/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_x86_64.h" #include "base/casts.h" #include "base/memory_region.h" #include "entrypoints/quick/quick_entrypoints.h" #include "thread.h" namespace art HIDDEN { namespace x86_64 { std::ostream& operator<<(std::ostream& os, const CpuRegister& reg) { return os << reg.AsRegister(); } std::ostream& operator<<(std::ostream& os, const XmmRegister& reg) { return os << reg.AsFloatRegister(); } std::ostream& operator<<(std::ostream& os, const X87Register& reg) { return os << "ST" << static_cast(reg); } std::ostream& operator<<(std::ostream& os, const Address& addr) { switch (addr.mod()) { case 0: if (addr.rm() != RSP || addr.cpu_index().AsRegister() == RSP) { return os << "(%" << addr.cpu_rm() << ")"; } else if (addr.base() == RBP) { return os << static_cast(addr.disp32()) << "(,%" << addr.cpu_index() << "," << (1 << addr.scale()) << ")"; } return os << "(%" << addr.cpu_base() << ",%" << addr.cpu_index() << "," << (1 << addr.scale()) << ")"; case 1: if (addr.rm() != RSP || addr.cpu_index().AsRegister() == RSP) { return os << static_cast(addr.disp8()) << "(%" << addr.cpu_rm() << ")"; } return os << static_cast(addr.disp8()) << "(%" << addr.cpu_base() << ",%" << addr.cpu_index() << "," << (1 << addr.scale()) << ")"; case 2: if (addr.rm() != RSP || addr.cpu_index().AsRegister() == RSP) { return os << static_cast(addr.disp32()) << "(%" << addr.cpu_rm() << ")"; } return os << static_cast(addr.disp32()) << "(%" << addr.cpu_base() << ",%" << addr.cpu_index() << "," << (1 << addr.scale()) << ")"; default: return os << ""; } } bool X86_64Assembler::CpuHasAVXorAVX2FeatureFlag() { if (has_AVX_ || has_AVX2_) { return true; } return false; } void X86_64Assembler::call(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xFF); EmitRegisterOperand(2, reg.LowBits()); } void X86_64Assembler::call(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0xFF); EmitOperand(2, address); } void X86_64Assembler::call(Label* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xE8); static const int kSize = 5; // Offset by one because we already have emitted the opcode. EmitLabel(label, kSize - 1); } void X86_64Assembler::pushq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0x50 + reg.LowBits()); } void X86_64Assembler::pushq(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0xFF); EmitOperand(6, address); } void X86_64Assembler::pushq(const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // pushq only supports 32b immediate. if (imm.is_int8()) { EmitUint8(0x6A); EmitUint8(imm.value() & 0xFF); } else { EmitUint8(0x68); EmitImmediate(imm); } } void X86_64Assembler::popq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0x58 + reg.LowBits()); } void X86_64Assembler::popq(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0x8F); EmitOperand(0, address); } void X86_64Assembler::movq(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (imm.is_int32()) { // 32 bit. Note: sign-extends. EmitRex64(dst); EmitUint8(0xC7); EmitRegisterOperand(0, dst.LowBits()); EmitInt32(static_cast(imm.value())); } else { EmitRex64(dst); EmitUint8(0xB8 + dst.LowBits()); EmitInt64(imm.value()); } } void X86_64Assembler::movl(CpuRegister dst, const Immediate& imm) { CHECK(imm.is_int32()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitUint8(0xB8 + dst.LowBits()); EmitImmediate(imm); } void X86_64Assembler::movq(const Address& dst, const Immediate& imm) { CHECK(imm.is_int32()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst); EmitUint8(0xC7); EmitOperand(0, dst); EmitImmediate(imm); } void X86_64Assembler::movq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // 0x89 is movq r/m64 <- r64, with op1 in r/m and op2 in reg: so reverse EmitRex64 EmitRex64(src, dst); EmitUint8(0x89); EmitRegisterOperand(src.LowBits(), dst.LowBits()); } void X86_64Assembler::movl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x8B); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x8B); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movl(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x8B); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movq(const Address& dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(src, dst); EmitUint8(0x89); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movl(const Address& dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(src, dst); EmitUint8(0x89); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movl(const Address& dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitUint8(0xC7); EmitOperand(0, dst); EmitImmediate(imm); } void X86_64Assembler::movntl(const Address& dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0xC3); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movntq(const Address& dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(src, dst); EmitUint8(0x0F); EmitUint8(0xC3); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::cmov(Condition c, CpuRegister dst, CpuRegister src) { cmov(c, dst, src, true); } void X86_64Assembler::cmov(Condition c, CpuRegister dst, CpuRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex(false, is64bit, dst.NeedsRex(), false, src.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x40 + c); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::cmov(Condition c, CpuRegister dst, const Address& src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (is64bit) { EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x40 + c); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movzxb(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalByteRegNormalizingRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xB6); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movzxb(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // Byte register is only in the source register form, so we don't use // EmitOptionalByteRegNormalizingRex32(dst, src); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xB6); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movsxb(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalByteRegNormalizingRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBE); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movsxb(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // Byte register is only in the source register form, so we don't use // EmitOptionalByteRegNormalizingRex32(dst, src); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBE); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movb(CpuRegister /*dst*/, const Address& /*src*/) { LOG(FATAL) << "Use movzxb or movsxb instead."; } void