/hardware/interfaces/neuralnetworks/1.3/ |
D | IBuffer.hal | 45 * @param dimensions Updated dimensional information. If the dimensions of the IBuffer object 46 * are not fully specified, then the dimensions must be fully specified here. If the 47 * dimensions of the IBuffer object are fully specified, then the dimensions may be empty 48 * here. If dimensions.size() > 0, then all dimensions must be specified here, and any 54 * - INVALID_ARGUMENT if provided memory is invalid, or if the dimensions is invalid 56 copyFrom(memory src, vec<uint32_t> dimensions) generates (ErrorStatus status);
|
/hardware/interfaces/neuralnetworks/1.2/utils/src/ |
D | ExecutionBurstUtils.cpp | 75 count += input.dimensions.size(); in serialize() 78 count += output.dimensions.size(); in serialize() 101 .numberOfDimensions = static_cast<uint32_t>(input.dimensions.size())}); in serialize() 104 for (uint32_t dimension : input.dimensions) { in serialize() 117 .numberOfDimensions = static_cast<uint32_t>(output.dimensions.size())}); in serialize() 120 for (uint32_t dimension : output.dimensions) { in serialize() 149 count += outputShape.dimensions.size(); in serialize() 168 .numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size())}); in serialize() 171 for (uint32_t dimension : operand.dimensions) { in serialize() 230 std::vector<uint32_t> dimensions; in deserialize() local [all …]
|
/hardware/interfaces/neuralnetworks/1.1/ |
D | types.hal | 33 * dimensions of shape block_shape + [batch], interleaves these blocks back 34 * into the grid defined by the spatial dimensions [1, ..., M], to obtain a 63 * dimensions. The output is the result of dividing the first input tensor 66 * Two dimensions are compatible when: 71 * input operands. It starts with the trailing dimensions, and works its way 86 * * 1: A tensor of the same {@link OperandType}, and compatible dimensions 98 * Computes the mean of elements across dimensions of a tensor. 100 * Reduces the input tensor along the given dimensions to reduce. Unless 102 * in axis. If keep_dims is true, the reduced dimensions are retained with 113 * * 1: A 1-D Tensor of {@link OperandType::TENSOR_INT32}. The dimensions [all …]
|
/hardware/interfaces/neuralnetworks/1.0/vts/functional/ |
D | BasicTests.cpp | 81 .dimensions = {1}, in TEST_P() 91 .dimensions = {1}, in TEST_P() 101 .dimensions = {}, in TEST_P() 111 .dimensions = {1}, in TEST_P() 121 .dimensions = {1}, in TEST_P() 131 .dimensions = {1}, in TEST_P()
|
D | Utils.cpp | 118 inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}}; in createRequest() 140 outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}}; in createRequest() 213 if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0; in sizeOfData() 214 return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize, in sizeOfData()
|
/hardware/interfaces/neuralnetworks/1.1/vts/functional/ |
D | BasicTests.cpp | 88 .dimensions = {1}, in TEST_P() 98 .dimensions = {1}, in TEST_P() 108 .dimensions = {}, in TEST_P() 118 .dimensions = {1}, in TEST_P() 128 .dimensions = {1}, in TEST_P() 138 .dimensions = {1}, in TEST_P()
|
/hardware/interfaces/neuralnetworks/utils/adapter/src/ |
D | Buffer.cpp | 50 const hidl_vec<uint32_t>& dimensions) { in copyFrom() argument 52 NN_TRY(buffer->copyFrom(memory, dimensions)); in copyFrom() 73 const hidl_vec<uint32_t>& dimensions) { in copyFrom() argument 74 auto result = adapter::copyFrom(kBuffer, src, dimensions); in copyFrom()
|
/hardware/interfaces/neuralnetworks/aidl/vts/functional/ |
