/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_ #define ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_ #include #include "arch/instruction_set.h" #include "base/macros.h" #include "debug/method_debug_info.h" #include "dwarf/debug_frame_opcode_writer.h" #include "dwarf/dwarf_constants.h" #include "dwarf/headers.h" #include "elf/elf_builder.h" namespace art HIDDEN { namespace debug { static constexpr bool kWriteDebugFrameHdr = false; // Binary search table is not useful if the number of entries is small. // In particular, this avoids it for the in-memory JIT mini-debug-info. static constexpr size_t kMinDebugFrameHdrEntries = 100; static void WriteCIE(InstructionSet isa, /*inout*/ std::vector* buffer) { using Reg = dwarf::Reg; // Scratch registers should be marked as undefined. This tells the // debugger that its value in the previous frame is not recoverable. bool is64bit = Is64BitInstructionSet(isa); switch (isa) { case InstructionSet::kArm: case InstructionSet::kThumb2: { dwarf::DebugFrameOpCodeWriter<> opcodes; opcodes.DefCFA(Reg::ArmCore(13), 0); // R13(SP). // core registers. for (int reg = 0; reg < 13; reg++) { if (reg < 4 || reg == 12) { opcodes.Undefined(Reg::ArmCore(reg)); } else { opcodes.SameValue(Reg::ArmCore(reg)); } } // fp registers. for (int reg = 0; reg < 32; reg++) { if (reg < 16) { opcodes.Undefined(Reg::ArmFp(reg)); } else { opcodes.SameValue(Reg::ArmFp(reg)); } } auto return_reg = Reg::ArmCore(14); // R14(LR). WriteCIE(is64bit, return_reg, opcodes, buffer); return; } case InstructionSet::kArm64: { dwarf::DebugFrameOpCodeWriter<> opcodes; opcodes.DefCFA(Reg::Arm64Core(31), 0); // R31(SP). // core registers. for (int reg = 0; reg < 30; reg++) { if (reg < 8 || reg == 16 || reg == 17) { opcodes.Undefined(Reg::Arm64Core(reg)); } else { opcodes.SameValue(Reg::Arm64Core(reg)); } } // fp registers. for (int reg = 0; reg < 32; reg++) { if (reg < 8 || reg >= 16) { opcodes.Undefined(Reg::Arm64Fp(reg)); } else { opcodes.SameValue(Reg::Arm64Fp(reg)); } } auto return_reg = Reg::Arm64Core(30); // R30(LR). WriteCIE(is64bit, return_reg, opcodes, buffer); return; } case InstructionSet::kRiscv64: { dwarf::DebugFrameOpCodeWriter<> opcodes; opcodes.DefCFA(Reg::Riscv64Core(2), 0); // X2(SP). // core registers. for (int reg = 3; reg < 32; reg++) { // Skip X0 (Zero), X1 (RA) and X2 (SP). if ((reg >= 5 && reg < 8) || (reg >= 10 && reg < 18) || reg >= 28) { opcodes.Undefined(Reg::Riscv64Core(reg)); } else { opcodes.SameValue(Reg::Riscv64Core(reg)); } } // fp registers. for (int reg = 0; reg < 32; reg++) { if (reg < 8 || (reg >=10 && reg < 18) || reg >= 28) { opcodes.Undefined(Reg::Riscv64Fp(reg)); } else { opcodes.SameValue(Reg::Riscv64Fp(reg)); } } auto return_reg = Reg::Riscv64Core(1); // X1(RA). WriteCIE(is64bit, return_reg, opcodes, buffer); return; } case InstructionSet::kX86: { // FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296 constexpr bool generate_opcodes_for_x86_fp = false; dwarf::DebugFrameOpCodeWriter<> opcodes; opcodes.DefCFA(Reg::X86Core(4), 4); // R4(ESP). opcodes.Offset(Reg::X86Core(8), -4); // R8(EIP). // core registers. for (int reg = 0; reg < 8; reg++) { if (reg <= 3) { opcodes.Undefined(Reg::X86Core(reg)); } else if (reg == 4) { // Stack pointer. } else { opcodes.SameValue(Reg::X86Core(reg)); } } // fp registers. if (generate_opcodes_for_x86_fp) { for (int reg = 0; reg < 8; reg++) { opcodes.Undefined(Reg::X86Fp(reg)); } } auto return_reg = Reg::X86Core(8); // R8(EIP). WriteCIE(is64bit, return_reg, opcodes, buffer); return; } case InstructionSet::kX86_64: { dwarf::DebugFrameOpCodeWriter<> opcodes; opcodes.DefCFA(Reg::X86_64Core(4), 8); // R4(RSP). opcodes.Offset(Reg::X86_64Core(16), -8); // R16(RIP). // core registers. for (int reg = 0; reg < 16; reg++) { if (reg == 