref->VisitReferences(*this, *this);
898 // Clean up before exit for next call of this function.
899 auto it = visited_->find(ref);
900 DCHECK(it != visited_->end());
901 visited_->erase(it);
902 }
903 }
904
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const905 ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
906 ObjPtr<mirror::Reference> ref) const
907 REQUIRES_SHARED(Locks::mutator_lock_) {
908 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
909 }
910
911 private:
912 ImageWriter* image_writer_;
913 bool* early_exit_;
914 HashSet<mirror::Object*>* visited_;
915 bool* const result_;
916 };
917
918
PruneImageClass(ObjPtr<mirror::Class> klass)919 bool ImageWriter::PruneImageClass(ObjPtr<mirror::Class> klass) {
920 bool early_exit = false;
921 HashSet<mirror::Object*> visited;
922 return PruneImageClassInternal(klass, &early_exit, &visited);
923 }
924
PruneImageClassInternal(ObjPtr<mirror::Class> klass,bool * early_exit,HashSet<mirror::Object * > * visited)925 bool ImageWriter::PruneImageClassInternal(
926 ObjPtr<mirror::Class> klass,
927 bool* early_exit,
928 HashSet<mirror::Object*>* visited) {
929 DCHECK(early_exit != nullptr);
930 DCHECK(visited != nullptr);
931 DCHECK(compiler_options_.IsAppImage() || compiler_options_.IsBootImageExtension());
932 if (klass == nullptr || IsInBootImage(klass.Ptr())) {
933 return false;
934 }
935 auto found = prune_class_memo_.find(klass.Ptr());
936 if (found != prune_class_memo_.end()) {
937 // Already computed, return the found value.
938 return found->second;
939 }
940 // Circular dependencies, return false but do not store the result in the memoization table.
941 if (visited->find(klass.Ptr()) != visited->end()) {
942 *early_exit = true;
943 return false;
944 }
945 visited->insert(klass.Ptr());
946 bool result = IsBootClassLoaderClass(klass);
947 std::string temp;
948 // Prune if not an image class, this handles any broken sets of image classes such as having a
949 // class in the set but not it's superclass.
950 result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp));
951 bool my_early_exit = false; // Only for ourselves, ignore caller.
952 // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
953 // app image.
954 if (klass->IsErroneous()) {
955 result = true;
956 } else {
957 ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
958 CHECK(ext.IsNull() || ext->GetVerifyError() == nullptr) << klass->PrettyClass();
959 }
960 if (!result) {
961 // Check interfaces since these wont be visited through VisitReferences.)
962 ObjPtr<mirror::IfTable> if_table = klass->GetIfTable();
963 for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
964 result = result || PruneImageClassInternal(if_table->GetInterface(i),
965 &my_early_exit,
966 visited);
967 }
968 }
969 if (klass->IsObjectArrayClass()) {
970 result = result || PruneImageClassInternal(klass->GetComponentType(),
971 &my_early_exit,
972 visited);
973 }
974 // Check static fields and their classes.
975 if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
976 size_t num_static_fields = klass->NumReferenceStaticFields();
977 // Presumably GC can happen when we are cross compiling, it should not cause performance
978 // problems to do pointer size logic.
979 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
980 Runtime::Current()->GetClassLinker()->GetImagePointerSize());
981 for (size_t i = 0u; i < num_static_fields; ++i) {
982 mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
983 if (ref != nullptr) {
984 if (ref->IsClass()) {
985 result = result || PruneImageClassInternal(ref->AsClass(), &my_early_exit, visited);
986 } else {
987 mirror::Class* type = ref->GetClass();
988 result = result || PruneImageClassInternal(type, &my_early_exit, visited);
989 if (!result) {
990 // For non-class case, also go through all the types mentioned by it's fields'
991 // references recursively to decide whether to keep this class.
992 bool tmp = false;
993 PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
994 ref->VisitReferences(visitor, visitor);
995 result = result || tmp;
996 }
997 }
998 }
999 field_offset = MemberOffset(field_offset.Uint32Value() +
1000 sizeof(mirror::HeapReference<mirror::Object>));
1001 }
1002 }
1003 result = result || PruneImageClassInternal(klass->GetSuperClass(), &my_early_exit, visited);
1004 // Remove the class if the dex file is not in the set of dex files. This happens for classes that
1005 // are from uses-library if there is no profile. b/30688277
1006 ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
1007 if (dex_cache != nullptr) {
1008 result = result ||
1009 dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
1010 }
1011 // Erase the element we stored earlier since we are exiting the function.
1012 auto it = visited->find(klass.Ptr());
1013 DCHECK(it != visited->end());
1014 visited->erase(it);
1015 // Only store result if it is true or none of the calls early exited due to circular
1016 // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
1017 // a child call and we can remember the result.
1018 if (result == true || !my_early_exit || visited->empty()) {
1019 prune_class_memo_.Overwrite(klass.Ptr(), result);
1020 }
1021 *early_exit |= my_early_exit;
1022 return result;
1023 }
1024
KeepClass(ObjPtr<mirror::Class> klass)1025 bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
1026 if (klass == nullptr) {
1027 return false;
1028 }
1029 if (IsInBootImage(klass.Ptr())) {
1030 // Already in boot image, return true.
1031 DCHECK(!compiler_options_.IsBootImage());
1032 return true;
1033 }
1034 std::string temp;
1035 if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) {
1036 return false;
1037 }
1038 if (compiler_options_.IsAppImage()) {
1039 // For app images, we need to prune classes that
1040 // are defined by the boot class path we're compiling against but not in
1041 // the boot image spaces since these may have already been loaded at
1042 // run time when this image is loaded. Keep classes in the boot image
1043 // spaces we're compiling against since we don't want to re-resolve these.
1044 return !PruneImageClass(klass);
1045 }
1046 return true;
1047 }
1048
1049 class ImageWriter::PruneClassesVisitor : public ClassVisitor {
1050 public:
PruneClassesVisitor(ImageWriter * image_writer,ObjPtr<mirror::ClassLoader> class_loader)1051 PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
1052 : image_writer_(image_writer),
1053 class_loader_(class_loader),
1054 classes_to_prune_(),
1055 defined_class_count_(0u) { }
1056
operator ()(ObjPtr<mirror::Class> klass)1057 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
1058 if (!image_writer_->KeepClass(klass.Ptr())) {
1059 classes_to_prune_.insert(klass.Ptr());
1060 if (klass->GetClassLoader() == class_loader_) {
1061 ++defined_class_count_;
1062 }
1063 }
1064 return true;
1065 }
1066
Prune()1067 size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
1068 ClassTable* class_table =
1069 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
1070 for (mirror::Class* klass : classes_to_prune_) {
1071 std::string storage;
1072 const char* descriptor = klass->GetDescriptor(&storage);
1073 bool result = class_table->Remove(descriptor);
1074 DCHECK(result);
1075 DCHECK(!class_table->Remove(descriptor)) << descriptor;
1076 }
1077 return defined_class_count_;
1078 }
1079
1080 private:
1081 ImageWriter* const image_writer_;
1082 const ObjPtr<mirror::ClassLoader> class_loader_;
1083 HashSet<mirror::Class*> classes_to_prune_;
1084 size_t defined_class_count_;
1085 };
1086
1087 class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
1088 public:
PruneClassLoaderClassesVisitor(ImageWriter * image_writer)1089 explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
1090 : image_writer_(image_writer), removed_class_count_(0) {}
1091
Visit(ObjPtr<mirror::ClassLoader> class_loader)1092 void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
1093 REQUIRES_SHARED(Locks::mutator_lock_) {
1094 PruneClassesVisitor classes_visitor(image_writer_, class_loader);
1095 ClassTable* class_table =
1096 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
1097 class_table->Visit(classes_visitor);
1098 removed_class_count_ += classes_visitor.Prune();
1099 }
1100
GetRemovedClassCount() const1101 size_t GetRemovedClassCount() const {
1102 return removed_class_count_;
1103 }
1104
1105 private:
1106 ImageWriter* const image_writer_;
1107 size_t removed_class_count_;
1108 };
1109
VisitClassLoaders(ClassLoaderVisitor * visitor)1110 void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
1111 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1112 visitor->Visit(nullptr); // Visit boot class loader.
1113 Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
1114 }
1115
ClearDexCache(ObjPtr<mirror::DexCache> dex_cache)1116 void ImageWriter::ClearDexCache(ObjPtr<mirror::DexCache> dex_cache) {
1117 // Clear methods.
1118 mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
1119 for (size_t slot_idx = 0, num = dex_cache->NumResolvedMethods(); slot_idx != num; ++slot_idx) {
1120 mirror::MethodDexCachePair invalid(nullptr,
1121 mirror::MethodDexCachePair::InvalidIndexForSlot(slot_idx));
1122 mirror::DexCache::SetNativePair(resolved_methods, slot_idx, invalid);
1123 }
1124 // Clear fields.
1125 mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields();
1126 for (size_t slot_idx = 0, num = dex_cache->NumResolvedFields(); slot_idx != num; ++slot_idx) {
1127 mirror::FieldDexCachePair invalid(nullptr,
1128 mirror::FieldDexCachePair::InvalidIndexForSlot(slot_idx));
1129 mirror::DexCache::SetNativePair(resolved_fields, slot_idx, invalid);
1130 }
1131 // Clear types.
1132 mirror::TypeDexCacheType* resolved_types = dex_cache->GetResolvedTypes();
1133 for (size_t slot_idx = 0, num = dex_cache->NumResolvedTypes(); slot_idx != num; ++slot_idx) {
1134 mirror::TypeDexCachePair invalid(nullptr,
1135 mirror::TypeDexCachePair::InvalidIndexForSlot(slot_idx));
1136 resolved_types[slot_idx].store(invalid, std::memory_order_relaxed);
1137 }
1138 // Clear strings.
1139 mirror::StringDexCacheType* resolved_strings = dex_cache->GetStrings();
1140 for (size_t slot_idx = 0, num = dex_cache->NumStrings(); slot_idx != num; ++slot_idx) {
1141 mirror::StringDexCachePair invalid(nullptr,
1142 mirror::StringDexCachePair::InvalidIndexForSlot(slot_idx));
1143 resolved_strings[slot_idx].store(invalid, std::memory_order_relaxed);
1144 }
1145 // Clear method types.
1146 mirror::MethodTypeDexCacheType* resolved_method_types = dex_cache->GetResolvedMethodTypes();
1147 size_t num_resolved_method_types = dex_cache->NumResolvedMethodTypes();
1148 for (size_t slot_idx = 0; slot_idx != num_resolved_method_types; ++slot_idx) {
1149 mirror::MethodTypeDexCachePair invalid(
1150 nullptr, mirror::MethodTypeDexCachePair::InvalidIndexForSlot(slot_idx));
1151 resolved_method_types[slot_idx].store(invalid, std::memory_order_relaxed);
1152 }
1153 // Clear call sites.
1154 std::fill_n(dex_cache->GetResolvedCallSites(),
1155 dex_cache->NumResolvedCallSites(),
1156 GcRoot<mirror::CallSite>(nullptr));
1157 }
1158
PruneNonImageClasses()1159 void ImageWriter::PruneNonImageClasses() {
1160 Runtime* runtime = Runtime::Current();
1161 ClassLinker* class_linker = runtime->GetClassLinker();
1162 Thread* self = Thread::Current();
1163 ScopedAssertNoThreadSuspension sa(__FUNCTION__);
1164
1165 // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
1166 // sure the other ones don't get unloaded before the OatWriter runs.
1167 class_linker->VisitClassTables(
1168 [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
1169 table->RemoveStrongRoots(
1170 [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
1171 ObjPtr<mirror::Object> obj = root.Read();
1172 if (obj->IsDexCache()) {
1173 // Return true if the dex file is not one of the ones in the map.
1174 return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
1175 dex_file_oat_index_map_.end();
1176 }
1177 // Return false to avoid removing.
1178 return false;
1179 });
1180 });
1181
1182 // Remove the undesired classes from the class roots.
1183 {
1184 PruneClassLoaderClassesVisitor class_loader_visitor(this);
1185 VisitClassLoaders(&class_loader_visitor);
1186 VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
1187 }
1188
1189 // Completely clear DexCaches.
1190 std::vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
1191 for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
1192 ClearDexCache(dex_cache);
1193 }
1194
1195 // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
1196 class_linker->DropFindArrayClassCache();
1197
1198 // Clear to save RAM.
1199 prune_class_memo_.clear();
1200 }
1201
FindDexCaches(Thread * self)1202 std::vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) {
1203 std::vector<ObjPtr<mirror::DexCache>> dex_caches;
1204 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1205 ReaderMutexLock mu2(self, *Locks::dex_lock_);
1206 dex_caches.reserve(class_linker->GetDexCachesData().size());
1207 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1208 if (self->IsJWeakCleared(data.weak_root)) {
1209 continue;
1210 }
1211 dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
1212 }
1213 return dex_caches;
1214 }
1215
CheckNonImageClassesRemoved()1216 void ImageWriter::CheckNonImageClassesRemoved() {
1217 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1218 if (obj->IsClass() && !IsInBootImage(obj)) {
1219 ObjPtr<Class> klass = obj->AsClass();
1220 if (!KeepClass(klass)) {
1221 DumpImageClasses();
1222 CHECK(KeepClass(klass))
1223 << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
1224 }
1225 }
1226 };
1227 gc::Heap* heap = Runtime::Current()->GetHeap();
1228 heap->VisitObjects(visitor);
1229 }
1230
DumpImageClasses()1231 void ImageWriter::DumpImageClasses() {
1232 for (const std::string& image_class : compiler_options_.GetImageClasses()) {
1233 LOG(INFO) << " " << image_class;
1234 }
1235 }
1236
CollectDexCaches(Thread * self,size_t oat_index) const1237 ObjPtr<mirror::ObjectArray<mirror::Object>> ImageWriter::CollectDexCaches(Thread* self,
1238 size_t oat_index) const {
1239 HashSet<const DexFile*> image_dex_files;
1240 for (auto& pair : dex_file_oat_index_map_) {
1241 const DexFile* image_dex_file = pair.first;
1242 size_t image_oat_index = pair.second;
1243 if (oat_index == image_oat_index) {
1244 image_dex_files.insert(image_dex_file);
1245 }
1246 }
1247
1248 // build an Object[] of all the DexCaches used in the source_space_.
1249 // Since we can't hold the dex lock when allocating the dex_caches
1250 // ObjectArray, we lock the dex lock twice, first to get the number
1251 // of dex caches first and then lock it again to copy the dex
1252 // caches. We check that the number of dex caches does not change.
