1 /*
2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import java.util.Random;
29 import sun.misc.DoubleConsts;
30 
31 /**
32  * The class {@code StrictMath} contains methods for performing basic
33  * numeric operations such as the elementary exponential, logarithm,
34  * square root, and trigonometric functions.
35  *
36  * <p>To help ensure portability of Java programs, the definitions of
37  * some of the numeric functions in this package require that they
38  * produce the same results as certain published algorithms. These
39  * algorithms are available from the well-known network library
40  * {@code netlib} as the package "Freely Distributable Math
41  * Library," <a
42  * href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These
43  * algorithms, which are written in the C programming language, are
44  * then to be understood as executed with all floating-point
45  * operations following the rules of Java floating-point arithmetic.
46  *
47  * <p>The Java math library is defined with respect to
48  * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
49  * more than one definition for a function (such as
50  * {@code acos}), use the "IEEE 754 core function" version
51  * (residing in a file whose name begins with the letter
52  * {@code e}).  The methods which require {@code fdlibm}
53  * semantics are {@code sin}, {@code cos}, {@code tan},
54  * {@code asin}, {@code acos}, {@code atan},
55  * {@code exp}, {@code log}, {@code log10},
56  * {@code cbrt}, {@code atan2}, {@code pow},
57  * {@code sinh}, {@code cosh}, {@code tanh},
58  * {@code hypot}, {@code expm1}, and {@code log1p}.
59  *
60  * <p>
61  * The platform uses signed two's complement integer arithmetic with
62  * int and long primitive types.  The developer should choose
63  * the primitive type to ensure that arithmetic operations consistently
64  * produce correct results, which in some cases means the operations
65  * will not overflow the range of values of the computation.
66  * The best practice is to choose the primitive type and algorithm to avoid
67  * overflow. In cases where the size is {@code int} or {@code long} and
68  * overflow errors need to be detected, the methods {@code addExact},
69  * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact}
70  * throw an {@code ArithmeticException} when the results overflow.
71  * For other arithmetic operations such as divide, absolute value,
72  * increment by one, decrement by one, and negation overflow occurs only with
73  * a specific minimum or maximum value and should be checked against
74  * the minimum or maximum as appropriate.
75  *
76  * @author  unascribed
77  * @author  Joseph D. Darcy
78  * @since   1.3
79  */
80 
81 public final class StrictMath {
82 
83     /**
84      * Don't let anyone instantiate this class.
85      */
StrictMath()86     private StrictMath() {}
87 
88     /**
89      * The {@code double} value that is closer than any other to
90      * <i>e</i>, the base of the natural logarithms.
91      */
92     public static final double E = 2.7182818284590452354;
93 
94     /**
95      * The {@code double} value that is closer than any other to
96      * <i>pi</i>, the ratio of the circumference of a circle to its
97      * diameter.
98      */
99     public static final double PI = 3.14159265358979323846;
100 
101     /**
102      * Constant by which to multiply an angular value in degrees to obtain an
103      * angular value in radians.
104      */
105     private static final double DEGREES_TO_RADIANS = 0.017453292519943295;
106 
107     /**
108      * Constant by which to multiply an angular value in radians to obtain an
109      * angular value in degrees.
110      */
111 
112     private static final double RADIANS_TO_DEGREES = 57.29577951308232;
113 
114     /**
115      * Returns the trigonometric sine of an angle. Special cases:
116      * <ul><li>If the argument is NaN or an infinity, then the
117      * result is NaN.
118      * <li>If the argument is zero, then the result is a zero with the
119      * same sign as the argument.</ul>
120      *
121      * @param   a   an angle, in radians.
122      * @return  the sine of the argument.
123      */
sin(double a)124     public static native double sin(double a);
125 
126     /**
127      * Returns the trigonometric cosine of an angle. Special cases:
128      * <ul><li>If the argument is NaN or an infinity, then the
129      * result is NaN.</ul>
130      *
131      * @param   a   an angle, in radians.
132      * @return  the cosine of the argument.
133      */
cos(double a)134     public static native double cos(double a);
135 
136     /**
137      * Returns the trigonometric tangent of an angle. Special cases:
138      * <ul><li>If the argument is NaN or an infinity, then the result
139      * is NaN.
140      * <li>If the argument is zero, then the result is a zero with the
141      * same sign as the argument.</ul>
142      *
143      * @param   a   an angle, in radians.
144      * @return  the tangent of the argument.
145      */
tan(double a)146     public static native double tan(double a);
147 
148     /**
149      * Returns the arc sine of a value; the returned angle is in the
150      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
151      * <ul><li>If the argument is NaN or its absolute value is greater
152      * than 1, then the result is NaN.
153      * <li>If the argument is zero, then the result is a zero with the
154      * same sign as the argument.</ul>
155      *
156      * @param   a   the value whose arc sine is to be returned.
157      * @return  the arc sine of the argument.
158      */
asin(double a)159     public static native double asin(double a);
160 
161     /**
162      * Returns the arc cosine of a value; the returned angle is in the
163      * range 0.0 through <i>pi</i>.  Special case:
164      * <ul><li>If the argument is NaN or its absolute value is greater
165      * than 1, then the result is NaN.</ul>
166      *
167      * @param   a   the value whose arc cosine is to be returned.
168      * @return  the arc cosine of the argument.
169      */
acos(double a)170     public static native double acos(double a);
171 
172     /**
173      * Returns the arc tangent of a value; the returned angle is in the
174      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
175      * <ul><li>If the argument is NaN, then the result is NaN.
176      * <li>If the argument is zero, then the result is a zero with the
177      * same sign as the argument.</ul>
178      *
179      * @param   a   the value whose arc tangent is to be returned.
180      * @return  the arc tangent of the argument.
181      */
atan(double a)182     public static native double atan(double a);
183 
184     /**
185      * Converts an angle measured in degrees to an approximately
186      * equivalent angle measured in radians.  The conversion from
187      * degrees to radians is generally inexact.
188      *
189      * @param   angdeg   an angle, in degrees
190      * @return  the measurement of the angle {@code angdeg}
191      *          in radians.
192      */
toRadians(double angdeg)193     public static strictfp double toRadians(double angdeg) {
194         // Do not delegate to Math.toRadians(angdeg) because
195         // this method has the strictfp modifier.
196         return angdeg * DEGREES_TO_RADIANS;
197     }
198 
199     /**
200      * Converts an angle measured in radians to an approximately
201      * equivalent angle measured in degrees.  The conversion from
202      * radians to degrees is generally inexact; users should
203      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
204      * equal {@code 0.0}.
205      *
206      * @param   angrad   an angle, in radians
207      * @return  the measurement of the angle {@code angrad}
208      *          in degrees.
209      */
toDegrees(double angrad)210     public static strictfp double toDegrees(double angrad) {
211         // Do not delegate to Math.toDegrees(angrad) because
212         // this method has the strictfp modifier.
213         return angrad * RADIANS_TO_DEGREES;
214     }
215 
216     /**
217      * Returns Euler's number <i>e</i> raised to the power of a
218      * {@code double} value. Special cases:
219      * <ul><li>If the argument is NaN, the result is NaN.
220      * <li>If the argument is positive infinity, then the result is
221      * positive infinity.
222      * <li>If the argument is negative infinity, then the result is
223      * positive zero.</ul>
224      *
225      * @param   a   the exponent to raise <i>e</i> to.
226      * @return  the value <i>e</i><sup>{@code a}</sup>,
227      *          where <i>e</i> is the base of the natural logarithms.
228      */
exp(double a)229     public static native double exp(double a);
230 
231     /**
232      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
233      * value. Special cases:
234      * <ul><li>If the argument is NaN or less than zero, then the result
235      * is NaN.
236      * <li>If the argument is positive infinity, then the result is
237      * positive infinity.
238      * <li>If the argument is positive zero or negative zero, then the
239      * result is negative infinity.</ul>
240      *
241      * @param   a   a value
242      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
243      *          {@code a}.
