1 /*
2  *  Licensed to the Apache Software Foundation (ASF) under one or more
3  *  contributor license agreements.  See the NOTICE file distributed with
4  *  this work for additional information regarding copyright ownership.
5  *  The ASF licenses this file to You under the Apache License, Version 2.0
6  *  (the "License"); you may not use this file except in compliance with
7  *  the License.  You may obtain a copy of the License at
8  *
9  *     http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  */
17 
18 package org.apache.harmony.tests.java.lang;
19 
20 public class MathTest extends junit.framework.TestCase {
21 
22     double HYP = Math.sqrt(2.0);
23 
24     double OPP = 1.0;
25 
26     double ADJ = 1.0;
27 
28     /* Required to make previous preprocessor flags work - do not remove */
29     int unused = 0;
30 
31     /**
32      * java.lang.Math#abs(double)
33      */
test_absD()34     public void test_absD() {
35         // Test for method double java.lang.Math.abs(double)
36 
37         assertTrue("Incorrect double abs value",
38                 (Math.abs(-1908.8976) == 1908.8976));
39         assertTrue("Incorrect double abs value",
40                 (Math.abs(1908.8976) == 1908.8976));
41     }
42 
43     /**
44      * java.lang.Math#abs(float)
45      */
test_absF()46     public void test_absF() {
47         // Test for method float java.lang.Math.abs(float)
48         assertTrue("Incorrect float abs value",
49                 (Math.abs(-1908.8976f) == 1908.8976f));
50         assertTrue("Incorrect float abs value",
51                 (Math.abs(1908.8976f) == 1908.8976f));
52     }
53 
54     /**
55      * java.lang.Math#abs(int)
56      */
test_absI()57     public void test_absI() {
58         // Test for method int java.lang.Math.abs(int)
59         assertTrue("Incorrect int abs value", (Math.abs(-1908897) == 1908897));
60         assertTrue("Incorrect int abs value", (Math.abs(1908897) == 1908897));
61     }
62 
63     /**
64      * java.lang.Math#abs(long)
65      */
test_absJ()66     public void test_absJ() {
67         // Test for method long java.lang.Math.abs(long)
68         assertTrue("Incorrect long abs value",
69                 (Math.abs(-19088976000089L) == 19088976000089L));
70         assertTrue("Incorrect long abs value",
71                 (Math.abs(19088976000089L) == 19088976000089L));
72     }
73 
74     /**
75      * java.lang.Math#acos(double)
76      */
test_acosD()77     public void test_acosD() {
78         // Test for method double java.lang.Math.acos(double)
79         double r = Math.cos(Math.acos(ADJ / HYP));
80         long lr = Double.doubleToLongBits(r);
81         long t = Double.doubleToLongBits(ADJ / HYP);
82         assertTrue("Returned incorrect arc cosine", lr == t || (lr + 1) == t
83                 || (lr - 1) == t);
84     }
85 
86     /**
87      * java.lang.Math#asin(double)
88      */
test_asinD()89     public void test_asinD() {
90         // Test for method double java.lang.Math.asin(double)
91         double r = Math.sin(Math.asin(OPP / HYP));
92         long lr = Double.doubleToLongBits(r);
93         long t = Double.doubleToLongBits(OPP / HYP);
94         assertTrue("Returned incorrect arc sine", lr == t || (lr + 1) == t
95                 || (lr - 1) == t);
96     }
97 
98     /**
99      * java.lang.Math#atan(double)
100      */
test_atanD()101     public void test_atanD() {
102         // Test for method double java.lang.Math.atan(double)
103         double answer = Math.tan(Math.atan(1.0));
104         assertTrue("Returned incorrect arc tangent: " + answer, answer <= 1.0
105                 && answer >= 9.9999999999999983E-1);
106     }
107 
108     /**
109      * java.lang.Math#atan2(double, double)
110      */
test_atan2DD()111     public void test_atan2DD() {
112         // Test for method double java.lang.Math.atan2(double, double)
113         double answer = Math.atan(Math.tan(1.0));
114         assertTrue("Returned incorrect arc tangent: " + answer, answer <= 1.0
115                 && answer >= 9.9999999999999983E-1);
116     }
117 
118     /**
119      * java.lang.Math#cbrt(double)
120      */
test_cbrt_D()121     public void test_cbrt_D() {
122         //Test for special situations
123         assertTrue(Double.isNaN(Math.cbrt(Double.NaN)));
124         assertEquals(Double.POSITIVE_INFINITY, Math.cbrt(Double.POSITIVE_INFINITY), 0D);
125         assertEquals(Double.NEGATIVE_INFINITY, Math.cbrt(Double.NEGATIVE_INFINITY), 0D);
126         assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math.cbrt(0.0)));
127         assertEquals(Double.doubleToLongBits(+0.0), Double.doubleToLongBits(Math.cbrt(+0.0)));
128         assertEquals(Double.doubleToLongBits(-0.0), Double.doubleToLongBits(Math.cbrt(-0.0)));
129 
130         assertEquals(3.0, Math.cbrt(27.0), 0D);
131         assertEquals(23.111993172558684, Math.cbrt(12345.6), Math.ulp(23.111993172558684));
132         assertEquals(5.643803094122362E102, Math.cbrt(Double.MAX_VALUE), 0D);
133         assertEquals(0.01, Math.cbrt(0.000001), 0D);
134 
135         assertEquals(-3.0, Math.cbrt(-27.0), 0D);
136         assertEquals(-23.111993172558684, Math.cbrt(-12345.6), Math.ulp(-23.111993172558684));
137         assertEquals(1.7031839360032603E-108, Math.cbrt(Double.MIN_VALUE), 0D);
138         assertEquals(-0.01, Math.cbrt(-0.000001), 0D);
139     }
140 
141     /**
142      * java.lang.Math#ceil(double)
143      */
test_ceilD()144     public void test_ceilD() {
145         // Test for method double java.lang.Math.ceil(double)
146         assertEquals("Incorrect ceiling for double",
147                 79, Math.ceil(78.89), 0);
148         assertEquals("Incorrect ceiling for double",
149                 -78, Math.ceil(-78.89), 0);
150     }
151 
152     /**
153      * cases for test_copySign_DD in MathTest/StrictMathTest
154      */
155     static final double[] COPYSIGN_DD_CASES = new double[] {
156             Double.POSITIVE_INFINITY, Double.MAX_VALUE, 3.4E302, 2.3,
157             Double.MIN_NORMAL, Double.MIN_NORMAL / 2, Double.MIN_VALUE, +0.0,
158             0.0, -0.0, -Double.MIN_VALUE, -Double.MIN_NORMAL / 2,
159             -Double.MIN_NORMAL, -4.5, -3.4E102, -Double.MAX_VALUE,
160             Double.NEGATIVE_INFINITY };
161 
162     /**
163      * {@link java.lang.Math#copySign(double, double)}
164      * @since 1.6
165      */
166     @SuppressWarnings("boxing")
test_copySign_DD()167     public void test_copySign_DD() {
168         for (int i = 0; i < COPYSIGN_DD_CASES.length; i++) {
169             final double magnitude = COPYSIGN_DD_CASES[i];
170             final long absMagnitudeBits = Double.doubleToLongBits(Math
171                     .abs(magnitude));
172             final long negMagnitudeBits = Double.doubleToLongBits(-Math
173                     .abs(magnitude));
174 
175             // cases for NaN
176             assertEquals("If the sign is NaN, the result should be positive.",
177                     absMagnitudeBits, Double.doubleToLongBits(Math.copySign(
178                     magnitude, Double.NaN)));
179             assertTrue("The result should be NaN.", Double.isNaN(Math.copySign(
180                     Double.NaN, magnitude)));
181 
182             for (int j = 0; j < COPYSIGN_DD_CASES.length; j++) {
183                 final double sign = COPYSIGN_DD_CASES[j];
184                 final long resultBits = Double.doubleToLongBits(Math.copySign(
185                         magnitude, sign));
186 
187                 if (sign > 0 || Double.valueOf(+0.0).equals(sign)
188                         || Double.valueOf(0.0).equals(sign)) {
189                     assertEquals(
190                             "If the sign is positive, the result should be positive.",
191                             absMagnitudeBits, resultBits);
192                 }
193                 if (sign < 0 || Double.valueOf(-0.0).equals(sign)) {
194                     assertEquals(
195                             "If the sign is negative, the result should be negative.",
196                             negMagnitudeBits, resultBits);
197                 }
198             }
199         }
200 
201         assertTrue("The result should be NaN.", Double.isNaN(Math.copySign(
202                 Double.NaN, Double.NaN)));
203 
204         try {
205             Math.copySign((Double) null, 2.3);
206             fail("Should throw NullPointerException");
207         } catch (NullPointerException e) {
208             // Expected
209         }
210         try {
211             Math.copySign(2.3, (Double) null);
212             fail("Should throw NullPointerException");
213         } catch (NullPointerException e) {
214             // Expected
215         }
216         try {
217             Math.copySign((Double) null, (Double) null);
218             fail("Should throw NullPointerException");
219         } catch (NullPointerException e) {
220             // Expected
221         }
222     }
223 
224     /**
225      * cases for test_copySign_FF in MathTest/StrictMathTest
226      */
227     static final float[] COPYSIGN_FF_CASES = new float[] {
228             Float.POSITIVE_INFINITY, Float.MAX_VALUE, 3.4E12f, 2.3f,
229             Float.MIN_NORMAL, Float.MIN_NORMAL / 2, Float.MIN_VALUE, +0.0f,
230             0.0f, -0.0f, -Float.MIN_VALUE, -Float.MIN_NORMAL / 2,
231             -Float.MIN_NORMAL, -4.5f, -5.6442E21f, -Float.MAX_VALUE,
232             Float.NEGATIVE_INFINITY };
233 
234     /**
235      * {@link java.lang.Math#copySign(float, float)}
236      * @since 1.6
237      */
238     @SuppressWarnings("boxing")
test_copySign_FF()239     public void test_copySign_FF() {
240         for (int i = 0; i < COPYSIGN_FF_CASES.length; i++) {
241             final float magnitude = COPYSIGN_FF_CASES[i];
242             final int absMagnitudeBits = Float.floatToIntBits(Math
243                     .abs(magnitude));
244             final int negMagnitudeBits = Float.floatToIntBits(-Math
245                     .abs(magnitude));
246 
247             // cases for NaN
248             assertEquals("If the sign is NaN, the result should be positive.",
249                     absMagnitudeBits, Float.floatToIntBits(Math.copySign(
250                     magnitude, Float.NaN)));
251             assertTrue("The result should be NaN.", Float.isNaN(Math.copySign(
252                     Float.NaN, magnitude)));
253 
254             for (int j = 0; j < COPYSIGN_FF_CASES.length; j++) {
255                 final float sign = COPYSIGN_FF_CASES[j];
256                 final int resultBits = Float.floatToIntBits(Math.copySign(
257                         magnitude, sign));
258                 if (sign > 0 || Float.valueOf(+0.0f).equals(sign)
259                         || Float.valueOf(0.0f).equals(sign)) {
260                     assertEquals(
261                             "If the sign is positive, the result should be positive.",
262                             absMagnitudeBits, resultBits);
263                 }
264                 if (sign < 0 || Float.valueOf(-0.0f).equals(sign)) {
265                     assertEquals(
266                             "If the sign is negative, the result should be negative.",
267                             negMagnitudeBits, resultBits);
268                 }
269             }
270         }
271 
272         assertTrue("The result should be NaN.", Float.isNaN(Math.copySign(
273                 Float.NaN, Float.NaN)));
274 
275         try {
276             Math.copySign((Float) null, 2.3f);
277             fail("Should throw NullPointerException");
278         } catch (NullPointerException e) {
279             // Expected
280         }
281         try {
282             Math.copySign(2.3f, (Float) null);
283             fail("Should throw NullPointerException");
284         } catch (NullPointerException e) {
285             // Expected
286         }
287         try {
288             Math.copySign((Float) null, (Float) null);
289             fail("Should throw NullPointerException");
290         } catch (NullPointerException e) {
291             // Expected
292         }
293     }
294 
295     /**
296      * java.lang.Math#cos(double)
297      */
test_cosD()298     public void test_cosD() {
299         // Test for method double java.lang.Math.cos(double)
300         assertEquals("Incorrect answer", 1.0, Math.cos(0), 0D);
301         assertEquals("Incorrect answer", 0.5403023058681398, Math.cos(1), 0D);
302     }
303 
304     /**
305      * java.lang.Math#cosh(double)
306      */
test_cosh_D()307     public void test_cosh_D() {
308         // Test for special situations
309         assertTrue(Double.isNaN(Math.cosh(Double.NaN)));
