/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "base/macros.h" #include "code_generator.h" #include "driver/compiler_options.h" #include "loop_optimization.h" #include "optimizing_unit_test.h" namespace art HIDDEN { /** * Fixture class for the loop optimization tests. These unit tests focus * constructing the loop hierarchy. Actual optimizations are tested * through the checker tests. */ class LoopOptimizationTest : public OptimizingUnitTest { protected: void SetUp() override { OptimizingUnitTest::SetUp(); graph_ = CreateGraph(); BuildGraph(); iva_ = new (GetAllocator()) HInductionVarAnalysis(graph_); compiler_options_ = CommonCompilerTest::CreateCompilerOptions(kRuntimeISA, "default"); DCHECK(compiler_options_ != nullptr); codegen_ = CodeGenerator::Create(graph_, *compiler_options_); DCHECK(codegen_.get() != nullptr); loop_opt_ = new (GetAllocator()) HLoopOptimization( graph_, *codegen_.get(), iva_, /* stats= */ nullptr); } void TearDown() override { codegen_.reset(); compiler_options_.reset(); graph_ = nullptr; ResetPoolAndAllocator(); OptimizingUnitTest::TearDown(); } virtual ~LoopOptimizationTest() {} /** Constructs bare minimum graph. */ void BuildGraph() { graph_->SetNumberOfVRegs(1); entry_block_ = new (GetAllocator()) HBasicBlock(graph_); return_block_ = new (GetAllocator()) HBasicBlock(graph_); exit_block_ = new (GetAllocator()) HBasicBlock(graph_); graph_->AddBlock(entry_block_); graph_->AddBlock(return_block_); graph_->AddBlock(exit_block_); graph_->SetEntryBlock(entry_block_); graph_->SetExitBlock(exit_block_); parameter_ = new (GetAllocator()) HParameterValue(graph_->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kInt32); entry_block_->AddInstruction(parameter_); return_block_->AddInstruction(new (GetAllocator()) HReturnVoid()); exit_block_->AddInstruction(new (GetAllocator()) HExit()); entry_block_->AddSuccessor(return_block_); return_block_->AddSuccessor(exit_block_); } /** Adds a loop nest at given position before successor. */ HBasicBlock* AddLoop(HBasicBlock* position, HBasicBlock* successor) { HBasicBlock* header = new (GetAllocator()) HBasicBlock(graph_); HBasicBlock* body = new (GetAllocator()) HBasicBlock(graph_); graph_->AddBlock(header); graph_->AddBlock(body); // Control flow. position->ReplaceSuccessor(successor, header); header->AddSuccessor(body); header->AddSuccessor(successor); header->AddInstruction(new (GetAllocator()) HIf(parameter_)); body->AddSuccessor(header); body->AddInstruction(new (GetAllocator()) HGoto()); return header; } /** Performs analysis. */ void PerformAnalysis() { graph_->BuildDominatorTree(); iva_->Run(); loop_opt_->Run(); } /** Constructs string representation of computed loop hierarchy. */ std::string LoopStructure() { return LoopStructureRecurse(loop_opt_->top_loop_); } // Helper method std::string LoopStructureRecurse(HLoopOptimization::LoopNode* node) { std::string s; for ( ; node != nullptr; node = node->next) { s.append("["); s.append(LoopStructureRecurse(node->inner)); s.append("]"); } return s; } // General building fields. HGraph* graph_; std::unique_ptr compiler_options_; std::unique_ptr codegen_; HInductionVarAnalysis* iva_; HLoopOptimization* loop_opt_; HBasicBlock* entry_block_; HBasicBlock* return_block_; HBasicBlock* exit_block_; HInstruction* parameter_; }; // // The