1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "induction_var_analysis.h"
18 #include "induction_var_range.h"
19
20 namespace art {
21
22 /**
23 * Since graph traversal may enter a SCC at any position, an initial representation may be rotated,
24 * along dependences, viz. any of (a, b, c, d), (d, a, b, c) (c, d, a, b), (b, c, d, a) assuming
25 * a chain of dependences (mutual independent items may occur in arbitrary order). For proper
26 * classification, the lexicographically first loop-phi is rotated to the front.
27 */
RotateEntryPhiFirst(HLoopInformation * loop,ArenaVector<HInstruction * > * scc,ArenaVector<HInstruction * > * new_scc)28 static void RotateEntryPhiFirst(HLoopInformation* loop,
29 ArenaVector<HInstruction*>* scc,
30 ArenaVector<HInstruction*>* new_scc) {
31 // Find very first loop-phi.
32 const HInstructionList& phis = loop->GetHeader()->GetPhis();
33 HInstruction* phi = nullptr;
34 size_t phi_pos = -1;
35 const size_t size = scc->size();
36 for (size_t i = 0; i < size; i++) {
37 HInstruction* other = (*scc)[i];
38 if (other->IsLoopHeaderPhi() && (phi == nullptr || phis.FoundBefore(other, phi))) {
39 phi = other;
40 phi_pos = i;
41 }
42 }
43
44 // If found, bring that loop-phi to front.
45 if (phi != nullptr) {
46 new_scc->clear();
47 for (size_t i = 0; i < size; i++) {
48 new_scc->push_back((*scc)[phi_pos]);
49 if (++phi_pos >= size) phi_pos = 0;
50 }
51 DCHECK_EQ(size, new_scc->size());
52 scc->swap(*new_scc);
53 }
54 }
55
56 /**
57 * Returns true if the from/to types denote a narrowing, integral conversion (precision loss).
58 */
IsNarrowingIntegralConversion(DataType::Type from,DataType::Type to)59 static bool IsNarrowingIntegralConversion(DataType::Type from, DataType::Type to) {
60 switch (from) {
61 case DataType::Type::kInt64:
62 return to == DataType::Type::kUint8 ||
63 to == DataType::Type::kInt8 ||
64 to == DataType::Type::kUint16 ||
65 to == DataType::Type::kInt16 ||
66 to == DataType::Type::kInt32;
67 case DataType::Type::kInt32:
68 return to == DataType::Type::kUint8 ||
69 to == DataType::Type::kInt8 ||
70 to == DataType::Type::kUint16 ||
71 to == DataType::Type::kInt16;
72 case DataType::Type::kUint16:
73 case DataType::Type::kInt16:
74 return to == DataType::Type::kUint8 || to == DataType::Type::kInt8;
75 default:
76 return false;
77 }
78 }
79
80 /**
81 * Returns result of implicit widening type conversion done in HIR.
82 */
ImplicitConversion(DataType::Type type)83 static DataType::Type ImplicitConversion(DataType::Type type) {
84 switch (type) {
85 case DataType::Type::kBool:
86 case DataType::Type::kUint8:
87 case DataType::Type::kInt8:
88 case DataType::Type::kUint16:
89 case DataType::Type::kInt16:
90 return DataType::Type::kInt32;
91 default:
92 return type;
93 }
94 }
95
96 /**
97 * Returns true if loop is guarded by "a cmp b" on entry.
98 */
IsGuardedBy(HLoopInformation * loop,IfCondition cmp,HInstruction * a,HInstruction * b)99 static bool IsGuardedBy(HLoopInformation* loop,
100 IfCondition cmp,
101 HInstruction* a,
102 HInstruction* b) {
103 // Chase back through straightline code to the first potential
104 // block that has a control dependence.
105 // guard: if (x) bypass
106 // |
107 // entry: straightline code
108 // |
109 // preheader
110 // |
111 // header
112 HBasicBlock* guard = loop->GetPreHeader();
113 HBasicBlock* entry = loop->GetHeader();
114 while (guard->GetPredecessors().size() == 1 &&
115 guard->GetSuccessors().size() == 1) {
116 entry = guard;
117 guard = guard->GetSinglePredecessor();
118 }
119 // Find guard.
120 HInstruction* control = guard->GetLastInstruction();
121 if (!control->IsIf()) {
122 return false;
123 }
124 HIf* ifs = control->AsIf();
125 HInstruction* if_expr = ifs->InputAt(0);
126 if (if_expr->IsCondition()) {
127 IfCondition other_cmp = ifs->IfTrueSuccessor() == entry
128 ? if_expr->AsCondition()->GetCondition()
129 : if_expr->AsCondition()->GetOppositeCondition();
130 if (if_expr->InputAt(0) == a && if_expr->InputAt(1) == b) {
131 return cmp == other_cmp;
132 } else if (if_expr->InputAt(1) == a && if_expr->InputAt(0) == b) {
133 switch (cmp) {
134 case kCondLT: return other_cmp == kCondGT;
135 case kCondLE: return other_cmp == kCondGE;
136 case kCondGT: return other_cmp == kCondLT;
137 case kCondGE: return other_cmp == kCondLE;
138 default: LOG(FATAL) << "unexpected cmp: " << cmp;
139 }
140 }
141 }
142 return false;
143 }
144
145 /* Finds first loop header phi use. */
FindFirstLoopHeaderPhiUse(HLoopInformation * loop,HInstruction * instruction)146 HInstruction* FindFirstLoopHeaderPhiUse(HLoopInformation* loop, HInstruction* instruction) {
147 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
148 if (use.GetUser()->GetBlock() == loop->GetHeader() &&
149 use.GetUser()->IsPhi() &&
150 use.GetUser()->InputAt(1) == instruction) {
151 return use.GetUser();
152 }
153 }
154 return nullptr;
155 }
156
157 /**
158 * Relinks the Phi structure after break-loop rewriting.
159 */
FixOutsideUse(HLoopInformation * loop,HInstruction * instruction,HInstruction * replacement,bool rewrite)160 bool FixOutsideUse(HLoopInformation* loop,
161 HInstruction* instruction,
162 HInstruction* replacement,
163 bool rewrite) {
164 // Deal with regular uses.
165 const HUseList<HInstruction*>& uses = instruction->GetUses();
166 for (auto it = uses.begin(), end = uses.end(); it != end; ) {
167 HInstruction* user = it->GetUser();
168 size_t index = it->GetIndex();
169 ++it; // increment prior to potential removal
170 if (user->GetBlock()->GetLoopInformation() != loop) {
171 if (replacement == nullptr) {
172 return false;
173 } else if (rewrite) {
174 user->ReplaceInput(replacement, index);
175 }
176 }
177 }
178 // Deal with environment uses.
179 const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
180 for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
181 HEnvironment* user = it->GetUser();
182 size_t index = it->GetIndex();
183 ++it; // increment prior to potential removal
184 if (user->GetHolder()->GetBlock()->GetLoopInformation() != loop) {
185 if (replacement == nullptr) {
186 return false;
187 } else if (rewrite) {
188 user->RemoveAsUserOfInput(index);
189 user->SetRawEnvAt(index, replacement);
190 replacement->AddEnvUseAt(user, index);
191 }
192 }
193 }
194 return true;
195 }
196
197 /**
198 * Test and rewrite the loop body of a break-loop. Returns true on success.
199 */
RewriteBreakLoopBody(HLoopInformation * loop,HBasicBlock * body,HInstruction * cond,HInstruction * index,HInstruction * upper,bool rewrite)200 bool RewriteBreakLoopBody(HLoopInformation* loop,
201 HBasicBlock* body,
202 HInstruction* cond,
203 HInstruction* index,
204 HInstruction* upper,
205 bool rewrite) {
206 // Deal with Phis. Outside use prohibited, except for index (which gets exit value).
207 for (HInstructionIterator it(loop->GetHeader()->GetPhis()); !it.Done(); it.Advance()) {
208 HInstruction* exit_value = it.Current() == index ? upper : nullptr;
209 if (!FixOutsideUse(loop, it.Current(), exit_value, rewrite)) {
210 return false;
211 }
212 }
213 // Deal with other statements in header.