4) { // Stack pointer. } else if (reg < 12 && reg != 3 && reg != 5) { // except EBX and EBP. opcodes.Undefined(Reg::X86_64Core(reg)); } else { opcodes.SameValue(Reg::X86_64Core(reg)); } } // fp registers. for (int reg = 0; reg < 16; reg++) { if (reg < 12) { opcodes.Undefined(Reg::X86_64Fp(reg)); } else { opcodes.SameValue(Reg::X86_64Fp(reg)); } } auto return_reg = Reg::X86_64Core(16); // R16(RIP). WriteCIE(is64bit, return_reg, opcodes, buffer); return; } case InstructionSet::kNone: break; } LOG(FATAL) << "Cannot write CIE frame for ISA " << isa; UNREACHABLE(); } template void WriteCFISection(ElfBuilder* builder, const ArrayRef& method_infos) { // The methods can be written in any order. // Let's therefore sort them in the lexicographical order of the opcodes. // This has no effect on its own. However, if the final .debug_frame section is // compressed it reduces the size since similar opcodes sequences are grouped. std::vector sorted_method_infos; sorted_method_infos.reserve(method_infos.size()); for (size_t i = 0; i < method_infos.size(); i++) { if (!method_infos[i].cfi.empty() && !method_infos[i].deduped) { sorted_method_infos.push_back(&method_infos[i]); } } if (sorted_method_infos.empty()) { return; } std::stable_sort( sorted_method_infos.begin(), sorted_method_infos.end(), [](const MethodDebugInfo* lhs, const MethodDebugInfo* rhs) { ArrayRef l = lhs->cfi; ArrayRef r = rhs->cfi; return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end()); }); std::vector binary_search_table; bool binary_search_table_is_valid = kWriteDebugFrameHdr; if (binary_search_table_is_valid) { binary_search_table.reserve(2 * sorted_method_infos.size()); } // Write .debug_frame section. auto* cfi_section = builder->GetDebugFrame(); { cfi_section->Start(); const bool is64bit = Is64BitInstructionSet(builder->GetIsa()); std::vector buffer; // Small temporary buffer. WriteCIE(builder->GetIsa(), &buffer); cfi_section->WriteFully(buffer.data(), buffer.size()); buffer.clear(); for (const MethodDebugInfo* mi : sorted_method_infos) { DCHECK(!mi->deduped); DCHECK(!mi->cfi.empty()); uint64_t code_address = mi->code_address + (mi->is_code_address_text_relative ? builder->GetText()->GetAddress() : 0); if (kWriteDebugFrameHdr) { // Defensively check that the code address really fits. DCHECK_LE(code_address, std::numeric_limits::max()); binary_search_table_is_valid &= code_address <= std::numeric_limits::max(); binary_search_table.push_back(static_cast(code_address)); binary_search_table.push_back(cfi_section->GetPosition()); } dwarf::WriteFDE(is64bit, /* cie_pointer= */ 0, code_address, mi->code_size, mi->cfi, &buffer); cfi_section->WriteFully(buffer.data(), buffer.size()); buffer.clear(); } cfi_section->End(); } if (binary_search_table_is_valid && method_infos.size() >= kMinDebugFrameHdrEntries) { std::sort(binary_search_table.begin(), binary_search_table.end()); // Custom Android section. It is very similar to the official .eh_frame_hdr format. std::vector header_buffer; dwarf::Writer<> header(&header_buffer); header.PushUint8(1); // Version. header.PushUint8(dwarf::DW_EH_PE_omit); // Encoding of .eh_frame pointer - none. header.PushUint8(dwarf::DW_EH_PE_udata4); // Encoding of binary search table size. header.PushUint8(dwarf::DW_EH_PE_udata4); // Encoding of binary search table data. header.PushUint32(dchecked_integral_cast(binary_search_table.size()/2)); auto* header_section = builder->GetDebugFrameHdr(); header_section->Start(); header_section->WriteFully(header_buffer.data(), header_buffer.size()); header_section->WriteFully(binary_search_table.data(), binary_search_table.size() * sizeof(binary_search_table[0])); header_section->End(); } } } // namespace debug } // namespace art #endif // ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_