D | BasicTests.cpp | 94 .dimensions = {1}, in TEST_P() 103 .dimensions = {1}, in TEST_P() 112 .dimensions = {}, in TEST_P() 121 .dimensions = {1}, in TEST_P() 130 .dimensions = {1}, in TEST_P() 139 .dimensions = {1}, in TEST_P()
|
D | MemoryDomainTests.cpp | 78 static_cast<nn::OperandType>(operand.type), operand.dimensions); in createDummyData() 90 .dimensions = {}, in createInt32Scalar() 106 .dimensions = {operand.dimensions[3], 3, 3, operand.dimensions[3]}, in createConvModel() 114 .dimensions = {operand.dimensions[3]}, in createConvModel() 161 .dimensions = {}, in createSingleAddModel() 231 kTestOperand.dimensions)) {} in MemoryDomainTestBase() 270 .dimensions = {1, 32, 32, 8}, 279 .dimensions = {1, 32, 32, 8}, 288 .dimensions = {1, 32, 32, 8}, 297 .dimensions = {1, 32, 32, 8}, [all …]
|
/hardware/interfaces/neuralnetworks/1.3/vts/functional/ |
D | BasicTests.cpp | 103 .dimensions = {1}, in TEST_P() 113 .dimensions = {1}, in TEST_P() 123 .dimensions = {}, in TEST_P() 133 .dimensions = {1}, in TEST_P() 143 .dimensions = {1}, in TEST_P() 153 .dimensions = {1}, in TEST_P()
|
D | Utils.cpp | 82 if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0; in sizeOfData() 83 return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize, in sizeOfData()
|
/hardware/interfaces/neuralnetworks/1.2/vts/functional/ |
D | Utils.cpp | 78 if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0; in sizeOfData() 79 return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize, in sizeOfData()
|
D | BasicTests.cpp | 162 .dimensions = {1}, in TEST_P() 172 .dimensions = {1}, in TEST_P() 182 .dimensions = {}, in TEST_P() 192 .dimensions = {1}, in TEST_P() 202 .dimensions = {1}, in TEST_P() 212 .dimensions = {1}, in TEST_P()
|
/hardware/interfaces/neuralnetworks/utils/common/src/ |
D | ResilientBuffer.cpp | 108 const nn::Dimensions& dimensions) const { in copyFrom() 109 const auto fn = [&src, &dimensions](const nn::IBuffer& buffer) { in copyFrom() 110 return buffer.copyFrom(src, dimensions); in copyFrom()
|
/hardware/interfaces/neuralnetworks/aidl/utils/src/ |
D | Buffer.cpp | 68 const nn::Dimensions& dimensions) const { in copyFrom() 70 const auto aidlDimensions = NN_TRY(toSigned(dimensions)); in copyFrom()
|
/hardware/interfaces/neuralnetworks/1.3/utils/src/ |
D | Buffer.cpp | 75 const nn::Dimensions& dimensions) const { in copyFrom() 77 const auto hidlDimensions = hidl_vec<uint32_t>(dimensions); in copyFrom()
|
/hardware/interfaces/neuralnetworks/aidl/aidl_api/android.hardware.neuralnetworks/current/android/hardware/neuralnetworks/ |
D | BufferDesc.aidl | 37 int[] dimensions;
|
D | OutputShape.aidl | 37 int[] dimensions;
|
D | RequestArgument.aidl | 39 int[] dimensions;
|
/hardware/interfaces/neuralnetworks/aidl/aidl_api/android.hardware.neuralnetworks/1/android/hardware/neuralnetworks/ |
D | BufferDesc.aidl | 37 int[] dimensions;
|
D | OutputShape.aidl | 37 int[] dimensions;
|
D | RequestArgument.aidl | 39 int[] dimensions;
|
/hardware/interfaces/neuralnetworks/aidl/android/hardware/neuralnetworks/ |
D | BufferDesc.aidl | 29 int[] dimensions;
|
D | OutputShape.aidl | 27 int[] dimensions;
|
/hardware/interfaces/neuralnetworks/1.0/utils/src/ |
D | Conversions.cpp | 129 .dimensions = operand.dimensions, in unvalidatedConvert() 188 .dimensions = argument.dimensions, in unvalidatedConvert() 313 .dimensions = operand.dimensions, in unvalidatedConvert() 375 .dimensions = requestArgument.dimensions, in unvalidatedConvert()
|