1253 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1254 size_t dex_cache_count = 0;
1255 {
1256 ReaderMutexLock mu(self, *Locks::dex_lock_);
1257 // Count number of dex caches not in the boot image.
1258 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1259 ObjPtr<mirror::DexCache> dex_cache =
1260 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1261 if (dex_cache == nullptr) {
1262 continue;
1263 }
1264 const DexFile* dex_file = dex_cache->GetDexFile();
1265 if (IsImageDexCache(dex_cache)) {
1266 dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1267 }
1268 }
1269 }
1270 ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc(
1271 self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_count);
1272 CHECK(dex_caches != nullptr) << "Failed to allocate a dex cache array.";
1273 {
1274 ReaderMutexLock mu(self, *Locks::dex_lock_);
1275 size_t non_image_dex_caches = 0;
1276 // Re-count number of non image dex caches.
1277 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1278 ObjPtr<mirror::DexCache> dex_cache =
1279 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1280 if (dex_cache == nullptr) {
1281 continue;
1282 }
1283 const DexFile* dex_file = dex_cache->GetDexFile();
1284 if (IsImageDexCache(dex_cache)) {
1285 non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1286 }
1287 }
1288 CHECK_EQ(dex_cache_count, non_image_dex_caches)
1289 << "The number of non-image dex caches changed.";
1290 size_t i = 0;
1291 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1292 ObjPtr<mirror::DexCache> dex_cache =
1293 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1294 if (dex_cache == nullptr) {
1295 continue;
1296 }
1297 const DexFile* dex_file = dex_cache->GetDexFile();
1298 if (IsImageDexCache(dex_cache) &&
1299 image_dex_files.find(dex_file) != image_dex_files.end()) {
1300 dex_caches->Set<false>(i, dex_cache.Ptr());
1301 ++i;
1302 }
1303 }
1304 }
1305 return dex_caches;
1306 }
1307
CreateImageRoots(size_t oat_index,Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects) const1308 ObjPtr<ObjectArray<Object>> ImageWriter::CreateImageRoots(
1309 size_t oat_index,
1310 Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects) const {
1311 Runtime* runtime = Runtime::Current();
1312 ClassLinker* class_linker = runtime->GetClassLinker();
1313 Thread* self = Thread::Current();
1314 StackHandleScope<2> hs(self);
1315
1316 Handle<ObjectArray<Object>> dex_caches(hs.NewHandle(CollectDexCaches(self, oat_index)));
1317
1318 // build an Object[] of the roots needed to restore the runtime
1319 int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage());
1320 Handle<ObjectArray<Object>> image_roots(hs.NewHandle(ObjectArray<Object>::Alloc(
1321 self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size)));
1322 image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
1323 image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1324 if (!compiler_options_.IsAppImage()) {
1325 DCHECK(boot_image_live_objects != nullptr);
1326 image_roots->Set<false>(ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get());
1327 } else {
1328 DCHECK(boot_image_live_objects == nullptr);
1329 image_roots->Set<false>(ImageHeader::kAppImageClassLoader, GetAppClassLoader());
1330 }
1331 for (int32_t i = 0; i != image_roots_size; ++i) {
1332 CHECK(image_roots->Get(i) != nullptr);
1333 }
1334 return image_roots.Get();
1335 }
1336
RecordNativeRelocations(ObjPtr<mirror::Class> klass,size_t oat_index)1337 void ImageWriter::RecordNativeRelocations(ObjPtr<mirror::Class> klass, size_t oat_index) {
1338 // Visit and assign offsets for fields and field arrays.
1339 DCHECK_EQ(oat_index, GetOatIndexForClass(klass));
1340 DCHECK(!klass->IsErroneous()) << klass->GetStatus();
1341 if (compiler_options_.IsAppImage()) {
1342 // Extra consistency check: no boot loader classes should be left!
1343 CHECK(!IsBootClassLoaderClass(klass)) << klass->PrettyClass();
1344 }
1345 LengthPrefixedArray<ArtField>* fields[] = {
1346 klass->GetSFieldsPtr(), klass->GetIFieldsPtr(),
1347 };
1348 ImageInfo& image_info = GetImageInfo(oat_index);
1349 for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1350 // Total array length including header.
1351 if (cur_fields != nullptr) {
1352 // Forward the entire array at once.
1353 size_t offset = image_info.GetBinSlotSize(Bin::kArtField);
1354 DCHECK(!IsInBootImage(cur_fields));
1355 bool inserted =
1356 native_object_relocations_.insert(std::make_pair(
1357 cur_fields,
1358 NativeObjectRelocation {
1359 oat_index, offset, NativeObjectRelocationType::kArtFieldArray
1360 })).second;
1361 CHECK(inserted) << "Field array " << cur_fields << " already forwarded";
1362 const size_t size = LengthPrefixedArray<ArtField>::ComputeSize(cur_fields->size());
1363 offset += size;
1364 image_info.IncrementBinSlotSize(Bin::kArtField, size);
1365 DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField));
1366 }
1367 }
1368 // Visit and assign offsets for methods.
1369 size_t num_methods = klass->NumMethods();
1370 if (num_methods != 0) {
1371 bool any_dirty = false;
1372 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1373 if (WillMethodBeDirty(&m)) {
1374 any_dirty = true;
1375 break;
1376 }
1377 }
1378 NativeObjectRelocationType type = any_dirty
1379 ? NativeObjectRelocationType::kArtMethodDirty
1380 : NativeObjectRelocationType::kArtMethodClean;
1381 Bin bin_type = BinTypeForNativeRelocationType(type);
1382 // Forward the entire array at once, but header first.
1383 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1384 const size_t method_size = ArtMethod::Size(target_ptr_size_);
1385 const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1386 method_size,
1387 method_alignment);
1388 LengthPrefixedArray<ArtMethod>* array = klass->GetMethodsPtr();
1389 size_t offset = image_info.GetBinSlotSize(bin_type);
1390 DCHECK(!IsInBootImage(array));
1391 bool inserted =
1392 native_object_relocations_.insert(std::make_pair(
1393 array,
1394 NativeObjectRelocation {
1395 oat_index,
1396 offset,
1397 any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty
1398 : NativeObjectRelocationType::kArtMethodArrayClean
1399 })).second;
1400 CHECK(inserted) << "Method array " << array << " already forwarded";
1401 image_info.IncrementBinSlotSize(bin_type, header_size);
1402 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1403 AssignMethodOffset(&m, type, oat_index);
1404 }
1405 (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1406 }
1407 // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1408 // live.
1409 if (klass->ShouldHaveImt()) {
1410 ImTable* imt = klass->GetImt(target_ptr_size_);
1411 if (TryAssignImTableOffset(imt, oat_index)) {
1412 // Since imt's can be shared only do this the first time to not double count imt method
1413 // fixups.
1414 for (size_t i = 0; i < ImTable::kSize; ++i) {
1415 ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
1416 DCHECK(imt_method != nullptr);
1417 if (imt_method->IsRuntimeMethod() &&
1418 !IsInBootImage(imt_method) &&
1419 !NativeRelocationAssigned(imt_method)) {
1420 AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index);
1421 }
1422 }
1423 }
1424 }
1425 }
1426
NativeRelocationAssigned(void * ptr) const1427 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1428 return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1429 }
1430
TryAssignImTableOffset(ImTable * imt,size_t oat_index)1431 bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
1432 // No offset, or already assigned.
1433 if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
1434 return false;
1435 }
1436 // If the method is a conflict method we also want to assign the conflict table offset.
1437 ImageInfo& image_info = GetImageInfo(oat_index);
1438 const size_t size = ImTable::SizeInBytes(target_ptr_size_);
1439 native_object_relocations_.insert(std::make_pair(
1440 imt,
1441 NativeObjectRelocation {
1442 oat_index,
1443 image_info.GetBinSlotSize(Bin::kImTable),
1444 NativeObjectRelocationType::kIMTable
1445 }));
1446 image_info.IncrementBinSlotSize(Bin::kImTable, size);
1447 return true;
1448 }
1449
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)1450 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1451 // No offset, or already assigned.
1452 if (table == nullptr || NativeRelocationAssigned(table)) {
1453 return;
1454 }
1455 CHECK(!IsInBootImage(table));
1456 // If the method is a conflict method we also want to assign the conflict table offset.
1457 ImageInfo& image_info = GetImageInfo(oat_index);
1458 const size_t size = table->ComputeSize(target_ptr_size_);
1459 native_object_relocations_.insert(std::make_pair(
1460 table,
1461 NativeObjectRelocation {
1462 oat_index,
1463 image_info.GetBinSlotSize(Bin::kIMTConflictTable),
1464 NativeObjectRelocationType::kIMTConflictTable
1465 }));
1466 image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size);
1467 }
1468
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)1469 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1470 NativeObjectRelocationType type,
1471 size_t oat_index) {
1472 DCHECK(!IsInBootImage(method));
1473 CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1474 << ArtMethod::PrettyMethod(method);
1475 if (method->IsRuntimeMethod()) {
1476 TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1477 }
1478 ImageInfo& image_info = GetImageInfo(oat_index);
1479 Bin bin_type = BinTypeForNativeRelocationType(type);
1480 size_t offset = image_info.GetBinSlotSize(bin_type);
1481 native_object_relocations_.insert(
1482 std::make_pair(method, NativeObjectRelocation { oat_index, offset, type }));
1483 image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_));
1484 }
1485
1486 class ImageWriter::LayoutHelper {
1487 public:
LayoutHelper(ImageWriter * image_writer)1488 explicit LayoutHelper(ImageWriter* image_writer)
1489 : image_writer_(image_writer) {
1490 bin_objects_.resize(image_writer_->image_infos_.size());
1491 for (auto& inner : bin_objects_) {
1492 inner.resize(enum_cast<size_t>(Bin::kMirrorCount));
1493 }
1494 }
1495
1496 void ProcessDexFileObjects(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1497 void ProcessRoots(VariableSizedHandleScope* handles) REQUIRES_SHARED(Locks::mutator_lock_);
1498 void FinalizeInternTables() REQUIRES_SHARED(Locks::mutator_lock_);
1499
1500 void VerifyImageBinSlotsAssigned() REQUIRES_SHARED(Locks::mutator_lock_);
1501
1502 void FinalizeBinSlotOffsets() REQUIRES_SHARED(Locks::mutator_lock_);
1503
1504 /*
1505 * Collects the string reference info necessary for loading app images.
1506 *
1507 * Because AppImages may contain interned strings that must be deduplicated
1508 * with previously interned strings when loading the app image, we need to
1509 * visit references to these strings and update them to point to the correct
1510 * string. To speed up the visiting of references at load time we include
1511 * a list of offsets to string references in the AppImage.
1512 */
1513 void CollectStringReferenceInfo() REQUIRES_SHARED(Locks::mutator_lock_);
1514
1515 private:
1516 class CollectClassesVisitor;
1517 class CollectRootsVisitor;
1518 class CollectStringReferenceVisitor;
1519 class VisitReferencesVisitor;
1520
1521 void ProcessInterns(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1522 void ProcessWorkQueue() REQUIRES_SHARED(Locks::mutator_lock_);
1523
1524 using WorkQueue = std::deque<std::pair<ObjPtr<mirror::Object>, size_t>>;
1525
1526 void VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index)
1527 REQUIRES_SHARED(Locks::mutator_lock_);
1528 bool TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index)
1529 REQUIRES_SHARED(Locks::mutator_lock_);
1530
1531 ImageWriter* const image_writer_;
1532
1533 // Work list of <object, oat_index> for objects. Everything in the queue must already be
1534 // assigned a bin slot.
1535 WorkQueue work_queue_;
1536
1537 // Objects for individual bins. Indexed by `oat_index` and `bin`.
1538 // Cannot use ObjPtr<> because of invalidation in Heap::VisitObjects().
1539 dchecked_vector<dchecked_vector<dchecked_vector<mirror::Object*>>> bin_objects_;
1540
1541 // Interns that do not have a corresponding StringId in any of the input dex files.
1542 // These shall be assigned to individual images based on the `oat_index` that we
1543 // see as we visit them during the work queue processing.
1544 dchecked_vector<mirror::String*> non_dex_file_interns_;
1545 };
1546
1547 class ImageWriter::LayoutHelper::CollectClassesVisitor : public ClassVisitor {
1548 public:
CollectClassesVisitor(ImageWriter * image_writer)1549 explicit CollectClassesVisitor(ImageWriter* image_writer)
1550 : image_writer_(image_writer),
1551 dex_files_(image_writer_->compiler_options_.GetDexFilesForOatFile()) {}
1552
operator ()(ObjPtr<mirror::Class> klass)1553 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
1554 if (!image_writer_->IsInBootImage(klass.Ptr())) {
1555 ObjPtr<mirror::Class> component_type = klass;
1556 size_t dimension = 0u;
1557 while (component_type->IsArrayClass()) {
1558 ++dimension;
1559 component_type = component_type->GetComponentType();
1560 }
1561 DCHECK(!component_type->IsProxyClass());
1562 size_t dex_file_index;
1563 uint32_t class_def_index = 0u;
1564 if (UNLIKELY(component_type->IsPrimitive())) {
1565 DCHECK(image_writer_->compiler_options_.IsBootImage());
1566 dex_file_index = 0u;
1567 class_def_index = enum_cast<uint32_t>(component_type->GetPrimitiveType());
1568 } else {
1569 auto it = std::find(dex_files_.begin(), dex_files_.end(), &component_type->GetDexFile());
1570 DCHECK(it != dex_files_.end()) << klass->PrettyDescriptor();
1571 dex_file_index = std::distance(dex_files_.begin(), it) + 1u; // 0 is for primitive types.
1572 class_def_index = component_type->GetDexClassDefIndex();
1573 }
1574 klasses_.push_back({klass, dex_file_index, class_def_index, dimension});
1575 }
1576 return true;
1577 }
1578
ProcessCollectedClasses(Thread * self)1579 WorkQueue ProcessCollectedClasses(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
1580 std::sort(klasses_.begin(), klasses_.end());
1581
1582 ImageWriter* image_writer = image_writer_;
1583 WorkQueue work_queue;
1584 size_t last_dex_file_index = static_cast<size_t>(-1);
1585 size_t last_oat_index = static_cast<size_t>(-1);
1586 for (const ClassEntry& entry : klasses_) {
1587 if (last_dex_file_index != entry.dex_file_index) {
1588 if (UNLIKELY(entry.dex_file_index == 0u)) {
1589 last_oat_index = GetDefaultOatIndex(); // Primitive type.