X86_64Assembler::movb(const Address& dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalByteRegNormalizingRex32(src, dst); EmitUint8(0x88); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movb(const Address& dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitUint8(0xC6); EmitOperand(Register::RAX, dst); CHECK(imm.is_int8()); EmitUint8(imm.value() & 0xFF); } void X86_64Assembler::movzxw(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xB7); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movzxw(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xB7); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movsxw(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBF); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movsxw(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBF); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movw(CpuRegister /*dst*/, const Address& /*src*/) { LOG(FATAL) << "Use movzxw or movsxw instead."; } void X86_64Assembler::movw(const Address& dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); EmitOptionalRex32(src, dst); EmitUint8(0x89); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movw(const Address& dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); EmitOptionalRex32(dst); EmitUint8(0xC7); EmitOperand(Register::RAX, dst); CHECK(imm.is_uint16() || imm.is_int16()); EmitUint8(imm.value() & 0xFF); EmitUint8(imm.value() >> 8); } void X86_64Assembler::leaq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x8D); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::leal(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x8D); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movaps(XmmRegister dst, XmmRegister src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovaps(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x28); EmitXmmRegisterOperand(dst.LowBits(), src); } /**VEX.128.0F.WIG 28 /r VMOVAPS xmm1, xmm2 */ void X86_64Assembler::vmovaps(XmmRegister dst, XmmRegister src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); uint8_t byte_zero, byte_one, byte_two; bool is_twobyte_form = true; bool load = dst.NeedsRex(); bool store = !load; if (src.NeedsRex()&& dst.NeedsRex()) { is_twobyte_form = false; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); // Instruction VEX Prefix byte_zero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); if (is_twobyte_form) { bool rex_bit = (load) ? dst.NeedsRex() : src.NeedsRex(); byte_one = EmitVexPrefixByteOne(rex_bit, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { byte_one = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src.NeedsRex(), SET_VEX_M_0F); byte_two = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(byte_zero); EmitUint8(byte_one); if (!is_twobyte_form) { EmitUint8(byte_two); } // Instruction Opcode if (is_twobyte_form && store) { EmitUint8(0x29); } else { EmitUint8(0x28); } // Instruction Operands if (is_twobyte_form && store) { EmitXmmRegisterOperand(src.LowBits(), dst); } else { EmitXmmRegisterOperand(dst.LowBits(), src); } } void X86_64Assembler::movaps(XmmRegister dst, const Address& src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovaps(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x28); EmitOperand(dst.LowBits(), src); } /**VEX.128.0F.WIG 28 /r VMOVAPS xmm1, m128 */ void X86_64Assembler::vmovaps(XmmRegister dst, const Address& src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero, ByteOne, ByteTwo; bool is_twobyte_form = false; // Instruction VEX Prefix uint8_t rex = src.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_b && !Rex_x) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode EmitUint8(0x28); // Instruction Operands EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movups(XmmRegister dst, const Address& src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovups(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x10); EmitOperand(dst.LowBits(), src); } /** VEX.128.0F.WIG 10 /r VMOVUPS xmm1, m128 */ void X86_64Assembler::vmovups(XmmRegister dst, const Address& src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero, ByteOne, ByteTwo; bool is_twobyte_form = false; // Instruction VEX Prefix uint8_t rex = src.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_x && !Rex_b) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode EmitUint8(0x10); // Instruction Operands EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movaps(const Address& dst, XmmRegister src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovaps(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0x29); EmitOperand(src.LowBits(), dst); } /** VEX.128.0F.WIG 29 /r VMOVAPS m128, xmm1 */ void X86_64Assembler::vmovaps(const Address& dst, XmmRegister src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero, ByteOne, ByteTwo; bool is_twobyte_form = false; // Instruction VEX Prefix uint8_t rex = dst.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_b && !Rex_x) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode EmitUint8(0x29); // Instruction Operands EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movups(const Address& dst, XmmRegister src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovups(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0x11); EmitOperand(src.LowBits(), dst); } /** VEX.128.0F.WIG 11 /r VMOVUPS m128, xmm1 */ void X86_64Assembler::vmovups(const Address& dst, XmmRegister src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero, ByteOne, ByteTwo; bool is_twobyte_form = false; // Instruction VEX Prefix uint8_t rex = dst.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_b && !Rex_x) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode EmitUint8(0x11); // Instruction Operands EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x10); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movss(const Address& dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0x11); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(src, dst); // Movss is MR encoding instead of the usual RM. EmitUint8(0x0F); EmitUint8(0x11); EmitXmmRegisterOperand(src.LowBits(), dst); } void X86_64Assembler::movsxd(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x63); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::movsxd(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x63); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movd(XmmRegister dst, CpuRegister src) { movd(dst, src, true); } void X86_64Assembler::movd(CpuRegister dst, XmmRegister src) { movd(dst, src, true); } void X86_64Assembler::movd(XmmRegister dst, CpuRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, is64bit, dst.NeedsRex(), false, src.