310         assertEquals("Should return POSITIVE_INFINITY",
311                 Double.POSITIVE_INFINITY, Math.cosh(Double.POSITIVE_INFINITY), 0D);
312         assertEquals("Should return POSITIVE_INFINITY",
313                 Double.POSITIVE_INFINITY, Math.cosh(Double.NEGATIVE_INFINITY), 0D);
314         assertEquals("Should return 1.0", 1.0, Math.cosh(+0.0), 0D);
315         assertEquals("Should return 1.0", 1.0, Math.cosh(-0.0), 0D);
316 
317         assertEquals("Should return POSITIVE_INFINITY",
318                 Double.POSITIVE_INFINITY, Math.cosh(1234.56), 0D);
319         assertEquals("Should return POSITIVE_INFINITY",
320                 Double.POSITIVE_INFINITY, Math.cosh(-1234.56), 0D);
321         assertEquals("Should return 1.0000000000005", 1.0000000000005, Math
322                 .cosh(0.000001), 0D);
323         assertEquals("Should return 1.0000000000005", 1.0000000000005, Math
324                 .cosh(-0.000001), 0D);
325         assertEquals("Should return 5.212214351945598", 5.212214351945598, Math
326                 .cosh(2.33482), 0D);
327 
328         assertEquals("Should return POSITIVE_INFINITY",
329                 Double.POSITIVE_INFINITY, Math.cosh(Double.MAX_VALUE), 0D);
330         assertEquals("Should return 1.0", 1.0, Math.cosh(Double.MIN_VALUE), 0D);
331     }
332 
333     /**
334      * java.lang.Math#exp(double)
335      */
test_expD()336     public void test_expD() {
337         // Test for method double java.lang.Math.exp(double)
338         assertTrue("Incorrect answer returned for simple power", Math.abs(Math
339                 .exp(4D)
340                 - Math.E * Math.E * Math.E * Math.E) < 0.1D);
341         assertTrue("Incorrect answer returned for larger power", Math.log(Math
342                 .abs(Math.exp(5.5D)) - 5.5D) < 10.0D);
343     }
344 
345     /**
346      * java.lang.Math#expm1(double)
347      */
test_expm1_D()348     public void test_expm1_D() {
349         // Test for special cases
350         assertTrue("Should return NaN", Double.isNaN(Math.expm1(Double.NaN)));
351         assertEquals("Should return POSITIVE_INFINITY",
352                 Double.POSITIVE_INFINITY, Math.expm1(Double.POSITIVE_INFINITY), 0D);
353         assertEquals("Should return -1.0", -1.0, Math
354                 .expm1(Double.NEGATIVE_INFINITY), 0D);
355         assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
356                 .expm1(0.0)));
357         assertEquals(Double.doubleToLongBits(+0.0), Double
358                 .doubleToLongBits(Math.expm1(+0.0)));
359         assertEquals(Double.doubleToLongBits(-0.0), Double
360                 .doubleToLongBits(Math.expm1(-0.0)));
361 
362         assertEquals("Should return -9.999950000166666E-6",
363                 -9.999950000166666E-6, Math.expm1(-0.00001), 0D);
364         assertEquals("Should return 1.0145103074469635E60",
365                 1.0145103074469635E60, Math.expm1(138.16951162), 0D);
366         assertEquals("Should return POSITIVE_INFINITY",
367                 Double.POSITIVE_INFINITY, Math
368                 .expm1(123456789123456789123456789.4521584223), 0D);
369         assertEquals("Should return POSITIVE_INFINITY",
370                 Double.POSITIVE_INFINITY, Math.expm1(Double.MAX_VALUE), 0D);
371         assertEquals("Should return MIN_VALUE", Double.MIN_VALUE, Math
372                 .expm1(Double.MIN_VALUE), 0D);
373     }
374 
375     /**
376      * java.lang.Math#floor(double)
377      */
test_floorD()378     public void test_floorD() {
379         assertEquals("Incorrect floor for int", 42, Math.floor(42), 0);
380         assertEquals("Incorrect floor for -int", -2, Math.floor(-2), 0);
381         assertEquals("Incorrect floor for zero", 0d, Math.floor(0d), 0);
382 
383         assertEquals("Incorrect floor for +double", 78, Math.floor(78.89), 0);
384         assertEquals("Incorrect floor for -double", -79, Math.floor(-78.89), 0);
385         assertEquals("floor large +double", 3.7314645675925406E19, Math.floor(3.7314645675925406E19), 0);
386         assertEquals("floor large -double", -8.173521839218E12, Math.floor(-8.173521839218E12), 0);
387         assertEquals("floor small double", 0.0d, Math.floor(1.11895241315E-102), 0);
388 
389         // Compare toString representations here since -0.0 = +0.0, and
390         // NaN != NaN and we need to distinguish
391         assertEquals("Floor failed for NaN",
392                 Double.toString(Double.NaN), Double.toString(Math.floor(Double.NaN)));
393         assertEquals("Floor failed for +0.0",
394                 Double.toString(+0.0d), Double.toString(Math.floor(+0.0d)));
395         assertEquals("Floor failed for -0.0",
396                 Double.toString(-0.0d), Double.toString(Math.floor(-0.0d)));
397         assertEquals("Floor failed for +infinity",
398                 Double.toString(Double.POSITIVE_INFINITY), Double.toString(Math.floor(Double.POSITIVE_INFINITY)));
399         assertEquals("Floor failed for -infinity",
400                 Double.toString(Double.NEGATIVE_INFINITY), Double.toString(Math.floor(Double.NEGATIVE_INFINITY)));
401     }
402 
403     /**
404      * cases for test_getExponent_D in MathTest/StrictMathTest
405      */
406     static final double GETEXPONENT_D_CASES[] = new double[] {
407             Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY,
408             Double.MAX_VALUE, -Double.MAX_VALUE, 2.342E231, -2.342E231, 2800.0,
409             -2800.0, 5.323, -5.323, 1.323, -1.323, 0.623, -0.623, 0.323,
410             -0.323, Double.MIN_NORMAL * 24, -Double.MIN_NORMAL * 24,
411             Double.MIN_NORMAL, -Double.MIN_NORMAL, Double.MIN_NORMAL / 2,
412             -Double.MIN_NORMAL / 2, Double.MIN_VALUE, -Double.MIN_VALUE, +0.0,
413             0.0, -0.0, Double.NaN };
414 
415     /**
416      * result for test_getExponent_D in MathTest/StrictMathTest
417      */
418     static final int GETEXPONENT_D_RESULTS[] = new int[] {
419             Double.MAX_EXPONENT + 1, Double.MAX_EXPONENT + 1,
420             Double.MAX_EXPONENT, Double.MAX_EXPONENT, 768, 768, 11, 11, 2, 2,
421             0, 0, -1, -1, -2, -2, -1018, -1018, Double.MIN_EXPONENT,
422             Double.MIN_EXPONENT, Double.MIN_EXPONENT - 1,
423             Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
424             Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
425             Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
426             Double.MAX_EXPONENT + 1 };
427 
428     /**
429      * {@link java.lang.Math#getExponent(double)}
430      * @since 1.6
431      */
432     @SuppressWarnings("boxing")
test_getExponent_D()433     public void test_getExponent_D() {
434         for (int i = 0; i < GETEXPONENT_D_CASES.length; i++) {
435             final double number = GETEXPONENT_D_CASES[i];
436             final int result = GETEXPONENT_D_RESULTS[i];
437             assertEquals("Wrong result of getExponent(double).", result, Math
438                     .getExponent(number));
439         }
440 
441         try {
442             Math.getExponent((Double) null);
443             fail("Should throw NullPointerException");
444         } catch (NullPointerException e) {
445             // Expected
446         }
447     }
448 
449     /**
450      * cases for test_getExponent_F in MathTest/StrictMathTest
451      */
452     static final float GETEXPONENT_F_CASES[] = new float[] {
453             Float.POSITIVE_INFINITY, Float.NEGATIVE_INFINITY, Float.MAX_VALUE,
454             -Float.MAX_VALUE, 3.4256E23f, -3.4256E23f, 2800.0f, -2800.0f,
455             5.323f, -5.323f, 1.323f, -1.323f, 0.623f, -0.623f, 0.323f, -0.323f,
456             Float.MIN_NORMAL * 24, -Float.MIN_NORMAL * 24, Float.MIN_NORMAL,
457             -Float.MIN_NORMAL, Float.MIN_NORMAL / 2, -Float.MIN_NORMAL / 2,
458             Float.MIN_VALUE, -Float.MIN_VALUE, +0.0f, 0.0f, -0.0f, Float.NaN, 1, Float.MIN_NORMAL * 1.5f };
459 
460     /**
461      * result for test_getExponent_F in MathTest/StrictMathTest
462      */
463     static final int GETEXPONENT_F_RESULTS[] = new int[] {
464             Float.MAX_EXPONENT + 1, Float.MAX_EXPONENT + 1, Float.MAX_EXPONENT,
465             Float.MAX_EXPONENT, 78, 78, 11, 11, 2, 2, 0, 0, -1, -1, -2, -2,
466             -122, -122, Float.MIN_EXPONENT, Float.MIN_EXPONENT,
467             Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
468             Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
469             Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
470             Float.MIN_EXPONENT - 1, Float.MAX_EXPONENT + 1, 0, Float.MIN_EXPONENT };
471 
472     /**
473      * {@link java.lang.Math#getExponent(float)}
474      * @since 1.6
475      */
476     @SuppressWarnings("boxing")
test_getExponent_F()477     public void test_getExponent_F() {
478         for (int i = 0; i < GETEXPONENT_F_CASES.length; i++) {
479             final float number = GETEXPONENT_F_CASES[i];
480             final int result = GETEXPONENT_F_RESULTS[i];
481             assertEquals("Wrong result of getExponent(float).", result, Math
482                     .getExponent(number));
483         }
484         try {
485             Math.getExponent((Float) null);
486             fail("Should throw NullPointerException");
487         } catch (NullPointerException e) {
488             // Expected
489         }
490     }
491 
492     /**
493      * java.lang.Math#hypot(double, double)
494      */
test_hypot_DD()495     public void test_hypot_DD() {
496         // Test for special cases
497         assertEquals("Should return POSITIVE_INFINITY",
498                 Double.POSITIVE_INFINITY, Math.hypot(Double.POSITIVE_INFINITY,
499                 1.0), 0D);
500         assertEquals("Should return POSITIVE_INFINITY",
501                 Double.POSITIVE_INFINITY, Math.hypot(Double.NEGATIVE_INFINITY,
502                 123.324), 0D);
503         assertEquals("Should return POSITIVE_INFINITY",
504                 Double.POSITIVE_INFINITY, Math.hypot(-758.2587,
505                 Double.POSITIVE_INFINITY), 0D);
506         assertEquals("Should return POSITIVE_INFINITY",
507                 Double.POSITIVE_INFINITY, Math.hypot(5687.21,
508                 Double.NEGATIVE_INFINITY), 0D);
509         assertEquals("Should return POSITIVE_INFINITY",
510                 Double.POSITIVE_INFINITY, Math.hypot(Double.POSITIVE_INFINITY,
511                 Double.NEGATIVE_INFINITY), 0D);
512         assertEquals("Should return POSITIVE_INFINITY",
513                 Double.POSITIVE_INFINITY, Math.hypot(Double.NEGATIVE_INFINITY,
514                 Double.POSITIVE_INFINITY), 0D);
515         assertTrue("Should be NaN", Double.isNaN(Math.hypot(Double.NaN,
516                 2342301.89843)));
517         assertTrue("Should be NaN", Double.isNaN(Math.hypot(-345.2680,
518                 Double.NaN)));
519 
520         assertEquals("Should return 2396424.905416697", 2396424.905416697, Math
521                 .hypot(12322.12, -2396393.2258), 0D);
522         assertEquals("Should return 138.16958070558556", 138.16958070558556,
523                 Math.hypot(-138.16951162, 0.13817035864), 0D);
524         assertEquals("Should return 1.7976931348623157E308",
525                 1.7976931348623157E308, Math.hypot(Double.MAX_VALUE, 211370.35), 0D);
526         assertEquals("Should return 5413.7185", 5413.7185, Math.hypot(
527                 -5413.7185, Double.MIN_VALUE), 0D);
528     }
529 
530     /**
531      * java.lang.Math#IEEEremainder(double, double)
532      */
test_IEEEremainderDD()533     public void test_IEEEremainderDD() {
534         // Test for method double java.lang.Math.IEEEremainder(double, double)
535         assertEquals("Incorrect remainder returned",
536                 0.0, Math.IEEEremainder(1.0, 1.0), 0D);
537         assertTrue("Incorrect remainder returned", Math.IEEEremainder(1.32,
538                 89.765) >= 1.4705063220631647E-2
539                 || Math.IEEEremainder(1.32, 89.765) >= 1.4705063220631649E-2);
540     }
541 
542     /**
543      * java.lang.Math#log(double)
544      */
test_logD()545     public void test_logD() {
546         // Test for method double java.lang.Math.log(double)
547         for (double d = 10; d >= -10; d -= 0.5) {
548             double answer = Math.log(Math.exp(d));
549             assertTrue("Answer does not equal expected answer for d = " + d
550                     + " answer = " + answer, Math.abs(answer - d) <= Math
551                     .abs(d * 0.00000001));
552         }
553     }
554 
555     /**
556      * java.lang.Math#log10(double)
557      */
558     @SuppressWarnings("boxing")
test_log10_D()559     public void test_log10_D() {
