/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "stack_map_stream.h" #include #include #include "art_method-inl.h" #include "base/globals.h" #include "base/stl_util.h" #include "class_linker.h" #include "dex/dex_file.h" #include "dex/dex_file_types.h" #include "driver/compiler_options.h" #include "oat/stack_map.h" #include "optimizing/code_generator.h" #include "optimizing/nodes.h" #include "optimizing/optimizing_compiler.h" #include "runtime.h" #include "scoped_thread_state_change-inl.h" namespace art HIDDEN { constexpr static bool kVerifyStackMaps = kIsDebugBuild; uint32_t StackMapStream::GetStackMapNativePcOffset(size_t i) { return StackMap::UnpackNativePc(stack_maps_[i][StackMap::kPackedNativePc], instruction_set_); } void StackMapStream::SetStackMapNativePcOffset(size_t i, uint32_t native_pc_offset) { stack_maps_[i][StackMap::kPackedNativePc] = StackMap::PackNativePc(native_pc_offset, instruction_set_); } void StackMapStream::BeginMethod(size_t frame_size_in_bytes, size_t core_spill_mask, size_t fp_spill_mask, uint32_t num_dex_registers, bool baseline, bool debuggable, bool has_should_deoptimize_flag) { DCHECK(!in_method_) << "Mismatched Begin/End calls"; in_method_ = true; DCHECK_EQ(packed_frame_size_, 0u) << "BeginMethod was already called"; DCHECK_ALIGNED(frame_size_in_bytes, kStackAlignment); packed_frame_size_ = frame_size_in_bytes / kStackAlignment; core_spill_mask_ = core_spill_mask; fp_spill_mask_ = fp_spill_mask; num_dex_registers_ = num_dex_registers; baseline_ = baseline; debuggable_ = debuggable; has_should_deoptimize_flag_ = has_should_deoptimize_flag; if (kVerifyStackMaps) { dchecks_.emplace_back([=](const CodeInfo& code_info) { DCHECK_EQ(code_info.packed_frame_size_, frame_size_in_bytes / kStackAlignment); DCHECK_EQ(code_info.core_spill_mask_, core_spill_mask); DCHECK_EQ(code_info.fp_spill_mask_, fp_spill_mask); DCHECK_EQ(code_info.number_of_dex_registers_, num_dex_registers); }); } } void StackMapStream::EndMethod(size_t code_size) { DCHECK(in_method_) << "Mismatched Begin/End calls"; in_method_ = false; code_size_ = code_size; // Read the stack masks now. The compiler might have updated them. for (size_t i = 0; i < lazy_stack_masks_.size(); i++) { BitVector* stack_mask = lazy_stack_masks_[i]; if (stack_mask != nullptr && stack_mask->GetNumberOfBits() != 0) { stack_maps_[i][StackMap::kStackMaskIndex] = stack_masks_.Dedup(stack_mask->GetRawStorage(), stack_mask->GetNumberOfBits()); } } if (kIsDebugBuild) { uint32_t packed_code_size = StackMap::PackNativePc(code_size, instruction_set_); for (size_t i = 0; i < stack_maps_.size(); i++) { DCHECK_LE(stack_maps_[i][StackMap::kPackedNativePc], packed_code_size); } } if (kVerifyStackMaps) { dchecks_.emplace_back([=](const CodeInfo& code_info) { CHECK_EQ(code_info.code_size_, code_size); }); } } void StackMapStream::BeginStackMapEntry( uint32_t dex_pc, uint32_t native_pc_offset, uint32_t register_mask, BitVector* stack_mask, StackMap::Kind kind, bool needs_vreg_info, const std::vector& dex_pc_list_for_catch_verification) { DCHECK(in_method_) << "Call BeginMethod first"; DCHECK(!in_stack_map_) << "Mismatched Begin/End calls"; in_stack_map_ = true; DCHECK_IMPLIES(!dex_pc_list_for_catch_verification.empty(), kind == StackMap::Kind::Catch); DCHECK_IMPLIES(!dex_pc_list_for_catch_verification.empty(), kIsDebugBuild); current_stack_map_ = BitTableBuilder::Entry(); current_stack_map_[StackMap::kKind] = static_cast(kind); current_stack_map_[StackMap::kPackedNativePc] = StackMap::PackNativePc(native_pc_offset, instruction_set_); current_stack_map_[StackMap::kDexPc] = dex_pc; if (stack_maps_.size() > 0) { // Check that non-catch stack maps are sorted by pc. // Catch stack maps are at the end and may be unordered. if (stack_maps_.back()[StackMap::kKind] == StackMap::Kind::Catch) { DCHECK(current_stack_map_[StackMap::kKind] == StackMap::Kind::Catch); } else if (current_stack_map_[StackMap::kKind] != StackMap::Kind::Catch) { DCHECK_LE(stack_maps_.back()[StackMap::kPackedNativePc], current_stack_map_[StackMap::kPackedNativePc]); } } if (register_mask != 0) { uint32_t shift = LeastSignificantBit(register_mask); BitTableBuilder::Entry entry; entry[RegisterMask::kValue] = register_mask >> shift; entry[RegisterMask::kShift] = shift; current_stack_map_[StackMap::kRegisterMaskIndex] = register_masks_.Dedup(&entry); } // The compiler assumes the bit vector will be read during PrepareForFillIn(), // and it might modify the data before that. Therefore, just store the pointer. // See ClearSpillSlotsFromLoopPhisInStackMap in code_generator.h. lazy_stack_masks_.push_back(stack_mask); current_inline_infos_.clear(); current_dex_registers_.clear(); expected_num_dex_registers_ = needs_vreg_info ? num_dex_registers_ : 0u; if (kVerifyStackMaps) { size_t stack_map_index = stack_maps_.size(); // Create lambda method, which will be executed at the very end to verify data. // Parameters and local variables will be captured(stored) by the lambda "[=]". dchecks_.emplace_back([=](const CodeInfo& code_info) { // The `native_pc_offset` may have been overridden using `SetStackMapNativePcOffset(.)`. uint32_t final_native_pc_offset = GetStackMapNativePcOffset(stack_map_index); if (kind == StackMap::Kind::Default || kind == StackMap::Kind::OSR) { StackMap stack_map = code_info.GetStackMapForNativePcOffset(final_native_pc_offset, instruction_set_); CHECK_EQ(stack_map.Row(), stack_map_index); } else if (kind == StackMap::Kind::Catch) { StackMap stack_map = code_info.GetCatchStackMapForDexPc( ArrayRef(dex_pc_list_for_catch_verification)); CHECK_EQ(stack_map.Row(), stack_map_index); } StackMap stack_map = code_info.GetStackMapAt(stack_map_index); CHECK_EQ(stack_map.GetNativePcOffset(instruction_set_), final_native_pc_offset); CHECK_EQ(stack_map.GetKind(), static_cast(kind)); CHECK_EQ(stack_map.GetDexPc(), dex_pc); CHECK_EQ(code_info.GetRegisterMaskOf(stack_map), register_mask); BitMemoryRegion seen_stack_mask = code_info.GetStackMaskOf(stack_map); CHECK_GE(seen_stack_mask.size_in_bits(), stack_mask ? stack_mask->GetNumberOfBits() : 0); for (size_t b = 0; b < seen_stack_mask.size_in_bits(); b++) { CHECK_EQ(seen_stack_mask.LoadBit(b), stack_mask != nullptr && stack_mask->IsBitSet(b)); } }); } } void StackMapStream::EndStackMapEntry() { DCHECK(in_stack_map_) << "Mismatched Begin/End calls"; in_stack_map_ = false; // Generate index into the InlineInfo table. size_t inlining_depth = current_inline_infos_.size(); if (!current_inline_infos_.empty()) { current_inline_infos_.back()[InlineInfo::kIsLast] = InlineInfo::kLast; current_stack_map_[StackMap::kInlineInfoIndex] = inline_infos_.Dedup(current_inline_infos_.data(), current_inline_infos_.size()); } // Generate delta-compressed dex register map. size_t num_dex_registers = current_dex_registers_.size(); if (!current_dex_registers_.empty()) { DCHECK_EQ(expected_num_dex_registers_, current_dex_registers_.size()); CreateDexRegisterMap(); } stack_maps_.Add(current_stack_map_); if (kVerifyStackMaps) { size_t stack_map_index = stack_maps_.size() - 1; dchecks_.emplace_back([=](const CodeInfo& code_info) { StackMap stack_map = code_info.GetStackMapAt(stack_map_index); CHECK_EQ(stack_map.HasDexRegisterMap(), (num_dex_registers != 0)); CHECK_EQ(stack_map.HasInlineInfo(), (inlining_depth != 0)); CHECK_EQ(code_info.GetInlineInfosOf(stack_map).size(), inlining_depth); }); } } void StackMapStream::BeginInlineInfoEntry(ArtMethod* method, uint32_t dex_pc, uint32_t num_dex_registers, const DexFile* outer_dex_file, const CodeGenerator* codegen) { DCHECK(in_stack_map_) << "Call BeginStackMapEntry first"; DCHECK(!in_inline_info_) << "Mismatched Begin/End calls"; in_inline_info_ = true; DCHECK_EQ(expected_num_dex_registers_, current_dex_registers_.size()); expected_num_dex_registers_ += num_dex_registers; BitTableBuilder::Entry entry; entry[InlineInfo::kIsLast] = InlineInfo::kMore; entry[InlineInfo::kDexPc] = dex_pc; entry[InlineInfo::kNumberOfDexRegisters] = static_cast(expected_num_dex_registers_); if (EncodeArtMethodInInlineInfo(method)) { entry[InlineInfo::kArtMethodHi] = High32Bits(reinterpret_cast(method)); entry[InlineInfo::kArtMethodLo] = Low32Bits(reinterpret_cast(method)); } else { uint32_t is_in_bootclasspath = MethodInfo::kKindNonBCP; uint32_t dexfile_index = MethodInfo::kSameDexFile; if (dex_pc != static_cast(-1)) { ScopedObjectAccess soa(Thread::Current()); const DexFile* dex_file = method->GetDexFile(); if (!IsSameDexFile(*outer_dex_file, *dex_file)) { if (method->GetDeclaringClass()->IsBootStrapClassLoaded()) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const std::vector& boot_class_path = class_linker->GetBootClassPath(); auto it = std::find_if( boot_class_path.begin(), boot_class_path.end(), [dex_file](const DexFile* df) { return IsSameDexFile(*df, *dex_file); }); is_in_bootclasspath = MethodInfo::kKindBCP; dexfile_index = std::distance(boot_class_path.begin(), it); } else { const std::vector& dex_files = codegen->GetCompilerOptions().GetDexFilesForOatFile(); auto it = std::find_if(dex_files.begin(), dex_files.end(), [dex_file](const DexFile* df) { return IsSameDexFile(*df, *dex_file); }); // No need to set is_in_bootclasspath since the default value works. dexfile_index = std::distance(dex_files.begin(), it); } } } uint32_t dex_method_index = method->GetDexMethodIndex(); entry[InlineInfo::kMethodInfoIndex] = method_infos_.Dedup({dex_method_index, is_in_bootclasspath, dexfile_index}); } current_inline_infos_.push_back(entry); if (kVerifyStackMaps) { size_t stack_map_index = stack_maps_.size(); size_t depth = current_inline_infos_.size() - 1; dchecks_.emplace_back([=](const CodeInfo& code_info) { StackMap stack_map = code_info.GetStackMapAt(stack_map_index); InlineInfo inline_info = code_info.GetInlineInfosOf(stack_map)[depth]; CHECK_EQ(inline_info.GetDexPc(), dex_pc); bool encode_art_method = EncodeArtMethodInInlineInfo(method); CHECK_EQ(inline_info.EncodesArtMethod(), encode_art_method); if (encode_art_method) { CHECK_EQ(inline_info.GetArtMethod(), method); } else { MethodInfo method_info = code_info.GetMethodInfoOf(inline_info); CHECK_EQ(method_info.GetMethodIndex(), method->GetDexMethodIndex()); CHECK(method_info.GetDexFileIndexKind() == MethodInfo::kKindNonBCP || method_info.GetDexFileIndexKind() == MethodInfo::kKindBCP); ScopedObjectAccess soa(Thread::Current()); if (inline_info.GetDexPc() != static_cast(-1) && !IsSameDexFile(*outer_dex_file, *method->GetDexFile())) { if (method->GetDeclaringClass()->IsBootStrapClassLoaded()) { CHECK_EQ(method_info.GetDexFileIndexKind(), MethodInfo::kKindBCP); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const std::vector& boot_class_path = class_linker->GetBootClassPath(); DCHECK_LT(method_info.GetDexFileIndex(), boot_class_path.size()); CHECK(IsSameDexFile(*boot_class_path[method_info.GetDexFileIndex()], *method->GetDexFile())); } else { CHECK_EQ(method_info.GetDexFileIndexKind(), MethodInfo::kKindNonBCP); const std::vector& dex_files = codegen->GetCompilerOptions().GetDexFilesForOatFile(); DCHECK_LT(method_info.GetDexFileIndex(), dex_files.size()); CHECK(IsSameDexFile(*dex_files[method_info.GetDexFileIndex()], *method->GetDexFile())); } } } }); } } void StackMapStream::EndInlineInfoEntry() { DCHECK(in_inline_info_) << "Mismatched Begin/End calls"; in_inline_info_ = false; DCHECK_EQ(expected_num_dex_registers_, current_dex_registers_.size()); } // Create delta-compressed dex register map based on the current list of DexRegisterLocations. // All dex registers for a stack map are concatenated - inlined registers are just appended. void StackMapStream::CreateDexRegisterMap() { // These are fields rather than local variables so that we can reuse the reserved memory. temp_dex_register_mask_.ClearAllBits(); temp_dex_register_map_.clear(); // Ensure that the arrays that hold previous state are big enough to be safely indexed below. if (previous_dex_registers_.size() < current_dex_registers_.size()) { previous_dex_registers_.resize(current_dex_registers_.size(), DexRegisterLocation::None()); dex_register_timestamp_.resize(current_dex_registers_.size(), 0u); } // Set bit in the mask for each register