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x6E); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::movd(CpuRegister dst, XmmRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, is64bit, src.NeedsRex(), false, dst.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x7E); EmitOperand(src.LowBits(), Operand(dst)); } void X86_64Assembler::addss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x58); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::addss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x58); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::subss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::subss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5C); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::mulss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x59); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::mulss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x59); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::divss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5E); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::divss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5E); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::addps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x58); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::subps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vaddps(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!add_right.NeedsRex()) { is_twobyte_form = true; } else if (!add_left.NeedsRex()) { return vaddps(dst, add_right, add_left); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, add_right.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x58); EmitXmmRegisterOperand(dst.LowBits(), add_right); } void X86_64Assembler::vsubps(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t byte_zero = 0x00, byte_one = 0x00, byte_two = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } byte_zero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); if (is_twobyte_form) { byte_one = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { byte_one = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); byte_two = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(byte_zero); EmitUint8(byte_one); if (!is_twobyte_form) { EmitUint8(byte_two); } EmitUint8(0x5C); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::mulps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x59); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vmulps(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vmulps(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x59); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::divps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5E); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vdivps(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x5E); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::vfmadd213ss(XmmRegister acc, XmmRegister left, XmmRegister right) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; ByteZero = EmitVexPrefixByteZero(/*is_twobyte_form=*/ false); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(left.AsFloatRegister()); ByteOne = EmitVexPrefixByteOne(acc.NeedsRex(), /*X=*/ false, right.NeedsRex(), SET_VEX_M_0F_38); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); EmitUint8(ByteZero); EmitUint8(ByteOne); EmitUint8(ByteTwo); EmitUint8(0xA9); EmitXmmRegisterOperand(acc.LowBits(), right); } void X86_64Assembler::vfmadd213sd(XmmRegister acc, XmmRegister left, XmmRegister right) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; ByteZero = EmitVexPrefixByteZero(/*is_twobyte_form=*/ false); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(left.AsFloatRegister()); ByteOne = EmitVexPrefixByteOne(acc.NeedsRex(), /*X=*/ false, right.NeedsRex(), SET_VEX_M_0F_38); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ true, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); EmitUint8(ByteZero); EmitUint8(ByteOne); EmitUint8(ByteTwo); EmitUint8(0xA9); EmitXmmRegisterOperand(acc.LowBits(), right); } void X86_64Assembler::flds(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(0, src); } void X86_64Assembler::fsts(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(2, dst); } void X86_64Assembler::fstps(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(3, dst); } void X86_64Assembler::movapd(XmmRegister dst, XmmRegister src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovapd(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x28); EmitXmmRegisterOperand(dst.LowBits(), src); } /** VEX.128.66.0F.WIG 28 /r VMOVAPD xmm1, xmm2 */ void X86_64Assembler::vmovapd(XmmRegister dst, XmmRegister src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero, ByteOne, ByteTwo; bool is_twobyte_form = true; if (src.NeedsRex() && dst.NeedsRex()) { is_twobyte_form = false; } // Instruction VEX Prefix ByteZero = EmitVexPrefixByteZero(is_twobyte_form); bool load = dst.NeedsRex(); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); bool rex_bit = load ? dst.NeedsRex() : src.NeedsRex(); ByteOne = EmitVexPrefixByteOne(rex_bit, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode if (is_twobyte_form && !load) { EmitUint8(0x29); } else { EmitUint8(0x28); } // Instruction Operands if (is_twobyte_form && !load) { EmitXmmRegisterOperand(src.LowBits(), dst); } else { EmitXmmRegisterOperand(dst.LowBits(), src); } } void X86_64Assembler::movapd(XmmRegister dst, const Address& src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovapd(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x28); EmitOperand(dst.LowBits(), src); } /** VEX.128.66.0F.WIG 28 /r VMOVAPD xmm1, m128 */ void X86_64Assembler::vmovapd(XmmRegister dst, const Address& src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero, ByteOne, ByteTwo; bool is_twobyte_form = false; // Instruction VEX Prefix uint8_t rex = src.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_b && !Rex_x) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode EmitUint8(0x28); // Instruction Operands EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movupd(XmmRegister dst, const Address& src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovupd(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x10); EmitOperand(dst.LowBits(), src); } /** VEX.128.66.0F.WIG 10 /r VMOVUPD xmm1, m128 */ void X86_64Assembler::vmovupd(XmmRegister dst, const Address& src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero, ByteOne, ByteTwo; // Instruction VEX Prefix uint8_t rex = src.