560         // Test for special cases
561         assertTrue(Double.isNaN(Math.log10(Double.NaN)));
562         assertTrue(Double.isNaN(Math.log10(-2541.05745687234187532)));
563         assertTrue(Double.isNaN(Math.log10(-0.1)));
564         assertEquals(Double.POSITIVE_INFINITY, Math.log10(Double.POSITIVE_INFINITY));
565         assertEquals(Double.NEGATIVE_INFINITY, Math.log10(0.0));
566         assertEquals(Double.NEGATIVE_INFINITY, Math.log10(+0.0));
567         assertEquals(Double.NEGATIVE_INFINITY, Math.log10(-0.0));
568 
569         assertEquals(3.0, Math.log10(1000.0));
570         assertEquals(14.0, Math.log10(Math.pow(10, 14)));
571         assertEquals(3.7389561269540406, Math.log10(5482.2158));
572         assertEquals(14.661551142893833, Math.log10(458723662312872.125782332587));
573         assertEquals(-0.9083828622192334, Math.log10(0.12348583358871));
574         assertEquals(308.25471555991675, Math.log10(Double.MAX_VALUE));
575         assertEquals(-323.3062153431158, Math.log10(Double.MIN_VALUE));
576     }
577 
578     /**
579      * java.lang.Math#log1p(double)
580      */
test_log1p_D()581     public void test_log1p_D() {
582         // Test for special cases
583         assertTrue("Should return NaN", Double.isNaN(Math.log1p(Double.NaN)));
584         assertTrue("Should return NaN", Double.isNaN(Math.log1p(-32.0482175)));
585         assertEquals("Should return POSITIVE_INFINITY",
586                 Double.POSITIVE_INFINITY, Math.log1p(Double.POSITIVE_INFINITY), 0D);
587         assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
588                 .log1p(0.0)));
589         assertEquals(Double.doubleToLongBits(+0.0), Double
590                 .doubleToLongBits(Math.log1p(+0.0)));
591         assertEquals(Double.doubleToLongBits(-0.0), Double
592                 .doubleToLongBits(Math.log1p(-0.0)));
593 
594         assertEquals("Should return -0.2941782295312541", -0.2941782295312541,
595                 Math.log1p(-0.254856327), 0D);
596         assertEquals("Should return 7.368050685564151", 7.368050685564151, Math
597                 .log1p(1583.542), 0D);
598         assertEquals("Should return 0.4633708685409921", 0.4633708685409921,
599                 Math.log1p(0.5894227), 0D);
600         assertEquals("Should return 709.782712893384", 709.782712893384, Math
601                 .log1p(Double.MAX_VALUE), 0D);
602         assertEquals("Should return Double.MIN_VALUE", Double.MIN_VALUE, Math
603                 .log1p(Double.MIN_VALUE), 0D);
604     }
605 
test_maxDD_Math()606     public void test_maxDD_Math() {
607         test_maxDD(true /* use Math */);
608     }
609 
test_maxDD_Double()610     public void test_maxDD_Double() {
611         test_maxDD(false /* use Math */);
612     }
613 
614     /**
615      * java.lang.Math#max(double, double)
616      */
test_maxDD(boolean useMath)617     private static void test_maxDD(boolean useMath) {
618         // Test for method double java.lang.Math.max(double, double)
619         assertEquals("Incorrect double max value", 1908897.6000089,
620                 max(-1908897.6000089, 1908897.6000089, useMath), 0D);
621         assertEquals("Incorrect double max value",
622                 1908897.6000089, max(2.0, 1908897.6000089, useMath), 0D);
623         assertEquals("Incorrect double max value", -2.0, max(-2.0, -1908897.6000089, useMath), 0D);
624 
625         // Compare toString representations here since -0.0 = +0.0, and
626         // NaN != NaN and we need to distinguish
627         assertEquals("Max failed for NaN",
628                 Double.toString(Double.NaN), Double.toString(max(Double.NaN, 42.0d, useMath)));
629         assertEquals("Max failed for NaN",
630                 Double.toString(Double.NaN), Double.toString(max(42.0d, Double.NaN, useMath)));
631         assertEquals("Max failed for 0.0",
632                 Double.toString(+0.0d), Double.toString(max(+0.0d, -0.0d, useMath)));
633         assertEquals("Max failed for 0.0",
634                 Double.toString(+0.0d), Double.toString(max(-0.0d, +0.0d, useMath)));
635         assertEquals("Max failed for -0.0d",
636                 Double.toString(-0.0d), Double.toString(max(-0.0d, -0.0d, useMath)));
637         assertEquals("Max failed for 0.0",
638                 Double.toString(+0.0d), Double.toString(max(+0.0d, +0.0d, useMath)));
639     }
640 
641     /**
642      * java.lang.Math#max(float, float)
643      */
test_maxFF()644     public void test_maxFF() {
645         // Test for method float java.lang.Math.max(float, float)
646         assertTrue("Incorrect float max value", Math.max(-1908897.600f,
647                 1908897.600f) == 1908897.600f);
648         assertTrue("Incorrect float max value",
649                 Math.max(2.0f, 1908897.600f) == 1908897.600f);
650         assertTrue("Incorrect float max value",
651                 Math.max(-2.0f, -1908897.600f) == -2.0f);
652 
653         // Compare toString representations here since -0.0 = +0.0, and
654         // NaN != NaN and we need to distinguish
655         assertEquals("Max failed for NaN",
656                 Float.toString(Float.NaN), Float.toString(Math.max(Float.NaN, 42.0f)));
657         assertEquals("Max failed for NaN",
658                 Float.toString(Float.NaN), Float.toString(Math.max(42.0f, Float.NaN)));
659         assertEquals("Max failed for 0.0",
660                 Float.toString(+0.0f), Float.toString(Math.max(+0.0f, -0.0f)));
661         assertEquals("Max failed for 0.0",
662                 Float.toString(+0.0f), Float.toString(Math.max(-0.0f, +0.0f)));
663         assertEquals("Max failed for -0.0f",
664                 Float.toString(-0.0f), Float.toString(Math.max(-0.0f, -0.0f)));
665         assertEquals("Max failed for 0.0",
666                 Float.toString(+0.0f), Float.toString(Math.max(+0.0f, +0.0f)));
667     }
668 
669     /**
670      * java.lang.Math#max(int, int)
671      */
test_maxII()672     public void test_maxII() {
673         // Test for method int java.lang.Math.max(int, int)
674         assertEquals("Incorrect int max value",
675                 19088976, Math.max(-19088976, 19088976));
676         assertEquals("Incorrect int max value",
677                 19088976, Math.max(20, 19088976));
678         assertEquals("Incorrect int max value", -20, Math.max(-20, -19088976));
679     }
680 
681     /**
682      * java.lang.Math#max(long, long)
683      */
test_maxJJ()684     public void test_maxJJ() {
685         // Test for method long java.lang.Math.max(long, long)
686         assertEquals("Incorrect long max value", 19088976000089L, Math.max(-19088976000089L,
687                 19088976000089L));
688         assertEquals("Incorrect long max value",
689                 19088976000089L, Math.max(20, 19088976000089L));
690         assertEquals("Incorrect long max value",
691                 -20, Math.max(-20, -19088976000089L));
692     }
693 
test_minDD_Math()694     public void test_minDD_Math() {
695         test_minDD(true /* useMath */);
696     }
697 
test_minDD_Double()698     public void test_minDD_Double() {
699         test_minDD(false /* useMath */);
700     }
701 
702     /**
703      * java.lang.Math#min(double, double)
704      */
test_minDD(boolean useMath)705     private static void test_minDD(boolean useMath) {
706         // Test for method double java.lang.Math.min(double, double)
707         assertEquals("Incorrect double min value", -1908897.6000089,
708                 min(-1908897.6000089, 1908897.6000089, useMath), 0D);
709         assertEquals("Incorrect double min value",
710                 2.0, min(2.0, 1908897.6000089, useMath), 0D);
711         assertEquals("Incorrect double min value", -1908897.6000089,
712                 min(-2.0, -1908897.6000089, useMath), 0D);
713         assertEquals("Incorrect double min value", 1.0d, Math.min(1.0d, 1.0d));
714 
715         // Compare toString representations here since -0.0 = +0.0, and
716         // NaN != NaN and we need to distinguish
717         assertEquals("Min failed for NaN",
718                 Double.toString(Double.NaN), Double.toString(min(Double.NaN, 42.0d, useMath)));
719         assertEquals("Min failed for NaN",
720                 Double.toString(Double.NaN), Double.toString(min(42.0d, Double.NaN, useMath)));
721         assertEquals("Min failed for -0.0",
722                 Double.toString(-0.0d), Double.toString(min(+0.0d, -0.0d, useMath)));
723         assertEquals("Min failed for -0.0",
724                 Double.toString(-0.0d), Double.toString(min(-0.0d, +0.0d, useMath)));
725         assertEquals("Min failed for -0.0d",
726                 Double.toString(-0.0d), Double.toString(min(-0.0d, -0.0d, useMath)));
727         assertEquals("Min failed for 0.0",
728                 Double.toString(+0.0d), Double.toString(min(+0.0d, +0.0d, useMath)));
729     }
730 
min(double a, double b, boolean useMath)731     private static double min(double a, double b, boolean useMath) {
732         if (useMath) {
733             return Math.min(a, b);
734         } else {
735             return Double.min(a, b);
736         }
737     }
738 
max(double a, double b, boolean useMath)739     private static double max(double a, double b, boolean useMath) {
740         if (useMath) {
741             return Math.max(a, b);
742         } else {
743             return Double.max(a, b);
744         }
745     }
746 
747     /**
748      * java.lang.Math#min(float, float)
749      */
test_minFF()750     public void test_minFF() {
751         // Test for method float java.lang.Math.min(float, float)
752         assertTrue("Incorrect float min value", Math.min(-1908897.600f,
753                 1908897.600f) == -1908897.600f);
754         assertTrue("Incorrect float min value",
755                 Math.min(2.0f, 1908897.600f) == 2.0f);
756         assertTrue("Incorrect float min value",
757                 Math.min(-2.0f, -1908897.600f) == -1908897.600f);
758         assertEquals("Incorrect float min value", 1.0f, Math.min(1.0f, 1.0f));
759 
760         // Compare toString representations here since -0.0 = +0.0, and
761         // NaN != NaN and we need to distinguish
762         assertEquals("Min failed for NaN",
763                 Float.toString(Float.NaN), Float.toString(Math.min(Float.NaN, 42.0f)));
764         assertEquals("Min failed for NaN",
765                 Float.toString(Float.NaN), Float.toString(Math.min(42.0f, Float.NaN)));
766         assertEquals("Min failed for -0.0",
767                 Float.toString(-0.0f), Float.toString(Math.min(+0.0f, -0.0f)));
768         assertEquals("Min failed for -0.0",
769                 Float.toString(-0.0f), Float.toString(Math.min(-0.0f, +0.0f)));
770         assertEquals("Min failed for -0.0f",
771                 Float.toString(-0.0f), Float.toString(Math.min(-0.0f, -0.0f)));
772         assertEquals("Min failed for 0.0",
773                 Float.toString(+0.0f), Float.toString(Math.min(+0.0f, +0.0f)));
774     }
775 
776     /**
777      * java.lang.Math#min(int, int)
778      */
test_minII()779     public void test_minII() {
780         // Test for method int java.lang.Math.min(int, int)
781         assertEquals("Incorrect int min value",
782                 -19088976, Math.min(-19088976, 19088976));
783         assertEquals("Incorrect int min value", 20, Math.min(20, 19088976));
784         assertEquals("Incorrect int min value",
785                 -19088976, Math.min(-20, -19088976));
786 
787     }
788 
789     /**
790      * java.lang.Math#min(long, long)
791      */
test_minJJ()792     public void test_minJJ() {
793         // Test for method long java.lang.Math.min(long, long)
794         assertEquals("Incorrect long min value", -19088976000089L, Math.min(-19088976000089L,
795                 19088976000089L));
796         assertEquals("Incorrect long min value",
797                 20, Math.min(20, 19088976000089L));
798         assertEquals("Incorrect long min value",
799                 -19088976000089L, Math.min(-20, -19088976000089L));
800     }
801 
802     /**
803      * start number cases for test_nextAfter_DD in MathTest/StrictMathTest
804      * NEXTAFTER_DD_START_CASES[i][0] is the start number
805      * NEXTAFTER_DD_START_CASES[i][1] is the nextUp of start number
806      * NEXTAFTER_DD_START_CASES[i][2] is the nextDown of start number
807      */
808     static final double NEXTAFTER_DD_START_CASES[][] = new double[][] {
809             { 3.4, 3.4000000000000004, 3.3999999999999995 },
810             { -3.4, -3.3999999999999995, -3.4000000000000004 },
811             { 3.4233E109, 3.4233000000000005E109, 3.4232999999999996E109 },
