1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "jit_memory_region.h"
18
19 #include <fcntl.h>
20 #include <unistd.h>
21
22 #include <android-base/unique_fd.h>
23 #include <log/log.h>
24 #include "base/bit_utils.h" // For RoundDown, RoundUp
25 #include "base/globals.h"
26 #include "base/logging.h" // For VLOG.
27 #include "base/membarrier.h"
28 #include "base/memfd.h"
29 #include "base/systrace.h"
30 #include "gc/allocator/dlmalloc.h"
31 #include "jit/jit_scoped_code_cache_write.h"
32 #include "oat_quick_method_header.h"
33 #include "palette/palette.h"
34
35 using android::base::unique_fd;
36
37 namespace art {
38 namespace jit {
39
40 // Data cache will be half of the capacity
41 // Code cache will be the other half of the capacity.
42 // TODO: Make this variable?
43 static constexpr size_t kCodeAndDataCapacityDivider = 2;
44
Initialize(size_t initial_capacity,size_t max_capacity,bool rwx_memory_allowed,bool is_zygote,std::string * error_msg)45 bool JitMemoryRegion::Initialize(size_t initial_capacity,
46 size_t max_capacity,
47 bool rwx_memory_allowed,
48 bool is_zygote,
49 std::string* error_msg) {
50 ScopedTrace trace(__PRETTY_FUNCTION__);
51
52 CHECK_GE(max_capacity, initial_capacity);
53 CHECK(max_capacity <= 1 * GB) << "The max supported size for JIT code cache is 1GB";
54 // Align both capacities to page size, as that's the unit mspaces use.
55 initial_capacity_ = RoundDown(initial_capacity, 2 * kPageSize);
56 max_capacity_ = RoundDown(max_capacity, 2 * kPageSize);
57 current_capacity_ = initial_capacity,
58 data_end_ = initial_capacity / kCodeAndDataCapacityDivider;
59 exec_end_ = initial_capacity - data_end_;
60
61 const size_t capacity = max_capacity_;
62 const size_t data_capacity = capacity / kCodeAndDataCapacityDivider;
63 const size_t exec_capacity = capacity - data_capacity;
64
65 // File descriptor enabling dual-view mapping of code section.
66 unique_fd mem_fd;
67
68
69 // The memory mappings we are going to create.
70 MemMap data_pages;
71 MemMap exec_pages;
72 MemMap non_exec_pages;
73 MemMap writable_data_pages;
74
75 if (is_zygote) {
76 android_errorWriteLog(0x534e4554, "200284993"); // Report to SafetyNet.
77 // Because we are not going to GC code generated by the zygote, just use all available.
78 current_capacity_ = max_capacity;
79 mem_fd = unique_fd(CreateZygoteMemory(capacity, error_msg));
80 if (mem_fd.get() < 0) {
81 return false;
82 }
83 } else {
84 // Bionic supports memfd_create, but the call may fail on older kernels.
85 mem_fd = unique_fd(art::memfd_create("jit-cache", /* flags= */ 0));
86 if (mem_fd.get() < 0) {
87 std::ostringstream oss;
88 oss << "Failed to initialize dual view JIT. memfd_create() error: " << strerror(errno);
89 if (!rwx_memory_allowed) {
90 // Without using RWX page permissions, the JIT can not fallback to single mapping as it
91 // requires tranitioning the code pages to RWX for updates.
92 *error_msg = oss.str();
93 return false;
94 }
95 VLOG(jit) << oss.str();
96 } else if (ftruncate(mem_fd, capacity) != 0) {
97 std::ostringstream oss;
98 oss << "Failed to initialize memory file: " << strerror(errno);
99 *error_msg = oss.str();
100 return false;
101 }
102 }
103
104 // Map name specific for android_os_Debug.cpp accounting.
105 std::string data_cache_name = is_zygote ? "zygote-data-code-cache" : "data-code-cache";
106 std::string exec_cache_name = is_zygote ? "zygote-jit-code-cache" : "jit-code-cache";
107
108 std::string error_str;
109 int base_flags;
110 if (mem_fd.get() >= 0) {
111 // Dual view of JIT code cache case. Create an initial mapping of data pages large enough
112 // for data and non-writable view of JIT code pages. We use the memory file descriptor to
113 // enable dual mapping - we'll create a second mapping using the descriptor below. The
114 // mappings will look like:
115 //
116 // VA PA
117 //
118 // +---------------+
119 // | non exec code |\
120 // +---------------+ \
121 // | writable data |\ \
122 // +---------------+ \ \
123 // : :\ \ \
124 // +---------------+.\.\.+---------------+
125 // | exec code | \ \| code |
126 // +---------------+...\.+---------------+
127 // | readonly data | \| data |
128 // +---------------+.....+---------------+
129 //
130 // In this configuration code updates are written to the non-executable view of the code
131 // cache, and the executable view of the code cache has fixed RX memory protections.