244      */
log(double a)245     public static native double log(double a);
246 
247 
248     /**
249      * Returns the base 10 logarithm of a {@code double} value.
250      * Special cases:
251      *
252      * <ul><li>If the argument is NaN or less than zero, then the result
253      * is NaN.
254      * <li>If the argument is positive infinity, then the result is
255      * positive infinity.
256      * <li>If the argument is positive zero or negative zero, then the
257      * result is negative infinity.
258      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
259      * integer <i>n</i>, then the result is <i>n</i>.
260      * </ul>
261      *
262      * @param   a   a value
263      * @return  the base 10 logarithm of  {@code a}.
264      * @since 1.5
265      */
log10(double a)266     public static native double log10(double a);
267 
268     /**
269      * Returns the correctly rounded positive square root of a
270      * {@code double} value.
271      * Special cases:
272      * <ul><li>If the argument is NaN or less than zero, then the result
273      * is NaN.
274      * <li>If the argument is positive infinity, then the result is positive
275      * infinity.
276      * <li>If the argument is positive zero or negative zero, then the
277      * result is the same as the argument.</ul>
278      * Otherwise, the result is the {@code double} value closest to
279      * the true mathematical square root of the argument value.
280      *
281      * @param   a   a value.
282      * @return  the positive square root of {@code a}.
283      */
sqrt(double a)284     public static native double sqrt(double a);
285 
286     /**
287      * Returns the cube root of a {@code double} value.  For
288      * positive finite {@code x}, {@code cbrt(-x) ==
289      * -cbrt(x)}; that is, the cube root of a negative value is
290      * the negative of the cube root of that value's magnitude.
291      * Special cases:
292      *
293      * <ul>
294      *
295      * <li>If the argument is NaN, then the result is NaN.
296      *
297      * <li>If the argument is infinite, then the result is an infinity
298      * with the same sign as the argument.
299      *
300      * <li>If the argument is zero, then the result is a zero with the
301      * same sign as the argument.
302      *
303      * </ul>
304      *
305      * @param   a   a value.
306      * @return  the cube root of {@code a}.
307      * @since 1.5
308      */
cbrt(double a)309     public static native double cbrt(double a);
310 
311     /**
312      * Computes the remainder operation on two arguments as prescribed
313      * by the IEEE 754 standard.
314      * The remainder value is mathematically equal to
315      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
316      * where <i>n</i> is the mathematical integer closest to the exact
317      * mathematical value of the quotient {@code f1/f2}, and if two
318      * mathematical integers are equally close to {@code f1/f2},
319      * then <i>n</i> is the integer that is even. If the remainder is
320      * zero, its sign is the same as the sign of the first argument.
321      * Special cases:
322      * <ul><li>If either argument is NaN, or the first argument is infinite,
323      * or the second argument is positive zero or negative zero, then the
324      * result is NaN.
325      * <li>If the first argument is finite and the second argument is
326      * infinite, then the result is the same as the first argument.</ul>
327      *
328      * @param   f1   the dividend.
329      * @param   f2   the divisor.
330      * @return  the remainder when {@code f1} is divided by
331      *          {@code f2}.
332      */
IEEEremainder(double f1, double f2)333     public static native double IEEEremainder(double f1, double f2);
334 
335     /**
336      * Returns the smallest (closest to negative infinity)
337      * {@code double} value that is greater than or equal to the
338      * argument and is equal to a mathematical integer. Special cases:
339      * <ul><li>If the argument value is already equal to a
340      * mathematical integer, then the result is the same as the
341      * argument.  <li>If the argument is NaN or an infinity or
342      * positive zero or negative zero, then the result is the same as
343      * the argument.  <li>If the argument value is less than zero but
344      * greater than -1.0, then the result is negative zero.</ul> Note
345      * that the value of {@code StrictMath.ceil(x)} is exactly the
346      * value of {@code -StrictMath.floor(-x)}.
347      *
348      * @param   a   a value.
349      * @return  the smallest (closest to negative infinity)
350      *          floating-point value that is greater than or equal to
351      *          the argument and is equal to a mathematical integer.
352      */
ceil(double a)353     public static double ceil(double a) {
354         return floorOrCeil(a, -0.0, 1.0, 1.0);
355     }
356 
357     /**
358      * Returns the largest (closest to positive infinity)
359      * {@code double} value that is less than or equal to the
360      * argument and is equal to a mathematical integer. Special cases:
361      * <ul><li>If the argument value is already equal to a
362      * mathematical integer, then the result is the same as the
363      * argument.  <li>If the argument is NaN or an infinity or
364      * positive zero or negative zero, then the result is the same as
365      * the argument.</ul>
366      *
367      * @param   a   a value.
368      * @return  the largest (closest to positive infinity)
369      *          floating-point value that less than or equal to the argument
370      *          and is equal to a mathematical integer.
371      */
floor(double a)372     public static double floor(double a) {
373         return floorOrCeil(a, -1.0, 0.0, -1.0);
374     }
375 
376     /**
377      * Internal method to share logic between floor and ceil.
378      *
379      * @param a the value to be floored or ceiled
380      * @param negativeBoundary result for values in (-1, 0)
381      * @param positiveBoundary result for values in (0, 1)
382      * @param increment value to add when the argument is non-integral
383      */
floorOrCeil(double a, double negativeBoundary, double positiveBoundary, double sign)384     private static double floorOrCeil(double a,
385                                       double negativeBoundary,
386                                       double positiveBoundary,
387                                       double sign) {
388         int exponent = Math.getExponent(a);
389 
390         if (exponent < 0) {
391             /*
392              * Absolute value of argument is less than 1.
393              * floorOrceil(-0.0) => -0.0
394              * floorOrceil(+0.0) => +0.0
395              */
396             return ((a == 0.0) ? a :
397                     ( (a < 0.0) ?  negativeBoundary : positiveBoundary) );
398         } else if (exponent >= 52) {
399             /*
400              * Infinity, NaN, or a value so large it must be integral.
401              */
402             return a;
403         }
404         // Else the argument is either an integral value already XOR it
405         // has to be rounded to one.
406         assert exponent >= 0 && exponent <= 51;
407 
408         long doppel = Double.doubleToRawLongBits(a);
409         long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;
410 
411         if ( (mask & doppel) == 0L )
412             return a; // integral value
413         else {
414             double result = Double.longBitsToDouble(doppel & (~mask));
415             if (sign*a > 0.0)
416                 result = result + sign;
417             return result;
418         }
419     }
420 
421     /**
422      * Returns the {@code double} value that is closest in value
423      * to the argument and is equal to a mathematical integer. If two
424      * {@code double} values that are mathematical integers are
425      * equally close to the value of the argument, the result is the
426      * integer value that is even. Special cases:
427      * <ul><li>If the argument value is already equal to a mathematical
428      * integer, then the result is the same as the argument.
429      * <li>If the argument is NaN or an infinity or positive zero or negative
430      * zero, then the result is the same as the argument.</ul>
431      *
432      * @param   a   a value.
433      * @return  the closest floating-point value to {@code a} that is
434      *          equal to a mathematical integer.
435      * @author Joseph D. Darcy
436      */
rint(double a)437     public static double rint(double a) {
438         /*
439          * If the absolute value of a is not less than 2^52, it
440          * is either a finite integer (the double format does not have
441          * enough significand bits for a number that large to have any
442          * fractional portion), an infinity, or a NaN.  In any of
443          * these cases, rint of the argument is the argument.
444          *
445          * Otherwise, the sum (twoToThe52 + a ) will properly round
446          * away any fractional portion of a since ulp(twoToThe52) ==
447          * 1.0; subtracting out twoToThe52 from this sum will then be
448          * exact and leave the rounded integer portion of a.
449          *
450          * This method does *not* need to be declared strictfp to get
451          * fully reproducible results.  Whether or not a method is
452          * declared strictfp can only make a difference in the
453          * returned result if some operation would overflow or
454          * underflow with strictfp semantics.  The operation
455          * (twoToThe52 + a ) cannot overflow since large values of a
456          * are screened out; the add cannot underflow since twoToThe52
457          * is too large.  The subtraction ((twoToThe52 + a ) -
458          * twoToThe52) will be exact as discussed above and thus
459          * cannot overflow or meaningfully underflow.  Finally, the
460          * last multiply in the return statement is by plus or minus
461          * 1.0, which is exact too.
