1 /*
2 * Copyright (C) 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //
18 // Test that metadata encryption is working, via:
19 //
20 // - Correctness tests. These test the standard metadata encryption formats
21 // supported by Android R and higher via dm-default-key v2.
22 //
23 // - Randomness test. This runs on all devices that use metadata encryption.
24 //
25 // The correctness tests create a temporary default-key mapping over the raw
26 // userdata partition, read from it, and verify that the data got decrypted
27 // correctly. This only tests decryption, since this avoids having to find a
28 // region on disk that can safely be modified. This should be good enough since
29 // the device wouldn't work anyway if decryption didn't invert encryption.
30 //
31 // Note that this temporary default-key mapping will overlap the device's "real"
32 // default-key mapping, if the device has one. The kernel allows this. The
33 // tests don't use a loopback device instead, since dm-default-key over a
34 // loopback device can't use the real inline encryption hardware.
35 //
36 // The correctness tests cover the following settings:
37 //
38 // metadata_encryption=aes-256-xts
39 // metadata_encryption=adiantum
40 // metadata_encryption=aes-256-xts:wrappedkey_v0
41 //
42 // The tests don't check which one of those settings, if any, the device is
43 // actually using; they just try to test everything they can.
44 //
45 // These tests don't specifically test that file contents aren't encrypted
46 // twice. That's already implied by the file-based encryption test cases,
47 // provided that the device actually has metadata encryption enabled.
48 //
49
50 #include <android-base/file.h>
51 #include <android-base/unique_fd.h>
52 #include <asm/byteorder.h>
53 #include <fcntl.h>
54 #include <fstab/fstab.h>
55 #include <gtest/gtest.h>
56 #include <libdm/dm.h>
57 #include <linux/types.h>
58 #include <stdlib.h>
59 #include <unistd.h>
60
61 #include <chrono>
62
63 #include "vts_kernel_encryption.h"
64
65 using namespace android::dm;
66
67 namespace android {
68 namespace kernel {
69
70 #define cpu_to_le64 __cpu_to_le64
71 #define le64_to_cpu __le64_to_cpu
72
73 // Alignment to use for direct I/O reads of block devices
74 static constexpr int kDirectIOAlignment = 4096;
75
76 // Assumed size of filesystem blocks, in bytes
77 static constexpr int kFilesystemBlockSize = 4096;
78
79 // Checks whether the kernel supports version 2 or higher of dm-default-key.
IsDmDefaultKeyV2Supported(DeviceMapper & dm)80 static bool IsDmDefaultKeyV2Supported(DeviceMapper &dm) {
81 DmTargetTypeInfo info;
82 if (!dm.GetTargetByName("default-key", &info)) {
83 GTEST_LOG_(INFO) << "dm-default-key not enabled";
84 return false;
85 }
86 if (!info.IsAtLeast(2, 0, 0)) {
87 // The legacy version of dm-default-key (which was never supported by the
88 // Android common kernels) used a vendor-specific on-disk format, so it's
89 // not testable by a vendor-independent test.
90 GTEST_LOG_(INFO) << "Detected legacy dm-default-key";
91 return false;
92 }
93 return true;
94 }
95
96 // Reads |count| bytes from the beginning of |blk_device|, using direct I/O to
97 // avoid getting any stale cached data. Direct I/O requires using a hardware
98 // sector size aligned buffer.
ReadBlockDevice(const std::string & blk_device,size_t count,std::vector<uint8_t> * data)99 static bool ReadBlockDevice(const std::string &blk_device, size_t count,
100 std::vector<uint8_t> *data) {
101 GTEST_LOG_(INFO) << "Reading " << count << " bytes from " << blk_device;
102 std::unique_ptr<void, void (*)(void *)> buf_mem(
103 aligned_alloc(kDirectIOAlignment, count), free);
104 if (buf_mem == nullptr) {
105 ADD_FAILURE() << "out of memory";
106 return false;
107 }
108 uint8_t *buffer = static_cast<uint8_t *>(buf_mem.get());
109
110 android::base::unique_fd fd(
111 open(blk_device.c_str(), O_RDONLY | O_DIRECT | O_CLOEXEC));
112 if (fd < 0) {
113 ADD_FAILURE() << "Failed to open " << blk_device << Errno();
114 return false;
115 }
116 if (!android::base::ReadFully(fd, buffer, count)) {
117 ADD_FAILURE() << "Failed to read from " << blk_device << Errno();
118 return false;
119 }
120
121 *data = std::vector<uint8_t>(buffer, buffer + count);
122 return true;
123 }
124
125 class DmDefaultKeyTest : public ::testing::Test {
126 // Name to assign to the dm-default-key test device
127 static constexpr const char *kTestDmDeviceName = "vts-test-default-key";
128
129 // Filesystem whose underlying partition the test will use
130 static constexpr const char *kTestMountpoint = "/data";
131
132 // Size of the dm-default-key crypto sector size (data unit size) in bytes
133 static constexpr int kCryptoSectorSize = 4096;
134
135 // Size of the test data in crypto sectors
136 static constexpr int kTestDataSectors = 256;
137
138 // Size of the test data in bytes
139 static constexpr int kTestDataBytes = kTestDataSectors * kCryptoSectorSize;
140
141 // Device-mapper API sector size in bytes.