214 for (HInstruction* m = cond->GetPrevious(), *p = nullptr; m && !m->IsSuspendCheck(); m = p) {
215 p = m->GetPrevious();
216 if (rewrite) {
217 m->MoveBefore(body->GetFirstInstruction(), false);
218 }
219 if (!FixOutsideUse(loop, m, FindFirstLoopHeaderPhiUse(loop, m), rewrite)) {
220 return false;
221 }
222 }
223 return true;
224 }
225
226 //
227 // Class methods.
228 //
229
HInductionVarAnalysis(HGraph * graph,const char * name)230 HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph, const char* name)
231 : HOptimization(graph, name),
232 global_depth_(0),
233 stack_(graph->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)),
234 map_(std::less<HInstruction*>(),
235 graph->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)),
236 scc_(graph->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)),
237 cycle_(std::less<HInstruction*>(),
238 graph->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)),
239 type_(DataType::Type::kVoid),
240 induction_(std::less<HLoopInformation*>(),
241 graph->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)),
242 cycles_(std::less<HPhi*>(),
243 graph->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)) {
244 }
245
Run()246 bool HInductionVarAnalysis::Run() {
247 // Detects sequence variables (generalized induction variables) during an outer to inner
248 // traversal of all loops using Gerlek's algorithm. The order is important to enable
249 // range analysis on outer loop while visiting inner loops.
250 for (HBasicBlock* graph_block : graph_->GetReversePostOrder()) {
251 // Don't analyze irreducible loops.
252 if (graph_block->IsLoopHeader() && !graph_block->GetLoopInformation()->IsIrreducible()) {
253 VisitLoop(graph_block->GetLoopInformation());
254 }
255 }
256 return !induction_.empty();
257 }
258
VisitLoop(HLoopInformation * loop)259 void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) {
260 // Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's
261 // algorithm. Due to the descendant-first nature, classification happens "on-demand".
262 global_depth_ = 0;
263 DCHECK(stack_.empty());
264 map_.clear();
265
266 for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) {
267 HBasicBlock* loop_block = it_loop.Current();
268 DCHECK(loop_block->IsInLoop());
269 if (loop_block->GetLoopInformation() != loop) {
270 continue; // Inner loops visited later.
271 }
272 // Visit phi-operations and instructions.
273 for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) {
274 HInstruction* instruction = it.Current();
275 if (!IsVisitedNode(instruction)) {
276 VisitNode(loop, instruction);
277 }
278 }
279 for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) {
280 HInstruction* instruction = it.Current();
281 if (!IsVisitedNode(instruction)) {
282 VisitNode(loop, instruction);
283 }
284 }
285 }
286
287 DCHECK(stack_.empty());
288 map_.clear();
289
290 // Determine the loop's trip-count.
291 VisitControl(loop);
292 }
293
VisitNode(HLoopInformation * loop,HInstruction * instruction)294 void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) {
295 const uint32_t d1 = ++global_depth_;
296 map_.Put(instruction, NodeInfo(d1));
297 stack_.push_back(instruction);
298
299 // Visit all descendants.
300 uint32_t low = d1;
301 for (HInstruction* input : instruction->GetInputs()) {
302 low = std::min(low, VisitDescendant(loop, input));
303 }
304
305 // Lower or found SCC?
306 if (low < d1) {
307 map_.find(instruction)->second.depth = low;
308 } else {
309 scc_.clear();
310 cycle_.clear();
311
312 // Pop the stack to build the SCC for classification.
313 while (!stack_.empty()) {
314 HInstruction* x = stack_.back();
315 scc_.push_back(x);
316 stack_.pop_back();
317 map_.find(x)->second.done = true;
318 if (x == instruction) {
319 break;
320 }
321 }
322
323 // Type of induction.
324 type_ = scc_[0]->GetType();
325
326 // Classify the SCC.
327 if (scc_.size() == 1 && !scc_[0]->IsLoopHeaderPhi()) {
328 ClassifyTrivial(loop, scc_[0]);
329 } else {
330 ClassifyNonTrivial(loop);
331 }
332
333 scc_.clear();
334 cycle_.clear();
335 }
336 }
337
VisitDescendant(HLoopInformation * loop,HInstruction * instruction)338 uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) {
339 // If the definition is either outside the loop (loop invariant entry value)
340 // or assigned in inner loop (inner exit value), the traversal stops.
341 HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation();
342 if (otherLoop != loop) {
343 return global_depth_;
344 }
345
346 // Inspect descendant node.
347 if (!IsVisitedNode(instruction)) {
348 VisitNode(loop, instruction);
349 return map_.find(instruction)->second.depth;
350 } else {
351 auto it = map_.find(instruction);
352 return it->second.done ? global_depth_ : it->second.depth;
353 }
354 }
355
ClassifyTrivial(HLoopInformation * loop,HInstruction * instruction)356 void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) {
357 InductionInfo* info = nullptr;
358 if (instruction->IsPhi()) {
359 info = TransferPhi(loop, instruction, /*input_index*/ 0, /*adjust_input_size*/ 0);
360 } else if (instruction->IsAdd()) {
361 info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
362 LookupInfo(loop, instruction->InputAt(1)), kAdd);
363 } else if (instruction->IsSub()) {
364 info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
365 LookupInfo(loop, instruction->InputAt(1)), kSub);
366 } else if (instruction->IsNeg()) {
367 info = TransferNeg(LookupInfo(loop, instruction->InputAt(0)));
368 } else if (instruction->IsMul()) {
369 info = TransferMul(LookupInfo(loop, instruction->InputAt(0)),
370 LookupInfo(loop, instruction->InputAt(1)));
371 } else if (instruction->IsShl()) {
372 HInstruction* mulc = GetShiftConstant(loop, instruction, /*initial*/ nullptr);
373 if (mulc != nullptr) {
374 info = TransferMul(LookupInfo(loop, instruction->InputAt(0)),
375 LookupInfo(loop, mulc));
376 }
377 } else if (instruction->IsSelect()) {
378 info = TransferPhi(loop, instruction, /*input_index*/ 0, /*adjust_input_size*/ 1);
379 } else if (instruction->IsTypeConversion()) {
380 info = TransferConversion(LookupInfo(loop, instruction->InputAt(0)),
381 instruction->AsTypeConversion()->GetInputType(),
382 instruction->AsTypeConversion()->GetResultType());
383 } else if (instruction->IsBoundsCheck()) {
384 info = LookupInfo(loop, instruction->InputAt(0)); // Pass-through.
385 }
386
387 // Successfully classified?
388 if (info != nullptr) {
389 AssignInfo(loop, instruction, info);
390 }
391 }
392
ClassifyNonTrivial(HLoopInformation * loop)393 void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) {
394 const size_t size = scc_.size();
395 DCHECK_GE(size, 1u);
396
397 // Rotate proper loop-phi to front.
398 if (size > 1) {
399 ArenaVector<HInstruction*> other(
400 graph_->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis));
401 RotateEntryPhiFirst(loop, &scc_, &other);
402 }
403
404 // Analyze from loop-phi onwards.
405 HInstruction* phi = scc_[0];
406 if (!phi->IsLoopHeaderPhi()) {
407 return;
408 }
409
410 // External link should be loop invariant.
411 InductionInfo* initial = LookupInfo(loop, phi->InputAt(0));
412 if (initial == nullptr || initial->induction_class != kInvariant) {
413 return;
414 }
415
416 // Store interesting cycle in each loop phi.
417 for (size_t i = 0; i < size; i++) {
418 if (scc_[i]->IsLoopHeaderPhi()) {
419 AssignCycle(scc_[i]->AsPhi());
420 }
421 }
422
423 // Singleton is wrap-around induction if all internal links have the same meaning.
424 if (size == 1) {
425 InductionInfo* update = TransferPhi(loop, phi, /*input_index*/ 1, /*adjust_input_size*/ 0);
426 if (update != nullptr) {
427 AssignInfo(loop, phi, CreateInduction(kWrapAround,
428 kNop,
429 initial,
430 update,
431 /*fetch*/ nullptr,
432 type_));
433 }
434 return;
435 }
436
437 // Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns
438 // temporary meaning to its nodes, seeded from the phi instruction and back.