462          */
463         double twoToThe52 = (double)(1L << 52); // 2^52
464         double sign = Math.copySign(1.0, a); // preserve sign info
465         a = Math.abs(a);
466 
467         if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
468             a = ((twoToThe52 + a ) - twoToThe52);
469         }
470 
471         return sign * a; // restore original sign
472     }
473 
474     /**
475      * Returns the angle <i>theta</i> from the conversion of rectangular
476      * coordinates ({@code x},&nbsp;{@code y}) to polar
477      * coordinates (r,&nbsp;<i>theta</i>).
478      * This method computes the phase <i>theta</i> by computing an arc tangent
479      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
480      * cases:
481      * <ul><li>If either argument is NaN, then the result is NaN.
482      * <li>If the first argument is positive zero and the second argument
483      * is positive, or the first argument is positive and finite and the
484      * second argument is positive infinity, then the result is positive
485      * zero.
486      * <li>If the first argument is negative zero and the second argument
487      * is positive, or the first argument is negative and finite and the
488      * second argument is positive infinity, then the result is negative zero.
489      * <li>If the first argument is positive zero and the second argument
490      * is negative, or the first argument is positive and finite and the
491      * second argument is negative infinity, then the result is the
492      * {@code double} value closest to <i>pi</i>.
493      * <li>If the first argument is negative zero and the second argument
494      * is negative, or the first argument is negative and finite and the
495      * second argument is negative infinity, then the result is the
496      * {@code double} value closest to -<i>pi</i>.
497      * <li>If the first argument is positive and the second argument is
498      * positive zero or negative zero, or the first argument is positive
499      * infinity and the second argument is finite, then the result is the
500      * {@code double} value closest to <i>pi</i>/2.
501      * <li>If the first argument is negative and the second argument is
502      * positive zero or negative zero, or the first argument is negative
503      * infinity and the second argument is finite, then the result is the
504      * {@code double} value closest to -<i>pi</i>/2.
505      * <li>If both arguments are positive infinity, then the result is the
506      * {@code double} value closest to <i>pi</i>/4.
507      * <li>If the first argument is positive infinity and the second argument
508      * is negative infinity, then the result is the {@code double}
509      * value closest to 3*<i>pi</i>/4.
510      * <li>If the first argument is negative infinity and the second argument
511      * is positive infinity, then the result is the {@code double} value
512      * closest to -<i>pi</i>/4.
513      * <li>If both arguments are negative infinity, then the result is the
514      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
515      *
516      * @param   y   the ordinate coordinate
517      * @param   x   the abscissa coordinate
518      * @return  the <i>theta</i> component of the point
519      *          (<i>r</i>,&nbsp;<i>theta</i>)
520      *          in polar coordinates that corresponds to the point
521      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
522      */
atan2(double y, double x)523     public static native double atan2(double y, double x);
524 
525 
526     /**
527      * Returns the value of the first argument raised to the power of the
528      * second argument. Special cases:
529      *
530      * <ul><li>If the second argument is positive or negative zero, then the
531      * result is 1.0.
532      * <li>If the second argument is 1.0, then the result is the same as the
533      * first argument.
534      * <li>If the second argument is NaN, then the result is NaN.
535      * <li>If the first argument is NaN and the second argument is nonzero,
536      * then the result is NaN.
537      *
538      * <li>If
539      * <ul>
540      * <li>the absolute value of the first argument is greater than 1
541      * and the second argument is positive infinity, or
542      * <li>the absolute value of the first argument is less than 1 and
543      * the second argument is negative infinity,
544      * </ul>
545      * then the result is positive infinity.
546      *
547      * <li>If
548      * <ul>
549      * <li>the absolute value of the first argument is greater than 1 and
550      * the second argument is negative infinity, or
551      * <li>the absolute value of the
552      * first argument is less than 1 and the second argument is positive
553      * infinity,
554      * </ul>
555      * then the result is positive zero.
556      *
557      * <li>If the absolute value of the first argument equals 1 and the
558      * second argument is infinite, then the result is NaN.
559      *
560      * <li>If
561      * <ul>
562      * <li>the first argument is positive zero and the second argument
563      * is greater than zero, or
564      * <li>the first argument is positive infinity and the second
565      * argument is less than zero,
566      * </ul>
567      * then the result is positive zero.
568      *
569      * <li>If
570      * <ul>
571      * <li>the first argument is positive zero and the second argument
572      * is less than zero, or
573      * <li>the first argument is positive infinity and the second
574      * argument is greater than zero,
575      * </ul>
576      * then the result is positive infinity.
577      *
578      * <li>If
579      * <ul>
580      * <li>the first argument is negative zero and the second argument
581      * is greater than zero but not a finite odd integer, or
582      * <li>the first argument is negative infinity and the second
583      * argument is less than zero but not a finite odd integer,
584      * </ul>
585      * then the result is positive zero.
586      *
587      * <li>If
588      * <ul>
589      * <li>the first argument is negative zero and the second argument
590      * is a positive finite odd integer, or
591      * <li>the first argument is negative infinity and the second
592      * argument is a negative finite odd integer,
593      * </ul>
594      * then the result is negative zero.
595      *
596      * <li>If
597      * <ul>
598      * <li>the first argument is negative zero and the second argument
599      * is less than zero but not a finite odd integer, or
600      * <li>the first argument is negative infinity and the second
601      * argument is greater than zero but not a finite odd integer,
602      * </ul>
603      * then the result is positive infinity.
604      *
605      * <li>If
606      * <ul>
607      * <li>the first argument is negative zero and the second argument
608      * is a negative finite odd integer, or
609      * <li>the first argument is negative infinity and the second
610      * argument is a positive finite odd integer,
611      * </ul>
612      * then the result is negative infinity.
613      *
614      * <li>If the first argument is finite and less than zero
615      * <ul>
616      * <li> if the second argument is a finite even integer, the
617      * result is equal to the result of raising the absolute value of
618      * the first argument to the power of the second argument
619      *
620      * <li>if the second argument is a finite odd integer, the result
621      * is equal to the negative of the result of raising the absolute
622      * value of the first argument to the power of the second
623      * argument
624      *
625      * <li>if the second argument is finite and not an integer, then
626      * the result is NaN.
627      * </ul>
628      *
629      * <li>If both arguments are integers, then the result is exactly equal
630      * to the mathematical result of raising the first argument to the power
631      * of the second argument if that result can in fact be represented
632      * exactly as a {@code double} value.</ul>
633      *
634      * <p>(In the foregoing descriptions, a floating-point value is
635      * considered to be an integer if and only if it is finite and a
636      * fixed point of the method {@link #ceil ceil} or,
637      * equivalently, a fixed point of the method {@link #floor
638      * floor}. A value is a fixed point of a one-argument
639      * method if and only if the result of applying the method to the
640      * value is equal to the value.)
641      *
642      * @param   a   base.
643      * @param   b   the exponent.
644      * @return  the value {@code a}<sup>{@code b}</sup>.
645      */
pow(double a, double b)646     public static native double pow(double a, double b);
647 
648     /**
649      * Returns the closest {@code int} to the argument, with ties
650      * rounding to positive infinity.
651      *
652      * <p>Special cases:
653      * <ul><li>If the argument is NaN, the result is 0.
654      * <li>If the argument is negative infinity or any value less than or
655      * equal to the value of {@code Integer.MIN_VALUE}, the result is
656      * equal to the value of {@code Integer.MIN_VALUE}.
657      * <li>If the argument is positive infinity or any value greater than or
658      * equal to the value of {@code Integer.MAX_VALUE}, the result is
659      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
660      *
661      * @param   a   a floating-point value to be rounded to an integer.