812             { -3.4233E109, -3.4232999999999996E109, -3.4233000000000005E109 },
813             { +0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
814             { 0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
815             { -0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
816             { Double.MIN_VALUE, 1.0E-323, +0.0 },
817             { -Double.MIN_VALUE, -0.0, -1.0E-323 },
818             { Double.MIN_NORMAL, 2.225073858507202E-308, 2.225073858507201E-308 },
819             { -Double.MIN_NORMAL, -2.225073858507201E-308,
820                     -2.225073858507202E-308 },
821             { Double.MAX_VALUE, Double.POSITIVE_INFINITY,
822                     1.7976931348623155E308 },
823             { -Double.MAX_VALUE, -1.7976931348623155E308,
824                     Double.NEGATIVE_INFINITY },
825             { Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY,
826                     Double.MAX_VALUE },
827             { Double.NEGATIVE_INFINITY, -Double.MAX_VALUE,
828                     Double.NEGATIVE_INFINITY } };
829 
830     /**
831      * direction number cases for test_nextAfter_DD/test_nextAfter_FD in
832      * MathTest/StrictMathTest
833      */
834     static final double NEXTAFTER_DD_FD_DIRECTION_CASES[] = new double[] {
835             Double.POSITIVE_INFINITY, Double.MAX_VALUE, 8.8, 3.4, 1.4,
836             Double.MIN_NORMAL, Double.MIN_NORMAL / 2, Double.MIN_VALUE, +0.0,
837             0.0, -0.0, -Double.MIN_VALUE, -Double.MIN_NORMAL / 2,
838             -Double.MIN_NORMAL, -1.4, -3.4, -8.8, -Double.MAX_VALUE,
839             Double.NEGATIVE_INFINITY };
840 
841     /**
842      * {@link java.lang.Math#nextAfter(double, double)}
843      * @since 1.6
844      */
845     @SuppressWarnings("boxing")
test_nextAfter_DD()846     public void test_nextAfter_DD() {
847         // test for most cases without exception
848         for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
849             final double start = NEXTAFTER_DD_START_CASES[i][0];
850             final long nextUpBits = Double
851                     .doubleToLongBits(NEXTAFTER_DD_START_CASES[i][1]);
852             final long nextDownBits = Double
853                     .doubleToLongBits(NEXTAFTER_DD_START_CASES[i][2]);
854 
855             for (int j = 0; j < NEXTAFTER_DD_FD_DIRECTION_CASES.length; j++) {
856                 final double direction = NEXTAFTER_DD_FD_DIRECTION_CASES[j];
857                 final long resultBits = Double.doubleToLongBits(Math.nextAfter(
858                         start, direction));
859                 final long directionBits = Double.doubleToLongBits(direction);
860                 if (direction > start) {
861                     assertEquals("Result should be next up-number.",
862                             nextUpBits, resultBits);
863                 } else if (direction < start) {
864                     assertEquals("Result should be next down-number.",
865                             nextDownBits, resultBits);
866                 } else {
867                     assertEquals("Result should be direction.", directionBits,
868                             resultBits);
869                 }
870             }
871         }
872 
873         // test for cases with NaN
874         for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
875             assertTrue("The result should be NaN.", Double.isNaN(Math
876                     .nextAfter(NEXTAFTER_DD_START_CASES[i][0], Double.NaN)));
877         }
878         for (int i = 0; i < NEXTAFTER_DD_FD_DIRECTION_CASES.length; i++) {
879             assertTrue("The result should be NaN.", Double.isNaN(Math
880                     .nextAfter(Double.NaN, NEXTAFTER_DD_FD_DIRECTION_CASES[i])));
881         }
882         assertTrue("The result should be NaN.", Double.isNaN(Math.nextAfter(
883                 Double.NaN, Double.NaN)));
884 
885         // test for exception
886         try {
887             Math.nextAfter((Double) null, 2.3);
888             fail("Should throw NullPointerException");
889         } catch (NullPointerException e) {
890             // Expected
891         }
892         try {
893             Math.nextAfter(2.3, (Double) null);
894             fail("Should throw NullPointerException");
895         } catch (NullPointerException e) {
896             // Expected
897         }
898         try {
899             Math.nextAfter((Double) null, (Double) null);
900             fail("Should throw NullPointerException");
901         } catch (NullPointerException e) {
902             // Expected
903         }
904     }
905 
906     /**
907      * start number cases for test_nextAfter_FD in MathTest/StrictMathTest
908      * NEXTAFTER_FD_START_CASES[i][0] is the start number
909      * NEXTAFTER_FD_START_CASES[i][1] is the nextUp of start number
910      * NEXTAFTER_FD_START_CASES[i][2] is the nextDown of start number
911      */
912     static final float NEXTAFTER_FD_START_CASES[][] = new float[][] {
913             { 3.4f, 3.4000003f, 3.3999999f },
914             { -3.4f, -3.3999999f, -3.4000003f },
915             { 3.4233E19f, 3.4233002E19f, 3.4232998E19f },
916             { -3.4233E19f, -3.4232998E19f, -3.4233002E19f },
917             { +0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
918             { 0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
919             { -0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
920             { Float.MIN_VALUE, 2.8E-45f, +0.0f },
921             { -Float.MIN_VALUE, -0.0f, -2.8E-45f },
922             { Float.MIN_NORMAL, 1.1754945E-38f, 1.1754942E-38f },
923             { -Float.MIN_NORMAL, -1.1754942E-38f, -1.1754945E-38f },
924             { Float.MAX_VALUE, Float.POSITIVE_INFINITY, 3.4028233E38f },
925             { -Float.MAX_VALUE, -3.4028233E38f, Float.NEGATIVE_INFINITY },
926             { Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, Float.MAX_VALUE },
927             { Float.NEGATIVE_INFINITY, -Float.MAX_VALUE,
928                     Float.NEGATIVE_INFINITY } };
929 
930     /**
931      * {@link java.lang.Math#nextAfter(float, double)}
932      * @since 1.6
933      */
934     @SuppressWarnings("boxing")
test_nextAfter_FD()935     public void test_nextAfter_FD() {
936         // test for most cases without exception
937         for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
938             final float start = NEXTAFTER_FD_START_CASES[i][0];
939             final int nextUpBits = Float
940                     .floatToIntBits(NEXTAFTER_FD_START_CASES[i][1]);
941             final int nextDownBits = Float
942                     .floatToIntBits(NEXTAFTER_FD_START_CASES[i][2]);
943 
944             for (int j = 0; j < NEXTAFTER_DD_FD_DIRECTION_CASES.length; j++) {
945                 final double direction = NEXTAFTER_DD_FD_DIRECTION_CASES[j];
946                 final int resultBits = Float.floatToIntBits(Math.nextAfter(
947                         start, direction));
948                 if (direction > start) {
949                     assertEquals("Result should be next up-number.",
950                             nextUpBits, resultBits);
951                 } else if (direction < start) {
952                     assertEquals("Result should be next down-number.",
953                             nextDownBits, resultBits);
954                 } else {
955                     final int equivalentBits = Float.floatToIntBits(new Float(
956                             direction));
957                     assertEquals(
958                             "Result should be a number equivalent to direction.",
959                             equivalentBits, resultBits);
960                 }
961             }
962         }
963 
964         // test for cases with NaN
965         for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
966             assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
967                     NEXTAFTER_FD_START_CASES[i][0], Float.NaN)));
968         }
969         for (int i = 0; i < NEXTAFTER_DD_FD_DIRECTION_CASES.length; i++) {
970             assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
971                     Float.NaN, NEXTAFTER_DD_FD_DIRECTION_CASES[i])));
972         }
973         assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
974                 Float.NaN, Float.NaN)));
975 
976         // test for exception
977         try {
978             Math.nextAfter((Float) null, 2.3);
979             fail("Should throw NullPointerException");
980         } catch (NullPointerException e) {
981             // Expected
982         }
983         try {
984             Math.nextAfter(2.3, (Float) null);
985             fail("Should throw NullPointerException");
986         } catch (NullPointerException e) {
987             // Expected
988         }
989         try {
990             Math.nextAfter((Float) null, (Float) null);
991             fail("Should throw NullPointerException");
992         } catch (NullPointerException e) {
993             // Expected
994         }
995     }
996 
997     /**
998      * {@link java.lang.Math#nextUp(double)}
999      * @since 1.6
1000      */
1001     @SuppressWarnings("boxing")
test_nextUp_D()1002     public void test_nextUp_D() {
1003         // This method is semantically equivalent to nextAfter(d,
1004         // Double.POSITIVE_INFINITY),
1005         // so we use the data of test_nextAfter_DD
1006         for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
1007             final double start = NEXTAFTER_DD_START_CASES[i][0];
1008             final long nextUpBits = Double
1009                     .doubleToLongBits(NEXTAFTER_DD_START_CASES[i][1]);
1010             final long resultBits = Double.doubleToLongBits(Math.nextUp(start));
1011             assertEquals("Result should be next up-number.", nextUpBits,
1012                     resultBits);
1013         }
1014 
1015         // test for cases with NaN
1016         assertTrue("The result should be NaN.", Double.isNaN(Math
1017                 .nextUp(Double.NaN)));
1018 
1019         // test for exception
1020         try {
1021             Math.nextUp((Double) null);
1022             fail("Should throw NullPointerException");
1023         } catch (NullPointerException e) {
1024             // Expected
1025         }
1026     }
1027 
1028     /**
1029      * {@link java.lang.Math#nextUp(float)}
1030      * @since 1.6
1031      */
1032     @SuppressWarnings("boxing")
test_nextUp_F()1033     public void test_nextUp_F() {
1034         // This method is semantically equivalent to nextAfter(f,
1035         // Float.POSITIVE_INFINITY),
1036         // so we use the data of test_nextAfter_FD
1037         for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
1038             final float start = NEXTAFTER_FD_START_CASES[i][0];
1039             final int nextUpBits = Float
1040                     .floatToIntBits(NEXTAFTER_FD_START_CASES[i][1]);
1041             final int resultBits = Float.floatToIntBits(Math.nextUp(start));
1042             assertEquals("Result should be next up-number.", nextUpBits,
1043                     resultBits);
1044         }
1045 
1046         // test for cases with NaN
1047         assertTrue("The result should be NaN.", Float.isNaN(Math
1048                 .nextUp(Float.NaN)));
1049 
1050         // test for exception
1051         try {
1052             Math.nextUp((Float) null);
1053             fail("Should throw NullPointerException");
1054         } catch (NullPointerException e) {
1055             // Expected
1056         }
1057     }
1058 
1059     /**
1060      * {@link java.lang.Math#nextDown(double)}
1061      * @since 1.8
1062      */
1063     @SuppressWarnings("boxing")
test_nextDown_D()1064     public void test_nextDown_D() {
1065         // This method is semantically equivalent to nextAfter(d,
1066         // Double.NEGATIVE_INFINITY),
1067         // so we use the data of test_nextAfter_DD
1068         for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
1069             final double start = NEXTAFTER_DD_START_CASES[i][0];
1070             final long nextDownBits = Double
1071                     .doubleToLongBits(NEXTAFTER_DD_START_CASES[i][2]);
1072             final long resultBits = Double.doubleToLongBits(Math.nextDown(start));
1073             assertEquals("Result should be next down-number.", nextDownBits,
1074                     resultBits);
1075         }
1076 
1077         // test for cases with NaN
1078         assertTrue("The result should be NaN.", Double.isNaN(Math
1079                 .nextDown(Double.NaN)));
1080 
1081         // test for exception
1082         try {
1083             Math.nextDown((Double) null);