132 //
133 // This memory needs to be mapped shared as the code portions will have two mappings.
134 //
135 // Additionally, the zyzote will create a dual view of the data portion of
136 // the cache. This mapping will be read-only, whereas the second mapping
137 // will be writable.
138
139 base_flags = MAP_SHARED;
140
141 // Create the writable mappings now, so that in case of the zygote, we can
142 // prevent any future writable mappings through sealing.
143 if (exec_capacity > 0) {
144 // For dual view, create the secondary view of code memory used for updating code. This view
145 // is never executable.
146 std::string name = exec_cache_name + "-rw";
147 non_exec_pages = MemMap::MapFile(exec_capacity,
148 kIsDebugBuild ? kProtR : kProtRW,
149 base_flags,
150 mem_fd,
151 /* start= */ data_capacity,
152 /* low_4GB= */ false,
153 name.c_str(),
154 &error_str);
155 if (!non_exec_pages.IsValid()) {
156 // This is unexpected.
157 *error_msg = "Failed to map non-executable view of JIT code cache";
158 return false;
159 }
160 // Create a dual view of the data cache.
161 name = data_cache_name + "-rw";
162 writable_data_pages = MemMap::MapFile(data_capacity,
163 kProtRW,
164 base_flags,
165 mem_fd,
166 /* start= */ 0,
167 /* low_4GB= */ false,
168 name.c_str(),
169 &error_str);
170 if (!writable_data_pages.IsValid()) {
171 std::ostringstream oss;
172 oss << "Failed to create dual data view: " << error_str;
173 *error_msg = oss.str();
174 return false;
175 }
176 if (writable_data_pages.MadviseDontFork() != 0) {
177 *error_msg = "Failed to MadviseDontFork the writable data view";
178 return false;
179 }
180 if (non_exec_pages.MadviseDontFork() != 0) {
181 *error_msg = "Failed to MadviseDontFork the writable code view";
182 return false;
183 }
184 // Now that we have created the writable and executable mappings, prevent creating any new
185 // ones.
186 if (is_zygote && !ProtectZygoteMemory(mem_fd.get(), error_msg)) {
187 return false;
188 }
189 }
190
191 // Map in low 4gb to simplify accessing root tables for x86_64.
192 // We could do PC-relative addressing to avoid this problem, but that
193 // would require reserving code and data area before submitting, which
194 // means more windows for the code memory to be RWX.
195 data_pages = MemMap::MapFile(
196 data_capacity + exec_capacity,
197 kProtR,
198 base_flags,
199 mem_fd,
200 /* start= */ 0,
201 /* low_4gb= */ true,
202 data_cache_name.c_str(),
203 &error_str);
204 } else {
205 // Single view of JIT code cache case. Create an initial mapping of data pages large enough
206 // for data and JIT code pages. The mappings will look like:
207 //
208 // VA PA
209 //
210 // +---------------+...+---------------+
211 // | exec code | | code |
212 // +---------------+...+---------------+
213 // | data | | data |
214 // +---------------+...+---------------+
215 //
216 // In this configuration code updates are written to the executable view of the code cache,
217 // and the executable view of the code cache transitions RX to RWX for the update and then
218 // back to RX after the update.
219 base_flags = MAP_PRIVATE | MAP_ANON;
220 data_pages = MemMap::MapAnonymous(
221 data_cache_name.c_str(),
222 data_capacity + exec_capacity,
223 kProtRW,
224 /* low_4gb= */ true,
225 &error_str);
226 }
227
228 if (!data_pages.IsValid()) {
229 std::ostringstream oss;
230 oss << "Failed to create read write cache: " << error_str << " size=" << capacity;
231 *error_msg = oss.str();
232 return false;
233 }
234
235 if (exec_capacity > 0) {
236 uint8_t* const divider = data_pages.Begin() + data_capacity;
237 // Set initial permission for executable view to catch any SELinux permission problems early
238 // (for processes that cannot map WX pages). Otherwise, this region does not need to be
239 // executable as there is no code in the cache yet.