1590 } else {
1591 uint32_t dex_file_index = entry.dex_file_index - 1u; // 0 is for primitive types.
1592 last_oat_index = image_writer->GetOatIndexForDexFile(dex_files_[dex_file_index]);
1593 }
1594 last_dex_file_index = entry.dex_file_index;
1595 }
1596 // Count the number of classes for class tables.
1597 image_writer->image_infos_[last_oat_index].class_table_size_ += 1u;
1598 work_queue.emplace_back(entry.klass, last_oat_index);
1599 }
1600 klasses_.clear();
1601
1602 // Prepare image class tables.
1603 std::vector<mirror::Class*> boot_image_classes;
1604 if (image_writer->compiler_options_.IsAppImage()) {
1605 DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1606 ImageInfo& image_info = image_writer->image_infos_[0];
1607 // Log the non-boot image class count for app image for debugging purposes.
1608 VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << image_info.class_table_size_;
1609 // Collect boot image classes referenced by app class loader's class table.
1610 ClassTable* app_class_table = image_writer->GetAppClassLoader()->GetClassTable();
1611 ReaderMutexLock lock(self, app_class_table->lock_);
1612 DCHECK_EQ(app_class_table->classes_.size(), 1u);
1613 const ClassTable::ClassSet& app_class_set = app_class_table->classes_[0];
1614 DCHECK_GE(app_class_set.size(), image_info.class_table_size_);
1615 boot_image_classes.reserve(app_class_set.size() - image_info.class_table_size_);
1616 for (const ClassTable::TableSlot& slot : app_class_set) {
1617 mirror::Class* klass = slot.Read<kWithoutReadBarrier>().Ptr();
1618 if (image_writer->IsInBootImage(klass)) {
1619 boot_image_classes.push_back(klass);
1620 }
1621 }
1622 DCHECK_EQ(app_class_set.size() - image_info.class_table_size_, boot_image_classes.size());
1623 // Increase the app class table size to include referenced boot image classes.
1624 image_info.class_table_size_ = app_class_set.size();
1625 }
1626 for (ImageInfo& image_info : image_writer->image_infos_) {
1627 if (image_info.class_table_size_ != 0u) {
1628 // Make sure the class table shall be full by allocating a buffer of the right size.
1629 size_t buffer_size = static_cast<size_t>(
1630 ceil(image_info.class_table_size_ / kImageClassTableMaxLoadFactor));
1631 image_info.class_table_buffer_.reset(new ClassTable::TableSlot[buffer_size]);
1632 DCHECK(image_info.class_table_buffer_ != nullptr);
1633 image_info.class_table_.emplace(kImageClassTableMinLoadFactor,
1634 kImageClassTableMaxLoadFactor,
1635 image_info.class_table_buffer_.get(),
1636 buffer_size);
1637 }
1638 }
1639 for (const auto& pair : work_queue) {
1640 ObjPtr<mirror::Class> klass = pair.first->AsClass();
1641 size_t oat_index = pair.second;
1642 DCHECK(image_writer->image_infos_[oat_index].class_table_.has_value());
1643 ClassTable::ClassSet& class_table = *image_writer->image_infos_[oat_index].class_table_;
1644 uint32_t hash = ClassTable::TableSlot::HashDescriptor(klass);
1645 bool inserted = class_table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1646 DCHECK(inserted) << "Class " << klass->PrettyDescriptor()
1647 << " (" << klass.Ptr() << ") already inserted";
1648 }
1649 if (image_writer->compiler_options_.IsAppImage()) {
1650 DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1651 ImageInfo& image_info = image_writer->image_infos_[0];
1652 if (image_info.class_table_size_ != 0u) {
1653 // Insert boot image class references to the app class table.
1654 // The order of insertion into the app class loader's ClassTable is non-deterministic,
1655 // so sort the boot image classes by the boot image address to get deterministic table.
1656 std::sort(boot_image_classes.begin(), boot_image_classes.end());
1657 DCHECK(image_info.class_table_.has_value());
1658 ClassTable::ClassSet& table = *image_info.class_table_;
1659 for (mirror::Class* klass : boot_image_classes) {
1660 uint32_t hash = ClassTable::TableSlot::HashDescriptor(klass);
1661 bool inserted = table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1662 DCHECK(inserted) << "Boot image class " << klass->PrettyDescriptor()
1663 << " (" << klass << ") already inserted";
1664 }
1665 DCHECK_EQ(table.size(), image_info.class_table_size_);
1666 }
1667 }
1668 for (ImageInfo& image_info : image_writer->image_infos_) {
1669 DCHECK_EQ(image_info.class_table_bytes_, 0u);
1670 if (image_info.class_table_size_ != 0u) {
1671 DCHECK(image_info.class_table_.has_value());
1672 DCHECK_EQ(image_info.class_table_->size(), image_info.class_table_size_);
1673 image_info.class_table_bytes_ = image_info.class_table_->WriteToMemory(nullptr);
1674 DCHECK_NE(image_info.class_table_bytes_, 0u);
1675 } else {
1676 DCHECK(!image_info.class_table_.has_value());
1677 }
1678 }
1679
1680 return work_queue;
1681 }
1682
1683 private:
1684 struct ClassEntry {
1685 ObjPtr<mirror::Class> klass;
1686 // We shall sort classes by dex file, class def index and array dimension.
1687 size_t dex_file_index;
1688 uint32_t class_def_index;
1689 size_t dimension;
1690
operator <art::linker::ImageWriter::LayoutHelper::CollectClassesVisitor::ClassEntry1691 bool operator<(const ClassEntry& other) const {
1692 return std::tie(dex_file_index, class_def_index, dimension) <
1693 std::tie(other.dex_file_index, other.class_def_index, other.dimension);
1694 }
1695 };
1696
1697 ImageWriter* const image_writer_;
1698 ArrayRef<const DexFile* const> dex_files_;
1699 std::deque<ClassEntry> klasses_;
1700 };
1701
1702 class ImageWriter::LayoutHelper::CollectRootsVisitor {
1703 public:
1704 CollectRootsVisitor() = default;
1705
ReleaseRoots()1706 std::vector<ObjPtr<mirror::Object>> ReleaseRoots() {
1707 std::vector<ObjPtr<mirror::Object>> roots;
1708 roots.swap(roots_);
1709 return roots;
1710 }
1711
VisitRootIfNonNull(StackReference<mirror::Object> * ref)1712 void VisitRootIfNonNull(StackReference<mirror::Object>* ref) {
1713 if (!ref->IsNull()) {
1714 roots_.push_back(ref->AsMirrorPtr());
1715 }
1716 }
1717
1718 private:
1719 std::vector<ObjPtr<mirror::Object>> roots_;
1720 };
1721
1722 class ImageWriter::LayoutHelper::CollectStringReferenceVisitor {
1723 public:
CollectStringReferenceVisitor(const ImageWriter * image_writer,size_t oat_index,std::vector<AppImageReferenceOffsetInfo> * const string_reference_offsets,ObjPtr<mirror::Object> current_obj)1724 explicit CollectStringReferenceVisitor(
1725 const ImageWriter* image_writer,
1726 size_t oat_index,
1727 std::vector<AppImageReferenceOffsetInfo>* const string_reference_offsets,
1728 ObjPtr<mirror::Object> current_obj)
1729 : image_writer_(image_writer),
1730 oat_index_(oat_index),
1731 string_reference_offsets_(string_reference_offsets),
1732 current_obj_(current_obj) {}
1733
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1734 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1735 REQUIRES_SHARED(Locks::mutator_lock_) {
1736 if (!root->IsNull()) {
1737 VisitRoot(root);
1738 }
1739 }
1740
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1741 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1742 REQUIRES_SHARED(Locks::mutator_lock_) {
1743 // Only dex caches have native String roots. These are collected separately.
1744 DCHECK(current_obj_->IsDexCache() ||
1745 !image_writer_->IsInternedAppImageStringReference(root->AsMirrorPtr()))
1746 << mirror::Object::PrettyTypeOf(current_obj_);
1747 }
1748
1749 // Collects info for managed fields that reference managed Strings.
operator ()(ObjPtr<mirror::Object> obj,MemberOffset member_offset,bool is_static ATTRIBUTE_UNUSED) const1750 void operator() (ObjPtr<mirror::Object> obj,
1751 MemberOffset member_offset,
1752 bool is_static ATTRIBUTE_UNUSED) const
1753 REQUIRES_SHARED(Locks::mutator_lock_) {
1754 ObjPtr<mirror::Object> referred_obj =
1755 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(member_offset);
1756
1757 if (image_writer_->IsInternedAppImageStringReference(referred_obj)) {
1758 size_t base_offset = image_writer_->GetImageOffset(current_obj_.Ptr(), oat_index_);
1759 string_reference_offsets_->emplace_back(base_offset, member_offset.Uint32Value());
1760 }
1761 }
1762
1763 ALWAYS_INLINE
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1764 void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1765 ObjPtr<mirror::Reference> ref) const
1766 REQUIRES_SHARED(Locks::mutator_lock_) {
1767 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1768 }
1769
1770 private:
1771 const ImageWriter* const image_writer_;
1772 const size_t oat_index_;
1773 std::vector<AppImageReferenceOffsetInfo>* const string_reference_offsets_;
1774 const ObjPtr<mirror::Object> current_obj_;
1775 };
1776
1777 class ImageWriter::LayoutHelper::VisitReferencesVisitor {
1778 public:
VisitReferencesVisitor(LayoutHelper * helper,size_t oat_index)1779 VisitReferencesVisitor(LayoutHelper* helper, size_t oat_index)
1780 : helper_(helper), oat_index_(oat_index) {}
1781
1782 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1783 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1784 REQUIRES_SHARED(Locks::mutator_lock_) {
1785 if (!root->IsNull()) {
1786 VisitRoot(root);
1787 }
1788 }
1789
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1790 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1791 REQUIRES_SHARED(Locks::mutator_lock_) {
1792 root->Assign(VisitReference(root->AsMirrorPtr()));
1793 }
1794
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1795 ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
1796 MemberOffset offset,
1797 bool is_static ATTRIBUTE_UNUSED) const
1798 REQUIRES_SHARED(Locks::mutator_lock_) {
1799 mirror::Object* ref =
1800 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1801 obj->SetFieldObject</*kTransactionActive*/false>(offset, VisitReference(ref));
1802 }
1803
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1804 ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1805 ObjPtr<mirror::Reference> ref) const
1806 REQUIRES_SHARED(Locks::mutator_lock_) {
1807 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1808 }
1809
1810 private:
VisitReference(mirror::Object * ref) const1811 mirror::Object* VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
1812 if (helper_->TryAssignBinSlot(ref, oat_index_)) {
1813 // Remember how many objects we're adding at the front of the queue as we want
1814 // to reverse that range to process these references in the order of addition.
1815 helper_->work_queue_.emplace_front(ref, oat_index_);
1816 }
1817 if (ClassLinker::kAppImageMayContainStrings &&
1818 helper_->image_writer_->compiler_options_.IsAppImage() &&
1819 helper_->image_writer_->IsInternedAppImageStringReference(ref)) {
1820 helper_->image_writer_->image_infos_[oat_index_].num_string_references_ += 1u;
1821 }
1822 return ref;
1823 }
1824
1825 LayoutHelper* const helper_;
1826 const size_t oat_index_;
1827 };
1828
1829 // Visit method pointer arrays in `klass` that were not inherited from its superclass.
1830 template <typename Visitor>
VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass,Visitor && visitor)1831 static void VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass, Visitor&& visitor)
1832 REQUIRES_SHARED(Locks::mutator_lock_) {
1833 ObjPtr<mirror::Class> super = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
1834 ObjPtr<mirror::PointerArray> vtable = klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1835 if (vtable != nullptr &&
1836 (super == nullptr || vtable != super->GetVTable<kVerifyNone, kWithoutReadBarrier>())) {
1837 visitor(vtable);
1838 }
1839 int32_t iftable_count = klass->GetIfTableCount();
1840 int32_t super_iftable_count = (super != nullptr) ? super->GetIfTableCount() : 0;
1841 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1842 ObjPtr<mirror::IfTable> super_iftable =
1843 (super != nullptr) ? super->GetIfTable<kVerifyNone, kWithoutReadBarrier>() : nullptr;
1844 for (int32_t i = 0; i < iftable_count; ++i) {
1845 ObjPtr<mirror::PointerArray> methods =
1846 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1847 ObjPtr<mirror::PointerArray> super_methods = (i < super_iftable_count)
1848 ? super_iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i)
1849 : nullptr;
1850 if (methods != super_methods) {
1851 DCHECK(methods != nullptr);
1852 if (i < super_iftable_count) {
1853 DCHECK(super_methods != nullptr);
1854 DCHECK_EQ(methods->GetLength(), super_methods->GetLength());
1855 }
1856 visitor(methods);
1857 }
1858 }
1859 }
1860
ProcessDexFileObjects(Thread * self)1861 void ImageWriter::LayoutHelper::ProcessDexFileObjects(Thread* self) {
1862 Runtime* runtime = Runtime::Current();
1863 ClassLinker* class_linker = runtime->GetClassLinker();
1864
1865 // To ensure deterministic output, populate the work queue with objects in a pre-defined order.
1866 // Note: If we decide to implement a profile-guided layout, this is the place to do so.
1867
1868 // Get initial work queue with the image classes and assign their bin slots.
1869 CollectClassesVisitor visitor(image_writer_);
1870 class_linker->VisitClasses(&visitor);
1871 DCHECK(work_queue_.empty());
1872 work_queue_ = visitor.ProcessCollectedClasses(self);
1873 for (const std::pair<ObjPtr<mirror::Object>, size_t>& entry : work_queue_) {
1874 DCHECK(entry.first != nullptr);
1875 ObjPtr<mirror::Class> klass = entry.first->AsClass();
1876 size_t oat_index = entry.second;
1877 DCHECK(!image_writer_->IsInBootImage(klass.Ptr()));
1878 DCHECK(!image_writer_->IsImageBinSlotAssigned(klass.Ptr()));
1879 image_writer_->RecordNativeRelocations(klass, oat_index);
1880 Bin klass_bin = image_writer_->AssignImageBinSlot(klass.Ptr(), oat_index);
1881 bin_objects_[oat_index][enum_cast<size_t>(klass_bin)].push_back(klass.Ptr());
1882
1883 auto method_pointer_array_visitor =
1884 [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
1885 Bin bin = kBinObjects ? Bin::kMethodPointerArray : Bin::kRegular;
1886 image_writer_->AssignImageBinSlot(pointer_array.Ptr(), oat_index, bin);
1887 bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(pointer_array.Ptr());
1888 // No need to add to the work queue. The class reference, if not in the boot image
1889 // (that is, when compiling the primary boot image), is already in the work queue.