actual tests. // TEST_F(LoopOptimizationTest, NoLoops) { PerformAnalysis(); EXPECT_EQ("", LoopStructure()); } TEST_F(LoopOptimizationTest, SingleLoop) { AddLoop(entry_block_, return_block_); PerformAnalysis(); EXPECT_EQ("[]", LoopStructure()); } TEST_F(LoopOptimizationTest, LoopNest10) { HBasicBlock* b = entry_block_; HBasicBlock* s = return_block_; for (int i = 0; i < 10; i++) { s = AddLoop(b, s); b = s->GetSuccessors()[0]; } PerformAnalysis(); EXPECT_EQ("[[[[[[[[[[]]]]]]]]]]", LoopStructure()); } TEST_F(LoopOptimizationTest, LoopSequence10) { HBasicBlock* b = entry_block_; HBasicBlock* s = return_block_; for (int i = 0; i < 10; i++) { b = AddLoop(b, s); s = b->GetSuccessors()[1]; } PerformAnalysis(); EXPECT_EQ("[][][][][][][][][][]", LoopStructure()); } TEST_F(LoopOptimizationTest, LoopSequenceOfNests) { HBasicBlock* b = entry_block_; HBasicBlock* s = return_block_; for (int i = 0; i < 10; i++) { b = AddLoop(b, s); s = b->GetSuccessors()[1]; HBasicBlock* bi = b->GetSuccessors()[0]; HBasicBlock* si = b; for (int j = 0; j < i; j++) { si = AddLoop(bi, si); bi = si->GetSuccessors()[0]; } } PerformAnalysis(); EXPECT_EQ("[]" "[[]]" "[[[]]]" "[[[[]]]]" "[[[[[]]]]]" "[[[[[[]]]]]]" "[[[[[[[]]]]]]]" "[[[[[[[[]]]]]]]]" "[[[[[[[[[]]]]]]]]]" "[[[[[[[[[[]]]]]]]]]]", LoopStructure()); } TEST_F(LoopOptimizationTest, LoopNestWithSequence) { HBasicBlock* b = entry_block_; HBasicBlock* s = return_block_; for (int i = 0; i < 10; i++) { s = AddLoop(b, s); b = s->GetSuccessors()[0]; } b = s; s = b->GetSuccessors()[1]; for (int i = 0; i < 9; i++) { b = AddLoop(b, s); s = b->GetSuccessors()[1]; } PerformAnalysis(); EXPECT_EQ("[[[[[[[[[[][][][][][][][][][]]]]]]]]]]", LoopStructure()); } // Check that SimplifyLoop() doesn't invalidate data flow when ordering loop headers' // predecessors. // // This is a test for nodes.cc functionality - HGraph::SimplifyLoop. TEST_F(LoopOptimizationTest, SimplifyLoopReoderPredecessors) { // Can't use AddLoop as we want special order for blocks predecessors. HBasicBlock* header = new (GetAllocator()) HBasicBlock(graph_); HBasicBlock* body = new (GetAllocator()) HBasicBlock(graph_); graph_->AddBlock(header); graph_->AddBlock(body); // Control flow: make a loop back edge first in the list of predecessors. entry_block_->RemoveSuccessor(return_block_); body->AddSuccessor(header); entry_block_->AddSuccessor(header); header->AddSuccessor(body); header->AddSuccessor(return_block_); DCHECK(header->GetSuccessors()[1] == return_block_); // Data flow. header->AddInstruction(new (GetAllocator()) HIf(parameter_)); body->AddInstruction(new (GetAllocator()) HGoto()); HPhi* phi = new (GetAllocator()) HPhi(GetAllocator(), 0, 0, DataType::Type::kInt32); HInstruction* add = new (GetAllocator()) HAdd(DataType::Type::kInt32, phi, parameter_); header->AddPhi(phi); body->AddInstruction(add); phi->AddInput(add); phi->AddInput(parameter_); graph_->ClearLoopInformation(); graph_->ClearDominanceInformation(); graph_->BuildDominatorTree(); // BuildDominatorTree inserts a block beetween loop header and entry block. EXPECT_EQ(header->GetPredecessors()[0]->GetSinglePredecessor(), entry_block_); // Check that after optimizations in BuildDominatorTree()/SimplifyCFG() phi