that has been changed since the previous stack map. // Modified registers are stored in the catalogue and the catalogue index added to the list. for (size_t i = 0; i < current_dex_registers_.size(); i++) { DexRegisterLocation reg = current_dex_registers_[i]; // Distance is difference between this index and the index of last modification. uint32_t distance = stack_maps_.size() - dex_register_timestamp_[i]; if (previous_dex_registers_[i] != reg || distance > kMaxDexRegisterMapSearchDistance) { BitTableBuilder::Entry entry; entry[DexRegisterInfo::kKind] = static_cast(reg.GetKind()); entry[DexRegisterInfo::kPackedValue] = DexRegisterInfo::PackValue(reg.GetKind(), reg.GetValue()); uint32_t index = reg.IsLive() ? dex_register_catalog_.Dedup(&entry) : kNoValue; temp_dex_register_mask_.SetBit(i); temp_dex_register_map_.push_back({index}); previous_dex_registers_[i] = reg; dex_register_timestamp_[i] = stack_maps_.size(); } } // Set the mask and map for the current StackMap (which includes inlined registers). if (temp_dex_register_mask_.GetNumberOfBits() != 0) { current_stack_map_[StackMap::kDexRegisterMaskIndex] = dex_register_masks_.Dedup(temp_dex_register_mask_.GetRawStorage(), temp_dex_register_mask_.GetNumberOfBits()); } if (!current_dex_registers_.empty()) { current_stack_map_[StackMap::kDexRegisterMapIndex] = dex_register_maps_.Dedup(temp_dex_register_map_.data(), temp_dex_register_map_.size()); } if (kVerifyStackMaps) { size_t stack_map_index = stack_maps_.size(); // We need to make copy of the current registers for later (when the check is run). auto expected_dex_registers = std::make_shared>( current_dex_registers_.begin(), current_dex_registers_.end()); dchecks_.emplace_back([=](const CodeInfo& code_info) { StackMap stack_map = code_info.GetStackMapAt(stack_map_index); uint32_t expected_reg = 0; for (DexRegisterLocation reg : code_info.GetDexRegisterMapOf(stack_map)) { CHECK_EQ((*expected_dex_registers)[expected_reg++], reg); } for (InlineInfo inline_info : code_info.GetInlineInfosOf(stack_map)) { DexRegisterMap map = code_info.GetInlineDexRegisterMapOf(stack_map, inline_info); for (DexRegisterLocation reg : map) { CHECK_EQ((*expected_dex_registers)[expected_reg++], reg); } } CHECK_EQ(expected_reg, expected_dex_registers->size()); }); } } ScopedArenaVector StackMapStream::Encode() { DCHECK(in_stack_map_ == false) << "Mismatched Begin/End calls"; DCHECK(in_inline_info_ == false) << "Mismatched Begin/End calls"; uint32_t flags = 0; flags |= (inline_infos_.size() > 0) ? CodeInfo::kHasInlineInfo : 0; flags |= baseline_ ? CodeInfo::kIsBaseline : 0; flags |= debuggable_ ? CodeInfo::kIsDebuggable : 0; flags |= has_should_deoptimize_flag_ ? CodeInfo::kHasShouldDeoptimizeFlag : 0; uint32_t bit_table_flags = 0; ForEachBitTable([&bit_table_flags](size_t i, auto bit_table) { if (bit_table->size() != 0) { // Record which bit-tables are stored. bit_table_flags |= 1 << i; } }); ScopedArenaVector buffer(allocator_->Adapter(kArenaAllocStackMapStream)); BitMemoryWriter> out(&buffer); out.WriteInterleavedVarints(std::array{ flags, code_size_, packed_frame_size_, core_spill_mask_, fp_spill_mask_, num_dex_registers_, bit_table_flags, }); ForEachBitTable([&out](size_t, auto bit_table) { if (bit_table->size() != 0) { // Skip empty bit-tables. bit_table->Encode(out); } }); // Verify that we can load the CodeInfo and check some essentials. size_t number_of_read_bits; CodeInfo code_info(buffer.data(), &number_of_read_bits); CHECK_EQ(number_of_read_bits, out.NumberOfWrittenBits()); CHECK_EQ(code_info.GetNumberOfStackMaps(), stack_maps_.size()); CHECK_EQ(CodeInfo::HasInlineInfo(buffer.data()), inline_infos_.size() > 0); CHECK_EQ(CodeInfo::IsBaseline(buffer.data()), baseline_); CHECK_EQ(CodeInfo::IsDebuggable(buffer.data()), debuggable_); CHECK_EQ(CodeInfo::HasShouldDeoptimizeFlag(buffer.data()), has_should_deoptimize_flag_); // Verify all written data (usually only in debug builds). if (kVerifyStackMaps) { for (const auto& dcheck : dchecks_) { dcheck(code_info); } } return buffer; } } // namespace art