439 for (size_t i = 1; i < size; i++) {
440 HInstruction* instruction = scc_[i];
441 InductionInfo* update = nullptr;
442 if (instruction->IsPhi()) {
443 update = SolvePhiAllInputs(loop, phi, instruction);
444 } else if (instruction->IsAdd()) {
445 update = SolveAddSub(
446 loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kAdd, true);
447 } else if (instruction->IsSub()) {
448 update = SolveAddSub(
449 loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kSub, true);
450 } else if (instruction->IsMul()) {
451 update = SolveOp(
452 loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kMul);
453 } else if (instruction->IsDiv()) {
454 update = SolveOp(
455 loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kDiv);
456 } else if (instruction->IsRem()) {
457 update = SolveOp(
458 loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kRem);
459 } else if (instruction->IsShl()) {
460 HInstruction* mulc = GetShiftConstant(loop, instruction, /*initial*/ nullptr);
461 if (mulc != nullptr) {
462 update = SolveOp(loop, phi, instruction, instruction->InputAt(0), mulc, kMul);
463 }
464 } else if (instruction->IsShr() || instruction->IsUShr()) {
465 HInstruction* divc = GetShiftConstant(loop, instruction, initial);
466 if (divc != nullptr) {
467 update = SolveOp(loop, phi, instruction, instruction->InputAt(0), divc, kDiv);
468 }
469 } else if (instruction->IsXor()) {
470 update = SolveOp(
471 loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kXor);
472 } else if (instruction->IsEqual()) {
473 update = SolveTest(loop, phi, instruction, 0);
474 } else if (instruction->IsNotEqual()) {
475 update = SolveTest(loop, phi, instruction, 1);
476 } else if (instruction->IsSelect()) {
477 update = SolvePhi(instruction, /*input_index*/ 0, /*adjust_input_size*/ 1); // acts like Phi
478 } else if (instruction->IsTypeConversion()) {
479 update = SolveConversion(loop, phi, instruction->AsTypeConversion());
480 }
481 if (update == nullptr) {
482 return;
483 }
484 cycle_.Put(instruction, update);
485 }
486
487 // Success if all internal links received the same temporary meaning.
488 InductionInfo* induction = SolvePhi(phi, /*input_index*/ 1, /*adjust_input_size*/ 0);
489 if (induction != nullptr) {
490 switch (induction->induction_class) {
491 case kInvariant:
492 // Construct combined stride of the linear induction.
493 induction = CreateInduction(kLinear, kNop, induction, initial, /*fetch*/ nullptr, type_);
494 FALLTHROUGH_INTENDED;
495 case kPolynomial:
496 case kGeometric:
497 case kWrapAround:
498 // Classify first phi and then the rest of the cycle "on-demand".
499 // Statements are scanned in order.
500 AssignInfo(loop, phi, induction);
501 for (size_t i = 1; i < size; i++) {
502 ClassifyTrivial(loop, scc_[i]);
503 }
504 break;
505 case kPeriodic:
506 // Classify all elements in the cycle with the found periodic induction while
507 // rotating each first element to the end. Lastly, phi is classified.
508 // Statements are scanned in reverse order.
509 for (size_t i = size - 1; i >= 1; i--) {
510 AssignInfo(loop, scc_[i], induction);
511 induction = RotatePeriodicInduction(induction->op_b, induction->op_a);
512 }
513 AssignInfo(loop, phi, induction);
514 break;
515 default:
516 break;
517 }
518 }
519 }
520
RotatePeriodicInduction(InductionInfo * induction,InductionInfo * last)521 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::RotatePeriodicInduction(
522 InductionInfo* induction,
523 InductionInfo* last) {
524 // Rotates a periodic induction of the form
525 // (a, b, c, d, e)
526 // into
527 // (b, c, d, e, a)
528 // in preparation of assigning this to the previous variable in the sequence.
529 if (induction->induction_class == kInvariant) {
530 return CreateInduction(kPeriodic,
531 kNop,
532 induction,
533 last,
534 /*fetch*/ nullptr,
535 type_);
536 }
537 return CreateInduction(kPeriodic,
538 kNop,
539 induction->op_a,
540 RotatePeriodicInduction(induction->op_b, last),
541 /*fetch*/ nullptr,
542 type_);
543 }
544
TransferPhi(HLoopInformation * loop,HInstruction * phi,size_t input_index,size_t adjust_input_size)545 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(HLoopInformation* loop,
546 HInstruction* phi,
547 size_t input_index,
548 size_t adjust_input_size) {
549 // Match all phi inputs from input_index onwards exactly.
550 HInputsRef inputs = phi->GetInputs();
551 DCHECK_LT(input_index, inputs.size());
552 InductionInfo* a = LookupInfo(loop, inputs[input_index]);
553 for (size_t i = input_index + 1, n = inputs.size() - adjust_input_size; i < n; i++) {
554 InductionInfo* b = LookupInfo(loop, inputs[i]);
555 if (!InductionEqual(a, b)) {
556 return nullptr;
557 }
558 }
559 return a;
560 }
561
TransferAddSub(InductionInfo * a,InductionInfo * b,InductionOp op)562 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a,
563 InductionInfo* b,
564 InductionOp op) {
565 // Transfer over an addition or subtraction: any invariant, linear, polynomial, geometric,
566 // wrap-around, or periodic can be combined with an invariant to yield a similar result.
567 // Two linear or two polynomial inputs can be combined too. Other combinations fail.
568 if (a != nullptr && b != nullptr) {
569 if (IsNarrowingLinear(a) || IsNarrowingLinear(b)) {
570 return nullptr; // no transfer
571 } else if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
572 return CreateInvariantOp(op, a, b); // direct invariant
573 } else if ((a->induction_class == kLinear && b->induction_class == kLinear) ||
574 (a->induction_class == kPolynomial && b->induction_class == kPolynomial)) {
575 // Rule induc(a, b) + induc(a', b') -> induc(a + a', b + b').
576 InductionInfo* new_a = TransferAddSub(a->op_a, b->op_a, op);
577 InductionInfo* new_b = TransferAddSub(a->op_b, b->op_b, op);
578 if (new_a != nullptr && new_b != nullptr) {
579 return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type_);
580 }
581 } else if (a->induction_class == kInvariant) {
582 // Rule a + induc(a', b') -> induc(a', a + b') or induc(a + a', a + b').
583 InductionInfo* new_a = b->op_a;
584 InductionInfo* new_b = TransferAddSub(a, b->op_b, op);
585 if (b->induction_class == kWrapAround || b->induction_class == kPeriodic) {
586 new_a = TransferAddSub(a, new_a, op);
587 } else if (op == kSub) { // Negation required.
588 new_a = TransferNeg(new_a);
589 }
590 if (new_a != nullptr && new_b != nullptr) {
591 return CreateInduction(b->induction_class, b->operation, new_a, new_b, b->fetch, type_);
592 }
593 } else if (b->induction_class == kInvariant) {
594 // Rule induc(a, b) + b' -> induc(a, b + b') or induc(a + b', b + b').
595 InductionInfo* new_a = a->op_a;
596 InductionInfo* new_b = TransferAddSub(a->op_b, b, op);
597 if (a->induction_class == kWrapAround || a->induction_class == kPeriodic) {
598 new_a = TransferAddSub(new_a, b, op);
599 }
600 if (new_a != nullptr && new_b != nullptr) {
601 return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type_);
602 }
603 }
604 }
605 return nullptr;
606 }
607
TransferNeg(InductionInfo * a)608 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) {
609 // Transfer over a unary negation: an invariant, linear, polynomial, geometric (mul),
610 // wrap-around, or periodic input yields a similar but negated induction as result.
611 if (a != nullptr) {
612 if (IsNarrowingLinear(a)) {
613 return nullptr; // no transfer
614 } else if (a->induction_class == kInvariant) {
615 return CreateInvariantOp(kNeg, nullptr, a); // direct invariant
616 } else if (a->induction_class != kGeometric || a->operation == kMul) {
617 // Rule - induc(a, b) -> induc(-a, -b).