1084             fail("Should throw NullPointerException");
1085         } catch (NullPointerException e) {
1086             // Expected
1087         }
1088     }
1089 
1090     /**
1091      * {@link java.lang.Math#nextDown(float)}
1092      * @since 1.8
1093      */
1094     @SuppressWarnings("boxing")
test_nextDown_F()1095     public void test_nextDown_F() {
1096         // This method is semantically equivalent to nextAfter(f,
1097         // Float.NEGATIVE_INFINITY),
1098         // so we use the data of test_nextAfter_FD
1099         for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
1100             final float start = NEXTAFTER_FD_START_CASES[i][0];
1101             final int nextDownBits = Float
1102                     .floatToIntBits(NEXTAFTER_FD_START_CASES[i][2]);
1103             final int resultBits = Float.floatToIntBits(Math.nextDown(start));
1104             assertEquals("Result should be next down-number.", nextDownBits,
1105                     resultBits);
1106         }
1107 
1108         // test for cases with NaN
1109         assertTrue("The result should be NaN.", Float.isNaN(Math
1110                 .nextDown(Float.NaN)));
1111 
1112         // test for exception
1113         try {
1114             Math.nextDown((Float) null);
1115             fail("Should throw NullPointerException");
1116         } catch (NullPointerException e) {
1117             // Expected
1118         }
1119     }
1120 
1121     /**
1122      * java.lang.Math#pow(double, double)
1123      */
test_powDD()1124     public void test_powDD() {
1125         // Test for method double java.lang.Math.pow(double, double)
1126         double NZERO = longTodouble(doubleTolong(0.0) ^ 0x8000000000000000L);
1127         double p1 = 1.0;
1128         double p2 = 2.0;
1129         double p3 = 3.0;
1130         double p4 = 4.0;
1131         double p5 = 5.0;
1132         double p6 = 6.0;
1133         double p7 = 7.0;
1134         double p8 = 8.0;
1135         double p9 = 9.0;
1136         double p10 = 10.0;
1137         double p11 = 11.0;
1138         double p12 = 12.0;
1139         double p13 = 13.0;
1140         double p14 = 14.0;
1141         double p15 = 15.0;
1142         double p16 = 16.0;
1143         double[] values = { p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12,
1144                 p13, p14, p15, p16 };
1145 
1146         for (int x = 0; x < values.length; x++) {
1147             double dval = values[x];
1148             double negateDval = negateDouble(dval);
1149 
1150             // If the second argument is positive or negative zero, then the
1151             // result is 1.0.
1152             assertEquals("Result should be Math.pow(" + dval
1153                     + ",-0.0)=+1.0", 1.0, Math.pow(dval, NZERO));
1154             assertEquals("Result should be Math.pow(" + negateDval
1155                     + ",-0.0)=+1.0", 1.0, Math.pow(negateDval, NZERO));
1156             assertEquals("Result should be Math.pow(" + dval
1157                     + ",+0.0)=+1.0", 1.0, Math.pow(dval, +0.0));
1158             assertEquals("Result should be Math.pow(" + negateDval
1159                     + ",+0.0)=+1.0", 1.0, Math.pow(negateDval, +0.0));
1160 
1161             // If the second argument is 1.0, then the result is the same as the
1162             // first argument.
1163             assertEquals("Result should be Math.pow(" + dval + "," + 1.0 + ")="
1164                     + dval, dval, Math.pow(dval, 1.0));
1165             assertEquals("Result should be Math.pow(" + negateDval + "," + 1.0
1166                     + ")=" + negateDval, negateDval, Math.pow(negateDval, 1.0));
1167 
1168             // The libm implementation of pow() has the following set of special case behaviors:
1169             //     If the first argument is 1.0, then the result is 1.0.
1170             // i.e. the answer for the following case is not Double.NaN. http://b/11669804
1171             {
1172                 double answer = dval == 1.0d ? 1.0d : Double.NaN;
1173                 assertEquals("Result should be Math.pow(" + dval + "," + Double.NaN
1174                         + ")=" + answer, answer, Math.pow(dval, Double.NaN));
1175             }
1176 
1177             // If the second argument is NaN, then the result is NaN.
1178             assertEquals("Result should be Math.pow(" + negateDval + ","
1179                     + Double.NaN + ")=" + Double.NaN, Double.NaN, Math.pow(negateDval,
1180                     Double.NaN));
1181 
1182             if (dval > 1) {
1183                 // If the first argument is NaN and the second argument is
1184                 // nonzero,
1185                 // then the result is NaN.
1186                 assertEquals("Result should be Math.pow(" + Double.NaN + ","
1187                         + dval + ")=" + Double.NaN, Double.NaN, Math.pow(Double.NaN, dval));
1188                 assertEquals("Result should be Math.pow(" + Double.NaN + ","
1189                         + negateDval + ")=" + Double.NaN, Double.NaN, Math.pow(Double.NaN,
1190                         negateDval));
1191 
1192                 /*
1193                  * If the first argument is positive zero and the second
1194                  * argument is greater than zero, or the first argument is
1195                  * positive infinity and the second argument is less than zero,
1196                  * then the result is positive zero.
1197                  */
1198                 assertEquals("Result should be Math.pow(" + 0.0 + "," + dval
1199                         + ")=" + 0.0, +0.0, Math.pow(0.0, dval));
1200                 assertEquals("Result should be Math.pow("
1201                         + Double.POSITIVE_INFINITY + "," + negateDval + ")="
1202                         + 0.0, +0.0, Math.pow(Double.POSITIVE_INFINITY, negateDval));
1203 
1204                 /*
1205                  * If the first argument is positive zero and the second
1206                  * argument is less than zero, or the first argument is positive
1207                  * infinity and the second argument is greater than zero, then
1208                  * the result is positive infinity.
1209                  */
1210                 assertEquals("Result should be Math.pow(" + 0.0 + ","
1211                         + negateDval + ")=" + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY,
1212                         Math.pow(0.0, negateDval));
1213                 assertEquals("Result should be Math.pow("
1214                         + Double.POSITIVE_INFINITY + "," + dval + ")="
1215                         + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(
1216                         Double.POSITIVE_INFINITY, dval));
1217 
1218                 // Not a finite odd integer
1219                 if (dval % 2 == 0) {
1220                     /*
1221                      * If the first argument is negative zero and the second
1222                      * argument is greater than zero but not a finite odd
1223                      * integer, or the first argument is negative infinity and
1224                      * the second argument is less than zero but not a finite
1225                      * odd integer, then the result is positive zero.
1226                      */
1227                     assertEquals("Result should be Math.pow(" + NZERO + ","
1228                             + dval + ")=" + 0.0, +0.0, Math.pow(NZERO, dval));
1229                     assertEquals("Result should be Math.pow("
1230                             + Double.NEGATIVE_INFINITY + "," + negateDval
1231                             + ")=" + 0.0, +0.0, Math.pow(Double.NEGATIVE_INFINITY,
1232                             negateDval));
1233 
1234                     /*
1235                      * If the first argument is negative zero and the second
1236                      * argument is less than zero but not a finite odd integer,
1237                      * or the first argument is negative infinity and the second
1238                      * argument is greater than zero but not a finite odd
1239                      * integer, then the result is positive infinity.
1240                      */
1241                     assertEquals("Result should be Math.pow(" + NZERO + ","
1242                             + negateDval + ")=" + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY,
1243                             Math.pow(NZERO, negateDval));
1244                     assertEquals("Result should be Math.pow("
1245                             + Double.NEGATIVE_INFINITY + "," + dval + ")="
1246                             + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(
1247                             Double.NEGATIVE_INFINITY, dval));
1248                 }
1249 
1250                 // finite odd integer
1251                 if (dval % 2 != 0) {
1252                     /*
1253                      * If the first argument is negative zero and the second
1254                      * argument is a positive finite odd integer, or the first
1255                      * argument is negative infinity and the second argument is
1256                      * a negative finite odd integer, then the result is
1257                      * negative zero.
1258                      */
1259                     assertEquals("Result should be Math.pow(" + NZERO + ","
1260                             + dval + ")=" + NZERO, NZERO, Math.pow(NZERO, dval));
1261                     assertEquals("Result should be Math.pow("
1262                             + Double.NEGATIVE_INFINITY + "," + negateDval
1263                             + ")=" + NZERO, NZERO, Math.pow(Double.NEGATIVE_INFINITY,
1264                             negateDval));
1265                     /*
1266                      * If the first argument is negative zero and the second
1267                      * argument is a negative finite odd integer, or the first
1268                      * argument is negative infinity and the second argument is
1269                      * a positive finite odd integer then the result is negative
1270                      * infinity.
1271                      */
1272                     assertEquals("Result should be Math.pow(" + NZERO + ","
1273                             + negateDval + ")=" + Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY,
1274                             Math.pow(NZERO, negateDval));
1275                     assertEquals("Result should be Math.pow("
1276                             + Double.NEGATIVE_INFINITY + "," + dval + ")="
1277                             + Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, Math.pow(
1278                             Double.NEGATIVE_INFINITY, dval));
1279                 }
1280 
1281                 /**
1282                  * 1. If the first argument is finite and less than zero if the
1283                  * second argument is a finite even integer, the result is equal
1284                  * to the result of raising the absolute value of the first
1285                  * argument to the power of the second argument
1286                  *
1287                  * 2. if the second argument is a finite odd integer, the result is equal to the
1288                  * negative of the result of raising the absolute value of the
1289                  * first argument to the power of the second argument
1290                  *
1291                  * 3. if the second argument is finite and not an integer, then the result
1292                  * is NaN.
1293                  */
1294                 for (int j = 1; j < values.length; j++) {
1295                     double jval = values[j];
1296                     if (jval % 2.0 == 0.0) {
1297                         assertEquals("" + negateDval + " " + jval, Math.pow(
1298                                 dval, jval), Math.pow(negateDval, jval));
1299                     } else {
1300                         assertEquals("" + negateDval + " " + jval, -1.0
1301                                 * Math.pow(dval, jval), Math.pow(negateDval,
1302                                 jval));
1303                     }
1304                     assertEquals(Double.NaN, Math
1305                             .pow(negateDval, jval / 0.5467));
1306                     assertEquals(Double.NaN, Math.pow(negateDval, -1.0 * jval
1307                             / 0.5467));
1308                 }
1309             }
1310 
1311             if (dval == 1) {
1312                 // The libm implementation of pow() has the following set of special case behaviors:
1313                 //     1.0 or -1.0 to the power of positive or negative infinity is 1.0.