240 exec_pages = data_pages.RemapAtEnd(divider,
241 exec_cache_name.c_str(),
242 kProtRX,
243 base_flags | MAP_FIXED,
244 mem_fd.get(),
245 (mem_fd.get() >= 0) ? data_capacity : 0,
246 &error_str);
247 if (!exec_pages.IsValid()) {
248 std::ostringstream oss;
249 oss << "Failed to create read execute code cache: " << error_str << " size=" << capacity;
250 *error_msg = oss.str();
251 return false;
252 }
253 } else {
254 // Profiling only. No memory for code required.
255 }
256
257 data_pages_ = std::move(data_pages);
258 exec_pages_ = std::move(exec_pages);
259 non_exec_pages_ = std::move(non_exec_pages);
260 writable_data_pages_ = std::move(writable_data_pages);
261
262 VLOG(jit) << "Created JitMemoryRegion"
263 << ": data_pages=" << reinterpret_cast<void*>(data_pages_.Begin())
264 << ", exec_pages=" << reinterpret_cast<void*>(exec_pages_.Begin())
265 << ", non_exec_pages=" << reinterpret_cast<void*>(non_exec_pages_.Begin())
266 << ", writable_data_pages=" << reinterpret_cast<void*>(writable_data_pages_.Begin());
267
268 // Now that the pages are initialized, initialize the spaces.
269
270 // Initialize the data heap.
271 data_mspace_ = create_mspace_with_base(
272 HasDualDataMapping() ? writable_data_pages_.Begin() : data_pages_.Begin(),
273 data_end_,
274 /* locked= */ false);
275 CHECK(data_mspace_ != nullptr) << "create_mspace_with_base (data) failed";
276
277 // Allow mspace to use the full data capacity.
278 // It will still only use as litle memory as possible and ask for MoreCore as needed.
279 CHECK(IsAlignedParam(data_capacity, kPageSize));
280 mspace_set_footprint_limit(data_mspace_, data_capacity);
281
282 // Initialize the code heap.
283 MemMap* code_heap = nullptr;
284 if (non_exec_pages_.IsValid()) {
285 code_heap = &non_exec_pages_;
286 } else if (exec_pages_.IsValid()) {
287 code_heap = &exec_pages_;
288 }
289 if (code_heap != nullptr) {
290 // Make all pages reserved for the code heap writable. The mspace allocator, that manages the
291 // heap, will take and initialize pages in create_mspace_with_base().
292 {
293 ScopedCodeCacheWrite scc(*this);
294 exec_mspace_ = create_mspace_with_base(code_heap->Begin(), exec_end_, false /*locked*/);
295 }
296 CHECK(exec_mspace_ != nullptr) << "create_mspace_with_base (exec) failed";
297 SetFootprintLimit(current_capacity_);
298 } else {
299 exec_mspace_ = nullptr;
300 SetFootprintLimit(current_capacity_);
301 }
302 return true;
303 }
304
SetFootprintLimit(size_t new_footprint)305 void JitMemoryRegion::SetFootprintLimit(size_t new_footprint) {
306 size_t data_space_footprint = new_footprint / kCodeAndDataCapacityDivider;
307 DCHECK(IsAlignedParam(data_space_footprint, kPageSize));
308 DCHECK_EQ(data_space_footprint * kCodeAndDataCapacityDivider, new_footprint);
309 if (HasCodeMapping()) {
310 ScopedCodeCacheWrite scc(*this);
311 mspace_set_footprint_limit(exec_mspace_, new_footprint - data_space_footprint);
312 }
313 }
314
IncreaseCodeCacheCapacity()315 bool JitMemoryRegion::IncreaseCodeCacheCapacity() {
316 if (current_capacity_ == max_capacity_) {
317 return false;
318 }
319
320 // Double the capacity if we're below 1MB, or increase it by 1MB if
321 // we're above.
322 if (current_capacity_ < 1 * MB) {
323 current_capacity_ *= 2;
324 } else {
325 current_capacity_ += 1 * MB;
326 }
327 if (current_capacity_ > max_capacity_) {
328 current_capacity_ = max_capacity_;
329 }
330
331 VLOG(jit) << "Increasing code cache capacity to " << PrettySize(current_capacity_);
332
333 SetFootprintLimit(current_capacity_);
334
335 return true;
336 }
337
338 // NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock
339 // is already held.