618 InductionInfo* new_a = TransferNeg(a->op_a);
619 InductionInfo* new_b = TransferNeg(a->op_b);
620 if (new_a != nullptr && new_b != nullptr) {
621 return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type_);
622 }
623 }
624 }
625 return nullptr;
626 }
627
TransferMul(InductionInfo * a,InductionInfo * b)628 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a,
629 InductionInfo* b) {
630 // Transfer over a multiplication: any invariant, linear, polynomial, geometric (mul),
631 // wrap-around, or periodic can be multiplied with an invariant to yield a similar
632 // but multiplied result. Two non-invariant inputs cannot be multiplied, however.
633 if (a != nullptr && b != nullptr) {
634 if (IsNarrowingLinear(a) || IsNarrowingLinear(b)) {
635 return nullptr; // no transfer
636 } else if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
637 return CreateInvariantOp(kMul, a, b); // direct invariant
638 } else if (a->induction_class == kInvariant && (b->induction_class != kGeometric ||
639 b->operation == kMul)) {
640 // Rule a * induc(a', b') -> induc(a * a', b * b').
641 InductionInfo* new_a = TransferMul(a, b->op_a);
642 InductionInfo* new_b = TransferMul(a, b->op_b);
643 if (new_a != nullptr && new_b != nullptr) {
644 return CreateInduction(b->induction_class, b->operation, new_a, new_b, b->fetch, type_);
645 }
646 } else if (b->induction_class == kInvariant && (a->induction_class != kGeometric ||
647 a->operation == kMul)) {
648 // Rule induc(a, b) * b' -> induc(a * b', b * b').
649 InductionInfo* new_a = TransferMul(a->op_a, b);
650 InductionInfo* new_b = TransferMul(a->op_b, b);
651 if (new_a != nullptr && new_b != nullptr) {
652 return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type_);
653 }
654 }
655 }
656 return nullptr;
657 }
658
TransferConversion(InductionInfo * a,DataType::Type from,DataType::Type to)659 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferConversion(
660 InductionInfo* a,
661 DataType::Type from,
662 DataType::Type to) {
663 if (a != nullptr) {
664 // Allow narrowing conversion on linear induction in certain cases:
665 // induction is already at narrow type, or can be made narrower.
666 if (IsNarrowingIntegralConversion(from, to) &&
667 a->induction_class == kLinear &&
668 (a->type == to || IsNarrowingIntegralConversion(a->type, to))) {
669 return CreateInduction(kLinear, kNop, a->op_a, a->op_b, a->fetch, to);
670 }
671 }
672 return nullptr;
673 }
674
SolvePhi(HInstruction * phi,size_t input_index,size_t adjust_input_size)675 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhi(HInstruction* phi,
676 size_t input_index,
677 size_t adjust_input_size) {
678 // Match all phi inputs from input_index onwards exactly.
679 HInputsRef inputs = phi->GetInputs();
680 DCHECK_LT(input_index, inputs.size());
681 auto ita = cycle_.find(inputs[input_index]);
682 if (ita != cycle_.end()) {
683 for (size_t i = input_index + 1, n = inputs.size() - adjust_input_size; i < n; i++) {
684 auto itb = cycle_.find(inputs[i]);
685 if (itb == cycle_.end() ||
686 !HInductionVarAnalysis::InductionEqual(ita->second, itb->second)) {
687 return nullptr;
688 }
689 }
690 return ita->second;
691 }
692 return nullptr;
693 }
694
SolvePhiAllInputs(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * phi)695 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhiAllInputs(
696 HLoopInformation* loop,
697 HInstruction* entry_phi,
698 HInstruction* phi) {
699 // Match all phi inputs.
700 InductionInfo* match = SolvePhi(phi, /*input_index*/ 0, /*adjust_input_size*/ 0);
701 if (match != nullptr) {
702 return match;
703 }
704
705 // Otherwise, try to solve for a periodic seeded from phi onward.
706 // Only tight multi-statement cycles are considered in order to
707 // simplify rotating the periodic during the final classification.
708 if (phi->IsLoopHeaderPhi() && phi->InputCount() == 2) {
709 InductionInfo* a = LookupInfo(loop, phi->InputAt(0));
710 if (a != nullptr && a->induction_class == kInvariant) {
711 if (phi->InputAt(1) == entry_phi) {
712 InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
713 return CreateInduction(kPeriodic, kNop, a, initial, /*fetch*/ nullptr, type_);
714 }
715 InductionInfo* b = SolvePhi(phi, /*input_index*/ 1, /*adjust_input_size*/ 0);
716 if (b != nullptr && b->induction_class == kPeriodic) {
717 return CreateInduction(kPeriodic, kNop, a, b, /*fetch*/ nullptr, type_);
718 }
719 }
720 }
721 return nullptr;
722 }
723
SolveAddSub(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * instruction,HInstruction * x,HInstruction * y,InductionOp op,bool is_first_call)724 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(HLoopInformation* loop,
725 HInstruction* entry_phi,
726 HInstruction* instruction,
727 HInstruction* x,
728 HInstruction* y,
729 InductionOp op,
730 bool is_first_call) {
731 // Solve within a cycle over an addition or subtraction.
732 InductionInfo* b = LookupInfo(loop, y);
733 if (b != nullptr) {
734 if (b->induction_class == kInvariant) {
735 // Adding or subtracting an invariant value, seeded from phi,
736 // keeps adding to the stride of the linear induction.
737 if (x == entry_phi) {
738 return (op == kAdd) ? b : CreateInvariantOp(kNeg, nullptr, b);
739 }
740 auto it = cycle_.find(x);
741 if (it != cycle_.end()) {
742 InductionInfo* a = it->second;
743 if (a->induction_class == kInvariant) {
744 return CreateInvariantOp(op, a, b);
745 }
746 }
747 } else if (b->induction_class == kLinear && b->type == type_) {
748 // Solve within a tight cycle that adds a term that is already classified as a linear
749 // induction for a polynomial induction k = k + i (represented as sum over linear terms).
750 if (x == entry_phi && entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
751 InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
752 InductionInfo* new_a = op == kAdd ? b : TransferNeg(b);
753 if (new_a != nullptr) {
754 return CreateInduction(kPolynomial, kNop, new_a, initial, /*fetch*/ nullptr, type_);
755 }
756 }
757 }
758 }
759
760 // Try some alternatives before failing.
761 if (op == kAdd) {
762 // Try the other way around for an addition if considered for first time.
763 if (is_first_call) {
764 return SolveAddSub(loop, entry_phi, instruction, y, x, op, false);
765 }
766 } else if (op == kSub) {
767 // Solve within a tight cycle that is formed by exactly two instructions,
768 // one phi and one update, for a periodic idiom of the form k = c - k.
769 if (y == entry_phi && entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
770 InductionInfo* a = LookupInfo(loop, x);
771 if (a != nullptr && a->induction_class == kInvariant) {
772 InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
773 return CreateInduction(kPeriodic,
774 kNop,
775 CreateInvariantOp(kSub, a, initial),
776 initial,
777 /*fetch*/ nullptr,
778 type_);
779 }
780 }
781 }
782 return nullptr;
783 }
784
SolveOp(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * instruction,HInstruction * x,HInstruction * y,InductionOp op)785 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveOp(HLoopInformation* loop,
786 HInstruction* entry_phi,
787 HInstruction* instruction,
788 HInstruction* x,
789 HInstruction* y,
790 InductionOp op) {
791 // Solve within a tight cycle for a binary operation k = k op c or, for some op, k = c op k.
792 if (entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
793 InductionInfo* c = nullptr;
794 InductionInfo* b = LookupInfo(loop, y);
795 if (b != nullptr && b->induction_class == kInvariant && entry_phi == x) {
796 c = b;
797 } else if (op != kDiv && op != kRem) {
798 InductionInfo* a = LookupInfo(loop, x);
799 if (a != nullptr && a->induction_class == kInvariant && entry_phi == y) {
800 c = a;
801 }
802 }
803 // Found suitable operand left or right?