inputs // are still mapped correctly to the block predecessors. for (size_t i = 0, e = phi->InputCount(); i < e; i++) { HInstruction* input = phi->InputAt(i); EXPECT_TRUE(input->GetBlock()->Dominates(header->GetPredecessors()[i])); } } // Test that SimplifyLoop() processes the multiple-preheaders loops correctly. // // This is a test for nodes.cc functionality - HGraph::SimplifyLoop. TEST_F(LoopOptimizationTest, SimplifyLoopSinglePreheader) { HBasicBlock* header = AddLoop(entry_block_, return_block_); header->InsertInstructionBefore( new (GetAllocator()) HSuspendCheck(), header->GetLastInstruction()); // Insert an if construct before the loop so it will have two preheaders. HBasicBlock* if_block = new (GetAllocator()) HBasicBlock(graph_); HBasicBlock* preheader0 = new (GetAllocator()) HBasicBlock(graph_); HBasicBlock* preheader1 = new (GetAllocator()) HBasicBlock(graph_); graph_->AddBlock(if_block); graph_->AddBlock(preheader0); graph_->AddBlock(preheader1); // Fix successors/predecessors. entry_block_->ReplaceSuccessor(header, if_block); if_block->AddSuccessor(preheader0); if_block->AddSuccessor(preheader1); preheader0->AddSuccessor(header); preheader1->AddSuccessor(header); if_block->AddInstruction(new (GetAllocator()) HIf(parameter_)); preheader0->AddInstruction(new (GetAllocator()) HGoto()); preheader1->AddInstruction(new (GetAllocator()) HGoto()); HBasicBlock* body = header->GetSuccessors()[0]; DCHECK(body != return_block_); // Add some data flow. HIntConstant* const_0 = graph_->GetIntConstant(0); HIntConstant* const_1 = graph_->GetIntConstant(1); HIntConstant* const_2 = graph_->GetIntConstant(2); HAdd* preheader0_add = new (GetAllocator()) HAdd(DataType::Type::kInt32, parameter_, const_0); preheader0->AddInstruction(preheader0_add); HAdd* preheader1_add = new (GetAllocator()) HAdd(DataType::Type::kInt32, parameter_, const_1); preheader1->AddInstruction(preheader1_add); HPhi* header_phi = new (GetAllocator()) HPhi(GetAllocator(), 0, 0, DataType::Type::kInt32); header->AddPhi(header_phi); HAdd* body_add = new (GetAllocator()) HAdd(DataType::Type::kInt32, parameter_, const_2); body->AddInstruction(body_add); DCHECK(header->GetPredecessors()[0] == body); DCHECK(header->GetPredecessors()[1] == preheader0); DCHECK(header->GetPredecessors()[2] == preheader1); header_phi->AddInput(body_add); header_phi->AddInput(preheader0_add); header_phi->AddInput(preheader1_add); graph_->ClearLoopInformation(); graph_->ClearDominanceInformation(); graph_->BuildDominatorTree(); EXPECT_EQ(header->GetPredecessors().size(), 2u); EXPECT_EQ(header->GetPredecessors()[1], body); HBasicBlock* new_preheader = header->GetLoopInformation()->GetPreHeader(); EXPECT_EQ(preheader0->GetSingleSuccessor(), new_preheader); EXPECT_EQ(preheader1->GetSingleSuccessor(), new_preheader); EXPECT_EQ(new_preheader->GetPhis().CountSize(), 1u); HPhi* new_preheader_phi = new_preheader->GetFirstPhi()->AsPhi(); EXPECT_EQ(new_preheader_phi->InputCount(), 2u); EXPECT_EQ(new_preheader_phi->InputAt(0), preheader0_add); EXPECT_EQ(new_preheader_phi->InputAt(1), preheader1_add); EXPECT_EQ(header_phi->InputCount(), 2u); EXPECT_EQ(header_phi->InputAt(0), new_preheader_phi); EXPECT_EQ(header_phi->InputAt(1), body_add); } } // namespace art