1314                 // i.e. the answer for the following cases is not Double.NaN. http://b/11669804
1315 
1316                 assertEquals("Result should be Math.pow(" + dval + ","
1317                         + Double.POSITIVE_INFINITY + ")=" + 1.0d, 1.0d, Math
1318                         .pow(dval, Double.POSITIVE_INFINITY));
1319                 assertEquals("Result should be Math.pow(" + dval + ","
1320                         + Double.NEGATIVE_INFINITY + ")=" + 1.0d, 1.0d, Math
1321                         .pow(dval, Double.NEGATIVE_INFINITY));
1322 
1323                 assertEquals("Result should be Math.pow(" + negateDval + ","
1324                         + Double.POSITIVE_INFINITY + ")=" + 1.0d, 1.0d, Math
1325                         .pow(negateDval, Double.POSITIVE_INFINITY));
1326                 assertEquals("Result should be Math.pow(" + negateDval + ","
1327                         + Double.NEGATIVE_INFINITY + ")=" + 1.0d, 1.0d, Math
1328                         .pow(negateDval, Double.NEGATIVE_INFINITY));
1329             }
1330 
1331             if (dval > 1) {
1332                 /*
1333                  * If the absolute value of the first argument is greater than 1
1334                  * and the second argument is positive infinity, or the absolute
1335                  * value of the first argument is less than 1 and the second
1336                  * argument is negative infinity, then the result is positive
1337                  * infinity.
1338                  */
1339                 assertEquals("Result should be Math.pow(" + dval + ","
1340                         + Double.POSITIVE_INFINITY + ")="
1341                         + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(dval,
1342                         Double.POSITIVE_INFINITY));
1343 
1344                 assertEquals("Result should be Math.pow(" + negateDval + ","
1345                         + Double.NEGATIVE_INFINITY + ")="
1346                         + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(-0.13456,
1347                         Double.NEGATIVE_INFINITY));
1348 
1349                 /*
1350                  * If the absolute value of the first argument is greater than 1
1351                  * and the second argument is negative infinity, or the absolute
1352                  * value of the first argument is less than 1 and the second
1353                  * argument is positive infinity, then the result is positive
1354                  * zero.
1355                  */
1356                 assertEquals("Result should be Math.pow(" + dval + ","
1357                         + Double.NEGATIVE_INFINITY + ")= +0.0", +0.0, Math.pow(dval,
1358                         Double.NEGATIVE_INFINITY));
1359                 assertEquals("Result should be Math.pow(" + negateDval + ","
1360                         + Double.POSITIVE_INFINITY + ")= +0.0", +0.0, Math.pow(
1361                         -0.13456, Double.POSITIVE_INFINITY));
1362             }
1363 
1364             assertEquals("Result should be Math.pow(" + 0.0 + "," + dval + ")="
1365                     + 0.0, 0.0, Math.pow(0.0, dval));
1366             assertEquals("Result should be Math.pow(" + Double.NaN + "," + dval
1367                     + ")=" + Double.NaN, Double.NaN, Math.pow(Double.NaN, dval));
1368         }
1369         assertTrue("pow returned incorrect value",
1370                 (long) Math.pow(2, 8) == 256l);
1371         assertTrue("pow returned incorrect value",
1372                 Math.pow(2, -8) == 0.00390625d);
1373         assertEquals("Incorrect root returned1",
1374                 2, Math.sqrt(Math.pow(Math.sqrt(2), 4)), 0);
1375 
1376         assertEquals(Double.NEGATIVE_INFINITY, Math.pow(-10.0, 3.093403029238847E15));
1377         assertEquals(Double.POSITIVE_INFINITY, Math.pow(10.0, 3.093403029238847E15));
1378     }
1379 
longTodouble(long longvalue)1380     private double longTodouble(long longvalue) {
1381         return Double.longBitsToDouble(longvalue);
1382     }
1383 
doubleTolong(double doublevalue)1384     private long doubleTolong(double doublevalue) {
1385         return Double.doubleToLongBits(doublevalue);
1386     }
1387 
negateDouble(double doublevalue)1388     private double negateDouble(double doublevalue) {
1389         return doublevalue * -1.0;
1390     }
1391 
1392     /**
1393      * java.lang.Math#rint(double)
1394      */
test_rintD()1395     public void test_rintD() {
1396         // Test for method double java.lang.Math.rint(double)
1397         assertEquals("Failed to round properly - up to odd",
1398                 3.0, Math.rint(2.9), 0D);
1399         assertTrue("Failed to round properly - NaN", Double.isNaN(Math
1400                 .rint(Double.NaN)));
1401         assertEquals("Failed to round properly down  to even",
1402                 2.0, Math.rint(2.1), 0D);
1403         assertTrue("Failed to round properly " + 2.5 + " to even", Math
1404                 .rint(2.5) == 2.0);
1405         assertTrue("Failed to round properly " + (+0.0d),
1406                 Math.rint(+0.0d) == +0.0d);
1407         assertTrue("Failed to round properly " + (-0.0d),
1408                 Math.rint(-0.0d) == -0.0d);
1409     }
1410 
1411     /**
1412      * java.lang.Math#round(double)
1413      */
test_roundD()1414     public void test_roundD() {
1415         // Test for method long java.lang.Math.round(double)
1416         assertEquals("Incorrect rounding of a float", -91, Math.round(-90.89d));
1417     }
1418 
1419     /**
1420      * java.lang.Math#round(float)
1421      */
test_roundF()1422     public void test_roundF() {
1423         // Test for method int java.lang.Math.round(float)
1424         assertEquals("Incorrect rounding of a float", -91, Math.round(-90.89f));
1425     }
1426 
1427     /**
1428      * {@link java.lang.Math#scalb(double, int)}
1429      * @since 1.6
1430      */
1431     @SuppressWarnings("boxing")
test_scalb_DI()1432     public void test_scalb_DI() {
1433         // result is normal
1434         assertEquals(4.1422946304E7, Math.scalb(1.2345, 25));
1435         assertEquals(3.679096698760986E-8, Math.scalb(1.2345, -25));
1436         assertEquals(1.2345, Math.scalb(1.2345, 0));
1437         assertEquals(7868514.304, Math.scalb(0.2345, 25));
1438 
1439         double normal = Math.scalb(0.2345, -25);
1440         assertEquals(6.98864459991455E-9, normal);
1441         // precision kept
1442         assertEquals(0.2345, Math.scalb(normal, 25));
1443 
1444         assertEquals(0.2345, Math.scalb(0.2345, 0));
1445         assertEquals(-4.1422946304E7, Math.scalb(-1.2345, 25));
1446         assertEquals(-6.98864459991455E-9, Math.scalb(-0.2345, -25));
1447         assertEquals(2.0, Math.scalb(Double.MIN_NORMAL / 2, 1024));
1448         assertEquals(64.0, Math.scalb(Double.MIN_VALUE, 1080));
1449         assertEquals(234, Math.getExponent(Math.scalb(1.0, 234)));
1450         assertEquals(3.9999999999999996, Math.scalb(Double.MAX_VALUE,
1451                 Double.MIN_EXPONENT));
1452 
1453         // result is near infinity
1454         double halfMax = Math.scalb(1.0, Double.MAX_EXPONENT);
1455         assertEquals(8.98846567431158E307, halfMax);
1456         assertEquals(Double.MAX_VALUE, halfMax - Math.ulp(halfMax) + halfMax);
1457         assertEquals(Double.POSITIVE_INFINITY, halfMax + halfMax);
1458         assertEquals(1.7976931348623155E308, Math.scalb(1.0 - Math.ulp(1.0),
1459                 Double.MAX_EXPONENT + 1));
1460         assertEquals(Double.POSITIVE_INFINITY, Math.scalb(1.0 - Math.ulp(1.0),
1461                 Double.MAX_EXPONENT + 2));
1462 
1463         halfMax = Math.scalb(-1.0, Double.MAX_EXPONENT);
1464         assertEquals(-8.98846567431158E307, halfMax);
1465         assertEquals(-Double.MAX_VALUE, halfMax + Math.ulp(halfMax) + halfMax);
1466         assertEquals(Double.NEGATIVE_INFINITY, halfMax + halfMax);
1467 
1468         assertEquals(Double.POSITIVE_INFINITY, Math.scalb(0.345, 1234));
1469         assertEquals(Double.POSITIVE_INFINITY, Math.scalb(44.345E102, 934));
1470         assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(-44.345E102, 934));
1471 
1472         assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
1473                 Double.MIN_NORMAL / 2, 4000));
1474         assertEquals(Double.POSITIVE_INFINITY, Math.scalb(Double.MIN_VALUE,
1475                 8000));
1476         assertEquals(Double.POSITIVE_INFINITY, Math.scalb(Double.MAX_VALUE, 1));
1477         assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
1478                 Double.POSITIVE_INFINITY, 0));
1479         assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
1480                 Double.POSITIVE_INFINITY, -1));
1481         assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(
1482                 Double.NEGATIVE_INFINITY, -1));
1483         assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(
1484                 Double.NEGATIVE_INFINITY, Double.MIN_EXPONENT));
1485 
1486         // result is subnormal/zero
1487         long posZeroBits = Double.doubleToLongBits(+0.0);
1488         long negZeroBits = Double.doubleToLongBits(-0.0);
1489         assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(+0.0,
1490                 Integer.MAX_VALUE)));
1491         assertEquals(posZeroBits, Double.doubleToLongBits(Math
1492                 .scalb(+0.0, -123)));
1493         assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(+0.0, 0)));
1494         assertEquals(negZeroBits, Double
1495                 .doubleToLongBits(Math.scalb(-0.0, 123)));
1496         assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-0.0,
1497                 Integer.MIN_VALUE)));
1498 
1499         assertEquals(Double.MIN_VALUE, Math.scalb(1.0, -1074));
1500         assertEquals(posZeroBits, Double.doubleToLongBits(Math
1501                 .scalb(1.0, -1075)));
1502         assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-1.0,
1503                 -1075)));
1504 
1505         // precision lost
1506         assertEquals(Math.scalb(21.405, -1078), Math.scalb(21.405, -1079));
1507         assertEquals(Double.MIN_VALUE, Math.scalb(21.405, -1079));
1508         assertEquals(-Double.MIN_VALUE, Math.scalb(-21.405, -1079));
1509         assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(21.405,
1510                 -1080)));
1511         assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-21.405,
1512                 -1080)));
1513         assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1514                 Double.MIN_VALUE, -1)));
1515         assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1516                 -Double.MIN_VALUE, -1)));
1517         assertEquals(Double.MIN_VALUE, Math.scalb(Double.MIN_NORMAL, -52));
1518         assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1519                 Double.MIN_NORMAL, -53)));
1520         assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1521                 -Double.MIN_NORMAL, -53)));
1522         assertEquals(Double.MIN_VALUE, Math.scalb(Double.MAX_VALUE, -2098));
1523         assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1524                 Double.MAX_VALUE, -2099)));
1525         assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1526                 -Double.MAX_VALUE, -2099)));
1527         assertEquals(Double.MIN_VALUE, Math.scalb(Double.MIN_NORMAL / 3, -51));
1528         assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1529                 Double.MIN_NORMAL / 3, -52)));
1530         assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1531                 -Double.MIN_NORMAL / 3, -52)));
1532         double subnormal = Math.scalb(Double.MIN_NORMAL / 3, -25);
1533         assertEquals(2.2104123E-316, subnormal);
1534         // precision lost
1535         assertFalse(Double.MIN_NORMAL / 3 == Math.scalb(subnormal, 25));
1536 
1537         // NaN
1538         assertTrue(Double.isNaN(Math.scalb(Double.NaN, 1)));
1539         assertTrue(Double.isNaN(Math.scalb(Double.NaN, 0)));
1540         assertTrue(Double.isNaN(Math.scalb(Double.NaN, -120)));
1541 
1542         assertEquals(1283457024, Double.doubleToLongBits(Math.scalb(
1543                 Double.MIN_VALUE * 153, 23)));
1544         assertEquals(-9223372035571318784L, Double.doubleToLongBits(Math.scalb(
