Lines Matching refs:right
24 f = \max\left( {c \over {2^{b-1} - 1}}, -1.0 \right)
43 s = {1 \over 2} + { \left( x_p - x_f \right) \over \text{size} }
48 t = {1 \over 2} + { \left( y_p - y_f \right) \over \text{size} }
110 f = \max\left( {c \over {2^{b-1} - 1}}, -1.0 \right)
129 s = {1 \over 2} + { \left( x_p - x_f \right) \over \text{size} }
133 t = {1 \over 2} + { \left( y_p - y_f \right) \over \text{size} }
197 m = \sqrt{ \left({{\partial z_f} \over {\partial x_f}}\right)^2
198 + \left({{\partial z_f} \over {\partial y_f}}\right)^2}
205 m = \max\left( \left| {{\partial z_f} \over {\partial x_f}} \right|,
206 \left| {{\partial z_f} \over {\partial y_f}} \right| \right)
253 \left \lfloor \log_2(max_{clamped}) \right \rfloor + (B+1)
269 \right \rfloor
294 \right \rfloor \\
298 \right \rfloor \\
302 \right \rfloor
435 + \frac{1}{2}\right ) \\
438 \left ( \frac{s_{c}}{|r_{c}|} \right ) \\
445 {\left ( r_{c} \right )^2}
446 \right )
461 {\left ( r_{c} \right )^2}
462 \right )\\
469 {\left ( r_{c} \right )^2}
470 \right ) \\
477 {\left ( r_{c} \right )^2}
478 \right )
510 N & = \min \left (\left \lceil \frac{\rho_{max}}{\rho_{min}} \right \rceil ,max_{Aniso} \right )
522 \log_2 \left ( \frac{\rho_{max}}{N} \right ) & \text{otherwise}
582 \left \lceil level_{base}+\lambda + \frac{1}{2}\right \rceil - 1, &
584 \left \lfloor level_{base}+\lambda + \frac{1}{2}\right \rfloor, &
598 \left \lfloor level_{base}+\lambda \right \rfloor, & \text{otherwise}
641 \left \lfloor a + \frac{1}{2} \right \rfloor & \text{alternative}
792 u \left ( x - \frac{1}{2} + \frac{i}{N+1} , y \right ),
793 \left ( v \left (x-\frac{1}{2}+\frac{i}{N+1} \right ), y
794 \right )
795 \right )},
800 u \left ( x, y - \frac{1}{2} + \frac{i}{N+1} \right ),
801 \left ( v \left (x,y-\frac{1}{2}+\frac{i}{N+1} \right )
802 \right )
803 \right )},
830 \end{array}\right)
843 \right) =
850 \right)
904 i_{0} & = \left \lfloor u - \frac{3}{2} \right \rfloor & i_{1} & = i_{0} + 1 & i_{2} & = i_{1} + 1…
905 j_{0} & = \left \lfloor u - \frac{3}{2} \right \rfloor & j_{1} & = j_{0} + 1 & j_{2} & = j_{1} + 1…
907 \alpha & = \mathbin{frac} \left ( u - \frac{1}{2} \right ) \\[1em]
908 \beta & = \mathbin{frac} \left ( v - \frac{1}{2} \right )
934 \left ( \frac{c_{sRGB}+0.055}{1.055} \right )^{2.4} & \text{for}\ c_{sRGB} > 0.04045
948 (-1)^S \times 2^{E-15} \times { \left( 1 + { M \over 2^{10} } \right) },