142 // This is unrelated to the crypto sector size.
143 static constexpr int kDmApiSectorSize = 512;
144
145 protected:
146 void SetUp() override;
147 void TearDown() override;
148 bool CreateTestDevice(const std::string &cipher,
149 const std::vector<uint8_t> &key, bool is_wrapped_key);
150 void VerifyDecryption(const std::vector<uint8_t> &key, const Cipher &cipher);
151 void DoTest(const std::string &cipher_string, const Cipher &cipher);
152 bool skip_test_ = false;
153 DeviceMapper *dm_ = nullptr;
154 std::string raw_blk_device_;
155 std::string dm_device_path_;
156 };
157
158 // Test setup procedure. Checks for the needed kernel support, finds the raw
159 // partition to use, and does other preparations. skip_test_ is set to true if
160 // the test should be skipped.
SetUp()161 void DmDefaultKeyTest::SetUp() {
162 dm_ = &DeviceMapper::Instance();
163
164 if (!IsDmDefaultKeyV2Supported(*dm_)) {
165 int first_api_level;
166 ASSERT_TRUE(GetFirstApiLevel(&first_api_level));
167 // Devices launching with R or higher must support dm-default-key v2.
168 ASSERT_LE(first_api_level, __ANDROID_API_Q__);
169 GTEST_LOG_(INFO)
170 << "Skipping test because dm-default-key v2 is unsupported";
171 skip_test_ = true;
172 return;
173 }
174
175 FilesystemInfo fs_info;
176 ASSERT_TRUE(GetFilesystemInfo(kTestMountpoint, &fs_info));
177 raw_blk_device_ = fs_info.raw_blk_device;
178
179 dm_->DeleteDevice(kTestDmDeviceName);
180 }
181
TearDown()182 void DmDefaultKeyTest::TearDown() { dm_->DeleteDevice(kTestDmDeviceName); }
183
184 // Creates the test dm-default-key mapping using the given key and settings.
185 // If the dm device creation fails, then it is assumed the kernel doesn't
186 // support the given encryption settings, and a failure is not added.
CreateTestDevice(const std::string & cipher,const std::vector<uint8_t> & key,bool is_wrapped_key)187 bool DmDefaultKeyTest::CreateTestDevice(const std::string &cipher,
188 const std::vector<uint8_t> &key,
189 bool is_wrapped_key) {
190 static_assert(kTestDataBytes % kDmApiSectorSize == 0);
191 std::unique_ptr<DmTargetDefaultKey> target =
192 std::make_unique<DmTargetDefaultKey>(0, kTestDataBytes / kDmApiSectorSize,
193 cipher.c_str(), BytesToHex(key),
194 raw_blk_device_, 0);
195 target->SetSetDun();
196 if (is_wrapped_key) target->SetWrappedKeyV0();
197
198 DmTable table;
199 if (!table.AddTarget(std::move(target))) {
200 ADD_FAILURE() << "Failed to add default-key target to table";
201 return false;
202 }
203 if (!table.valid()) {
204 ADD_FAILURE() << "Device-mapper table failed to validate";
205 return false;
206 }
207 if (!dm_->CreateDevice(kTestDmDeviceName, table, &dm_device_path_,
208 std::chrono::seconds(5))) {
209 GTEST_LOG_(INFO) << "Unable to create default-key mapping" << Errno()
210 << ". Assuming that the encryption settings cipher=\""
211 << cipher << "\", is_wrapped_key=" << is_wrapped_key
212 << " are unsupported and skipping the test.";
213 return false;
214 }
215 GTEST_LOG_(INFO) << "Created default-key mapping at " << dm_device_path_
216 << " using cipher=\"" << cipher
217 << "\", key=" << BytesToHex(key)
218 << ", is_wrapped_key=" << is_wrapped_key;
219 return true;
220 }
221
VerifyDecryption(const std::vector<uint8_t> & key,const Cipher & cipher)222 void DmDefaultKeyTest::VerifyDecryption(const std::vector<uint8_t> &key,
223 const Cipher &cipher) {
224 std::vector<uint8_t> raw_data;
225 std::vector<uint8_t> decrypted_data;
226
227 ASSERT_TRUE(ReadBlockDevice(raw_blk_device_, kTestDataBytes, &raw_data));
228 ASSERT_TRUE(
229 ReadBlockDevice(dm_device_path_, kTestDataBytes, &decrypted_data));
230
231 // Verify that the decrypted data encrypts to the raw data.
232
233 GTEST_LOG_(INFO) << "Verifying correctness of decrypted data";
234
235 // Initialize the IV for crypto sector 0.