1545                 -Double.MIN_VALUE * 153, 23)));
1546         assertEquals(36908406321184768L, Double.doubleToLongBits(Math.scalb(
1547                 Double.MIN_VALUE * 153, 52)));
1548         assertEquals(-9186463630533591040L, Double.doubleToLongBits(Math.scalb(
1549                 -Double.MIN_VALUE * 153, 52)));
1550 
1551         // test for exception
1552         try {
1553             Math.scalb((Double) null, (Integer) null);
1554             fail("Should throw NullPointerException");
1555         } catch (NullPointerException e) {
1556             // Expected
1557         }
1558         try {
1559             Math.scalb(1.0, (Integer) null);
1560             fail("Should throw NullPointerException");
1561         } catch (NullPointerException e) {
1562             // Expected
1563         }
1564         try {
1565             Math.scalb((Double) null, 1);
1566             fail("Should throw NullPointerException");
1567         } catch (NullPointerException e) {
1568             // Expected
1569         }
1570 
1571         long b1em1022 = 0x0010000000000000L; // bit representation of
1572         // Double.MIN_NORMAL
1573         long b1em1023 = 0x0008000000000000L; // bit representation of half of
1574         // Double.MIN_NORMAL
1575         // assert exact identity
1576         assertEquals(b1em1023, Double.doubleToLongBits(Math.scalb(Double
1577                 .longBitsToDouble(b1em1022), -1)));
1578     }
1579 
1580     /**
1581      * {@link java.lang.Math#scalb(float, int)}
1582      * @since 1.6
1583      */
1584     @SuppressWarnings("boxing")
test_scalb_FI()1585     public void test_scalb_FI() {
1586         // result is normal
1587         assertEquals(4.1422946304E7f, Math.scalb(1.2345f, 25));
1588         assertEquals(3.679096698760986E-8f, Math.scalb(1.2345f, -25));
1589         assertEquals(1.2345f, Math.scalb(1.2345f, 0));
1590         assertEquals(7868514.304f, Math.scalb(0.2345f, 25));
1591 
1592         float normal = Math.scalb(0.2345f, -25);
1593         assertEquals(6.98864459991455E-9f, normal);
1594         // precision kept
1595         assertEquals(0.2345f, Math.scalb(normal, 25));
1596 
1597         assertEquals(0.2345f, Math.scalb(0.2345f, 0));
1598         assertEquals(-4.1422946304E7f, Math.scalb(-1.2345f, 25));
1599         assertEquals(-6.98864459991455E-9f, Math.scalb(-0.2345f, -25));
1600         assertEquals(2.0f, Math.scalb(Float.MIN_NORMAL / 2, 128));
1601         assertEquals(64.0f, Math.scalb(Float.MIN_VALUE, 155));
1602         assertEquals(34, Math.getExponent(Math.scalb(1.0f, 34)));
1603         assertEquals(3.9999998f, Math
1604                 .scalb(Float.MAX_VALUE, Float.MIN_EXPONENT));
1605 
1606         // result is near infinity
1607         float halfMax = Math.scalb(1.0f, Float.MAX_EXPONENT);
1608         assertEquals(1.7014118E38f, halfMax);
1609         assertEquals(Float.MAX_VALUE, halfMax - Math.ulp(halfMax) + halfMax);
1610         assertEquals(Float.POSITIVE_INFINITY, halfMax + halfMax);
1611         assertEquals(3.4028233E38f, Math.scalb(1.0f - Math.ulp(1.0f),
1612                 Float.MAX_EXPONENT + 1));
1613         assertEquals(Float.POSITIVE_INFINITY, Math.scalb(1.0f - Math.ulp(1.0f),
1614                 Float.MAX_EXPONENT + 2));
1615 
1616         halfMax = Math.scalb(-1.0f, Float.MAX_EXPONENT);
1617         assertEquals(-1.7014118E38f, halfMax);
1618         assertEquals(-Float.MAX_VALUE, halfMax + Math.ulp(halfMax) + halfMax);
1619         assertEquals(Float.NEGATIVE_INFINITY, halfMax + halfMax);
1620 
1621         assertEquals(Float.POSITIVE_INFINITY, Math.scalb(0.345f, 1234));
1622         assertEquals(Float.POSITIVE_INFINITY, Math.scalb(44.345E10f, 934));
1623         assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(-44.345E10f, 934));
1624 
1625         assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MIN_NORMAL / 2,
1626                 400));
1627         assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MIN_VALUE, 800));
1628         assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MAX_VALUE, 1));
1629         assertEquals(Float.POSITIVE_INFINITY, Math.scalb(
1630                 Float.POSITIVE_INFINITY, 0));
1631         assertEquals(Float.POSITIVE_INFINITY, Math.scalb(
1632                 Float.POSITIVE_INFINITY, -1));
1633         assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(
1634                 Float.NEGATIVE_INFINITY, -1));
1635         assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(
1636                 Float.NEGATIVE_INFINITY, Float.MIN_EXPONENT));
1637 
1638         // result is subnormal/zero
1639         int posZeroBits = Float.floatToIntBits(+0.0f);
1640         int negZeroBits = Float.floatToIntBits(-0.0f);
1641         assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f,
1642                 Integer.MAX_VALUE)));
1643         assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f, -123)));
1644         assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f, 0)));
1645         assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-0.0f, 123)));
1646         assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-0.0f,
1647                 Integer.MIN_VALUE)));
1648 
1649         assertEquals(Float.MIN_VALUE, Math.scalb(1.0f, -149));
1650         assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(1.0f, -150)));
1651         assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-1.0f, -150)));
1652 
1653         // precision lost
1654         assertEquals(Math.scalb(21.405f, -154), Math.scalb(21.405f, -153));
1655         assertEquals(Float.MIN_VALUE, Math.scalb(21.405f, -154));
1656         assertEquals(-Float.MIN_VALUE, Math.scalb(-21.405f, -154));
1657         assertEquals(posZeroBits, Float.floatToIntBits(Math
1658                 .scalb(21.405f, -155)));
1659         assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-21.405f,
1660                 -155)));
1661         assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1662                 Float.MIN_VALUE, -1)));
1663         assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1664                 -Float.MIN_VALUE, -1)));
1665         assertEquals(Float.MIN_VALUE, Math.scalb(Float.MIN_NORMAL, -23));
1666         assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1667                 Float.MIN_NORMAL, -24)));
1668         assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1669                 -Float.MIN_NORMAL, -24)));
1670         assertEquals(Float.MIN_VALUE, Math.scalb(Float.MAX_VALUE, -277));
1671         assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1672                 Float.MAX_VALUE, -278)));
1673         assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1674                 -Float.MAX_VALUE, -278)));
1675         assertEquals(Float.MIN_VALUE, Math.scalb(Float.MIN_NORMAL / 3, -22));
1676         assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1677                 Float.MIN_NORMAL / 3, -23)));
1678         assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1679                 -Float.MIN_NORMAL / 3, -23)));
1680         float subnormal = Math.scalb(Float.MIN_NORMAL / 3, -11);
1681         assertEquals(1.913E-42f, subnormal);
1682         // precision lost
1683         assertFalse(Float.MIN_NORMAL / 3 == Math.scalb(subnormal, 11));
1684 
1685         assertEquals(68747264, Float.floatToIntBits(Math.scalb(
1686                 Float.MIN_VALUE * 153, 23)));
1687         assertEquals(-2078736384, Float.floatToIntBits(Math.scalb(
1688                 -Float.MIN_VALUE * 153, 23)));
1689 
1690         assertEquals(4896, Float.floatToIntBits(Math.scalb(
1691                 Float.MIN_VALUE * 153, 5)));
1692         assertEquals(-2147478752, Float.floatToIntBits(Math.scalb(
1693                 -Float.MIN_VALUE * 153, 5)));
1694 
1695         // NaN
1696         assertTrue(Float.isNaN(Math.scalb(Float.NaN, 1)));
1697         assertTrue(Float.isNaN(Math.scalb(Float.NaN, 0)));
1698         assertTrue(Float.isNaN(Math.scalb(Float.NaN, -120)));
1699 
1700         // test for exception
1701         try {
1702             Math.scalb((Float) null, (Integer) null);
1703             fail("Should throw NullPointerException");
1704         } catch (NullPointerException e) {
1705             // Expected
1706         }
1707         try {
1708             Math.scalb(1.0f, (Integer) null);
1709             fail("Should throw NullPointerException");
1710         } catch (NullPointerException e) {
1711             // Expected
1712         }
1713         try {
1714             Math.scalb((Float) null, 1);
1715             fail("Should throw NullPointerException");
1716         } catch (NullPointerException e) {
1717             // Expected
1718         }
1719 
1720         int b1em126 = 0x00800000; // bit representation of Float.MIN_NORMAL
1721         int b1em127 = 0x00400000; // bit representation of half
1722         // Float.MIN_NORMAL
1723         // assert exact identity
1724         assertEquals(b1em127, Float.floatToIntBits(Math.scalb(Float
1725                 .intBitsToFloat(b1em126), -1)));
1726     }
1727 
1728     /**
1729      * java.lang.Math#signum(double)
1730      */
test_signum_D()1731     public void test_signum_D() {
1732         assertTrue(Double.isNaN(Math.signum(Double.NaN)));
1733         assertTrue(Double.isNaN(Math.signum(Double.NaN)));
1734         assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
1735                 .signum(0.0)));
1736         assertEquals(Double.doubleToLongBits(+0.0), Double
1737                 .doubleToLongBits(Math.signum(+0.0)));
1738         assertEquals(Double.doubleToLongBits(-0.0), Double
1739                 .doubleToLongBits(Math.signum(-0.0)));
1740 
1741         assertEquals(1.0, Math.signum(253681.2187962), 0D);
1742         assertEquals(-1.0, Math.signum(-125874693.56), 0D);
1743         assertEquals(1.0, Math.signum(1.2587E-308), 0D);
1744         assertEquals(-1.0, Math.signum(-1.2587E-308), 0D);
1745 
1746         assertEquals(1.0, Math.signum(Double.MAX_VALUE), 0D);
1747         assertEquals(1.0, Math.signum(Double.MIN_VALUE), 0D);
1748         assertEquals(-1.0, Math.signum(-Double.MAX_VALUE), 0D);
1749         assertEquals(-1.0, Math.signum(-Double.MIN_VALUE), 0D);
1750         assertEquals(1.0, Math.signum(Double.POSITIVE_INFINITY), 0D);
1751         assertEquals(-1.0, Math.signum(Double.NEGATIVE_INFINITY), 0D);
1752     }
1753 
1754     /**
1755      * java.lang.Math#signum(float)
1756      */
test_signum_F()1757     public void test_signum_F() {
1758         assertTrue(Float.isNaN(Math.signum(Float.NaN)));
1759         assertEquals(Float.floatToIntBits(0.0f), Float
1760                 .floatToIntBits(Math.signum(0.0f)));
1761         assertEquals(Float.floatToIntBits(+0.0f), Float
1762                 .floatToIntBits(Math.signum(+0.0f)));
1763         assertEquals(Float.floatToIntBits(-0.0f), Float
1764                 .floatToIntBits(Math.signum(-0.0f)));
1765 
1766         assertEquals(1.0f, Math.signum(253681.2187962f), 0f);
1767         assertEquals(-1.0f, Math.signum(-125874693.56f), 0f);
1768         assertEquals(1.0f, Math.signum(1.2587E-11f), 0f);
1769         assertEquals(-1.0f, Math.signum(-1.2587E-11f), 0f);
1770 
1771         assertEquals(1.0f, Math.signum(Float.MAX_VALUE), 0f);
1772         assertEquals(1.0f, Math.signum(Float.MIN_VALUE), 0f);
1773         assertEquals(-1.0f, Math.signum(-Float.MAX_VALUE), 0f);
1774         assertEquals(-1.0f, Math.signum(-Float.MIN_VALUE), 0f);
1775         assertEquals(1.0f, Math.signum(Float.POSITIVE_INFINITY), 0f);
1776         assertEquals(-1.0f, Math.signum(Float.NEGATIVE_INFINITY), 0f);
1777     }
1778 
1779     /**
1780      * java.lang.Math#sin(double)
1781      */
test_sinD()1782     public void test_sinD() {
1783         // Test for method double java.lang.Math.sin(double)
1784         assertEquals("Incorrect answer", 0.0, Math.sin(0), 0D);
1785         assertEquals("Incorrect answer", 0.8414709848078965, Math.sin(1), 0D);
1786     }
1787 
1788     /**
1789      * java.lang.Math#sinh(double)
1790      */
test_sinh_D()1791     public void test_sinh_D() {
1792         // Test for special situations
1793         assertTrue(Double.isNaN(Math.sinh(Double.NaN)));