MoreCore(const void * mspace,intptr_t increment)340 void* JitMemoryRegion::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS {
341 if (mspace == exec_mspace_) {
342 CHECK(exec_mspace_ != nullptr);
343 const MemMap* const code_pages = GetUpdatableCodeMapping();
344 void* result = code_pages->Begin() + exec_end_;
345 exec_end_ += increment;
346 return result;
347 } else {
348 CHECK_EQ(data_mspace_, mspace);
349 const MemMap* const writable_data_pages = GetWritableDataMapping();
350 void* result = writable_data_pages->Begin() + data_end_;
351 data_end_ += increment;
352 return result;
353 }
354 }
355
CommitCode(ArrayRef<const uint8_t> reserved_code,ArrayRef<const uint8_t> code,const uint8_t * stack_map,bool has_should_deoptimize_flag)356 const uint8_t* JitMemoryRegion::CommitCode(ArrayRef<const uint8_t> reserved_code,
357 ArrayRef<const uint8_t> code,
358 const uint8_t* stack_map,
359 bool has_should_deoptimize_flag) {
360 DCHECK(IsInExecSpace(reserved_code.data()));
361 ScopedCodeCacheWrite scc(*this);
362
363 size_t alignment = GetInstructionSetAlignment(kRuntimeISA);
364 size_t header_size = OatQuickMethodHeader::InstructionAlignedSize();
365 size_t total_size = header_size + code.size();
366
367 // Each allocation should be on its own set of cache lines.
368 // `total_size` covers the OatQuickMethodHeader, the JIT generated machine code,
369 // and any alignment padding.
370 DCHECK_GT(total_size, header_size);
371 DCHECK_LE(total_size, reserved_code.size());
372 uint8_t* x_memory = const_cast<uint8_t*>(reserved_code.data());
373 uint8_t* w_memory = const_cast<uint8_t*>(GetNonExecutableAddress(x_memory));
374 // Ensure the header ends up at expected instruction alignment.
375 DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(w_memory + header_size), alignment);
376 const uint8_t* result = x_memory + header_size;
377
378 // Write the code.
379 std::copy(code.begin(), code.end(), w_memory + header_size);
380
381 // Write the header.
382 OatQuickMethodHeader* method_header =
383 OatQuickMethodHeader::FromCodePointer(w_memory + header_size);
384 new (method_header) OatQuickMethodHeader((stack_map != nullptr) ? result - stack_map : 0u);
385 if (has_should_deoptimize_flag) {
386 method_header->SetHasShouldDeoptimizeFlag();
387 }
388
389 // Both instruction and data caches need flushing to the point of unification where both share
390 // a common view of memory. Flushing the data cache ensures the dirty cachelines from the
391 // newly added code are written out to the point of unification. Flushing the instruction
392 // cache ensures the newly written code will be fetched from the point of unification before
393 // use. Memory in the code cache is re-cycled as code is added and removed. The flushes
394 // prevent stale code from residing in the instruction cache.
395 //
396 // Caches are flushed before write permission is removed because some ARMv8 Qualcomm kernels
397 // may trigger a segfault if a page fault occurs when requesting a cache maintenance
398 // operation. This is a kernel bug that we need to work around until affected devices
399 // (e.g. Nexus 5X and 6P) stop being supported or their kernels are fixed.
400 //
401 // For reference, this behavior is caused by this commit:
402 // https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c
403 //
404 bool cache_flush_success = true;
405 if (HasDualCodeMapping()) {
406 // Flush d-cache for the non-executable mapping.
407 cache_flush_success = FlushCpuCaches(w_memory, w_memory + total_size);
408 }
409
410 // Invalidate i-cache for the executable mapping.
411 if (cache_flush_success) {
412 cache_flush_success = FlushCpuCaches(x_memory, x_memory + total_size);
413 }
414
415 // If flushing the cache has failed, reject the allocation because we can't guarantee
416 // correctness of the instructions present in the processor caches.