662      * @return  the value of the argument rounded to the nearest
663      *          {@code int} value.
664      * @see     java.lang.Integer#MAX_VALUE
665      * @see     java.lang.Integer#MIN_VALUE
666      */
round(float a)667     public static int round(float a) {
668         return Math.round(a);
669     }
670 
671     /**
672      * Returns the closest {@code long} to the argument, with ties
673      * rounding to positive infinity.
674      *
675      * <p>Special cases:
676      * <ul><li>If the argument is NaN, the result is 0.
677      * <li>If the argument is negative infinity or any value less than or
678      * equal to the value of {@code Long.MIN_VALUE}, the result is
679      * equal to the value of {@code Long.MIN_VALUE}.
680      * <li>If the argument is positive infinity or any value greater than or
681      * equal to the value of {@code Long.MAX_VALUE}, the result is
682      * equal to the value of {@code Long.MAX_VALUE}.</ul>
683      *
684      * @param   a  a floating-point value to be rounded to a
685      *          {@code long}.
686      * @return  the value of the argument rounded to the nearest
687      *          {@code long} value.
688      * @see     java.lang.Long#MAX_VALUE
689      * @see     java.lang.Long#MIN_VALUE
690      */
round(double a)691     public static long round(double a) {
692         return Math.round(a);
693     }
694 
695     private static final class RandomNumberGeneratorHolder {
696         static final Random randomNumberGenerator = new Random();
697     }
698 
699     /**
700      * Returns a {@code double} value with a positive sign, greater
701      * than or equal to {@code 0.0} and less than {@code 1.0}.
702      * Returned values are chosen pseudorandomly with (approximately)
703      * uniform distribution from that range.
704      *
705      * <p>When this method is first called, it creates a single new
706      * pseudorandom-number generator, exactly as if by the expression
707      *
708      * <blockquote>{@code new java.util.Random()}</blockquote>
709      *
710      * This new pseudorandom-number generator is used thereafter for
711      * all calls to this method and is used nowhere else.
712      *
713      * <p>This method is properly synchronized to allow correct use by
714      * more than one thread. However, if many threads need to generate
715      * pseudorandom numbers at a great rate, it may reduce contention
716      * for each thread to have its own pseudorandom-number generator.
717      *
718      * @return  a pseudorandom {@code double} greater than or equal
719      * to {@code 0.0} and less than {@code 1.0}.
720      * @see Random#nextDouble()
721      */
random()722     public static double random() {
723         return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
724     }
725 
726     /**
727      * Returns the sum of its arguments,
728      * throwing an exception if the result overflows an {@code int}.
729      *
730      * @param x the first value
731      * @param y the second value
732      * @return the result
733      * @throws ArithmeticException if the result overflows an int
734      * @see Math#addExact(int,int)
735      * @since 1.8
736      */
addExact(int x, int y)737     public static int addExact(int x, int y) {
738         return Math.addExact(x, y);
739     }
740 
741     /**
742      * Returns the sum of its arguments,
743      * throwing an exception if the result overflows a {@code long}.
744      *
745      * @param x the first value
746      * @param y the second value
747      * @return the result
748      * @throws ArithmeticException if the result overflows a long
749      * @see Math#addExact(long,long)
750      * @since 1.8
751      */
addExact(long x, long y)752     public static long addExact(long x, long y) {
753         return Math.addExact(x, y);
754     }
755 
756     /**
757      * Returns the difference of the arguments,
758      * throwing an exception if the result overflows an {@code int}.
759      *
760      * @param x the first value
761      * @param y the second value to subtract from the first
762      * @return the result
763      * @throws ArithmeticException if the result overflows an int
764      * @see Math#subtractExact(int,int)
765      * @since 1.8
766      */
subtractExact(int x, int y)767     public static int subtractExact(int x, int y) {
768         return Math.subtractExact(x, y);
769     }
770 
771     /**
772      * Returns the difference of the arguments,
773      * throwing an exception if the result overflows a {@code long}.
774      *
775      * @param x the first value
776      * @param y the second value to subtract from the first
777      * @return the result
778      * @throws ArithmeticException if the result overflows a long
779      * @see Math#subtractExact(long,long)
780      * @since 1.8
781      */
subtractExact(long x, long y)782     public static long subtractExact(long x, long y) {
783         return Math.subtractExact(x, y);
784     }
785 
786     /**
787      * Returns the product of the arguments,
788      * throwing an exception if the result overflows an {@code int}.
789      *
790      * @param x the first value
791      * @param y the second value
792      * @return the result
793      * @throws ArithmeticException if the result overflows an int
794      * @see Math#multiplyExact(int,int)
795      * @since 1.8
796      */
multiplyExact(int x, int y)797     public static int multiplyExact(int x, int y) {
798         return Math.multiplyExact(x, y);
799     }
800 
801     /**
802      * Returns the product of the arguments, throwing an exception if the result
803      * overflows a {@code long}.
804      *
805      * @param x the first value
806      * @param y the second value
807      * @return the result
808      * @throws ArithmeticException if the result overflows a long
809      * @see Math#multiplyExact(long,int)
810      * @since 9
811      */
multiplyExact(long x, int y)812     public static long multiplyExact(long x, int y) {
813         return Math.multiplyExact(x, y);
814     }
815 
816     /**
817      * Returns the product of the arguments,
818      * throwing an exception if the result overflows a {@code long}.
819      *
820      * @param x the first value
821      * @param y the second value
822      * @return the result
823      * @throws ArithmeticException if the result overflows a long
824      * @see Math#multiplyExact(long,long)
825      * @since 1.8
826      */
multiplyExact(long x, long y)827     public static long multiplyExact(long x, long y) {
828         return Math.multiplyExact(x, y);
829     }
830 
831     /**
832      * Returns the value of the {@code long} argument;
833      * throwing an exception if the value overflows an {@code int}.
834      *
835      * @param value the long value
836      * @return the argument as an int
837      * @throws ArithmeticException if the {@code argument} overflows an int
838      * @see Math#toIntExact(long)
839      * @since 1.8
840      */
toIntExact(long value)841     public static int toIntExact(long value) {
842         return Math.toIntExact(value);
843     }
844 
845     /**
846      * Returns the exact mathematical product of the arguments.
847      *
848      * @param x the first value
849      * @param y the second value
850      * @return the result
851      * @see Math#multiplyFull(int,int)
852      * @since 9
853      */
multiplyFull(int x, int y)854     public static long multiplyFull(int x, int y) {
855         return Math.multiplyFull(x, y);
856     }
857 
858     /**
859      * Returns as a {@code long} the most significant 64 bits of the 128-bit
860      * product of two 64-bit factors.
861      *
862      * @param x the first value
863      * @param y the second value
864      * @return the result
865      * @see Math#multiplyHigh(long,long)
866      * @since 9
867      */
multiplyHigh(long x, long y)868     public static long multiplyHigh(long x, long y) {
869         return Math.multiplyHigh(x, y);
870     }
871 
872     /**
873      * Returns the largest (closest to positive infinity)
874      * {@code int} value that is less than or equal to the algebraic quotient.
875      * There is one special case, if the dividend is the
876      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
877      * then integer overflow occurs and
878      * the result is equal to the {@code Integer.MIN_VALUE}.
879      * <p>
880      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
881      * a comparison to the integer division {@code /} operator.
882      *
883      * @param x the dividend
884      * @param y the divisor
885      * @return the largest (closest to positive infinity)
886      * {@code int} value that is less than or equal to the algebraic quotient.
887      * @throws ArithmeticException if the divisor {@code y} is zero
888      * @see Math#floorDiv(int, int)
889      * @see Math#floor(double)
890      * @since 1.8
891      */
floorDiv(int x, int y)892     public static int floorDiv(int x, int y) {
893         return Math.floorDiv(x, y);
894     }
895 
896     /**
897      * Returns the largest (closest to positive infinity)
898      * {@code long} value that is less than or equal to the algebraic quotient.
899      * There is one special case, if the dividend is the
900      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
901      * then integer overflow occurs and
902      * the result is equal to {@code Long.MIN_VALUE}.