1890 };
1891 VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
1892 }
1893
1894 // Assign bin slots to dex caches.
1895 for (const DexFile* dex_file : image_writer_->compiler_options_.GetDexFilesForOatFile()) {
1896 auto it = image_writer_->dex_file_oat_index_map_.find(dex_file);
1897 DCHECK(it != image_writer_->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1898 const size_t oat_index = it->second;
1899 // Assign bin slot to this file's dex cache and add it to the end of the work queue.
1900 ObjPtr<mirror::DexCache> dex_cache = class_linker->FindDexCache(self, *dex_file);
1901 DCHECK(dex_cache != nullptr);
1902 bool assigned = TryAssignBinSlot(dex_cache, oat_index);
1903 DCHECK(assigned);
1904 work_queue_.emplace_back(dex_cache, oat_index);
1905 }
1906
1907 // Assign interns to images depending on the first dex file they appear in.
1908 // Record those that do not have a StringId in any dex file.
1909 ProcessInterns(self);
1910
1911 // Since classes and dex caches have been assigned to their bins, when we process a class
1912 // we do not follow through the class references or dex caches, so we correctly process
1913 // only objects actually belonging to that class before taking a new class from the queue.
1914 // If multiple class statics reference the same object (directly or indirectly), the object
1915 // is treated as belonging to the first encountered referencing class.
1916 ProcessWorkQueue();
1917 }
1918
ProcessRoots(VariableSizedHandleScope * handles)1919 void ImageWriter::LayoutHelper::ProcessRoots(VariableSizedHandleScope* handles) {
1920 // Assing bin slots to the image objects referenced by `handles`, add them to the work queue
1921 // and process the work queue. These objects are the image roots and boot image live objects
1922 // and they reference other objects needed for the image, for example the array of dex cache
1923 // references, or the pre-allocated exceptions for the boot image.
1924 DCHECK(work_queue_.empty());
1925 CollectRootsVisitor visitor;
1926 handles->VisitRoots(visitor);
1927 for (ObjPtr<mirror::Object> root : visitor.ReleaseRoots()) {
1928 if (TryAssignBinSlot(root, GetDefaultOatIndex())) {
1929 work_queue_.emplace_back(root, GetDefaultOatIndex());
1930 }
1931 }
1932 ProcessWorkQueue();
1933 }
1934
ProcessInterns(Thread * self)1935 void ImageWriter::LayoutHelper::ProcessInterns(Thread* self) {
1936 // String bins are empty at this point.
1937 DCHECK(std::all_of(bin_objects_.begin(),
1938 bin_objects_.end(),
1939 [](const auto& bins) {
1940 return bins[enum_cast<size_t>(Bin::kString)].empty();
1941 }));
1942
1943 // There is only one non-boot image intern table and it's the last one.
1944 InternTable* const intern_table = Runtime::Current()->GetInternTable();
1945 MutexLock mu(self, *Locks::intern_table_lock_);
1946 DCHECK_EQ(std::count_if(intern_table->strong_interns_.tables_.begin(),
1947 intern_table->strong_interns_.tables_.end(),
1948 [](const InternTable::Table::InternalTable& table) {
1949 return !table.IsBootImage();
1950 }),
1951 1);
1952 DCHECK(!intern_table->strong_interns_.tables_.back().IsBootImage());
1953 const InternTable::UnorderedSet& intern_set = intern_table->strong_interns_.tables_.back().set_;
1954
1955 // Assign bin slots to all interns with a corresponding StringId in one of the input dex files.
1956 ImageWriter* image_writer = image_writer_;
1957 for (const DexFile* dex_file : image_writer->compiler_options_.GetDexFilesForOatFile()) {
1958 auto it = image_writer->dex_file_oat_index_map_.find(dex_file);
1959 DCHECK(it != image_writer->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1960 const size_t oat_index = it->second;
1961 // Assign bin slots for strings defined in this dex file in StringId (lexicographical) order.
1962 auto& string_bin_objects = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)];
1963 for (size_t i = 0, count = dex_file->NumStringIds(); i != count; ++i) {
1964 uint32_t utf16_length;
1965 const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i),
1966 &utf16_length);
1967 int32_t hash = ComputeUtf16HashFromModifiedUtf8(utf8_data, utf16_length);
1968 InternTable::Utf8String utf8_string(utf16_length, utf8_data, hash);
1969 auto intern_it = intern_set.find(utf8_string);
1970 if (intern_it != intern_set.end()) {
1971 mirror::String* string = intern_it->Read<kWithoutReadBarrier>();
1972 DCHECK(string != nullptr);
1973 DCHECK(!image_writer->IsInBootImage(string));
1974 if (!image_writer->IsImageBinSlotAssigned(string)) {
1975 Bin bin = image_writer->AssignImageBinSlot(string, oat_index);
1976 DCHECK_EQ(bin, Bin::kString);
1977 string_bin_objects.push_back(string);
1978 } else {
1979 // We have already seen this string in a previous dex file.
1980 DCHECK(dex_file != image_writer->compiler_options_.GetDexFilesForOatFile().front());
1981 }
1982 }
1983 }
1984 }
1985
1986 // String bins have been filled with dex file interns. Record their numbers in image infos.
1987 DCHECK_EQ(bin_objects_.size(), image_writer_->image_infos_.size());
1988 size_t total_dex_file_interns = 0u;
1989 for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
1990 size_t num_dex_file_interns = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)].size();
1991 ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
1992 DCHECK_EQ(image_info.intern_table_size_, 0u);
1993 image_info.intern_table_size_ = num_dex_file_interns;
1994 total_dex_file_interns += num_dex_file_interns;
1995 }
1996
1997 // Collect interns that do not have a corresponding StringId in any of the input dex files.
1998 non_dex_file_interns_.reserve(intern_set.size() - total_dex_file_interns);
1999 for (const GcRoot<mirror::String>& root : intern_set) {
2000 mirror::String* string = root.Read<kWithoutReadBarrier>();
2001 if (!image_writer->IsImageBinSlotAssigned(string)) {
2002 non_dex_file_interns_.push_back(string);
2003 }
2004 }
2005 DCHECK_EQ(intern_set.size(), total_dex_file_interns + non_dex_file_interns_.size());
2006 }
2007
FinalizeInternTables()2008 void ImageWriter::LayoutHelper::FinalizeInternTables() {
2009 // Remove interns that do not have a bin slot assigned. These correspond
2010 // to the DexCache locations excluded in VerifyImageBinSlotsAssigned().
2011 ImageWriter* image_writer = image_writer_;
2012 auto retained_end = std::remove_if(
2013 non_dex_file_interns_.begin(),
2014 non_dex_file_interns_.end(),
2015 [=](mirror::String* string) REQUIRES_SHARED(Locks::mutator_lock_) {
2016 return !image_writer->IsImageBinSlotAssigned(string);
2017 });
2018 non_dex_file_interns_.resize(std::distance(non_dex_file_interns_.begin(), retained_end));
2019
2020 // Sort `non_dex_file_interns_` based on oat index and bin offset.
2021 ArrayRef<mirror::String*> non_dex_file_interns(non_dex_file_interns_);
2022 std::sort(non_dex_file_interns.begin(),
2023 non_dex_file_interns.end(),
2024 [=](mirror::String* lhs, mirror::String* rhs) REQUIRES_SHARED(Locks::mutator_lock_) {
2025 size_t lhs_oat_index = image_writer->GetOatIndex(lhs);
2026 size_t rhs_oat_index = image_writer->GetOatIndex(rhs);
2027 if (lhs_oat_index != rhs_oat_index) {
2028 return lhs_oat_index < rhs_oat_index;
2029 }
2030 BinSlot lhs_bin_slot = image_writer->GetImageBinSlot(lhs, lhs_oat_index);
2031 BinSlot rhs_bin_slot = image_writer->GetImageBinSlot(rhs, rhs_oat_index);
2032 return lhs_bin_slot < rhs_bin_slot;
2033 });
2034
2035 // Allocate and fill intern tables.
2036 size_t ndfi_index = 0u;
2037 DCHECK_EQ(bin_objects_.size(), image_writer->image_infos_.size());
2038 for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
2039 // Find the end of `non_dex_file_interns` for this oat file.
2040 size_t ndfi_end = ndfi_index;
2041 while (ndfi_end != non_dex_file_interns.size() &&
2042 image_writer->GetOatIndex(non_dex_file_interns[ndfi_end]) == oat_index) {
2043 ++ndfi_end;
2044 }
2045
2046 // Calculate final intern table size.
2047 ImageInfo& image_info = image_writer->GetImageInfo(oat_index);
2048 DCHECK_EQ(image_info.intern_table_bytes_, 0u);
2049 size_t num_dex_file_interns = image_info.intern_table_size_;
2050 size_t num_non_dex_file_interns = ndfi_end - ndfi_index;
2051 image_info.intern_table_size_ = num_dex_file_interns + num_non_dex_file_interns;
2052 if (image_info.intern_table_size_ != 0u) {
2053 // Make sure the intern table shall be full by allocating a buffer of the right size.
2054 size_t buffer_size = static_cast<size_t>(
2055 ceil(image_info.intern_table_size_ / kImageInternTableMaxLoadFactor));
2056 image_info.intern_table_buffer_.reset(new GcRoot<mirror::String>[buffer_size]);
2057 DCHECK(image_info.intern_table_buffer_ != nullptr);
2058 image_info.intern_table_.emplace(kImageInternTableMinLoadFactor,
2059 kImageInternTableMaxLoadFactor,
2060 image_info.intern_table_buffer_.get(),
2061 buffer_size);
2062
2063 // Fill the intern table. Dex file interns are at the start of the bin_objects[.][kString].
2064 InternTable::UnorderedSet& table = *image_info.intern_table_;
2065 const auto& oat_file_strings = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)];
2066 DCHECK_LE(num_dex_file_interns, oat_file_strings.size());
2067 ArrayRef<mirror::Object* const> dex_file_interns(
2068 oat_file_strings.data(), num_dex_file_interns);
2069 for (mirror::Object* string : dex_file_interns) {
2070 bool inserted = table.insert(GcRoot<mirror::String>(string->AsString())).second;
2071 DCHECK(inserted) << "String already inserted: " << string->AsString()->ToModifiedUtf8();
2072 }
2073 ArrayRef<mirror::String*> current_non_dex_file_interns =
2074 non_dex_file_interns.SubArray(ndfi_index, num_non_dex_file_interns);
2075 for (mirror::String* string : current_non_dex_file_interns) {
2076 bool inserted = table.insert(GcRoot<mirror::String>(string)).second;
2077 DCHECK(inserted) << "String already inserted: " << string->ToModifiedUtf8();
2078 }
2079
2080 // Record the intern table size in bytes.
2081 image_info.intern_table_bytes_ = table.WriteToMemory(nullptr);
2082 }
2083
2084 ndfi_index = ndfi_end;
2085 }
2086 }
2087
ProcessWorkQueue()2088 void ImageWriter::LayoutHelper::ProcessWorkQueue() {
2089 while (!work_queue_.empty()) {
2090 std::pair<ObjPtr<mirror::Object>, size_t> pair = work_queue_.front();
2091 work_queue_.pop_front();
2092 VisitReferences(/*obj=*/ pair.first, /*oat_index=*/ pair.second);
2093 }
2094 }
2095
VerifyImageBinSlotsAssigned()2096 void ImageWriter::LayoutHelper::VerifyImageBinSlotsAssigned() {
2097 std::vector<mirror::Object*> carveout;
2098 if (image_writer_->compiler_options_.IsAppImage()) {
2099 // Exclude boot class path dex caches that are not part of the boot image.
2100 // Also exclude their locations if they have not been visited through another path.
2101 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2102 Thread* self = Thread::Current();
2103 ReaderMutexLock mu(self, *Locks::dex_lock_);
2104 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
2105 ObjPtr<mirror::DexCache> dex_cache =
2106 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
2107 if (dex_cache == nullptr ||
2108 image_writer_->IsInBootImage(dex_cache.Ptr()) ||
2109 ContainsElement(image_writer_->compiler_options_.GetDexFilesForOatFile(),
2110 dex_cache->GetDexFile())) {
2111 continue;
2112 }
2113 CHECK(!image_writer_->IsImageBinSlotAssigned(dex_cache.Ptr()));
2114 carveout.push_back(dex_cache.Ptr());
2115 ObjPtr<mirror::String> location = dex_cache->GetLocation();
2116 if (!image_writer_->IsImageBinSlotAssigned(location.Ptr())) {
2117 carveout.push_back(location.Ptr());
2118 }
2119 }
2120 }
2121
2122 std::vector<mirror::Object*> missed_objects;
2123 auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
2124 REQUIRES_SHARED(Locks::mutator_lock_) {
2125 if (!image_writer_->IsInBootImage(obj)) {
2126 if (!UNLIKELY(image_writer_->IsImageBinSlotAssigned(obj))) {
2127 // Ignore the `carveout` objects.
2128 if (ContainsElement(carveout, obj)) {
2129 return;
2130 }
2131 // Ignore finalizer references for the dalvik.system.DexFile objects referenced by
2132 // the app class loader.
2133 if (obj->IsFinalizerReferenceInstance()) {
2134 ArtField* ref_field =
2135 obj->GetClass()->FindInstanceField("referent", "Ljava/lang/Object;");
2136 CHECK(ref_field != nullptr);
2137 ObjPtr<mirror::Object> ref = ref_field->GetObject(obj);
2138 CHECK(ref != nullptr);
2139 CHECK(image_writer_->IsImageBinSlotAssigned(ref.Ptr()));
2140 ObjPtr<mirror::Class> klass = ref->GetClass();
2141 CHECK(klass == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_DexFile));
2142 // Note: The app class loader is used only for checking against the runtime
2143 // class loader, the dex file cookie is cleared and therefore we do not need
2144 // to run the finalizer even if we implement app image objects collection.
2145 ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
2146 CHECK(field->GetObject(ref) == nullptr);
2147 return;
2148 }
2149 if (obj->IsString()) {
2150 // Ignore interned strings. These may come from reflection interning method names.
2151 // TODO: Make dex file strings weak interns and GC them before writing the image.