417 if (!cache_flush_success) {
418 PLOG(ERROR) << "Cache flush failed triggering code allocation failure";
419 return nullptr;
420 }
421
422 // Ensure CPU instruction pipelines are flushed for all cores. This is necessary for
423 // correctness as code may still be in instruction pipelines despite the i-cache flush. It is
424 // not safe to assume that changing permissions with mprotect (RX->RWX->RX) will cause a TLB
425 // shootdown (incidentally invalidating the CPU pipelines by sending an IPI to all cores to
426 // notify them of the TLB invalidation). Some architectures, notably ARM and ARM64, have
427 // hardware support that broadcasts TLB invalidations and so their kernels have no software
428 // based TLB shootdown. The sync-core flavor of membarrier was introduced in Linux 4.16 to
429 // address this (see mbarrier(2)). The membarrier here will fail on prior kernels and on
430 // platforms lacking the appropriate support.
431 art::membarrier(art::MembarrierCommand::kPrivateExpeditedSyncCore);
432
433 return result;
434 }
435
FillRootTable(uint8_t * roots_data,const std::vector<Handle<mirror::Object>> & roots)436 static void FillRootTable(uint8_t* roots_data, const std::vector<Handle<mirror::Object>>& roots)
437 REQUIRES(Locks::jit_lock_)
438 REQUIRES_SHARED(Locks::mutator_lock_) {
439 GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data);
440 const uint32_t length = roots.size();
441 // Put all roots in `roots_data`.
442 for (uint32_t i = 0; i < length; ++i) {
443 ObjPtr<mirror::Object> object = roots[i].Get();
444 gc_roots[i] = GcRoot<mirror::Object>(object);
445 }
446 // Store the length of the table at the end. This will allow fetching it from a stack_map
447 // pointer.
448 reinterpret_cast<uint32_t*>(roots_data)[length] = length;
449 }
450
CommitData(ArrayRef<const uint8_t> reserved_data,const std::vector<Handle<mirror::Object>> & roots,ArrayRef<const uint8_t> stack_map)451 bool JitMemoryRegion::CommitData(ArrayRef<const uint8_t> reserved_data,
452 const std::vector<Handle<mirror::Object>>& roots,
453 ArrayRef<const uint8_t> stack_map) {
454 DCHECK(IsInDataSpace(reserved_data.data()));
455 uint8_t* roots_data = GetWritableDataAddress(reserved_data.data());
456 size_t root_table_size = ComputeRootTableSize(roots.size());
457 uint8_t* stack_map_data = roots_data + root_table_size;
458 DCHECK_LE(root_table_size + stack_map.size(), reserved_data.size());
459 FillRootTable(roots_data, roots);
460 memcpy(stack_map_data, stack_map.data(), stack_map.size());
461 // Flush data cache, as compiled code references literals in it.
462 // TODO(oth): establish whether this is necessary.
463 if (UNLIKELY(!FlushCpuCaches(roots_data, roots_data + root_table_size + stack_map.size()))) {
464 VLOG(jit) << "Failed to flush data in CommitData";
465 return false;
466 }
467 return true;
468 }
469
AllocateCode(size_t size)470 const uint8_t* JitMemoryRegion::AllocateCode(size_t size) {
471 size_t alignment = GetInstructionSetAlignment(kRuntimeISA);
472 void* result = mspace_memalign(exec_mspace_, alignment, size);
473 if (UNLIKELY(result == nullptr)) {
474 return nullptr;
475 }
476 used_memory_for_code_ += mspace_usable_size(result);
477 return reinterpret_cast<uint8_t*>(GetExecutableAddress(result));
478 }
479
FreeCode(const uint8_t * code)480 void JitMemoryRegion::FreeCode(const uint8_t* code) {
481 code = GetNonExecutableAddress(code);
482 used_memory_for_code_ -= mspace_usable_size(code);
483 mspace_free(exec_mspace_, const_cast<uint8_t*>(code));
484 }
485
AllocateData(size_t data_size)486 const uint8_t* JitMemoryRegion::AllocateData(size_t data_size) {
487 void* result = mspace_malloc(data_mspace_, data_size);
488 if (UNLIKELY(result == nullptr)) {
489 return nullptr;
490 }
491 used_memory_for_data_ += mspace_usable_size(result);
492 return reinterpret_cast<uint8_t*>(GetNonWritableDataAddress(result));
493 }
494
FreeData(const uint8_t * data)495 void JitMemoryRegion::FreeData(const uint8_t* data) {
496 FreeWritableData(GetWritableDataAddress(data));
497 }
498
FreeWritableData(uint8_t * writable_data)499 void JitMemoryRegion::FreeWritableData(uint8_t* writable_data) REQUIRES(Locks::jit_lock_) {
500 used_memory_for_data_ -= mspace_usable_size(writable_data);
501 mspace_free(data_mspace_, writable_data);
502 }
503
504 #if defined(__BIONIC__) && defined(ART_TARGET)
505 // The code below only works on bionic on target.