903      * <p>
904      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
905      * a comparison to the integer division {@code /} operator.
906      *
907      * @param x the dividend
908      * @param y the divisor
909      * @return the largest (closest to positive infinity)
910      * {@code int} value that is less than or equal to the algebraic quotient.
911      * @throws ArithmeticException if the divisor {@code y} is zero
912      * @see Math#floorDiv(long, int)
913      * @see Math#floor(double)
914      * @since 9
915      */
floorDiv(long x, int y)916     public static long floorDiv(long x, int y) {
917         return Math.floorDiv(x, y);
918     }
919 
920     /**
921      * Returns the largest (closest to positive infinity)
922      * {@code long} value that is less than or equal to the algebraic quotient.
923      * There is one special case, if the dividend is the
924      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
925      * then integer overflow occurs and
926      * the result is equal to the {@code Long.MIN_VALUE}.
927      * <p>
928      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
929      * a comparison to the integer division {@code /} operator.
930      *
931      * @param x the dividend
932      * @param y the divisor
933      * @return the largest (closest to positive infinity)
934      * {@code long} value that is less than or equal to the algebraic quotient.
935      * @throws ArithmeticException if the divisor {@code y} is zero
936      * @see Math#floorDiv(long, long)
937      * @see Math#floor(double)
938      * @since 1.8
939      */
floorDiv(long x, long y)940     public static long floorDiv(long x, long y) {
941         return Math.floorDiv(x, y);
942     }
943 
944     /**
945      * Returns the floor modulus of the {@code int} arguments.
946      * <p>
947      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
948      * has the same sign as the divisor {@code y}, and
949      * is in the range of {@code -abs(y) < r < +abs(y)}.
950      * <p>
951      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
952      * <ul>
953      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
954      * </ul>
955      * <p>
956      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
957      * a comparison to the {@code %} operator.
958      *
959      * @param x the dividend
960      * @param y the divisor
961      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
962      * @throws ArithmeticException if the divisor {@code y} is zero
963      * @see Math#floorMod(int, int)
964      * @see StrictMath#floorDiv(int, int)
965      * @since 1.8
966      */
floorMod(int x, int y)967     public static int floorMod(int x, int y) {
968         return Math.floorMod(x , y);
969     }
970 
971     /**
972      * Returns the floor modulus of the {@code long} and {@code int} arguments.
973      * <p>
974      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
975      * has the same sign as the divisor {@code y}, and
976      * is in the range of {@code -abs(y) < r < +abs(y)}.
977      *
978      * <p>
979      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
980      * <ul>
981      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
982      * </ul>
983      * <p>
984      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
985      * a comparison to the {@code %} operator.
986      *
987      * @param x the dividend
988      * @param y the divisor
989      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
990      * @throws ArithmeticException if the divisor {@code y} is zero
991      * @see Math#floorMod(long, int)
992      * @see StrictMath#floorDiv(long, int)
993      * @since 9
994      */
floorMod(long x, int y)995     public static int floorMod(long x, int y) {
996         return Math.floorMod(x , y);
997     }
998 
999     /**
1000      * Returns the floor modulus of the {@code long} arguments.
1001      * <p>
1002      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1003      * has the same sign as the divisor {@code y}, and
1004      * is in the range of {@code -abs(y) < r < +abs(y)}.
1005      * <p>
1006      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1007      * <ul>
1008      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1009      * </ul>
1010      * <p>
1011      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
1012      * a comparison to the {@code %} operator.
1013      *
1014      * @param x the dividend
1015      * @param y the divisor
1016      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1017      * @throws ArithmeticException if the divisor {@code y} is zero
1018      * @see Math#floorMod(long, long)
1019      * @see StrictMath#floorDiv(long, long)
1020      * @since 1.8
1021      */
floorMod(long x, long y)1022     public static long floorMod(long x, long y) {
1023         return Math.floorMod(x, y);
1024     }
1025 
1026     /**
1027      * Returns the absolute value of an {@code int} value.
1028      * If the argument is not negative, the argument is returned.
1029      * If the argument is negative, the negation of the argument is returned.
1030      *
1031      * <p>Note that if the argument is equal to the value of
1032      * {@link Integer#MIN_VALUE}, the most negative representable
1033      * {@code int} value, the result is that same value, which is
1034      * negative.
1035      *
1036      * @param   a   the  argument whose absolute value is to be determined.
1037      * @return  the absolute value of the argument.
1038      */
abs(int a)1039     public static int abs(int a) {
1040         return Math.abs(a);
1041     }
1042 
1043     /**
1044      * Returns the absolute value of a {@code long} value.
1045      * If the argument is not negative, the argument is returned.
1046      * If the argument is negative, the negation of the argument is returned.
1047      *
1048      * <p>Note that if the argument is equal to the value of
1049      * {@link Long#MIN_VALUE}, the most negative representable
1050      * {@code long} value, the result is that same value, which
1051      * is negative.
1052      *
1053      * @param   a   the  argument whose absolute value is to be determined.
1054      * @return  the absolute value of the argument.
1055      */
abs(long a)1056     public static long abs(long a) {
1057         return Math.abs(a);
1058     }
1059 
1060     /**
1061      * Returns the absolute value of a {@code float} value.
1062      * If the argument is not negative, the argument is returned.
1063      * If the argument is negative, the negation of the argument is returned.
1064      * Special cases:
1065      * <ul><li>If the argument is positive zero or negative zero, the
1066      * result is positive zero.
1067      * <li>If the argument is infinite, the result is positive infinity.
1068      * <li>If the argument is NaN, the result is NaN.</ul>
1069      * In other words, the result is the same as the value of the expression:
1070      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
1071      *
1072      * @param   a   the argument whose absolute value is to be determined
1073      * @return  the absolute value of the argument.
1074      */
abs(float a)1075     public static float abs(float a) {
1076         return Math.abs(a);
1077     }
1078 
1079     /**
1080      * Returns the absolute value of a {@code double} value.
1081      * If the argument is not negative, the argument is returned.
1082      * If the argument is negative, the negation of the argument is returned.
1083      * Special cases:
1084      * <ul><li>If the argument is positive zero or negative zero, the result
1085      * is positive zero.
1086      * <li>If the argument is infinite, the result is positive infinity.
1087      * <li>If the argument is NaN, the result is NaN.</ul>
1088      * In other words, the result is the same as the value of the expression:
1089      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
1090      *
1091      * @param   a   the argument whose absolute value is to be determined
1092      * @return  the absolute value of the argument.
1093      */
abs(double a)1094     public static double abs(double a) {
1095         return Math.abs(a);
1096     }
1097 
1098     /**
1099      * Returns the greater of two {@code int} values. That is, the
1100      * result is the argument closer to the value of
1101      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1102      * the result is that same value.
1103      *
1104      * @param   a   an argument.
1105      * @param   b   another argument.
1106      * @return  the larger of {@code a} and {@code b}.
1107      */
max(int a, int b)1108     public static int max(int a, int b) {
1109         return Math.max(a, b);
1110     }
1111 
1112     /**
1113      * Returns the greater of two {@code long} values. That is, the
1114      * result is the argument closer to the value of
1115      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1116      * the result is that same value.
1117      *
1118      * @param   a   an argument.
1119      * @param   b   another argument.
1120      * @return  the larger of {@code a} and {@code b}.
1121         */
max(long a, long b)1122     public static long max(long a, long b) {
1123         return Math.max(a, b);
1124     }
1125 
1126     /**
1127      * Returns the greater of two {@code float} values.  That is,
1128      * the result is the argument closer to positive infinity. If the
1129      * arguments have the same value, the result is that same
1130      * value. If either value is NaN, then the result is NaN.  Unlike
1131      * the numerical comparison operators, this method considers
1132      * negative zero to be strictly smaller than positive zero. If one
1133      * argument is positive zero and the other negative zero, the
1134      * result is positive zero.
1135      *
1136      * @param   a   an argument.
1137      * @param   b   another argument.