2152 Runtime* runtime = Runtime::Current();
2153 ObjPtr<mirror::String> interned =
2154 runtime->GetInternTable()->LookupStrong(Thread::Current(), obj->AsString());
2155 if (interned == obj) {
2156 return;
2157 }
2158 }
2159 missed_objects.push_back(obj);
2160 }
2161 }
2162 };
2163 Runtime::Current()->GetHeap()->VisitObjects(ensure_bin_slots_assigned);
2164 if (!missed_objects.empty()) {
2165 const gc::Verification* v = Runtime::Current()->GetHeap()->GetVerification();
2166 size_t num_missed_objects = missed_objects.size();
2167 size_t num_paths = std::min<size_t>(num_missed_objects, 5u); // Do not flood the output.
2168 ArrayRef<mirror::Object*> missed_objects_head =
2169 ArrayRef<mirror::Object*>(missed_objects).SubArray(/*pos=*/ 0u, /*length=*/ num_paths);
2170 for (mirror::Object* obj : missed_objects_head) {
2171 LOG(ERROR) << "Image object without assigned bin slot: "
2172 << mirror::Object::PrettyTypeOf(obj) << " " << obj
2173 << " " << v->FirstPathFromRootSet(obj);
2174 }
2175 LOG(FATAL) << "Found " << num_missed_objects << " objects without assigned bin slots.";
2176 }
2177 }
2178
FinalizeBinSlotOffsets()2179 void ImageWriter::LayoutHelper::FinalizeBinSlotOffsets() {
2180 // Calculate bin slot offsets and adjust for region padding if needed.
2181 const size_t region_size = image_writer_->region_size_;
2182 const size_t num_image_infos = image_writer_->image_infos_.size();
2183 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2184 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2185 size_t bin_offset = image_writer_->image_objects_offset_begin_;
2186
2187 for (size_t i = 0; i != kNumberOfBins; ++i) {
2188 Bin bin = enum_cast<Bin>(i);
2189 switch (bin) {
2190 case Bin::kArtMethodClean:
2191 case Bin::kArtMethodDirty: {
2192 bin_offset = RoundUp(bin_offset, ArtMethod::Alignment(image_writer_->target_ptr_size_));
2193 break;
2194 }
2195 case Bin::kImTable:
2196 case Bin::kIMTConflictTable: {
2197 bin_offset = RoundUp(bin_offset, static_cast<size_t>(image_writer_->target_ptr_size_));
2198 break;
2199 }
2200 default: {
2201 // Normal alignment.
2202 }
2203 }
2204 image_info.bin_slot_offsets_[i] = bin_offset;
2205
2206 // If the bin is for mirror objects, we may need to add region padding and update offsets.
2207 if (i < enum_cast<size_t>(Bin::kMirrorCount) && region_size != 0u) {
2208 const size_t offset_after_header = bin_offset - sizeof(ImageHeader);
2209 size_t remaining_space =
2210 RoundUp(offset_after_header + 1u, region_size) - offset_after_header;
2211 // Exercise the loop below in debug builds to get coverage.
2212 if (kIsDebugBuild || remaining_space < image_info.bin_slot_sizes_[i]) {
2213 // The bin crosses a region boundary. Add padding if needed.
2214 size_t object_offset = 0u;
2215 size_t padding = 0u;
2216 for (mirror::Object* object : bin_objects_[oat_index][i]) {
2217 BinSlot bin_slot = image_writer_->GetImageBinSlot(object, oat_index);
2218 DCHECK_EQ(enum_cast<size_t>(bin_slot.GetBin()), i);
2219 DCHECK_EQ(bin_slot.GetOffset() + padding, object_offset);
2220 size_t object_size = RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2221
2222 auto add_padding = [&](bool tail_region) {
2223 DCHECK_NE(remaining_space, 0u);
2224 DCHECK_LT(remaining_space, region_size);
2225 DCHECK_ALIGNED(remaining_space, kObjectAlignment);
2226 // TODO When copying to heap regions, leave the tail region padding zero-filled.
2227 if (!tail_region || true) {
2228 image_info.padding_offsets_.push_back(bin_offset + object_offset);
2229 }
2230 image_info.bin_slot_sizes_[i] += remaining_space;
2231 padding += remaining_space;
2232 object_offset += remaining_space;
2233 remaining_space = region_size;
2234 };
2235 if (object_size > remaining_space) {
2236 // Padding needed if we're not at region boundary (with a multi-region object).
2237 if (remaining_space != region_size) {
2238 // TODO: Instead of adding padding, we should consider reordering the bins
2239 // or objects to reduce wasted space.
2240 add_padding(/*tail_region=*/ false);
2241 }
2242 DCHECK_EQ(remaining_space, region_size);
2243 // For huge objects, adjust the remaining space to hold the object and some more.
2244 if (object_size > region_size) {
2245 remaining_space = RoundUp(object_size + 1u, region_size);
2246 }
2247 } else if (remaining_space == object_size) {
2248 // Move to the next region, no padding needed.
2249 remaining_space += region_size;
2250 }
2251 DCHECK_GT(remaining_space, object_size);
2252 remaining_space -= object_size;
2253 image_writer_->UpdateImageBinSlotOffset(object, oat_index, object_offset);
2254 object_offset += object_size;
2255 // Add padding to the tail region of huge objects if not region-aligned.
2256 if (object_size > region_size && remaining_space != region_size) {
2257 DCHECK(!IsAlignedParam(object_size, region_size));
2258 add_padding(/*tail_region=*/ true);
2259 }
2260 }
2261 image_writer_->region_alignment_wasted_ += padding;
2262 image_info.image_end_ += padding;
2263 }
2264 }
2265 bin_offset += image_info.bin_slot_sizes_[i];
2266 }
2267 // NOTE: There may be additional padding between the bin slots and the intern table.
2268 DCHECK_EQ(
2269 image_info.image_end_,
2270 image_info.GetBinSizeSum(Bin::kMirrorCount) + image_writer_->image_objects_offset_begin_);
2271 }
2272
2273 VLOG(image) << "Space wasted for region alignment " << image_writer_->region_alignment_wasted_;
2274 }
2275
CollectStringReferenceInfo()2276 void ImageWriter::LayoutHelper::CollectStringReferenceInfo() {
2277 size_t total_string_refs = 0u;
2278
2279 const size_t num_image_infos = image_writer_->image_infos_.size();
2280 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2281 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2282 DCHECK(image_info.string_reference_offsets_.empty());
2283 image_info.string_reference_offsets_.reserve(image_info.num_string_references_);
2284
2285 for (size_t i = 0; i < enum_cast<size_t>(Bin::kMirrorCount); ++i) {
2286 for (mirror::Object* obj : bin_objects_[oat_index][i]) {
2287 CollectStringReferenceVisitor visitor(image_writer_,
2288 oat_index,
2289 &image_info.string_reference_offsets_,
2290 obj);
2291 /*
2292 * References to managed strings can occur either in the managed heap or in
2293 * native memory regions. Information about managed references is collected
2294 * by the CollectStringReferenceVisitor and directly added to the image info.
2295 *
2296 * Native references to managed strings can only occur through DexCache
2297 * objects. This is verified by the visitor in debug mode and the references
2298 * are collected separately below.
2299 */
2300 obj->VisitReferences</*kVisitNativeRoots=*/ kIsDebugBuild,
2301 kVerifyNone,
2302 kWithoutReadBarrier>(visitor, visitor);
2303 }
2304 }
2305
2306 total_string_refs += image_info.string_reference_offsets_.size();
2307
2308 // Check that we collected the same number of string references as we saw in the previous pass.
2309 CHECK_EQ(image_info.string_reference_offsets_.size(), image_info.num_string_references_);
2310 }
2311
2312 VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << total_string_refs;
2313 }
2314
VisitReferences(ObjPtr<mirror::Object> obj,size_t oat_index)2315 void ImageWriter::LayoutHelper::VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index) {
2316 size_t old_work_queue_size = work_queue_.size();
2317 VisitReferencesVisitor visitor(this, oat_index);
2318 // Walk references and assign bin slots for them.
2319 obj->VisitReferences</*kVisitNativeRoots=*/ true, kVerifyNone, kWithoutReadBarrier>(
2320 visitor,
2321 visitor);
2322 // Put the added references in the queue in the order in which they were added.
2323 // The visitor just pushes them to the front as it visits them.
2324 DCHECK_LE(old_work_queue_size, work_queue_.size());
2325 size_t num_added = work_queue_.size() - old_work_queue_size;
2326 std::reverse(work_queue_.begin(), work_queue_.begin() + num_added);
2327 }
2328
TryAssignBinSlot(ObjPtr<mirror::Object> obj,size_t oat_index)2329 bool ImageWriter::LayoutHelper::TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index) {
2330 if (obj == nullptr || image_writer_->IsInBootImage(obj.Ptr())) {
2331 // Object is null or already in the image, there is no work to do.
2332 return false;
2333 }
2334 bool assigned = false;
2335 if (!image_writer_->IsImageBinSlotAssigned(obj.Ptr())) {
2336 Bin bin = image_writer_->AssignImageBinSlot(obj.Ptr(), oat_index);
2337 bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(obj.Ptr());
2338 assigned = true;
2339 }
2340 return assigned;
2341 }
2342
GetBootImageLiveObjects()2343 static ObjPtr<ObjectArray<Object>> GetBootImageLiveObjects() REQUIRES_SHARED(Locks::mutator_lock_) {
2344 gc::Heap* heap = Runtime::Current()->GetHeap();
2345 DCHECK(!heap->GetBootImageSpaces().empty());
2346 const ImageHeader& primary_header = heap->GetBootImageSpaces().front()->GetImageHeader();
2347 return ObjPtr<ObjectArray<Object>>::DownCast(
2348 primary_header.GetImageRoot<kWithReadBarrier>(ImageHeader::kBootImageLiveObjects));
2349 }
2350
CalculateNewObjectOffsets()2351 void ImageWriter::CalculateNewObjectOffsets() {
2352 Thread* const self = Thread::Current();
2353 Runtime* const runtime = Runtime::Current();
2354 VariableSizedHandleScope handles(self);
2355 MutableHandle<ObjectArray<Object>> boot_image_live_objects = handles.NewHandle(
2356 compiler_options_.IsBootImage()
2357 ? AllocateBootImageLiveObjects(self, runtime)
2358 : (compiler_options_.IsBootImageExtension() ? GetBootImageLiveObjects() : nullptr));
2359 std::vector<Handle<ObjectArray<Object>>> image_roots;
2360 for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
2361 image_roots.push_back(handles.NewHandle(CreateImageRoots(i, boot_image_live_objects)));
2362 }
2363
2364 gc::Heap* const heap = runtime->GetHeap();
2365
2366 // Leave space for the header, but do not write it yet, we need to
2367 // know where image_roots is going to end up
2368 image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment
2369
2370 // Write the image runtime methods.
2371 image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
2372 image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
2373 image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
2374 image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
2375 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
2376 image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
2377 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
2378 image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
2379 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
2380 image_methods_[ImageHeader::kSaveEverythingMethod] =
2381 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
2382 image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
2383 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit);
2384 image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
2385 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck);
2386 // Visit image methods first to have the main runtime methods in the first image.
2387 for (auto* m : image_methods_) {
2388 CHECK(m != nullptr);
2389 CHECK(m->IsRuntimeMethod());
2390 DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m))
2391 << "Trampolines should be in boot image";
2392 if (!IsInBootImage(m)) {
2393 AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex());
2394 }
2395 }
2396
2397 // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
2398 // this lock while holding other locks may cause lock order violations.
2399 {
2400 auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2401 Monitor::Deflate(Thread::Current(), obj);
2402 };
2403 heap->VisitObjects(deflate_monitor);
2404 }
2405
2406 // From this point on, there shall be no GC anymore and no objects shall be allocated.
2407 // We can now assign a BitSlot to each object and store it in its lockword.
2408
2409 LayoutHelper layout_helper(this);
2410 layout_helper.ProcessDexFileObjects(self);
2411 layout_helper.ProcessRoots(&handles);
2412 layout_helper.FinalizeInternTables();
2413
2414 // Verify that all objects have assigned image bin slots.
2415 layout_helper.VerifyImageBinSlotsAssigned();
2416
2417 // Finalize bin slot offsets. This may add padding for regions.
2418 layout_helper.FinalizeBinSlotOffsets();
2419
2420 // Collect string reference info for app images.
2421 if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
2422 layout_helper.CollectStringReferenceInfo();
2423 }
2424
2425 // Calculate image offsets.
2426 size_t image_offset = 0;
2427 for (ImageInfo& image_info : image_infos_) {
2428 image_info.image_begin_ = global_image_begin_ + image_offset;
2429 image_info.image_offset_ = image_offset;
2430 image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kPageSize);
2431 // There should be no gaps until the next image.
2432 image_offset += image_info.image_size_;
2433 }
2434
2435 size_t i = 0;
2436 for (ImageInfo& image_info : image_infos_) {
2437 image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
2438 i++;
2439 }
2440
2441 // Update the native relocations by adding their bin sums.
2442 for (auto& pair : native_object_relocations_) {
2443 NativeObjectRelocation& relocation = pair.second;
2444 Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
2445 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2446 relocation.offset += image_info.GetBinSlotOffset(bin_type);
2447 }
2448
2449 // Remember the boot image live objects as raw pointer. No GC can happen anymore.
2450 boot_image_live_objects_ = boot_image_live_objects.Get();
2451 }
2452
CreateImageSections() const2453 std::pair<size_t, std::vector<ImageSection>> ImageWriter::ImageInfo::CreateImageSections() const {
2454 std::vector<ImageSection> sections(ImageHeader::kSectionCount);
2455
2456 // Do not round up any sections here that are represented by the bins since it
2457 // will break offsets.
2458
2459 /*
2460 * Objects section
2461 */
2462 sections[ImageHeader::kSectionObjects] =
2463 ImageSection(0u, image_end_);
2464
2465 /*
2466 * Field section
2467 */
2468 sections[ImageHeader::kSectionArtFields] =
2469 ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField));
2470
2471 /*
2472 * Method section
2473 */
2474 sections[ImageHeader::kSectionArtMethods] =
2475 ImageSection(GetBinSlotOffset(Bin::kArtMethodClean),
2476 GetBinSlotSize(Bin::kArtMethodClean) +
2477 GetBinSlotSize(Bin::kArtMethodDirty));
2478
2479 /*
2480 * IMT section
2481 */
2482 sections[ImageHeader::kSectionImTables] =
2483 ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable));
2484
2485 /*
2486 * Conflict Tables section
2487 */
2488 sections[ImageHeader::kSectionIMTConflictTables] =
2489 ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable));
2490
2491 /*
2492 * Runtime Methods section
2493 */
2494 sections[ImageHeader::kSectionRuntimeMethods] =
2495 ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod));
2496
2497 /*
2498 * Interned Strings section
2499 */
2500
2501 // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
2502 size_t cur_pos = RoundUp(sections[ImageHeader::kSectionRuntimeMethods].End(), sizeof(uint64_t));
2503
2504 const ImageSection& interned_strings_section =
2505 sections[ImageHeader::kSectionInternedStrings] =
2506 ImageSection(cur_pos, intern_table_bytes_);
2507
2508 /*
2509 * Class Table section
2510 */
2511
2512 // Obtain the new position and round it up to the appropriate alignment.