506
CreateZygoteMemory(size_t capacity,std::string * error_msg)507 int JitMemoryRegion::CreateZygoteMemory(size_t capacity, std::string* error_msg) {
508 if (CacheOperationsMaySegFault()) {
509 // Zygote JIT requires dual code mappings by design. We can only do this if the cache flush
510 // and invalidate instructions work without raising faults.
511 *error_msg = "Zygote memory only works with dual mappings";
512 return -1;
513 }
514 /* Check if kernel support exists, otherwise fall back to ashmem */
515 static const char* kRegionName = "jit-zygote-cache";
516 if (art::IsSealFutureWriteSupported()) {
517 int fd = art::memfd_create(kRegionName, MFD_ALLOW_SEALING);
518 if (fd == -1) {
519 std::ostringstream oss;
520 oss << "Failed to create zygote mapping: " << strerror(errno);
521 *error_msg = oss.str();
522 return -1;
523 }
524
525 if (ftruncate(fd, capacity) != 0) {
526 std::ostringstream oss;
527 oss << "Failed to create zygote mapping: " << strerror(errno);
528 *error_msg = oss.str();
529 return -1;
530 }
531
532 return fd;
533 }
534
535 LOG(INFO) << "Falling back to ashmem implementation for JIT zygote mapping";
536
537 int fd;
538 palette_status_t status = PaletteAshmemCreateRegion(kRegionName, capacity, &fd);
539 if (status != PALETTE_STATUS_OK) {
540 CHECK_EQ(status, PALETTE_STATUS_CHECK_ERRNO);
541 std::ostringstream oss;
542 oss << "Failed to create zygote mapping: " << strerror(errno);
543 *error_msg = oss.str();
544 return -1;
545 }
546 return fd;
547 }
548
ProtectZygoteMemory(int fd,std::string * error_msg)549 bool JitMemoryRegion::ProtectZygoteMemory(int fd, std::string* error_msg) {
550 if (art::IsSealFutureWriteSupported()) {
551 if (fcntl(fd, F_ADD_SEALS, F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL | F_SEAL_FUTURE_WRITE)
552 == -1) {
553 std::ostringstream oss;
554 oss << "Failed to protect zygote mapping: " << strerror(errno);
555 *error_msg = oss.str();
556 return false;
557 }
558 } else {
559 palette_status_t status = PaletteAshmemSetProtRegion(fd, PROT_READ | PROT_EXEC);
560 if (status != PALETTE_STATUS_OK) {
561 CHECK_EQ(status, PALETTE_STATUS_CHECK_ERRNO);
562 std::ostringstream oss;
563 oss << "Failed to protect zygote mapping: " << strerror(errno);
564 *error_msg = oss.str();
565 return false;
566 }
567 }
568 return true;
569 }
570
571 #else
572
CreateZygoteMemory(size_t capacity,std::string * error_msg)573 int JitMemoryRegion::CreateZygoteMemory(size_t capacity, std::string* error_msg) {
574 // To simplify host building, we don't rely on the latest memfd features.
575 LOG(WARNING) << "Returning un-sealable region on non-bionic";
576 static const char* kRegionName = "/jit-zygote-cache";
577 int fd = art::memfd_create(kRegionName, 0);
578 if (fd == -1) {
579 std::ostringstream oss;
580 oss << "Failed to create zygote mapping: " << strerror(errno);
581 *error_msg = oss.str();
582 return -1;
583 }
584 if (ftruncate(fd, capacity) != 0) {
585 std::ostringstream oss;
586 oss << "Failed to create zygote mapping: " << strerror(errno);
587 *error_msg = oss.str();
588 return -1;
589 }
590 return fd;
591 }
592
ProtectZygoteMemory(int fd ATTRIBUTE_UNUSED,std::string * error_msg ATTRIBUTE_UNUSED)593 bool JitMemoryRegion::ProtectZygoteMemory(int fd ATTRIBUTE_UNUSED,
594 std::string* error_msg ATTRIBUTE_UNUSED) {
595 return true;
596 }
597
598 #endif
599
600 } // namespace jit
601 } // namespace art
602