1138      * @return  the larger of {@code a} and {@code b}.
1139      */
max(float a, float b)1140     public static float max(float a, float b) {
1141         return Math.max(a, b);
1142     }
1143 
1144     /**
1145      * Returns the greater of two {@code double} values.  That
1146      * is, the result is the argument closer to positive infinity. If
1147      * the arguments have the same value, the result is that same
1148      * value. If either value is NaN, then the result is NaN.  Unlike
1149      * the numerical comparison operators, this method considers
1150      * negative zero to be strictly smaller than positive zero. If one
1151      * argument is positive zero and the other negative zero, the
1152      * result is positive zero.
1153      *
1154      * @param   a   an argument.
1155      * @param   b   another argument.
1156      * @return  the larger of {@code a} and {@code b}.
1157      */
max(double a, double b)1158     public static double max(double a, double b) {
1159         return Math.max(a, b);
1160     }
1161 
1162     /**
1163      * Returns the smaller of two {@code int} values. That is,
1164      * the result the argument closer to the value of
1165      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1166      * value, the result is that same value.
1167      *
1168      * @param   a   an argument.
1169      * @param   b   another argument.
1170      * @return  the smaller of {@code a} and {@code b}.
1171      */
min(int a, int b)1172     public static int min(int a, int b) {
1173         return Math.min(a, b);
1174     }
1175 
1176     /**
1177      * Returns the smaller of two {@code long} values. That is,
1178      * the result is the argument closer to the value of
1179      * {@link Long#MIN_VALUE}. If the arguments have the same
1180      * value, the result is that same value.
1181      *
1182      * @param   a   an argument.
1183      * @param   b   another argument.
1184      * @return  the smaller of {@code a} and {@code b}.
1185      */
min(long a, long b)1186     public static long min(long a, long b) {
1187         return Math.min(a, b);
1188     }
1189 
1190     /**
1191      * Returns the smaller of two {@code float} values.  That is,
1192      * the result is the value closer to negative infinity. If the
1193      * arguments have the same value, the result is that same
1194      * value. If either value is NaN, then the result is NaN.  Unlike
1195      * the numerical comparison operators, this method considers
1196      * negative zero to be strictly smaller than positive zero.  If
1197      * one argument is positive zero and the other is negative zero,
1198      * the result is negative zero.
1199      *
1200      * @param   a   an argument.
1201      * @param   b   another argument.
1202      * @return  the smaller of {@code a} and {@code b.}
1203      */
min(float a, float b)1204     public static float min(float a, float b) {
1205         return Math.min(a, b);
1206     }
1207 
1208     /**
1209      * Returns the smaller of two {@code double} values.  That
1210      * is, the result is the value closer to negative infinity. If the
1211      * arguments have the same value, the result is that same
1212      * value. If either value is NaN, then the result is NaN.  Unlike
1213      * the numerical comparison operators, this method considers
1214      * negative zero to be strictly smaller than positive zero. If one
1215      * argument is positive zero and the other is negative zero, the
1216      * result is negative zero.
1217      *
1218      * @param   a   an argument.
1219      * @param   b   another argument.
1220      * @return  the smaller of {@code a} and {@code b}.
1221      */
min(double a, double b)1222     public static double min(double a, double b) {
1223         return Math.min(a, b);
1224     }
1225 
1226     /**
1227      * Returns the size of an ulp of the argument.  An ulp, unit in
1228      * the last place, of a {@code double} value is the positive
1229      * distance between this floating-point value and the {@code
1230      * double} value next larger in magnitude.  Note that for non-NaN
1231      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1232      *
1233      * <p>Special Cases:
1234      * <ul>
1235      * <li> If the argument is NaN, then the result is NaN.
1236      * <li> If the argument is positive or negative infinity, then the
1237      * result is positive infinity.
1238      * <li> If the argument is positive or negative zero, then the result is
1239      * {@code Double.MIN_VALUE}.
1240      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1241      * the result is equal to 2<sup>971</sup>.
1242      * </ul>
1243      *
1244      * @param d the floating-point value whose ulp is to be returned
1245      * @return the size of an ulp of the argument
1246      * @author Joseph D. Darcy
1247      * @since 1.5
1248      */
ulp(double d)1249     public static double ulp(double d) {
1250         return Math.ulp(d);
1251     }
1252 
1253     /**
1254      * Returns the size of an ulp of the argument.  An ulp, unit in
1255      * the last place, of a {@code float} value is the positive
1256      * distance between this floating-point value and the {@code
1257      * float} value next larger in magnitude.  Note that for non-NaN
1258      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1259      *
1260      * <p>Special Cases:
1261      * <ul>
1262      * <li> If the argument is NaN, then the result is NaN.
1263      * <li> If the argument is positive or negative infinity, then the
1264      * result is positive infinity.
1265      * <li> If the argument is positive or negative zero, then the result is
1266      * {@code Float.MIN_VALUE}.
1267      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1268      * the result is equal to 2<sup>104</sup>.
1269      * </ul>
1270      *
1271      * @param f the floating-point value whose ulp is to be returned
1272      * @return the size of an ulp of the argument
1273      * @author Joseph D. Darcy
1274      * @since 1.5
1275      */
ulp(float f)1276     public static float ulp(float f) {
1277         return Math.ulp(f);
1278     }
1279 
1280     /**
1281      * Returns the signum function of the argument; zero if the argument
1282      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1283      * argument is less than zero.
1284      *
1285      * <p>Special Cases:
1286      * <ul>
1287      * <li> If the argument is NaN, then the result is NaN.
1288      * <li> If the argument is positive zero or negative zero, then the
1289      *      result is the same as the argument.
1290      * </ul>
1291      *
1292      * @param d the floating-point value whose signum is to be returned
1293      * @return the signum function of the argument
1294      * @author Joseph D. Darcy
1295      * @since 1.5
1296      */
signum(double d)1297     public static double signum(double d) {
1298         return Math.signum(d);
1299     }
1300 
1301     /**
1302      * Returns the signum function of the argument; zero if the argument
1303      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1304      * argument is less than zero.
1305      *
1306      * <p>Special Cases:
1307      * <ul>
1308      * <li> If the argument is NaN, then the result is NaN.
1309      * <li> If the argument is positive zero or negative zero, then the
1310      *      result is the same as the argument.
1311      * </ul>
1312      *
1313      * @param f the floating-point value whose signum is to be returned
1314      * @return the signum function of the argument
1315      * @author Joseph D. Darcy
1316      * @since 1.5
1317      */
signum(float f)1318     public static float signum(float f) {
1319         return Math.signum(f);
1320     }
1321 
1322     /**
1323      * Returns the hyperbolic sine of a {@code double} value.
1324      * The hyperbolic sine of <i>x</i> is defined to be
1325      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1326      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1327      *
1328      * <p>Special cases:
1329      * <ul>
1330      *
1331      * <li>If the argument is NaN, then the result is NaN.
1332      *
1333      * <li>If the argument is infinite, then the result is an infinity
1334      * with the same sign as the argument.
1335      *
1336      * <li>If the argument is zero, then the result is a zero with the
1337      * same sign as the argument.
1338      *
1339      * </ul>
1340      *
1341      * @param   x The number whose hyperbolic sine is to be returned.
1342      * @return  The hyperbolic sine of {@code x}.
1343      * @since 1.5
1344      */
sinh(double x)1345     public static native double sinh(double x);
1346 
1347     /**
1348      * Returns the hyperbolic cosine of a {@code double} value.
1349      * The hyperbolic cosine of <i>x</i> is defined to be
1350      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1351      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1352      *
1353      * <p>Special cases:
1354      * <ul>
1355      *
1356      * <li>If the argument is NaN, then the result is NaN.
1357      *
1358      * <li>If the argument is infinite, then the result is positive
1359      * infinity.
1360      *
1361      * <li>If the argument is zero, then the result is {@code 1.0}.
1362      *
1363      * </ul>
1364      *
1365      * @param   x The number whose hyperbolic cosine is to be returned.