2513 cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t));
2514
2515 const ImageSection& class_table_section =
2516 sections[ImageHeader::kSectionClassTable] =
2517 ImageSection(cur_pos, class_table_bytes_);
2518
2519 /*
2520 * String Field Offsets section
2521 */
2522
2523 // Round up to the alignment of the offsets we are going to store.
2524 cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t));
2525
2526 // The size of string_reference_offsets_ can't be used here because it hasn't
2527 // been filled with AppImageReferenceOffsetInfo objects yet. The
2528 // num_string_references_ value is calculated separately, before we can
2529 // compute the actual offsets.
2530 const ImageSection& string_reference_offsets =
2531 sections[ImageHeader::kSectionStringReferenceOffsets] =
2532 ImageSection(cur_pos, sizeof(string_reference_offsets_[0]) * num_string_references_);
2533
2534 /*
2535 * Metadata section.
2536 */
2537
2538 // Round up to the alignment of the offsets we are going to store.
2539 cur_pos = RoundUp(string_reference_offsets.End(), sizeof(uint32_t));
2540
2541 const ImageSection& metadata_section =
2542 sections[ImageHeader::kSectionMetadata] =
2543 ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata));
2544
2545 // Return the number of bytes described by these sections, and the sections
2546 // themselves.
2547 return make_pair(metadata_section.End(), std::move(sections));
2548 }
2549
CreateHeader(size_t oat_index,size_t component_count)2550 void ImageWriter::CreateHeader(size_t oat_index, size_t component_count) {
2551 ImageInfo& image_info = GetImageInfo(oat_index);
2552 const uint8_t* oat_file_begin = image_info.oat_file_begin_;
2553 const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
2554 const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
2555
2556 uint32_t image_reservation_size = image_info.image_size_;
2557 DCHECK_ALIGNED(image_reservation_size, kPageSize);
2558 uint32_t current_component_count = 1u;
2559 if (compiler_options_.IsAppImage()) {
2560 DCHECK_EQ(oat_index, 0u);
2561 DCHECK_EQ(component_count, current_component_count);
2562 } else {
2563 DCHECK(image_infos_.size() == 1u || image_infos_.size() == component_count)
2564 << image_infos_.size() << " " << component_count;
2565 if (oat_index == 0u) {
2566 const ImageInfo& last_info = image_infos_.back();
2567 const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_;
2568 DCHECK_ALIGNED(image_info.image_begin_, kPageSize);
2569 image_reservation_size =
2570 dchecked_integral_cast<uint32_t>(RoundUp(end - image_info.image_begin_, kPageSize));
2571 current_component_count = component_count;
2572 } else {
2573 image_reservation_size = 0u;
2574 current_component_count = 0u;
2575 }
2576 }
2577
2578 // Compute boot image checksums for the primary component, leave as 0 otherwise.
2579 uint32_t boot_image_components = 0u;
2580 uint32_t boot_image_checksums = 0u;
2581 if (oat_index == 0u) {
2582 const std::vector<gc::space::ImageSpace*>& image_spaces =
2583 Runtime::Current()->GetHeap()->GetBootImageSpaces();
2584 DCHECK_EQ(image_spaces.empty(), compiler_options_.IsBootImage());
2585 for (size_t i = 0u, size = image_spaces.size(); i != size; ) {
2586 const ImageHeader& header = image_spaces[i]->GetImageHeader();
2587 boot_image_components += header.GetComponentCount();
2588 boot_image_checksums ^= header.GetImageChecksum();
2589 DCHECK_LE(header.GetImageSpaceCount(), size - i);
2590 i += header.GetImageSpaceCount();
2591 }
2592 }
2593
2594 // Create the image sections.
2595 auto section_info_pair = image_info.CreateImageSections();
2596 const size_t image_end = section_info_pair.first;
2597 std::vector<ImageSection>& sections = section_info_pair.second;
2598
2599 // Finally bitmap section.
2600 const size_t bitmap_bytes = image_info.image_bitmap_.Size();
2601 auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap];
2602 *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
2603 if (VLOG_IS_ON(compiler)) {
2604 LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
2605 size_t idx = 0;
2606 for (const ImageSection& section : sections) {
2607 LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
2608 ++idx;
2609 }
2610 LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
2611 LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
2612 LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
2613 << " Image offset=" << image_info.image_offset_ << std::dec;
2614 LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
2615 << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
2616 << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
2617 << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
2618 }
2619
2620 // Create the header, leave 0 for data size since we will fill this in as we are writing the
2621 // image.
2622 new (image_info.image_.Begin()) ImageHeader(
2623 image_reservation_size,
2624 current_component_count,
2625 PointerToLowMemUInt32(image_info.image_begin_),
2626 image_end,
2627 sections.data(),
2628 image_info.image_roots_address_,
2629 image_info.oat_checksum_,
2630 PointerToLowMemUInt32(oat_file_begin),
2631 PointerToLowMemUInt32(image_info.oat_data_begin_),
2632 PointerToLowMemUInt32(oat_data_end),
2633 PointerToLowMemUInt32(oat_file_end),
2634 boot_image_begin_,
2635 boot_image_size_,
2636 boot_image_components,
2637 boot_image_checksums,
2638 static_cast<uint32_t>(target_ptr_size_));
2639 }
2640
GetImageMethodAddress(ArtMethod * method)2641 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
2642 NativeObjectRelocation relocation = GetNativeRelocation(method);
2643 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2644 CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects";
2645 return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset);
2646 }
2647
GetIntrinsicReferenceAddress(uint32_t intrinsic_data)2648 const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) {
2649 DCHECK(compiler_options_.IsBootImage());
2650 switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) {
2651 case IntrinsicObjects::PatchType::kIntegerValueOfArray: {
2652 const uint8_t* base_address =
2653 reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_));
2654 MemberOffset data_offset =
2655 IntrinsicObjects::GetIntegerValueOfArrayDataOffset(boot_image_live_objects_);
2656 return base_address + data_offset.Uint32Value();
2657 }
2658 case IntrinsicObjects::PatchType::kIntegerValueOfObject: {
2659 uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2660 ObjPtr<mirror::Object> value =
2661 IntrinsicObjects::GetIntegerValueOfObject(boot_image_live_objects_, index);
2662 return GetImageAddress(value.Ptr());
2663 }
2664 }
2665 LOG(FATAL) << "UNREACHABLE";
2666 UNREACHABLE();
2667 }
2668
2669
2670 class ImageWriter::FixupRootVisitor : public RootVisitor {
2671 public:
FixupRootVisitor(ImageWriter * image_writer)2672 explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
2673 }
2674
VisitRoots(mirror::Object *** roots ATTRIBUTE_UNUSED,size_t count ATTRIBUTE_UNUSED,const RootInfo & info ATTRIBUTE_UNUSED)2675 void VisitRoots(mirror::Object*** roots ATTRIBUTE_UNUSED,
2676 size_t count ATTRIBUTE_UNUSED,
2677 const RootInfo& info ATTRIBUTE_UNUSED)
2678 override REQUIRES_SHARED(Locks::mutator_lock_) {
2679 LOG(FATAL) << "Unsupported";
2680 }
2681
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2682 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
2683 size_t count,
2684 const RootInfo& info ATTRIBUTE_UNUSED)
2685 override REQUIRES_SHARED(Locks::mutator_lock_) {
2686 for (size_t i = 0; i < count; ++i) {
2687 // Copy the reference. Since we do not have the address for recording the relocation,
2688 // it needs to be recorded explicitly by the user of FixupRootVisitor.
2689 ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr();
2690 roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr()));
2691 }
2692 }
2693
2694 private:
2695 ImageWriter* const image_writer_;
2696 };
2697
CopyAndFixupImTable(ImTable * orig,ImTable * copy)2698 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
2699 for (size_t i = 0; i < ImTable::kSize; ++i) {
2700 ArtMethod* method = orig->Get(i, target_ptr_size_);
2701 void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
2702 CopyAndFixupPointer(address, method);
2703 DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
2704 }
2705 }
2706
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)2707 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
2708 const size_t count = orig->NumEntries(target_ptr_size_);
2709 for (size_t i = 0; i < count; ++i) {
2710 ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
2711 ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
2712 CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
2713 CopyAndFixupPointer(
2714 copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method);
2715 DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
2716 NativeLocationInImage(interface_method));
2717 DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
2718 NativeLocationInImage(implementation_method));
2719 }
2720 }
2721
CopyAndFixupNativeData(size_t oat_index)2722 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
2723 const ImageInfo& image_info = GetImageInfo(oat_index);
2724 // Copy ArtFields and methods to their locations and update the array for convenience.
2725 for (auto& pair : native_object_relocations_) {
2726 NativeObjectRelocation& relocation = pair.second;
2727 // Only work with fields and methods that are in the current oat file.
2728 if (relocation.oat_index != oat_index) {
2729 continue;
2730 }
2731 auto* dest = image_info.image_.Begin() + relocation.offset;
2732 DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_);
2733 DCHECK(!IsInBootImage(pair.first));
2734 switch (relocation.type) {
2735 case NativeObjectRelocationType::kRuntimeMethod:
2736 case NativeObjectRelocationType::kArtMethodClean:
2737 case NativeObjectRelocationType::kArtMethodDirty: {
2738 CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
2739 reinterpret_cast<ArtMethod*>(dest),
2740 oat_index);
2741 break;
2742 }
2743 case NativeObjectRelocationType::kArtFieldArray: {
2744 // Copy and fix up the entire field array.
2745 auto* src_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(pair.first);
2746 auto* dest_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(dest);
2747 size_t size = src_array->size();
2748 memcpy(dest_array, src_array, LengthPrefixedArray<ArtField>::ComputeSize(size));
2749 for (size_t i = 0; i != size; ++i) {
2750 CopyAndFixupReference(
2751 dest_array->At(i).GetDeclaringClassAddressWithoutBarrier(),
2752 src_array->At(i).GetDeclaringClass());
2753 }
2754 break;
2755 }
2756 case NativeObjectRelocationType::kArtMethodArrayClean:
2757 case NativeObjectRelocationType::kArtMethodArrayDirty: {
2758 // For method arrays, copy just the header since the elements will
2759 // get copied by their corresponding relocations.
2760 size_t size = ArtMethod::Size(target_ptr_size_);
2761 size_t alignment = ArtMethod::Alignment(target_ptr_size_);
2762 memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
2763 // Clear padding to avoid non-deterministic data in the image.
2764 // Historical note: We also did that to placate Valgrind.
2765 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
2766 break;
2767 }
2768 case NativeObjectRelocationType::kIMTable: {
2769 ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
2770 ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
2771 CopyAndFixupImTable(orig_imt, dest_imt);
2772 break;
2773 }
2774 case NativeObjectRelocationType::kIMTConflictTable: {
2775 auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
2776 CopyAndFixupImtConflictTable(
2777 orig_table,
2778 new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
2779 break;
2780 }
2781 case NativeObjectRelocationType::kGcRootPointer: {
2782 auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first);
2783 auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest);
2784 CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read());
2785 break;
2786 }
2787 }
2788 }
2789 // Fixup the image method roots.
2790 auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
2791 for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
2792 ArtMethod* method = image_methods_[i];
2793 CHECK(method != nullptr);
2794 CopyAndFixupPointer(
2795 reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32);
2796 }
2797 FixupRootVisitor root_visitor(this);
2798
2799 // Write the intern table into the image.
2800 if (image_info.intern_table_bytes_ > 0) {
2801 const ImageSection& intern_table_section = image_header->GetInternedStringsSection();
2802 DCHECK(image_info.intern_table_.has_value());
2803 const InternTable::UnorderedSet& intern_table = *image_info.intern_table_;
2804 uint8_t* const intern_table_memory_ptr =
2805 image_info.image_.Begin() + intern_table_section.Offset();
2806 const size_t intern_table_bytes = intern_table.WriteToMemory(intern_table_memory_ptr);
2807 CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
2808 // Fixup the pointers in the newly written intern table to contain image addresses.
2809 InternTable temp_intern_table;
2810 // Note that we require that ReadFromMemory does not make an internal copy of the elements so
2811 // that the VisitRoots() will update the memory directly rather than the copies.
2812 // This also relies on visit roots not doing any verification which could fail after we update
2813 // the roots to be the image addresses.
2814 temp_intern_table.AddTableFromMemory(intern_table_memory_ptr,
2815 VoidFunctor(),
2816 /*is_boot_image=*/ false);
2817 CHECK_EQ(temp_intern_table.Size(), intern_table.size());
2818 temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
2819
2820 if (kIsDebugBuild) {
2821 MutexLock lock(Thread::Current(), *Locks::intern_table_lock_);
2822 CHECK(!temp_intern_table.strong_interns_.tables_.empty());
2823 // The UnorderedSet was inserted at the beginning.
2824 CHECK_EQ(temp_intern_table.strong_interns_.tables_[0].Size(), intern_table.size());
2825 }
2826 }
2827
2828 // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
2829 // class loaders. Writing multiple class tables into the image is currently unsupported.
2830 if (image_info.class_table_bytes_ > 0u) {
2831 const ImageSection& class_table_section = image_header->GetClassTableSection();
2832 uint8_t* const class_table_memory_ptr =
2833 image_info.image_.Begin() + class_table_section.Offset();
2834
2835 DCHECK(image_info.class_table_.has_value());
2836 const ClassTable::ClassSet& table = *image_info.class_table_;
2837 CHECK_EQ(table.size(), image_info.class_table_size_);
2838 const size_t class_table_bytes = table.WriteToMemory(class_table_memory_ptr);
2839 CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
2840
2841 // Fixup the pointers in the newly written class table to contain image addresses. See
2842 // above comment for intern tables.
2843 ClassTable temp_class_table;
2844 temp_class_table.ReadFromMemory(class_table_memory_ptr);
2845 CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(), table.size());
2846 UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
2847 temp_class_table.VisitRoots(visitor);
2848
2849 if (kIsDebugBuild) {
2850 ReaderMutexLock lock(Thread::Current(), temp_class_table.lock_);
2851 CHECK(!temp_class_table.classes_.empty());
2852 // The ClassSet was inserted at the beginning.