804 if (c != nullptr) {
805 InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
806 switch (op) {
807 case kMul:
808 case kDiv:
809 // Restrict base of geometric induction to direct fetch.
810 if (c->operation == kFetch) {
811 return CreateInduction(kGeometric,
812 op,
813 initial,
814 CreateConstant(0, type_),
815 c->fetch,
816 type_);
817 }
818 break;
819 case kRem:
820 // Idiomatic MOD wrap-around induction.
821 return CreateInduction(kWrapAround,
822 kNop,
823 initial,
824 CreateInvariantOp(kRem, initial, c),
825 /*fetch*/ nullptr,
826 type_);
827 case kXor:
828 // Idiomatic XOR periodic induction.
829 return CreateInduction(kPeriodic,
830 kNop,
831 CreateInvariantOp(kXor, initial, c),
832 initial,
833 /*fetch*/ nullptr,
834 type_);
835 default:
836 LOG(FATAL) << op;
837 UNREACHABLE();
838 }
839 }
840 }
841 return nullptr;
842 }
843
SolveTest(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * instruction,int64_t opposite_value)844 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveTest(HLoopInformation* loop,
845 HInstruction* entry_phi,
846 HInstruction* instruction,
847 int64_t opposite_value) {
848 // Detect hidden XOR construction in x = (x == false) or x = (x != true).
849 int64_t value = -1;
850 HInstruction* x = instruction->InputAt(0);
851 HInstruction* y = instruction->InputAt(1);
852 if (IsExact(LookupInfo(loop, x), &value) && value == opposite_value) {
853 return SolveOp(loop, entry_phi, instruction, graph_->GetIntConstant(1), y, kXor);
854 } else if (IsExact(LookupInfo(loop, y), &value) && value == opposite_value) {
855 return SolveOp(loop, entry_phi, instruction, x, graph_->GetIntConstant(1), kXor);
856 }
857 return nullptr;
858 }
859
SolveConversion(HLoopInformation * loop,HInstruction * entry_phi,HTypeConversion * conversion)860 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveConversion(
861 HLoopInformation* loop,
862 HInstruction* entry_phi,
863 HTypeConversion* conversion) {
864 DataType::Type from = conversion->GetInputType();
865 DataType::Type to = conversion->GetResultType();
866 // A narrowing conversion is allowed as *last* operation of the cycle of a linear induction
867 // with an initial value that fits the type, provided that the narrowest encountered type is
868 // recorded with the induction to account for the precision loss. The narrower induction does
869 // *not* transfer to any wider operations, however, since these may yield out-of-type values
870 if (entry_phi->InputCount() == 2 && conversion == entry_phi->InputAt(1)) {
871 int64_t min = DataType::MinValueOfIntegralType(to);
872 int64_t max = DataType::MaxValueOfIntegralType(to);
873 int64_t value = 0;
874 InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
875 if (IsNarrowingIntegralConversion(from, to) &&
876 IsAtLeast(initial, &value) && value >= min &&
877 IsAtMost(initial, &value) && value <= max) {
878 auto it = cycle_.find(conversion->GetInput());
879 if (it != cycle_.end() && it->second->induction_class == kInvariant) {
880 type_ = to;
881 return it->second;
882 }
883 }
884 }
885 return nullptr;
886 }
887
888 //
889 // Loop trip count analysis methods.
890 //
891
VisitControl(HLoopInformation * loop)892 void HInductionVarAnalysis::VisitControl(HLoopInformation* loop) {
893 HInstruction* control = loop->GetHeader()->GetLastInstruction();
894 if (control->IsIf()) {
895 HIf* ifs = control->AsIf();
896 HBasicBlock* if_true = ifs->IfTrueSuccessor();
897 HBasicBlock* if_false = ifs->IfFalseSuccessor();
898 HInstruction* if_expr = ifs->InputAt(0);
899 // Determine if loop has following structure in header.
900 // loop-header: ....
901 // if (condition) goto X
902 if (if_expr->IsCondition()) {
903 HCondition* condition = if_expr->AsCondition();
904 InductionInfo* a = LookupInfo(loop, condition->InputAt(0));
905 InductionInfo* b = LookupInfo(loop, condition->InputAt(1));
906 DataType::Type type = ImplicitConversion(condition->InputAt(0)->GetType());
907 // Determine if the loop control uses a known sequence on an if-exit (X outside) or on
908 // an if-iterate (X inside), expressed as if-iterate when passed into VisitCondition().
909 if (a == nullptr || b == nullptr) {
910 return; // Loop control is not a sequence.
911 } else if (if_true->GetLoopInformation() != loop && if_false->GetLoopInformation() == loop) {
912 VisitCondition(loop, if_false, a, b, type, condition->GetOppositeCondition());
913 } else if (if_true->GetLoopInformation() == loop && if_false->GetLoopInformation() != loop) {
914 VisitCondition(loop, if_true, a, b, type, condition->GetCondition());
915 }
916 }
917 }
918 }
919
VisitCondition(HLoopInformation * loop,HBasicBlock * body,InductionInfo * a,InductionInfo * b,DataType::Type type,IfCondition cmp)920 void HInductionVarAnalysis::VisitCondition(HLoopInformation* loop,
921 HBasicBlock* body,
922 InductionInfo* a,
923 InductionInfo* b,
924 DataType::Type type,
925 IfCondition cmp) {
926 if (a->induction_class == kInvariant && b->induction_class == kLinear) {
927 // Swap condition if induction is at right-hand-side (e.g. U > i is same as i < U).
928 switch (cmp) {
929 case kCondLT: VisitCondition(loop, body, b, a, type, kCondGT); break;
930 case kCondLE: VisitCondition(loop, body, b, a, type, kCondGE); break;
931 case kCondGT: VisitCondition(loop, body, b, a, type, kCondLT); break;
932 case kCondGE: VisitCondition(loop, body, b, a, type, kCondLE); break;
933 case kCondNE: VisitCondition(loop, body, b, a, type, kCondNE); break;
934 default: break;
935 }
936 } else if (a->induction_class == kLinear && b->induction_class == kInvariant) {
937 // Analyze condition with induction at left-hand-side (e.g. i < U).
938 InductionInfo* lower_expr = a->op_b;
939 InductionInfo* upper_expr = b;
940 InductionInfo* stride_expr = a->op_a;
941 // Test for constant stride and integral condition.
942 int64_t stride_value = 0;
943 if (!IsExact(stride_expr, &stride_value)) {
944 return; // unknown stride
945 } else if (type != DataType::Type::kInt32 && type != DataType::Type::kInt64) {
946 return; // not integral
947 }
948 // Since loops with a i != U condition will not be normalized by the method below, first
949 // try to rewrite a break-loop with terminating condition i != U into an equivalent loop
950 // with non-strict end condition i <= U or i >= U if such a rewriting is possible and safe.
951 if (cmp == kCondNE && RewriteBreakLoop(loop, body, stride_value, type)) {
952 cmp = stride_value > 0 ? kCondLE : kCondGE;
953 }
954 // If this rewriting failed, try to rewrite condition i != U into strict end condition i < U
955 // or i > U if this end condition is reached exactly (tested by verifying if the loop has a
956 // unit stride and the non-strict condition would be always taken).
957 if (cmp == kCondNE && ((stride_value == +1 && IsTaken(lower_expr, upper_expr, kCondLE)) ||
958 (stride_value == -1 && IsTaken(lower_expr, upper_expr, kCondGE)))) {
959 cmp = stride_value > 0 ? kCondLT : kCondGT;
960 }
961 // A mismatch between the type of condition and the induction is only allowed if the,
962 // necessarily narrower, induction range fits the narrower control.