1366      * @return  The hyperbolic cosine of {@code x}.
1367      * @since 1.5
1368      */
cosh(double x)1369     public static native double cosh(double x);
1370 
1371     /**
1372      * Returns the hyperbolic tangent of a {@code double} value.
1373      * The hyperbolic tangent of <i>x</i> is defined to be
1374      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1375      * in other words, {@linkplain Math#sinh
1376      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1377      * that the absolute value of the exact tanh is always less than
1378      * 1.
1379      *
1380      * <p>Special cases:
1381      * <ul>
1382      *
1383      * <li>If the argument is NaN, then the result is NaN.
1384      *
1385      * <li>If the argument is zero, then the result is a zero with the
1386      * same sign as the argument.
1387      *
1388      * <li>If the argument is positive infinity, then the result is
1389      * {@code +1.0}.
1390      *
1391      * <li>If the argument is negative infinity, then the result is
1392      * {@code -1.0}.
1393      *
1394      * </ul>
1395      *
1396      * @param   x The number whose hyperbolic tangent is to be returned.
1397      * @return  The hyperbolic tangent of {@code x}.
1398      * @since 1.5
1399      */
tanh(double x)1400     public static native double tanh(double x);
1401 
1402     /**
1403      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1404      * without intermediate overflow or underflow.
1405      *
1406      * <p>Special cases:
1407      * <ul>
1408      *
1409      * <li> If either argument is infinite, then the result
1410      * is positive infinity.
1411      *
1412      * <li> If either argument is NaN and neither argument is infinite,
1413      * then the result is NaN.
1414      *
1415      * </ul>
1416      *
1417      * @param x a value
1418      * @param y a value
1419      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1420      * without intermediate overflow or underflow
1421      * @since 1.5
1422      */
hypot(double x, double y)1423     public static native double hypot(double x, double y);
1424 
1425     /**
1426      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1427      * <i>x</i> near 0, the exact sum of
1428      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1429      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1430      *
1431      * <p>Special cases:
1432      * <ul>
1433      * <li>If the argument is NaN, the result is NaN.
1434      *
1435      * <li>If the argument is positive infinity, then the result is
1436      * positive infinity.
1437      *
1438      * <li>If the argument is negative infinity, then the result is
1439      * -1.0.
1440      *
1441      * <li>If the argument is zero, then the result is a zero with the
1442      * same sign as the argument.
1443      *
1444      * </ul>
1445      *
1446      * @param   x   the exponent to raise <i>e</i> to in the computation of
1447      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1448      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1449      * @since 1.5
1450      */
expm1(double x)1451     public static native double expm1(double x);
1452 
1453     /**
1454      * Returns the natural logarithm of the sum of the argument and 1.
1455      * Note that for small values {@code x}, the result of
1456      * {@code log1p(x)} is much closer to the true result of ln(1
1457      * + {@code x}) than the floating-point evaluation of
1458      * {@code log(1.0+x)}.
1459      *
1460      * <p>Special cases:
1461      * <ul>
1462      *
1463      * <li>If the argument is NaN or less than -1, then the result is
1464      * NaN.
1465      *
1466      * <li>If the argument is positive infinity, then the result is
1467      * positive infinity.
1468      *
1469      * <li>If the argument is negative one, then the result is
1470      * negative infinity.
1471      *
1472      * <li>If the argument is zero, then the result is a zero with the
1473      * same sign as the argument.
1474      *
1475      * </ul>
1476      *
1477      * @param   x   a value
1478      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1479      * log of {@code x}&nbsp;+&nbsp;1
1480      * @since 1.5
1481      */
log1p(double x)1482     public static native double log1p(double x);
1483 
1484     /**
1485      * Returns the first floating-point argument with the sign of the
1486      * second floating-point argument.  For this method, a NaN
1487      * {@code sign} argument is always treated as if it were
1488      * positive.
1489      *
1490      * @param magnitude  the parameter providing the magnitude of the result
1491      * @param sign   the parameter providing the sign of the result
1492      * @return a value with the magnitude of {@code magnitude}
1493      * and the sign of {@code sign}.
1494      * @since 1.6
1495      */
copySign(double magnitude, double sign)1496     public static double copySign(double magnitude, double sign) {
1497         return Math.copySign(magnitude, (Double.isNaN(sign)?1.0d:sign));
1498     }
1499 
1500     /**
1501      * Returns the first floating-point argument with the sign of the
1502      * second floating-point argument.  For this method, a NaN
1503      * {@code sign} argument is always treated as if it were
1504      * positive.
1505      *
1506      * @param magnitude  the parameter providing the magnitude of the result
1507      * @param sign   the parameter providing the sign of the result
1508      * @return a value with the magnitude of {@code magnitude}
1509      * and the sign of {@code sign}.
1510      * @since 1.6
1511      */
copySign(float magnitude, float sign)1512     public static float copySign(float magnitude, float sign) {
1513         return Math.copySign(magnitude, (Float.isNaN(sign)?1.0f:sign));
1514     }
1515     /**
1516      * Returns the unbiased exponent used in the representation of a
1517      * {@code float}.  Special cases:
1518      *
1519      * <ul>
1520      * <li>If the argument is NaN or infinite, then the result is
1521      * {@link Float#MAX_EXPONENT} + 1.
1522      * <li>If the argument is zero or subnormal, then the result is
1523      * {@link Float#MIN_EXPONENT} -1.
1524      * </ul>
1525      * @param f a {@code float} value
1526      * @return the unbiased exponent of the argument
1527      * @since 1.6
1528      */
getExponent(float f)1529     public static int getExponent(float f) {
1530         return Math.getExponent(f);
1531     }
1532 
1533     /**
1534      * Returns the unbiased exponent used in the representation of a
1535      * {@code double}.  Special cases:
1536      *
1537      * <ul>
1538      * <li>If the argument is NaN or infinite, then the result is
1539      * {@link Double#MAX_EXPONENT} + 1.
1540      * <li>If the argument is zero or subnormal, then the result is
1541      * {@link Double#MIN_EXPONENT} -1.
1542      * </ul>
1543      * @param d a {@code double} value
1544      * @return the unbiased exponent of the argument
1545      * @since 1.6
1546      */
getExponent(double d)1547     public static int getExponent(double d) {
1548         return Math.getExponent(d);
1549     }
1550 
1551     /**
1552      * Returns the floating-point number adjacent to the first
1553      * argument in the direction of the second argument.  If both
1554      * arguments compare as equal the second argument is returned.
1555      *
1556      * <p>Special cases:
1557      * <ul>
1558      * <li> If either argument is a NaN, then NaN is returned.
1559      *
1560      * <li> If both arguments are signed zeros, {@code direction}
1561      * is returned unchanged (as implied by the requirement of
1562      * returning the second argument if the arguments compare as
1563      * equal).
1564      *
1565      * <li> If {@code start} is
1566      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1567      * has a value such that the result should have a smaller
1568      * magnitude, then a zero with the same sign as {@code start}
1569      * is returned.
1570      *
1571      * <li> If {@code start} is infinite and
1572      * {@code direction} has a value such that the result should
1573      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1574      * same sign as {@code start} is returned.
1575      *
1576      * <li> If {@code start} is equal to &plusmn;
1577      * {@link Double#MAX_VALUE} and {@code direction} has a
1578      * value such that the result should have a larger magnitude, an
1579      * infinity with same sign as {@code start} is returned.
1580      * </ul>
1581      *
1582      * @param start  starting floating-point value
1583      * @param direction value indicating which of
1584      * {@code start}'s neighbors or {@code start} should
1585      * be returned
1586      * @return The floating-point number adjacent to {@code start} in the
1587      * direction of {@code direction}.
1588      * @since 1.6
1589      */
nextAfter(double start, double direction)1590     public static double nextAfter(double start, double direction) {
1591         return Math.nextAfter(start, direction);
1592     }
1593 
1594     /**
1595      * Returns the floating-point number adjacent to the first
1596      * argument in the direction of the second argument.  If both
1597      * arguments compare as equal a value equivalent to the second argument
1598      * is returned.