2853 CHECK_EQ(temp_class_table.classes_[0].size(), table.size());
2854 }
2855 }
2856 }
2857
CopyAndFixupMethodPointerArray(mirror::PointerArray * arr)2858 void ImageWriter::CopyAndFixupMethodPointerArray(mirror::PointerArray* arr) {
2859 // Pointer arrays are processed early and each is visited just once.
2860 // Therefore we know that this array has not been copied yet.
2861 mirror::Object* dst = CopyObject</*kCheckIfDone=*/ false>(arr);
2862 DCHECK(dst != nullptr);
2863 DCHECK(arr->IsIntArray() || arr->IsLongArray()) << arr->GetClass()->PrettyClass() << " " << arr;
2864 // Fixup int and long pointers for the ArtMethod or ArtField arrays.
2865 const size_t num_elements = arr->GetLength();
2866 CopyAndFixupReference(
2867 dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()), arr->GetClass());
2868 auto* dest_array = down_cast<mirror::PointerArray*>(dst);
2869 for (size_t i = 0, count = num_elements; i < count; ++i) {
2870 void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
2871 if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
2872 auto it = native_object_relocations_.find(elem);
2873 if (UNLIKELY(it == native_object_relocations_.end())) {
2874 auto* method = reinterpret_cast<ArtMethod*>(elem);
2875 LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
2876 << method << " idx=" << i << "/" << num_elements << " with declaring class "
2877 << Class::PrettyClass(method->GetDeclaringClass());
2878 UNREACHABLE();
2879 }
2880 }
2881 CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
2882 }
2883 }
2884
CopyAndFixupObject(Object * obj)2885 void ImageWriter::CopyAndFixupObject(Object* obj) {
2886 if (!IsImageBinSlotAssigned(obj)) {
2887 return;
2888 }
2889 // Some objects (such as method pointer arrays) may have been processed before.
2890 mirror::Object* dst = CopyObject</*kCheckIfDone=*/ true>(obj);
2891 if (dst != nullptr) {
2892 FixupObject(obj, dst);
2893 }
2894 }
2895
2896 template <bool kCheckIfDone>
CopyObject(Object * obj)2897 inline Object* ImageWriter::CopyObject(Object* obj) {
2898 size_t oat_index = GetOatIndex(obj);
2899 size_t offset = GetImageOffset(obj, oat_index);
2900 ImageInfo& image_info = GetImageInfo(oat_index);
2901 auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
2902 DCHECK_LT(offset, image_info.image_end_);
2903 const auto* src = reinterpret_cast<const uint8_t*>(obj);
2904
2905 bool done = image_info.image_bitmap_.Set(dst); // Mark the obj as live.
2906 // Check if the object was already copied, unless the caller indicated that it was not.
2907 if (kCheckIfDone && done) {
2908 return nullptr;
2909 }
2910 DCHECK(!done);
2911
2912 const size_t n = obj->SizeOf();
2913
2914 if (kIsDebugBuild && region_size_ != 0u) {
2915 const size_t offset_after_header = offset - sizeof(ImageHeader);
2916 const size_t next_region = RoundUp(offset_after_header, region_size_);
2917 if (offset_after_header != next_region) {
2918 // If the object is not on a region bondary, it must not be cross region.
2919 CHECK_LT(offset_after_header, next_region)
2920 << "offset_after_header=" << offset_after_header << " size=" << n;
2921 CHECK_LE(offset_after_header + n, next_region)
2922 << "offset_after_header=" << offset_after_header << " size=" << n;
2923 }
2924 }
2925 DCHECK_LE(offset + n, image_info.image_.Size());
2926 memcpy(dst, src, n);
2927
2928 // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
2929 // word.
2930 const auto it = saved_hashcode_map_.find(obj);
2931 dst->SetLockWord(it != saved_hashcode_map_.end() ?
2932 LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
2933 if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
2934 // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
2935 // safe since we mark all of the objects that may reference non immune objects as gray.
2936 CHECK(dst->AtomicSetMarkBit(0, 1));
2937 }
2938 return dst;
2939 }
2940
2941 // Rewrite all the references in the copied object to point to their image address equivalent
2942 class ImageWriter::FixupVisitor {
2943 public:
FixupVisitor(ImageWriter * image_writer,Object * copy)2944 FixupVisitor(ImageWriter* image_writer, Object* copy)
2945 : image_writer_(image_writer), copy_(copy) {
2946 }
2947
2948 // Ignore class roots since we don't have a way to map them to the destination. These are handled
2949 // with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const2950 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
2951 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const2952 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
2953
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2954 void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
2955 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
2956 ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
2957 // Copy the reference and record the fixup if necessary.
2958 image_writer_->CopyAndFixupReference(
2959 copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref);
2960 }
2961
2962 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const2963 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
2964 ObjPtr<mirror::Reference> ref) const
2965 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
2966 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
2967 }
2968
2969 protected:
2970 ImageWriter* const image_writer_;
2971 mirror::Object* const copy_;
2972 };
2973
CopyAndFixupObjects()2974 void ImageWriter::CopyAndFixupObjects() {
2975 // Copy and fix up pointer arrays first as they require special treatment.
2976 auto method_pointer_array_visitor =
2977 [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
2978 CopyAndFixupMethodPointerArray(pointer_array.Ptr());
2979 };
2980 for (ImageInfo& image_info : image_infos_) {
2981 if (image_info.class_table_size_ != 0u) {
2982 DCHECK(image_info.class_table_.has_value());
2983 for (const ClassTable::TableSlot slot : *image_info.class_table_) {
2984 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
2985 DCHECK(klass != nullptr);
2986 // Do not process boot image classes present in app image class table.
2987 DCHECK(!IsInBootImage(klass.Ptr()) || compiler_options_.IsAppImage());
2988 if (!IsInBootImage(klass.Ptr())) {
2989 // Do not fix up method pointer arrays inherited from superclass. If they are part
2990 // of the current image, they were or shall be copied when visiting the superclass.
2991 VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
2992 }
2993 }
2994 }
2995 }
2996
2997 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2998 DCHECK(obj != nullptr);
2999 CopyAndFixupObject(obj);
3000 };
3001 Runtime::Current()->GetHeap()->VisitObjects(visitor);
3002
3003 // Fill the padding objects since they are required for in order traversal of the image space.
3004 for (ImageInfo& image_info : image_infos_) {
3005 for (const size_t start_offset : image_info.padding_offsets_) {
3006 const size_t offset_after_header = start_offset - sizeof(ImageHeader);
3007 size_t remaining_space =
3008 RoundUp(offset_after_header + 1u, region_size_) - offset_after_header;
3009 DCHECK_NE(remaining_space, 0u);
3010 DCHECK_LT(remaining_space, region_size_);
3011 Object* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + start_offset);
3012 ObjPtr<Class> object_class = GetClassRoot<mirror::Object, kWithoutReadBarrier>();
3013 DCHECK_ALIGNED_PARAM(remaining_space, object_class->GetObjectSize());
3014 Object* end = dst + remaining_space / object_class->GetObjectSize();
3015 Class* image_object_class = GetImageAddress(object_class.Ptr());
3016 while (dst != end) {
3017 dst->SetClass<kVerifyNone>(image_object_class);
3018 dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false);
3019 image_info.image_bitmap_.Set(dst); // Mark the obj as live.
3020 ++dst;
3021 }
3022 }
3023 }
3024
3025 // We no longer need the hashcode map, values have already been copied to target objects.
3026 saved_hashcode_map_.clear();
3027 }
3028
3029 class ImageWriter::FixupClassVisitor final : public FixupVisitor {
3030 public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)3031 FixupClassVisitor(ImageWriter* image_writer, Object* copy)
3032 : FixupVisitor(image_writer, copy) {}
3033
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const3034 void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
3035 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3036 DCHECK(obj->IsClass());
3037 FixupVisitor::operator()(obj, offset, /*is_static*/false);
3038 }
3039
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const3040 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
3041 ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
3042 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3043 LOG(FATAL) << "Reference not expected here.";
3044 }
3045 };
3046
GetNativeRelocation(void * obj)3047 ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) {
3048 DCHECK(obj != nullptr);
3049 DCHECK(!IsInBootImage(obj));
3050 auto it = native_object_relocations_.find(obj);
3051 CHECK(it != native_object_relocations_.end()) << obj << " spaces "
3052 << Runtime::Current()->GetHeap()->DumpSpaces();
3053 return it->second;
3054 }
3055
3056 template <typename T>
PrettyPrint(T * ptr)3057 std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
3058 std::ostringstream oss;
3059 oss << ptr;
3060 return oss.str();
3061 }
3062
3063 template <>
PrettyPrint(ArtMethod * method)3064 std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
3065 return ArtMethod::PrettyMethod(method);
3066 }
3067
3068 template <typename T>
NativeLocationInImage(T * obj)3069 T* ImageWriter::NativeLocationInImage(T* obj) {
3070 if (obj == nullptr || IsInBootImage(obj)) {
3071 return obj;
3072 } else {
3073 NativeObjectRelocation relocation = GetNativeRelocation(obj);
3074 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3075 return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
3076 }
3077 }
3078
3079 class ImageWriter::NativeLocationVisitor {
3080 public:
NativeLocationVisitor(ImageWriter * image_writer)3081 explicit NativeLocationVisitor(ImageWriter* image_writer)
3082 : image_writer_(image_writer) {}
3083
3084 template <typename T>
operator ()(T * ptr,void ** dest_addr) const3085 T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
3086 if (ptr != nullptr) {
3087 image_writer_->CopyAndFixupPointer(dest_addr, ptr);
3088 }
3089 // TODO: The caller shall overwrite the value stored by CopyAndFixupPointer()
3090 // with the value we return here. We should try to avoid the duplicate work.
3091 return image_writer_->NativeLocationInImage(ptr);
3092 }
3093
3094 private:
3095 ImageWriter* const image_writer_;
3096 };
3097
FixupClass(mirror::Class * orig,mirror::Class * copy)3098 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
3099 orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
3100 FixupClassVisitor visitor(this, copy);
3101 ObjPtr<mirror::Object>(orig)->VisitReferences(visitor, visitor);
3102
3103 if (kBitstringSubtypeCheckEnabled && !compiler_options_.IsBootImage()) {
3104 // When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring
3105 // values to the parent of that class.
3106 //
3107 // Every time this happens, the parent class has to mutate to increment
3108 // the "Next" value.
3109 //
3110 // If any of these parents are in the boot image, the changes [in the parents]
3111 // would be lost when the app image is reloaded.
3112 //
3113 // To prevent newly loaded classes (not in the app image) from being reassigned
3114 // the same bitstring value as an existing app image class, uninitialize
3115 // all the classes in the app image.
3116 //
3117 // On startup, the class linker will then re-initialize all the app
3118 // image bitstrings. See also ClassLinker::AddImageSpace.
3119 //
3120 // FIXME: Deal with boot image extensions.
3121 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
3122 // Lock every time to prevent a dcheck failure when we suspend with the lock held.
3123 SubtypeCheck<mirror::Class*>::ForceUninitialize(copy);
3124 }
3125
3126 // Remove the clinitThreadId. This is required for image determinism.
3127 copy->SetClinitThreadId(static_cast<pid_t>(0));
3128 // We never emit kRetryVerificationAtRuntime, instead we mark the class as
3129 // resolved and the class will therefore be re-verified at runtime.
3130 if (orig->ShouldVerifyAtRuntime()) {
3131 copy->SetStatusInternal(ClassStatus::kResolved);
3132 }
3133 }
3134
FixupObject(Object * orig,Object * copy)3135 void ImageWriter::FixupObject(Object* orig, Object* copy) {
3136 DCHECK(orig != nullptr);
3137 DCHECK(copy != nullptr);
3138 if (kUseBakerReadBarrier) {
3139 orig->AssertReadBarrierState();
3140 }
3141 if (orig->IsClass()) {
3142 FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy));
3143 } else {
3144 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
3145 Runtime::Current()->GetClassLinker()->GetClassRoots();
3146 ObjPtr<mirror::Class> klass = orig->GetClass();
3147 if (klass == GetClassRoot<mirror::Method>(class_roots) ||
3148 klass == GetClassRoot<mirror::Constructor>(class_roots)) {
3149 // Need to go update the ArtMethod.
3150 auto* dest = down_cast<mirror::Executable*>(copy);
3151 auto* src = down_cast<mirror::Executable*>(orig);
3152 ArtMethod* src_method = src->GetArtMethod();
3153 CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method);
3154 } else if (klass == GetClassRoot<mirror::DexCache>(class_roots)) {
3155 down_cast<mirror::DexCache*>(copy)->ResetNativeFields();
3156 } else if (klass->IsClassLoaderClass()) {
3157 mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
3158 // If src is a ClassLoader, set the class table to null so that it gets recreated by the
3159 // ClassLoader.
3160 copy_loader->SetClassTable(nullptr);
3161 // Also set allocator to null to be safe. The allocator is created when we create the class
3162 // table. We also never expect to unload things in the image since they are held live as
3163 // roots.
3164 copy_loader->SetAllocator(nullptr);
3165 }
3166 FixupVisitor visitor(this, copy);
3167 orig->VisitReferences(visitor, visitor);
3168 }
3169 }
3170
GetOatAddress(StubType type) const3171 const uint8_t* ImageWriter::GetOatAddress(StubType type) const {
3172 DCHECK_LE(type, StubType::kLast);
3173 // If we are compiling a boot image extension or app image,
3174 // we need to use the stubs of the primary boot image.
3175 if (!compiler_options_.IsBootImage()) {
3176 // Use the current image pointers.
3177 const std::vector<gc::space::ImageSpace*>& image_spaces =
3178 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3179 DCHECK(!image_spaces.empty());
3180 const OatFile* oat_file = image_spaces[0]->GetOatFile();
3181 CHECK(oat_file != nullptr);
3182 const OatHeader& header = oat_file->GetOatHeader();
3183 switch (type) {
3184 // TODO: We could maybe clean this up if we stored them in an array in the oat header.