963 if (type != a->type &&
964 !FitsNarrowerControl(lower_expr, upper_expr, stride_value, a->type, cmp)) {
965 return; // mismatched type
966 }
967 // Normalize a linear loop control with a nonzero stride:
968 // stride > 0, either i < U or i <= U
969 // stride < 0, either i > U or i >= U
970 if ((stride_value > 0 && (cmp == kCondLT || cmp == kCondLE)) ||
971 (stride_value < 0 && (cmp == kCondGT || cmp == kCondGE))) {
972 VisitTripCount(loop, lower_expr, upper_expr, stride_expr, stride_value, type, cmp);
973 }
974 }
975 }
976
VisitTripCount(HLoopInformation * loop,InductionInfo * lower_expr,InductionInfo * upper_expr,InductionInfo * stride_expr,int64_t stride_value,DataType::Type type,IfCondition cmp)977 void HInductionVarAnalysis::VisitTripCount(HLoopInformation* loop,
978 InductionInfo* lower_expr,
979 InductionInfo* upper_expr,
980 InductionInfo* stride_expr,
981 int64_t stride_value,
982 DataType::Type type,
983 IfCondition cmp) {
984 // Any loop of the general form:
985 //
986 // for (i = L; i <= U; i += S) // S > 0
987 // or for (i = L; i >= U; i += S) // S < 0
988 // .. i ..
989 //
990 // can be normalized into:
991 //
992 // for (n = 0; n < TC; n++) // where TC = (U + S - L) / S
993 // .. L + S * n ..
994 //
995 // taking the following into consideration:
996 //
997 // (1) Using the same precision, the TC (trip-count) expression should be interpreted as
998 // an unsigned entity, for example, as in the following loop that uses the full range:
999 // for (int i = INT_MIN; i < INT_MAX; i++) // TC = UINT_MAX
1000 // (2) The TC is only valid if the loop is taken, otherwise TC = 0, as in:
1001 // for (int i = 12; i < U; i++) // TC = 0 when U <= 12
1002 // If this cannot be determined at compile-time, the TC is only valid within the
1003 // loop-body proper, not the loop-header unless enforced with an explicit taken-test.
1004 // (3) The TC is only valid if the loop is finite, otherwise TC has no value, as in:
1005 // for (int i = 0; i <= U; i++) // TC = Inf when U = INT_MAX
1006 // If this cannot be determined at compile-time, the TC is only valid when enforced
1007 // with an explicit finite-test.
1008 // (4) For loops which early-exits, the TC forms an upper bound, as in:
1009 // for (int i = 0; i < 10 && ....; i++) // TC <= 10
1010 InductionInfo* trip_count = upper_expr;
1011 const bool is_taken = IsTaken(lower_expr, upper_expr, cmp);
1012 const bool is_finite = IsFinite(upper_expr, stride_value, type, cmp);
1013 const bool cancels = (cmp == kCondLT || cmp == kCondGT) && std::abs(stride_value) == 1;
1014 if (!cancels) {
1015 // Convert exclusive integral inequality into inclusive integral inequality,
1016 // viz. condition i < U is i <= U - 1 and condition i > U is i >= U + 1.
1017 if (cmp == kCondLT) {
1018 trip_count = CreateInvariantOp(kSub, trip_count, CreateConstant(1, type));
1019 } else if (cmp == kCondGT) {
1020 trip_count = CreateInvariantOp(kAdd, trip_count, CreateConstant(1, type));
1021 }
1022 // Compensate for stride.
1023 trip_count = CreateInvariantOp(kAdd, trip_count, stride_expr);
1024 }
1025 trip_count = CreateInvariantOp(
1026 kDiv, CreateInvariantOp(kSub, trip_count, lower_expr), stride_expr);
1027 // Assign the trip-count expression to the loop control. Clients that use the information
1028 // should be aware that the expression is only valid under the conditions listed above.
1029 InductionOp tcKind = kTripCountInBodyUnsafe; // needs both tests
1030 if (is_taken && is_finite) {
1031 tcKind = kTripCountInLoop; // needs neither test
1032 } else if (is_finite) {
1033 tcKind = kTripCountInBody; // needs taken-test
1034 } else if (is_taken) {
1035 tcKind = kTripCountInLoopUnsafe; // needs finite-test
1036 }
1037 InductionOp op = kNop;
1038 switch (cmp) {
1039 case kCondLT: op = kLT; break;
1040 case kCondLE: op = kLE; break;
1041 case kCondGT: op = kGT; break;
1042 case kCondGE: op = kGE; break;
1043 default: LOG(FATAL) << "CONDITION UNREACHABLE";
1044 }
1045 // Associate trip count with control instruction, rather than the condition (even
1046 // though it's its use) since former provides a convenient use-free placeholder.
1047 HInstruction* control = loop->GetHeader()->GetLastInstruction();
1048 InductionInfo* taken_test = CreateInvariantOp(op, lower_expr, upper_expr);
1049 DCHECK(control->IsIf());
1050 AssignInfo(loop, control, CreateTripCount(tcKind, trip_count, taken_test, type));
1051 }
1052
IsTaken(InductionInfo * lower_expr,InductionInfo * upper_expr,IfCondition cmp)1053 bool HInductionVarAnalysis::IsTaken(InductionInfo* lower_expr,
1054 InductionInfo* upper_expr,
1055 IfCondition cmp) {
1056 int64_t lower_value;
1057 int64_t upper_value;
1058 switch (cmp) {
1059 case kCondLT:
1060 return IsAtMost(lower_expr, &lower_value)
1061 && IsAtLeast(upper_expr, &upper_value)
1062 && lower_value < upper_value;
1063 case kCondLE:
1064 return IsAtMost(lower_expr, &lower_value)
1065 && IsAtLeast(upper_expr, &upper_value)
1066 && lower_value <= upper_value;
1067 case kCondGT:
1068 return IsAtLeast(lower_expr, &lower_value)
1069 && IsAtMost(upper_expr, &upper_value)
1070 && lower_value > upper_value;
1071 case kCondGE:
1072 return IsAtLeast(lower_expr, &lower_value)
1073 && IsAtMost(upper_expr, &upper_value)
1074 && lower_value >= upper_value;
1075 default:
1076 LOG(FATAL) << "CONDITION UNREACHABLE";
1077 UNREACHABLE();
1078 }
1079 }
1080
IsFinite(InductionInfo * upper_expr,int64_t stride_value,DataType::Type type,IfCondition cmp)1081 bool HInductionVarAnalysis::IsFinite(InductionInfo* upper_expr,
1082 int64_t stride_value,
1083 DataType::Type type,
1084 IfCondition cmp) {
1085 int64_t min = DataType::MinValueOfIntegralType(type);
1086 int64_t max = DataType::MaxValueOfIntegralType(type);
1087 // Some rules under which it is certain at compile-time that the loop is finite.
1088 int64_t value;
1089 switch (cmp) {
1090 case kCondLT:
1091 return stride_value == 1 ||
1092 (IsAtMost(upper_expr, &value) && value <= (max - stride_value + 1));
1093 case kCondLE:
1094 return (IsAtMost(upper_expr, &value) && value <= (max - stride_value));
1095 case kCondGT:
1096 return stride_value == -1 ||
1097 (IsAtLeast(upper_expr, &value) && value >= (min - stride_value - 1));
1098 case kCondGE:
1099 return (IsAtLeast(upper_expr, &value) && value >= (min - stride_value));
1100 default:
1101 LOG(FATAL) << "CONDITION UNREACHABLE";
1102 UNREACHABLE();
1103 }
1104 }
1105
FitsNarrowerControl(InductionInfo * lower_expr,InductionInfo * upper_expr,int64_t stride_value,DataType::Type type,IfCondition cmp)1106 bool HInductionVarAnalysis::FitsNarrowerControl(InductionInfo* lower_expr,
1107 InductionInfo* upper_expr,
1108 int64_t stride_value,
1109 DataType::Type type,
1110 IfCondition cmp) {
1111 int64_t min = DataType::MinValueOfIntegralType(type);
1112 int64_t max = DataType::MaxValueOfIntegralType(type);
1113 // Inclusive test need one extra.
1114 if (stride_value != 1 && stride_value != -1) {
1115 return false; // non-unit stride
1116 } else if (cmp == kCondLE) {
1117 max--;
1118 } else if (cmp == kCondGE) {
1119 min++;
1120 }
1121 // Do both bounds fit the range?