236 ASSERT_GE(cipher.ivsize(), sizeof(__le64));
237 std::unique_ptr<__le64> iv(new (::operator new(cipher.ivsize())) __le64);
238 memset(iv.get(), 0, cipher.ivsize());
239
240 // Encrypt each sector.
241 std::vector<uint8_t> encrypted_data(kTestDataBytes);
242 static_assert(kTestDataBytes % kCryptoSectorSize == 0);
243 for (size_t i = 0; i < kTestDataBytes; i += kCryptoSectorSize) {
244 ASSERT_TRUE(cipher.Encrypt(key, reinterpret_cast<const uint8_t *>(iv.get()),
245 &decrypted_data[i], &encrypted_data[i],
246 kCryptoSectorSize));
247
248 // Update the IV by incrementing the crypto sector number.
249 *iv = cpu_to_le64(le64_to_cpu(*iv) + 1);
250 }
251
252 ASSERT_EQ(encrypted_data, raw_data);
253 }
254
DoTest(const std::string & cipher_string,const Cipher & cipher)255 void DmDefaultKeyTest::DoTest(const std::string &cipher_string,
256 const Cipher &cipher) {
257 if (skip_test_) return;
258
259 std::vector<uint8_t> key = GenerateTestKey(cipher.keysize());
260
261 if (!CreateTestDevice(cipher_string, key, false)) return;
262
263 VerifyDecryption(key, cipher);
264 }
265
266 // Tests dm-default-key parameters matching metadata_encryption=aes-256-xts.
TEST_F(DmDefaultKeyTest,TestAes256Xts)267 TEST_F(DmDefaultKeyTest, TestAes256Xts) {
268 DoTest("aes-xts-plain64", Aes256XtsCipher());
269 }
270
271 // Tests dm-default-key parameters matching metadata_encryption=adiantum.
TEST_F(DmDefaultKeyTest,TestAdiantum)272 TEST_F(DmDefaultKeyTest, TestAdiantum) {
273 DoTest("xchacha12,aes-adiantum-plain64", AdiantumCipher());
274 }
275
276 // Tests dm-default-key parameters matching
277 // metadata_encryption=aes-256-xts:wrappedkey_v0.
TEST_F(DmDefaultKeyTest,TestHwWrappedKey)278 TEST_F(DmDefaultKeyTest, TestHwWrappedKey) {
279 if (skip_test_) return;
280
281 std::vector<uint8_t> master_key, exported_key;
282 if (!CreateHwWrappedKey(&master_key, &exported_key)) return;
283
284 if (!CreateTestDevice("aes-xts-plain64", exported_key, true)) return;
285
286 std::vector<uint8_t> enc_key;
287 ASSERT_TRUE(DeriveHwWrappedEncryptionKey(master_key, &enc_key));
288
289 VerifyDecryption(enc_key, Aes256XtsCipher());
290 }
291
292 // Tests that if the device uses metadata encryption, then the first
293 // kFilesystemBlockSize bytes of the userdata partition appear random. For ext4
294 // and f2fs, this block should contain the filesystem superblock; it therefore
295 // should be initialized and metadata-encrypted. Ideally we'd check additional
296 // blocks too, but that would require awareness of the filesystem structure.
297 //
298 // This isn't as strong a test as the correctness tests, but it's useful because
299 // it applies regardless of the encryption format and key. Thus it runs even on
300 // old devices, including ones that used a vendor-specific encryption format.
TEST(MetadataEncryptionTest,TestRandomness)301 TEST(MetadataEncryptionTest, TestRandomness) {
302 constexpr const char *mountpoint = "/data";
303
304 android::fs_mgr::Fstab fstab;
305 ASSERT_TRUE(android::fs_mgr::ReadDefaultFstab(&fstab));
306 const fs_mgr::FstabEntry *entry = GetEntryForMountPoint(&fstab, mountpoint);
307 ASSERT_TRUE(entry != nullptr);
308
309 if (entry->metadata_key_dir.empty()) {
310 int first_api_level;
311 ASSERT_TRUE(GetFirstApiLevel(&first_api_level));
312 ASSERT_LE(first_api_level, __ANDROID_API_Q__)
313 << "Metadata encryption is required";
314 GTEST_LOG_(INFO)
315 << "Skipping test because device doesn't use metadata encryption";
316 return;
317 }
318
319 GTEST_LOG_(INFO) << "Verifying randomness of ciphertext";
320 std::vector<uint8_t> raw_data;
321 FilesystemInfo fs_info;
322 ASSERT_TRUE(GetFilesystemInfo(mountpoint, &fs_info));
323 ASSERT_TRUE(
324 ReadBlockDevice(fs_info.raw_blk_device, kFilesystemBlockSize, &raw_data));
325 ASSERT_TRUE(VerifyDataRandomness(raw_data));
326 }
327
328 } // namespace kernel
329 } // namespace android
330