1794         assertEquals(Double.POSITIVE_INFINITY, Math.sinh(Double.POSITIVE_INFINITY), 0D);
1795         assertEquals(Double.NEGATIVE_INFINITY, Math.sinh(Double.NEGATIVE_INFINITY), 0D);
1796         assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math.sinh(0.0)));
1797         assertEquals(Double.doubleToLongBits(+0.0), Double.doubleToLongBits(Math.sinh(+0.0)));
1798         assertEquals(Double.doubleToLongBits(-0.0), Double.doubleToLongBits(Math.sinh(-0.0)));
1799 
1800         assertEquals(Double.POSITIVE_INFINITY, Math.sinh(1234.56), 0D);
1801         assertEquals(Double.NEGATIVE_INFINITY, Math.sinh(-1234.56), 0D);
1802         assertEquals(1.0000000000001666E-6, Math.sinh(0.000001), 0D);
1803         assertEquals(-1.0000000000001666E-6, Math.sinh(-0.000001), 0D);
1804         assertEquals(5.115386441963859, Math.sinh(2.33482), Math.ulp(5.115386441963859));
1805         assertEquals(Double.POSITIVE_INFINITY, Math.sinh(Double.MAX_VALUE), 0D);
1806         assertEquals(4.9E-324, Math.sinh(Double.MIN_VALUE), 0D);
1807     }
1808 
1809     /**
1810      * java.lang.Math#sqrt(double)
1811      */
test_sqrtD()1812     public void test_sqrtD() {
1813         // Test for method double java.lang.Math.sqrt(double)
1814         assertEquals("Incorrect root returned2", 7, Math.sqrt(49), 0);
1815     }
1816 
1817     /**
1818      * java.lang.Math#tan(double)
1819      */
test_tanD()1820     public void test_tanD() {
1821         // Test for method double java.lang.Math.tan(double)
1822         assertEquals("Incorrect answer", 0.0, Math.tan(0), 0D);
1823         assertEquals("Incorrect answer", 1.5574077246549023, Math.tan(1), 0D);
1824 
1825     }
1826 
1827     /**
1828      * java.lang.Math#tanh(double)
1829      */
test_tanh_D()1830     public void test_tanh_D() {
1831         // Test for special situations
1832         assertTrue("Should return NaN", Double.isNaN(Math.tanh(Double.NaN)));
1833         assertEquals("Should return +1.0", +1.0, Math
1834                 .tanh(Double.POSITIVE_INFINITY), 0D);
1835         assertEquals("Should return -1.0", -1.0, Math
1836                 .tanh(Double.NEGATIVE_INFINITY), 0D);
1837         assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
1838                 .tanh(0.0)));
1839         assertEquals(Double.doubleToLongBits(+0.0), Double
1840                 .doubleToLongBits(Math.tanh(+0.0)));
1841         assertEquals(Double.doubleToLongBits(-0.0), Double
1842                 .doubleToLongBits(Math.tanh(-0.0)));
1843 
1844         assertEquals("Should return 1.0", 1.0, Math.tanh(1234.56), 0D);
1845         assertEquals("Should return -1.0", -1.0, Math.tanh(-1234.56), 0D);
1846         assertEquals("Should return 9.999999999996666E-7",
1847                 9.999999999996666E-7, Math.tanh(0.000001), 0D);
1848         assertEquals("Should return 0.981422884124941", 0.981422884124941, Math
1849                 .tanh(2.33482), 0D);
1850         assertEquals("Should return 1.0", 1.0, Math.tanh(Double.MAX_VALUE), 0D);
1851         assertEquals("Should return 4.9E-324", 4.9E-324, Math
1852                 .tanh(Double.MIN_VALUE), 0D);
1853     }
1854 
1855     /**
1856      * java.lang.Math#random()
1857      */
test_random()1858     public void test_random() {
1859         // There isn't a place for these tests so just stick them here
1860         assertEquals("Wrong value E",
1861                 4613303445314885481L, Double.doubleToLongBits(Math.E));
1862         assertEquals("Wrong value PI",
1863                 4614256656552045848L, Double.doubleToLongBits(Math.PI));
1864 
1865         for (int i = 500; i >= 0; i--) {
1866             double d = Math.random();
1867             assertTrue("Generated number is out of range: " + d, d >= 0.0
1868                     && d < 1.0);
1869         }
1870     }
1871 
1872     /**
1873      * java.lang.Math#toRadians(double)
1874      */
test_toRadiansD()1875     public void test_toRadiansD() {
1876         for (double d = 500; d >= 0; d -= 1.0) {
1877             double converted = Math.toDegrees(Math.toRadians(d));
1878             assertTrue("Converted number not equal to original. d = " + d,
1879                     converted >= d * 0.99999999 && converted <= d * 1.00000001);
1880         }
1881     }
1882 
1883     /**
1884      * java.lang.Math#toDegrees(double)
1885      */
test_toDegreesD()1886     public void test_toDegreesD() {
1887         for (double d = 500; d >= 0; d -= 1.0) {
1888             double converted = Math.toRadians(Math.toDegrees(d));
1889             assertTrue("Converted number not equal to original. d = " + d,
1890                     converted >= d * 0.99999999 && converted <= d * 1.00000001);
1891         }
1892     }
1893 
1894     /**
1895      * java.lang.Math#ulp(double)
1896      */
1897     @SuppressWarnings("boxing")
test_ulp_D()1898     public void test_ulp_D() {
1899         // Test for special cases
1900         assertTrue("Should return NaN", Double.isNaN(Math.ulp(Double.NaN)));
1901         assertEquals("Returned incorrect value", Double.POSITIVE_INFINITY, Math
1902                 .ulp(Double.POSITIVE_INFINITY), 0D);
1903         assertEquals("Returned incorrect value", Double.POSITIVE_INFINITY, Math
1904                 .ulp(Double.NEGATIVE_INFINITY), 0D);
1905         assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1906                 .ulp(0.0), 0D);
1907         assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1908                 .ulp(+0.0), 0D);
1909         assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1910                 .ulp(-0.0), 0D);
1911         assertEquals("Returned incorrect value", Math.pow(2, 971), Math
1912                 .ulp(Double.MAX_VALUE), 0D);
1913         assertEquals("Returned incorrect value", Math.pow(2, 971), Math
1914                 .ulp(-Double.MAX_VALUE), 0D);
1915 
1916         assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1917                 .ulp(Double.MIN_VALUE), 0D);
1918         assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1919                 .ulp(-Double.MIN_VALUE), 0D);
1920 
1921         assertEquals("Returned incorrect value", 2.220446049250313E-16, Math
1922                 .ulp(1.0), 0D);
1923         assertEquals("Returned incorrect value", 2.220446049250313E-16, Math
1924                 .ulp(-1.0), 0D);
1925         assertEquals("Returned incorrect value", 2.2737367544323206E-13, Math
1926                 .ulp(1153.0), 0D);
1927     }
1928 
1929     /**
1930      * java.lang.Math#ulp(float)
1931      */
1932     @SuppressWarnings("boxing")
test_ulp_f()1933     public void test_ulp_f() {
1934         // Test for special cases
1935         assertTrue("Should return NaN", Float.isNaN(Math.ulp(Float.NaN)));
1936         assertEquals("Returned incorrect value", Float.POSITIVE_INFINITY, Math
1937                 .ulp(Float.POSITIVE_INFINITY), 0f);
1938         assertEquals("Returned incorrect value", Float.POSITIVE_INFINITY, Math
1939                 .ulp(Float.NEGATIVE_INFINITY), 0f);
1940         assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
1941                 .ulp(0.0f), 0f);
1942         assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
1943                 .ulp(+0.0f), 0f);
1944         assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
1945                 .ulp(-0.0f), 0f);
1946         assertEquals("Returned incorrect value", 2.028241E31f, Math
1947                 .ulp(Float.MAX_VALUE), 0f);
1948         assertEquals("Returned incorrect value", 2.028241E31f, Math
1949                 .ulp(-Float.MAX_VALUE), 0f);
1950 
1951         assertEquals("Returned incorrect value", 1.4E-45f, Math
1952                 .ulp(Float.MIN_VALUE), 0f);
1953         assertEquals("Returned incorrect value", 1.4E-45f, Math
1954                 .ulp(-Float.MIN_VALUE), 0f);
1955 
1956         assertEquals("Returned incorrect value", 1.1920929E-7f, Math.ulp(1.0f),
1957                 0f);
1958         assertEquals("Returned incorrect value", 1.1920929E-7f,
1959                 Math.ulp(-1.0f), 0f);
1960         assertEquals("Returned incorrect value", 1.2207031E-4f, Math
1961                 .ulp(1153.0f), 0f);
1962         assertEquals("Returned incorrect value", 5.6E-45f, Math
1963                 .ulp(9.403954E-38f), 0f);
1964     }
1965 
1966     /**
1967      * {@link java.lang.Math#shiftIntBits(int, int)}
1968      * @since 1.6
1969      */
test_shiftIntBits_II()1970     public void test_shiftIntBits_II() {
1971         class Tuple {
1972             public int result;
1973 
1974             public int value;
1975 
1976             public int factor;
1977 
1978             public Tuple(int result, int value, int factor) {
1979                 this.result = result;
1980                 this.value = value;
1981                 this.factor = factor;
1982             }
1983         }
1984         final Tuple[] TUPLES = new Tuple[] {
1985                 // sub-normal to sub-normal
1986                 new Tuple(0x00000000, 0x00000001, -1),
1987                 // round to even
1988                 new Tuple(0x00000002, 0x00000003, -1),
1989                 // round to even
1990                 new Tuple(0x00000001, 0x00000005, -3),
1991                 // round to infinity
1992                 new Tuple(0x00000002, 0x0000000d, -3),
1993                 // round to infinity
1994 
1995                 // normal to sub-normal
1996                 new Tuple(0x00000002, 0x01a00000, -24),
1997                 // round to even
1998                 new Tuple(0x00000004, 0x01e00000, -24),
1999                 // round to even
2000                 new Tuple(0x00000003, 0x01c80000, -24),
2001                 // round to infinity
2002                 new Tuple(0x00000004, 0x01e80000, -24),
2003                 // round to infinity
2004         };
2005         for (int i = 0; i < TUPLES.length; ++i) {
2006             Tuple tuple = TUPLES[i];
2007             assertEquals(tuple.result, Float.floatToIntBits(Math.scalb(Float
2008                     .intBitsToFloat(tuple.value), tuple.factor)));
2009             assertEquals(tuple.result, Float.floatToIntBits(-Math.scalb(-Float
2010                     .intBitsToFloat(tuple.value), tuple.factor)));
2011         }
2012     }
2013 
2014     /**
2015      * {@link java.lang.Math#shiftLongBits(long, long)}
2016      * <p/>
2017      * Round result to nearest value on precision lost.
2018      * @since 1.6
2019      */
test_shiftLongBits_LL()2020     public void test_shiftLongBits_LL() {
2021         class Tuple {
2022             public long result;
2023 
2024             public long value;
2025 
2026             public int factor;
2027 
2028             public Tuple(long result, long value, int factor) {
2029                 this.result = result;
2030                 this.value = value;
2031                 this.factor = factor;
2032             }
2033         }
2034         final Tuple[] TUPLES = new Tuple[] {
2035                 // sub-normal to sub-normal
2036                 new Tuple(0x00000000L, 0x00000001L, -1),
2037                 //round to even
2038                 new Tuple(0x00000002L, 0x00000003L, -1),
2039                 //round to even
2040                 new Tuple(0x00000001L, 0x00000005L, -3),
2041                 //round to infinity
2042                 new Tuple(0x00000002L, 0x0000000dL, -3),
2043                 //round to infinity
2044 
2045                 // normal to sub-normal
2046                 new Tuple(0x0000000000000002L, 0x0034000000000000L, -53), // round to even
2047                 new Tuple(0x0000000000000004L, 0x003c000000000000L, -53), // round to even
2048                 new Tuple(0x0000000000000003L, 0x0035000000000000L, -53), // round to infinity
2049                 new Tuple(0x0000000000000004L, 0x003d000000000000L, -53), // round to infinity
2050         };
2051         for (int i = 0; i < TUPLES.length; ++i) {
2052             Tuple tuple = TUPLES[i];
2053             assertEquals(tuple.result, Double.doubleToLongBits(Math.scalb(
2054                     Double.longBitsToDouble(tuple.value), tuple.factor)));
2055             assertEquals(tuple.result, Double.doubleToLongBits(-Math.scalb(
2056                     -Double.longBitsToDouble(tuple.value), tuple.factor)));
2057         }
2058     }
2059 }
2060