1122 int64_t value = 0;
1123 return IsAtLeast(lower_expr, &value) && value >= min &&
1124 IsAtMost(lower_expr, &value) && value <= max &&
1125 IsAtLeast(upper_expr, &value) && value >= min &&
1126 IsAtMost(upper_expr, &value) && value <= max;
1127 }
1128
RewriteBreakLoop(HLoopInformation * loop,HBasicBlock * body,int64_t stride_value,DataType::Type type)1129 bool HInductionVarAnalysis::RewriteBreakLoop(HLoopInformation* loop,
1130 HBasicBlock* body,
1131 int64_t stride_value,
1132 DataType::Type type) {
1133 // Only accept unit stride.
1134 if (std::abs(stride_value) != 1) {
1135 return false;
1136 }
1137 // Simple terminating i != U condition, used nowhere else.
1138 HIf* ifs = loop->GetHeader()->GetLastInstruction()->AsIf();
1139 HInstruction* cond = ifs->InputAt(0);
1140 if (ifs->GetPrevious() != cond || !cond->HasOnlyOneNonEnvironmentUse()) {
1141 return false;
1142 }
1143 int c = LookupInfo(loop, cond->InputAt(0))->induction_class == kLinear ? 0 : 1;
1144 HInstruction* index = cond->InputAt(c);
1145 HInstruction* upper = cond->InputAt(1 - c);
1146 // Safe to rewrite into i <= U?
1147 IfCondition cmp = stride_value > 0 ? kCondLE : kCondGE;
1148 if (!index->IsPhi() || !IsFinite(LookupInfo(loop, upper), stride_value, type, cmp)) {
1149 return false;
1150 }
1151 // Body consists of update to index i only, used nowhere else.
1152 if (body->GetSuccessors().size() != 1 ||
1153 body->GetSingleSuccessor() != loop->GetHeader() ||
1154 !body->GetPhis().IsEmpty() ||
1155 body->GetInstructions().IsEmpty() ||
1156 body->GetFirstInstruction() != index->InputAt(1) ||
1157 !body->GetFirstInstruction()->HasOnlyOneNonEnvironmentUse() ||
1158 !body->GetFirstInstruction()->GetNext()->IsGoto()) {
1159 return false;
1160 }
1161 // Always taken or guarded by enclosing condition.
1162 if (!IsTaken(LookupInfo(loop, index)->op_b, LookupInfo(loop, upper), cmp) &&
1163 !IsGuardedBy(loop, cmp, index->InputAt(0), upper)) {
1164 return false;
1165 }
1166 // Test if break-loop body can be written, and do so on success.
1167 if (RewriteBreakLoopBody(loop, body, cond, index, upper, /*rewrite*/ false)) {
1168 RewriteBreakLoopBody(loop, body, cond, index, upper, /*rewrite*/ true);
1169 } else {
1170 return false;
1171 }
1172 // Rewrite condition in HIR.
1173 if (ifs->IfTrueSuccessor() != body) {
1174 cmp = (cmp == kCondLE) ? kCondGT : kCondLT;
1175 }
1176 HInstruction* rep = nullptr;
1177 switch (cmp) {
1178 case kCondLT: rep = new (graph_->GetAllocator()) HLessThan(index, upper); break;
1179 case kCondGT: rep = new (graph_->GetAllocator()) HGreaterThan(index, upper); break;
1180 case kCondLE: rep = new (graph_->GetAllocator()) HLessThanOrEqual(index, upper); break;
1181 case kCondGE: rep = new (graph_->GetAllocator()) HGreaterThanOrEqual(index, upper); break;
1182 default: LOG(FATAL) << cmp; UNREACHABLE();
1183 }
1184 loop->GetHeader()->ReplaceAndRemoveInstructionWith(cond, rep);
1185 return true;
1186 }
1187
1188 //
1189 // Helper methods.
1190 //
1191
AssignInfo(HLoopInformation * loop,HInstruction * instruction,InductionInfo * info)1192 void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop,
1193 HInstruction* instruction,
1194 InductionInfo* info) {
1195 auto it = induction_.find(loop);
1196 if (it == induction_.end()) {
1197 it = induction_.Put(loop,
1198 ArenaSafeMap<HInstruction*, InductionInfo*>(
1199 std::less<HInstruction*>(),
1200 graph_->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)));
1201 }
1202 it->second.Put(instruction, info);
1203 }
1204
LookupInfo(HLoopInformation * loop,HInstruction * instruction)1205 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::LookupInfo(HLoopInformation* loop,
1206 HInstruction* instruction) {
1207 auto it = induction_.find(loop);
1208 if (it != induction_.end()) {
1209 auto loop_it = it->second.find(instruction);
1210 if (loop_it != it->second.end()) {
1211 return loop_it->second;
1212 }
1213 }
1214 if (loop->IsDefinedOutOfTheLoop(instruction)) {
1215 InductionInfo* info = CreateInvariantFetch(instruction);
1216 AssignInfo(loop, instruction, info);
1217 return info;
1218 }
1219 return nullptr;
1220 }
1221
CreateConstant(int64_t value,DataType::Type type)1222 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateConstant(int64_t value,
1223 DataType::Type type) {
1224 HInstruction* constant;
1225 switch (type) {
1226 case DataType::Type::kFloat64: constant = graph_->GetDoubleConstant(value); break;
1227 case DataType::Type::kFloat32: constant = graph_->GetFloatConstant(value); break;
1228 case DataType::Type::kInt64: constant = graph_->GetLongConstant(value); break;
1229 default: constant = graph_->GetIntConstant(value); break;
1230 }
1231 return CreateInvariantFetch(constant);
1232 }
1233
CreateSimplifiedInvariant(InductionOp op,InductionInfo * a,InductionInfo * b)1234 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateSimplifiedInvariant(
1235 InductionOp op,
1236 InductionInfo* a,
1237 InductionInfo* b) {
1238 // Perform some light-weight simplifications during construction of a new invariant.
1239 // This often safes memory and yields a more concise representation of the induction.
1240 // More exhaustive simplifications are done by later phases once induction nodes are
1241 // translated back into HIR code (e.g. by loop optimizations or BCE).
1242 int64_t value = -1;
1243 if (IsExact(a, &value)) {
1244 if (value == 0) {
1245 // Simplify 0 + b = b, 0 ^ b = b, 0 * b = 0.
1246 if (op == kAdd || op == kXor) {
1247 return b;
1248 } else if (op == kMul) {
1249 return a;
1250 }
1251 } else if (op == kMul) {
1252 // Simplify 1 * b = b, -1 * b = -b
1253 if (value == 1) {
1254 return b;
1255 } else if (value == -1) {
1256 return CreateSimplifiedInvariant(kNeg, nullptr, b);
1257 }
1258 }
1259 }
1260 if (IsExact(b, &value)) {
1261 if (value == 0) {
1262 // Simplify a + 0 = a, a - 0 = a, a ^ 0 = a, a * 0 = 0, -0 = 0.
1263 if (op == kAdd || op == kSub || op == kXor) {
1264 return a;
1265 } else if (op == kMul || op == kNeg) {
1266 return b;
1267 }
1268 } else if (op == kMul || op == kDiv) {
1269 // Simplify a * 1 = a, a / 1 = a, a * -1 = -a, a / -1 = -a
1270 if (value == 1) {
1271 return a;
1272 } else if (value == -1) {
1273 return CreateSimplifiedInvariant(kNeg, nullptr, a);
1274 }
1275 }
1276 } else if (b->operation == kNeg) {
1277 // Simplify a + (-b) = a - b, a - (-b) = a + b, -(-b) = b.
1278 if (op == kAdd) {
1279 return CreateSimplifiedInvariant(kSub, a, b->op_b);
1280 } else if (op == kSub) {
1281 return CreateSimplifiedInvariant(kAdd, a, b->op_b);
1282 } else if (op == kNeg) {
1283 return b->op_b;
1284 }
1285 } else if (b->operation == kSub) {
1286 // Simplify - (a - b) = b - a.