1599      *
1600      * <p>Special cases:
1601      * <ul>
1602      * <li> If either argument is a NaN, then NaN is returned.
1603      *
1604      * <li> If both arguments are signed zeros, a value equivalent
1605      * to {@code direction} is returned.
1606      *
1607      * <li> If {@code start} is
1608      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1609      * has a value such that the result should have a smaller
1610      * magnitude, then a zero with the same sign as {@code start}
1611      * is returned.
1612      *
1613      * <li> If {@code start} is infinite and
1614      * {@code direction} has a value such that the result should
1615      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1616      * same sign as {@code start} is returned.
1617      *
1618      * <li> If {@code start} is equal to &plusmn;
1619      * {@link Float#MAX_VALUE} and {@code direction} has a
1620      * value such that the result should have a larger magnitude, an
1621      * infinity with same sign as {@code start} is returned.
1622      * </ul>
1623      *
1624      * @param start  starting floating-point value
1625      * @param direction value indicating which of
1626      * {@code start}'s neighbors or {@code start} should
1627      * be returned
1628      * @return The floating-point number adjacent to {@code start} in the
1629      * direction of {@code direction}.
1630      * @since 1.6
1631      */
nextAfter(float start, double direction)1632     public static float nextAfter(float start, double direction) {
1633         return Math.nextAfter(start, direction);
1634     }
1635 
1636     /**
1637      * Returns the floating-point value adjacent to {@code d} in
1638      * the direction of positive infinity.  This method is
1639      * semantically equivalent to {@code nextAfter(d,
1640      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1641      * implementation may run faster than its equivalent
1642      * {@code nextAfter} call.
1643      *
1644      * <p>Special Cases:
1645      * <ul>
1646      * <li> If the argument is NaN, the result is NaN.
1647      *
1648      * <li> If the argument is positive infinity, the result is
1649      * positive infinity.
1650      *
1651      * <li> If the argument is zero, the result is
1652      * {@link Double#MIN_VALUE}
1653      *
1654      * </ul>
1655      *
1656      * @param d starting floating-point value
1657      * @return The adjacent floating-point value closer to positive
1658      * infinity.
1659      * @since 1.6
1660      */
nextUp(double d)1661     public static double nextUp(double d) {
1662         return Math.nextUp(d);
1663     }
1664 
1665     /**
1666      * Returns the floating-point value adjacent to {@code f} in
1667      * the direction of positive infinity.  This method is
1668      * semantically equivalent to {@code nextAfter(f,
1669      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1670      * implementation may run faster than its equivalent
1671      * {@code nextAfter} call.
1672      *
1673      * <p>Special Cases:
1674      * <ul>
1675      * <li> If the argument is NaN, the result is NaN.
1676      *
1677      * <li> If the argument is positive infinity, the result is
1678      * positive infinity.
1679      *
1680      * <li> If the argument is zero, the result is
1681      * {@link Float#MIN_VALUE}
1682      *
1683      * </ul>
1684      *
1685      * @param f starting floating-point value
1686      * @return The adjacent floating-point value closer to positive
1687      * infinity.
1688      * @since 1.6
1689      */
nextUp(float f)1690     public static float nextUp(float f) {
1691         return Math.nextUp(f);
1692     }
1693 
1694     /**
1695      * Returns the floating-point value adjacent to {@code d} in
1696      * the direction of negative infinity.  This method is
1697      * semantically equivalent to {@code nextAfter(d,
1698      * Double.NEGATIVE_INFINITY)}; however, a
1699      * {@code nextDown} implementation may run faster than its
1700      * equivalent {@code nextAfter} call.
1701      *
1702      * <p>Special Cases:
1703      * <ul>
1704      * <li> If the argument is NaN, the result is NaN.
1705      *
1706      * <li> If the argument is negative infinity, the result is
1707      * negative infinity.
1708      *
1709      * <li> If the argument is zero, the result is
1710      * {@code -Double.MIN_VALUE}
1711      *
1712      * </ul>
1713      *
1714      * @param d  starting floating-point value
1715      * @return The adjacent floating-point value closer to negative
1716      * infinity.
1717      * @since 1.8
1718      */
nextDown(double d)1719     public static double nextDown(double d) {
1720         return Math.nextDown(d);
1721     }
1722 
1723     /**
1724      * Returns the floating-point value adjacent to {@code f} in
1725      * the direction of negative infinity.  This method is
1726      * semantically equivalent to {@code nextAfter(f,
1727      * Float.NEGATIVE_INFINITY)}; however, a
1728      * {@code nextDown} implementation may run faster than its
1729      * equivalent {@code nextAfter} call.
1730      *
1731      * <p>Special Cases:
1732      * <ul>
1733      * <li> If the argument is NaN, the result is NaN.
1734      *
1735      * <li> If the argument is negative infinity, the result is
1736      * negative infinity.
1737      *
1738      * <li> If the argument is zero, the result is
1739      * {@code -Float.MIN_VALUE}
1740      *
1741      * </ul>
1742      *
1743      * @param f  starting floating-point value
1744      * @return The adjacent floating-point value closer to negative
1745      * infinity.
1746      * @since 1.8
1747      */
nextDown(float f)1748     public static float nextDown(float f) {
1749         return Math.nextDown(f);
1750     }
1751 
1752     /**
1753      * Returns {@code d} &times;
1754      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1755      * by a single correctly rounded floating-point multiply to a
1756      * member of the double value set.  See the Java
1757      * Language Specification for a discussion of floating-point
1758      * value sets.  If the exponent of the result is between {@link
1759      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
1760      * answer is calculated exactly.  If the exponent of the result
1761      * would be larger than {@code Double.MAX_EXPONENT}, an
1762      * infinity is returned.  Note that if the result is subnormal,
1763      * precision may be lost; that is, when {@code scalb(x, n)}
1764      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1765      * <i>x</i>.  When the result is non-NaN, the result has the same
1766      * sign as {@code d}.
1767      *
1768      * <p>Special cases:
1769      * <ul>
1770      * <li> If the first argument is NaN, NaN is returned.
1771      * <li> If the first argument is infinite, then an infinity of the
1772      * same sign is returned.
1773      * <li> If the first argument is zero, then a zero of the same
1774      * sign is returned.
1775      * </ul>
1776      *
1777      * @param d number to be scaled by a power of two.
1778      * @param scaleFactor power of 2 used to scale {@code d}
1779      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
1780      * @since 1.6
1781      */
scalb(double d, int scaleFactor)1782     public static double scalb(double d, int scaleFactor) {
1783         return Math.scalb(d, scaleFactor);
1784     }
1785 
1786     /**
1787      * Returns {@code f} &times;
1788      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1789      * by a single correctly rounded floating-point multiply to a
1790      * member of the float value set.  See the Java
1791      * Language Specification for a discussion of floating-point
1792      * value sets.  If the exponent of the result is between {@link
1793      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
1794      * answer is calculated exactly.  If the exponent of the result
1795      * would be larger than {@code Float.MAX_EXPONENT}, an
1796      * infinity is returned.  Note that if the result is subnormal,
1797      * precision may be lost; that is, when {@code scalb(x, n)}
1798      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1799      * <i>x</i>.  When the result is non-NaN, the result has the same
1800      * sign as {@code f}.
1801      *
1802      * <p>Special cases:
1803      * <ul>
1804      * <li> If the first argument is NaN, NaN is returned.
1805      * <li> If the first argument is infinite, then an infinity of the
1806      * same sign is returned.
1807      * <li> If the first argument is zero, then a zero of the same
1808      * sign is returned.
1809      * </ul>
1810      *
1811      * @param f number to be scaled by a power of two.
1812      * @param scaleFactor power of 2 used to scale {@code f}
1813      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
1814      * @since 1.6
1815      */
scalb(float f, int scaleFactor)1816     public static float scalb(float f, int scaleFactor) {
1817         return Math.scalb(f, scaleFactor);
1818     }
1819 }
1820