3185 case StubType::kQuickGenericJNITrampoline:
3186 return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
3187 case StubType::kJNIDlsymLookupTrampoline:
3188 return static_cast<const uint8_t*>(header.GetJniDlsymLookupTrampoline());
3189 case StubType::kJNIDlsymLookupCriticalTrampoline:
3190 return static_cast<const uint8_t*>(header.GetJniDlsymLookupCriticalTrampoline());
3191 case StubType::kQuickIMTConflictTrampoline:
3192 return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
3193 case StubType::kQuickResolutionTrampoline:
3194 return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
3195 case StubType::kQuickToInterpreterBridge:
3196 return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
3197 case StubType::kNterpTrampoline:
3198 return static_cast<const uint8_t*>(header.GetNterpTrampoline());
3199 default:
3200 UNREACHABLE();
3201 }
3202 }
3203 const ImageInfo& primary_image_info = GetImageInfo(0);
3204 return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info);
3205 }
3206
GetQuickCode(ArtMethod * method,const ImageInfo & image_info)3207 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, const ImageInfo& image_info) {
3208 DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
3209 DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
3210 DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
3211 DCHECK(method->IsInvokable()) << method->PrettyMethod();
3212 DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
3213
3214 // Use original code if it exists. Otherwise, set the code pointer to the resolution
3215 // trampoline.
3216
3217 // Quick entrypoint:
3218 const void* quick_oat_entry_point =
3219 method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
3220 const uint8_t* quick_code;
3221
3222 if (UNLIKELY(IsInBootImage(method->GetDeclaringClass().Ptr()))) {
3223 DCHECK(method->IsCopied());
3224 // If the code is not in the oat file corresponding to this image (e.g. default methods)
3225 quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
3226 } else {
3227 uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
3228 quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
3229 }
3230
3231 bool needs_clinit_check = NeedsClinitCheckBeforeCall(method) &&
3232 !method->GetDeclaringClass()->IsVisiblyInitialized();
3233
3234 if (quick_code == nullptr) {
3235 // If we don't have code, use generic jni / interpreter.
3236 if (method->IsNative()) {
3237 // The generic JNI trampolines performs class initialization check if needed.
3238 quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline);
3239 } else if (CanMethodUseNterp(method, compiler_options_.GetInstructionSet())) {
3240 // The nterp trampoline doesn't do initialization checks, so install the
3241 // resolution stub if needed.
3242 if (needs_clinit_check) {
3243 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3244 } else {
3245 quick_code = GetOatAddress(StubType::kNterpTrampoline);
3246 }
3247 } else {
3248 // The interpreter brige performs class initialization check if needed.
3249 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3250 }
3251 } else if (needs_clinit_check) {
3252 // If we do have code but the method needs a class initialization check before calling
3253 // that code, install the resolution stub that will perform the check.
3254 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3255 }
3256 return quick_code;
3257 }
3258
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,size_t oat_index)3259 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
3260 ArtMethod* copy,
3261 size_t oat_index) {
3262 if (orig->IsAbstract()) {
3263 // Ignore the single-implementation info for abstract method.
3264 // Do this on orig instead of copy, otherwise there is a crash due to methods
3265 // are copied before classes.
3266 // TODO: handle fixup of single-implementation method for abstract method.
3267 orig->SetHasSingleImplementation(false);
3268 orig->SetSingleImplementation(
3269 nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
3270 }
3271
3272 memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
3273
3274 CopyAndFixupReference(
3275 copy->GetDeclaringClassAddressWithoutBarrier(), orig->GetDeclaringClassUnchecked());
3276
3277 // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
3278 // oat_begin_
3279
3280 // The resolution method has a special trampoline to call.
3281 Runtime* runtime = Runtime::Current();
3282 const void* quick_code;
3283 if (orig->IsRuntimeMethod()) {
3284 ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
3285 if (orig_table != nullptr) {
3286 // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
3287 quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline);
3288 CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table);
3289 } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
3290 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3291 // Set JNI entrypoint for resolving @CriticalNative methods called from compiled code .
3292 const void* jni_code = GetOatAddress(StubType::kJNIDlsymLookupCriticalTrampoline);
3293 copy->SetEntryPointFromJniPtrSize(jni_code, target_ptr_size_);
3294 } else {
3295 bool found_one = false;
3296 for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
3297 auto idx = static_cast<CalleeSaveType>(i);
3298 if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
3299 found_one = true;
3300 break;
3301 }
3302 }
3303 CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
3304 CHECK(copy->IsRuntimeMethod());
3305 CHECK(copy->GetEntryPointFromQuickCompiledCode() == nullptr);
3306 quick_code = nullptr;
3307 }
3308 } else {
3309 // We assume all methods have code. If they don't currently then we set them to the use the
3310 // resolution trampoline. Abstract methods never have code and so we need to make sure their
3311 // use results in an AbstractMethodError. We use the interpreter to achieve this.
3312 if (UNLIKELY(!orig->IsInvokable())) {
3313 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3314 } else {
3315 const ImageInfo& image_info = image_infos_[oat_index];
3316 quick_code = GetQuickCode(orig, image_info);
3317
3318 // JNI entrypoint:
3319 if (orig->IsNative()) {
3320 // The native method's pointer is set to a stub to lookup via dlsym.
3321 // Note this is not the code_ pointer, that is handled above.
3322 StubType stub_type = orig->IsCriticalNative() ? StubType::kJNIDlsymLookupCriticalTrampoline
3323 : StubType::kJNIDlsymLookupTrampoline;
3324 copy->SetEntryPointFromJniPtrSize(GetOatAddress(stub_type), target_ptr_size_);
3325 } else if (!orig->HasCodeItem()) {
3326 CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr);
3327 } else {
3328 CHECK(copy->GetDataPtrSize(target_ptr_size_) != nullptr);
3329 }
3330 }
3331 }
3332 if (quick_code != nullptr) {
3333 copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
3334 }
3335 }
3336
GetBinSizeSum(Bin up_to) const3337 size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const {
3338 DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins);
3339 return std::accumulate(&bin_slot_sizes_[0],
3340 &bin_slot_sizes_[0] + static_cast<size_t>(up_to),
3341 /*init*/ static_cast<size_t>(0));
3342 }
3343
BinSlot(uint32_t lockword)3344 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
3345 // These values may need to get updated if more bins are added to the enum Bin
3346 static_assert(kBinBits == 3, "wrong number of bin bits");
3347 static_assert(kBinShift == 27, "wrong number of shift");
3348 static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
3349
3350 DCHECK_LT(GetBin(), Bin::kMirrorCount);
3351 DCHECK_ALIGNED(GetOffset(), kObjectAlignment);
3352 }
3353
BinSlot(Bin bin,uint32_t index)3354 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
3355 : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
3356 DCHECK_EQ(index, GetOffset());
3357 }
3358
GetBin() const3359 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
3360 return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
3361 }
3362
GetOffset() const3363 uint32_t ImageWriter::BinSlot::GetOffset() const {
3364 return lockword_ & ~kBinMask;
3365 }
3366
BinTypeForNativeRelocationType(NativeObjectRelocationType type)3367 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
3368 switch (type) {
3369 case NativeObjectRelocationType::kArtFieldArray:
3370 return Bin::kArtField;
3371 case NativeObjectRelocationType::kArtMethodClean:
3372 case NativeObjectRelocationType::kArtMethodArrayClean:
3373 return Bin::kArtMethodClean;
3374 case NativeObjectRelocationType::kArtMethodDirty:
3375 case NativeObjectRelocationType::kArtMethodArrayDirty:
3376 return Bin::kArtMethodDirty;
3377 case NativeObjectRelocationType::kRuntimeMethod:
3378 return Bin::kRuntimeMethod;
3379 case NativeObjectRelocationType::kIMTable:
3380 return Bin::kImTable;
3381 case NativeObjectRelocationType::kIMTConflictTable:
3382 return Bin::kIMTConflictTable;
3383 case NativeObjectRelocationType::kGcRootPointer:
3384 return Bin::kMetadata;
3385 }
3386 UNREACHABLE();
3387 }
3388
GetOatIndex(mirror::Object * obj) const3389 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
3390 if (!IsMultiImage()) {
3391 DCHECK(oat_index_map_.empty());
3392 return GetDefaultOatIndex();
3393 }
3394 auto it = oat_index_map_.find(obj);
3395 DCHECK(it != oat_index_map_.end()) << obj;
3396 return it->second;
3397 }
3398
GetOatIndexForDexFile(const DexFile * dex_file) const3399 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
3400 if (!IsMultiImage()) {
3401 return GetDefaultOatIndex();
3402 }
3403 auto it = dex_file_oat_index_map_.find(dex_file);
3404 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
3405 return it->second;
3406 }
3407
GetOatIndexForClass(ObjPtr<mirror::Class> klass) const3408 size_t ImageWriter::GetOatIndexForClass(ObjPtr<mirror::Class> klass) const {
3409 while (klass->IsArrayClass()) {
3410 klass = klass->GetComponentType();
3411 }
3412 if (UNLIKELY(klass->IsPrimitive())) {
3413 DCHECK(klass->GetDexCache() == nullptr);
3414 return GetDefaultOatIndex();
3415 } else {
3416 DCHECK(klass->GetDexCache() != nullptr);
3417 return GetOatIndexForDexFile(&klass->GetDexFile());
3418 }
3419 }
3420
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)3421 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
3422 size_t oat_loaded_size,
3423 size_t oat_data_offset,
3424 size_t oat_data_size) {
3425 DCHECK_GE(oat_loaded_size, oat_data_offset);
3426 DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size);
3427
3428 const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
3429 DCHECK(images_end != nullptr); // Image space must be ready.
3430 for (const ImageInfo& info : image_infos_) {
3431 DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
3432 }
3433
3434 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3435 cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
3436 cur_image_info.oat_loaded_size_ = oat_loaded_size;
3437 cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
3438 cur_image_info.oat_size_ = oat_data_size;
3439
3440 if (compiler_options_.IsAppImage()) {
3441 CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
3442 return;
3443 }
3444
3445 // Update the oat_offset of the next image info.
3446 if (oat_index + 1u != oat_filenames_.size()) {
3447 // There is a following one.
3448 ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
3449 next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
3450 }
3451 }
3452
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)3453 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
3454 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3455 cur_image_info.oat_checksum_ = oat_header.GetChecksum();
3456
3457 if (oat_index == GetDefaultOatIndex()) {
3458 // Primary oat file, read the trampolines.
3459 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupTrampoline,
3460 oat_header.GetJniDlsymLookupTrampolineOffset());
3461 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupCriticalTrampoline,
3462 oat_header.GetJniDlsymLookupCriticalTrampolineOffset());
3463 cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline,
3464 oat_header.GetQuickGenericJniTrampolineOffset());
3465 cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline,
3466 oat_header.GetQuickImtConflictTrampolineOffset());
3467 cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline,
3468 oat_header.GetQuickResolutionTrampolineOffset());
3469 cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge,
3470 oat_header.GetQuickToInterpreterBridgeOffset());
3471 cur_image_info.SetStubOffset(StubType::kNterpTrampoline,
3472 oat_header.GetNterpTrampolineOffset());
3473 }
3474 }
3475
ImageWriter(const CompilerOptions & compiler_options,uintptr_t image_begin,ImageHeader::StorageMode image_storage_mode,const std::vector<std::string> & oat_filenames,const HashMap<const DexFile *,size_t> & dex_file_oat_index_map,jobject class_loader,const HashSet<std::string> * dirty_image_objects)3476 ImageWriter::ImageWriter(
3477 const CompilerOptions& compiler_options,
3478 uintptr_t image_begin,
3479 ImageHeader::StorageMode image_storage_mode,
3480 const std::vector<std::string>& oat_filenames,
3481 const HashMap<const DexFile*, size_t>& dex_file_oat_index_map,
3482 jobject class_loader,
3483 const HashSet<std::string>* dirty_image_objects)
3484 : compiler_options_(compiler_options),
3485 boot_image_begin_(Runtime::Current()->GetHeap()->GetBootImagesStartAddress()),
3486 boot_image_size_(Runtime::Current()->GetHeap()->GetBootImagesSize()),
3487 global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
3488 image_objects_offset_begin_(0),
3489 target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())),
3490 image_infos_(oat_filenames.size()),
3491 dirty_methods_(0u),
3492 clean_methods_(0u),
3493 app_class_loader_(class_loader),
3494 boot_image_live_objects_(nullptr),
3495 image_storage_mode_(image_storage_mode),
3496 oat_filenames_(oat_filenames),
3497 dex_file_oat_index_map_(dex_file_oat_index_map),
3498 dirty_image_objects_(dirty_image_objects) {
3499 DCHECK(compiler_options.IsBootImage() ||
3500 compiler_options.IsBootImageExtension() ||
3501 compiler_options.IsAppImage());
3502 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_begin_ == 0u);
3503 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_size_ == 0u);
3504 CHECK_NE(image_begin, 0U);
3505 std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
3506 CHECK_EQ(compiler_options.IsBootImage(),
3507 Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
3508 << "Compiling a boot image should occur iff there are no boot image spaces loaded";
3509 if (compiler_options_.IsAppImage()) {
3510 // Make sure objects are not crossing region boundaries for app images.
3511 region_size_ = gc::space::RegionSpace::kRegionSize;
3512 }
3513 }
3514
ImageInfo()3515 ImageWriter::ImageInfo::ImageInfo()
3516 : intern_table_(),
3517 class_table_() {}
3518
3519 template <typename DestType>
CopyAndFixupReference(DestType * dest,ObjPtr<mirror::Object> src)3520 void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) {
3521 static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value ||
3522 std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value,
3523 "DestType must be a Compressed-/HeapReference<Object>.");
3524 dest->Assign(GetImageAddress(src.Ptr()));
3525 }
3526
CopyAndFixupPointer(void ** target,void * value,PointerSize pointer_size)3527 void ImageWriter::CopyAndFixupPointer(void** target, void* value, PointerSize pointer_size) {
3528 void* new_value = NativeLocationInImage(value);
3529 if (pointer_size == PointerSize::k32) {
3530 *reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value);
3531 } else {
3532 *reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value);
3533 }
3534 DCHECK(value != nullptr);
3535 }
3536
CopyAndFixupPointer(void ** target,void * value)3537 void ImageWriter::CopyAndFixupPointer(void** target, void* value)
3538 REQUIRES_SHARED(Locks::mutator_lock_) {
3539 CopyAndFixupPointer(target, value, target_ptr_size_);
3540 }
3541
CopyAndFixupPointer(void * object,MemberOffset offset,void * value,PointerSize pointer_size)3542 void ImageWriter::CopyAndFixupPointer(
3543 void* object, MemberOffset offset, void* value, PointerSize pointer_size) {
3544 void** target =
3545 reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value());
3546 return CopyAndFixupPointer(target, value, pointer_size);
3547 }
3548
CopyAndFixupPointer(void * object,MemberOffset offset,void * value)3549 void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, void* value) {
3550 return CopyAndFixupPointer(object, offset, value, target_ptr_size_);
3551 }
3552
3553 } // namespace linker
3554 } // namespace art
3555