1287 if (op == kNeg) {
1288 return CreateSimplifiedInvariant(kSub, b->op_b, b->op_a);
1289 }
1290 }
1291 return new (graph_->GetAllocator()) InductionInfo(
1292 kInvariant, op, a, b, nullptr, ImplicitConversion(b->type));
1293 }
1294
GetShiftConstant(HLoopInformation * loop,HInstruction * instruction,InductionInfo * initial)1295 HInstruction* HInductionVarAnalysis::GetShiftConstant(HLoopInformation* loop,
1296 HInstruction* instruction,
1297 InductionInfo* initial) {
1298 DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
1299 // Shift-rights are only the same as division for non-negative initial inputs.
1300 // Otherwise we would round incorrectly.
1301 if (initial != nullptr) {
1302 int64_t value = -1;
1303 if (!IsAtLeast(initial, &value) || value < 0) {
1304 return nullptr;
1305 }
1306 }
1307 // Obtain the constant needed to treat shift as equivalent multiplication or division.
1308 // This yields an existing instruction if the constant is already there. Otherwise, this
1309 // has a side effect on the HIR. The restriction on the shift factor avoids generating a
1310 // negative constant (viz. 1 << 31 and 1L << 63 set the sign bit). The code assumes that
1311 // generalization for shift factors outside [0,32) and [0,64) ranges is done earlier.
1312 InductionInfo* b = LookupInfo(loop, instruction->InputAt(1));
1313 int64_t value = -1;
1314 if (IsExact(b, &value)) {
1315 DataType::Type type = instruction->InputAt(0)->GetType();
1316 if (type == DataType::Type::kInt32 && 0 <= value && value < 31) {
1317 return graph_->GetIntConstant(1 << value);
1318 }
1319 if (type == DataType::Type::kInt64 && 0 <= value && value < 63) {
1320 return graph_->GetLongConstant(1L << value);
1321 }
1322 }
1323 return nullptr;
1324 }
1325
AssignCycle(HPhi * phi)1326 void HInductionVarAnalysis::AssignCycle(HPhi* phi) {
1327 ArenaSet<HInstruction*>* set = &cycles_.Put(phi, ArenaSet<HInstruction*>(
1328 graph_->GetAllocator()->Adapter(kArenaAllocInductionVarAnalysis)))->second;
1329 for (HInstruction* i : scc_) {
1330 set->insert(i);
1331 }
1332 }
1333
LookupCycle(HPhi * phi)1334 ArenaSet<HInstruction*>* HInductionVarAnalysis::LookupCycle(HPhi* phi) {
1335 auto it = cycles_.find(phi);
1336 if (it != cycles_.end()) {
1337 return &it->second;
1338 }
1339 return nullptr;
1340 }
1341
IsExact(InductionInfo * info,int64_t * value)1342 bool HInductionVarAnalysis::IsExact(InductionInfo* info, int64_t* value) {
1343 return InductionVarRange(this).IsConstant(info, InductionVarRange::kExact, value);
1344 }
1345
IsAtMost(InductionInfo * info,int64_t * value)1346 bool HInductionVarAnalysis::IsAtMost(InductionInfo* info, int64_t* value) {
1347 return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtMost, value);
1348 }
1349
IsAtLeast(InductionInfo * info,int64_t * value)1350 bool HInductionVarAnalysis::IsAtLeast(InductionInfo* info, int64_t* value) {
1351 return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtLeast, value);
1352 }
1353
IsNarrowingLinear(InductionInfo * info)1354 bool HInductionVarAnalysis::IsNarrowingLinear(InductionInfo* info) {
1355 return info != nullptr &&
1356 info->induction_class == kLinear &&
1357 (info->type == DataType::Type::kUint8 ||
1358 info->type == DataType::Type::kInt8 ||
1359 info->type == DataType::Type::kUint16 ||
1360 info->type == DataType::Type::kInt16 ||
1361 (info->type == DataType::Type::kInt32 && (info->op_a->type == DataType::Type::kInt64 ||
1362 info->op_b->type == DataType::Type::kInt64)));
1363 }
1364
InductionEqual(InductionInfo * info1,InductionInfo * info2)1365 bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1,
1366 InductionInfo* info2) {
1367 // Test structural equality only, without accounting for simplifications.
1368 if (info1 != nullptr && info2 != nullptr) {
1369 return
1370 info1->induction_class == info2->induction_class &&
1371 info1->operation == info2->operation &&
1372 info1->fetch == info2->fetch &&
1373 info1->type == info2->type &&
1374 InductionEqual(info1->op_a, info2->op_a) &&
1375 InductionEqual(info1->op_b, info2->op_b);
1376 }
1377 // Otherwise only two nullptrs are considered equal.
1378 return info1 == info2;
1379 }
1380
FetchToString(HInstruction * fetch)1381 std::string HInductionVarAnalysis::FetchToString(HInstruction* fetch) {
1382 DCHECK(fetch != nullptr);
1383 if (fetch->IsIntConstant()) {
1384 return std::to_string(fetch->AsIntConstant()->GetValue());
1385 } else if (fetch->IsLongConstant()) {
1386 return std::to_string(fetch->AsLongConstant()->GetValue());
1387 }
1388 return std::to_string(fetch->GetId()) + ":" + fetch->DebugName();
1389 }
1390
InductionToString(InductionInfo * info)1391 std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) {
1392 if (info != nullptr) {
1393 if (info->induction_class == kInvariant) {
1394 std::string inv = "(";
1395 inv += InductionToString(info->op_a);
1396 switch (info->operation) {
1397 case kNop: inv += " @ "; break;
1398 case kAdd: inv += " + "; break;
1399 case kSub:
1400 case kNeg: inv += " - "; break;
1401 case kMul: inv += " * "; break;
1402 case kDiv: inv += " / "; break;
1403 case kRem: inv += " % "; break;
1404 case kXor: inv += " ^ "; break;
1405 case kLT: inv += " < "; break;
1406 case kLE: inv += " <= "; break;
1407 case kGT: inv += " > "; break;
1408 case kGE: inv += " >= "; break;
1409 case kFetch: inv += FetchToString(info->fetch); break;
1410 case kTripCountInLoop: inv += " (TC-loop) "; break;
1411 case kTripCountInBody: inv += " (TC-body) "; break;
1412 case kTripCountInLoopUnsafe: inv += " (TC-loop-unsafe) "; break;
1413 case kTripCountInBodyUnsafe: inv += " (TC-body-unsafe) "; break;
1414 }
1415 inv += InductionToString(info->op_b);
1416 inv += ")";
1417 return inv;
1418 } else {
1419 if (info->induction_class == kLinear) {
1420 DCHECK(info->operation == kNop);
1421 return "(" + InductionToString(info->op_a) + " * i + " +
1422 InductionToString(info->op_b) + "):" +
1423 DataType::PrettyDescriptor(info->type);
1424 } else if (info->induction_class == kPolynomial) {
1425 DCHECK(info->operation == kNop);
1426 return "poly(sum_lt(" + InductionToString(info->op_a) + ") + " +
1427 InductionToString(info->op_b) + "):" +
1428 DataType::PrettyDescriptor(info->type);
1429 } else if (info->induction_class == kGeometric) {
1430 DCHECK(info->operation == kMul || info->operation == kDiv);
1431 DCHECK(info->fetch != nullptr);
1432 return "geo(" + InductionToString(info->op_a) + " * " +
1433 FetchToString(info->fetch) +
1434 (info->operation == kMul ? " ^ i + " : " ^ -i + ") +
1435 InductionToString(info->op_b) + "):" +
1436 DataType::PrettyDescriptor(info->type);
1437 } else if (info->induction_class == kWrapAround) {
1438 DCHECK(info->operation == kNop);
1439 return "wrap(" + InductionToString(info->op_a) + ", " +
1440 InductionToString(info->op_b) + "):" +
1441 DataType::PrettyDescriptor(info->type);
1442 } else if (info->induction_class == kPeriodic) {
1443 DCHECK(info->operation == kNop);
1444 return "periodic(" + InductionToString(info->op_a) + ", " +
1445 InductionToString(info->op_b) + "):" +
1446 DataType::PrettyDescriptor(info->type);
1447 }
1448 }
1449 }
1450 return "";
1451 }
1452
1453 } // namespace art
1454