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_b && !Rex_x) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) EmitUint8(ByteTwo); // Instruction Opcode EmitUint8(0x10); // Instruction Operands EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movapd(const Address& dst, XmmRegister src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovapd(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0x29); EmitOperand(src.LowBits(), dst); } /** VEX.128.66.0F.WIG 29 /r VMOVAPD m128, xmm1 */ void X86_64Assembler::vmovapd(const Address& dst, XmmRegister src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero, ByteOne, ByteTwo; // Instruction VEX Prefix uint8_t rex = dst.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_x && !Rex_b) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode EmitUint8(0x29); // Instruction Operands EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movupd(const Address& dst, XmmRegister src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovupd(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0x11); EmitOperand(src.LowBits(), dst); } /** VEX.128.66.0F.WIG 11 /r VMOVUPD m128, xmm1 */ void X86_64Assembler::vmovupd(const Address& dst, XmmRegister src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero, ByteOne, ByteTwo; // Instruction VEX Prefix uint8_t rex = dst.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_x && !Rex_b) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode EmitUint8(0x11); // Instruction Operands EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x10); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movsd(const Address& dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0x11); EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(src, dst); // Movsd is MR encoding instead of the usual RM. EmitUint8(0x0F); EmitUint8(0x11); EmitXmmRegisterOperand(src.LowBits(), dst); } void X86_64Assembler::addsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x58); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::addsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x58); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::subsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::subsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5C); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::mulsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x59); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::mulsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x59); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::divsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5E); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::divsd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5E); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::addpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x58); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vaddpd(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) { bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!add_right.NeedsRex()) { is_twobyte_form = true; } else if (!add_left.NeedsRex()) { return vaddpd(dst, add_right, add_left); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, add_right.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x58); EmitXmmRegisterOperand(dst.LowBits(), add_right); } void X86_64Assembler::subpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vsubpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x5C); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::mulpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x59); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vmulpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vmulpd(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x59); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::divpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5E); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vdivpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x5E); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::movdqa(XmmRegister dst, XmmRegister src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovdqa(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x6F); EmitXmmRegisterOperand(dst.LowBits(), src); } /** VEX.128.66.0F.WIG 6F /r VMOVDQA xmm1, xmm2 */ void X86_64Assembler::vmovdqa(XmmRegister dst, XmmRegister src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero, ByteOne, ByteTwo; bool is_twobyte_form = true; // Instruction VEX Prefix if (src.NeedsRex() && dst.NeedsRex()) { is_twobyte_form = false; } bool load = dst.NeedsRex(); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); bool rex_bit = load ? dst.NeedsRex() : src.NeedsRex(); ByteOne = EmitVexPrefixByteOne(rex_bit, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode if (is_twobyte_form && !load) { EmitUint8(0x7F); } else { EmitUint8(0x6F); } // Instruction Operands if (is_twobyte_form && !load) { EmitXmmRegisterOperand(src.LowBits(), dst); } else { EmitXmmRegisterOperand(dst.LowBits(), src); } } void X86_64Assembler::movdqa(XmmRegister dst, const Address& src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovdqa(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x6F); EmitOperand(dst.LowBits(), src); } /** VEX.128.66.0F.WIG 6F /r VMOVDQA xmm1, m128 */ void X86_64Assembler::vmovdqa(XmmRegister dst, const Address& src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero, ByteOne, ByteTwo; bool is_twobyte_form = false; // Instruction VEX Prefix uint8_t rex = src.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_x && !Rex_b) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode EmitUint8(0x6F); // Instruction Operands EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movdqu(XmmRegister dst, const Address& src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovdqu(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x6F); EmitOperand(dst.LowBits(), src); } /** VEX.128.F3.0F.WIG 6F /r VMOVDQU xmm1, m128 Load Unaligned */ void X86_64Assembler::vmovdqu(XmmRegister dst, const Address& src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero, ByteOne, ByteTwo; bool is_twobyte_form = false; // Instruction VEX Prefix uint8_t rex = src.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_x && !Rex_b) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_F3); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_F3); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode EmitUint8(0x6F); // Instruction Operands EmitOperand(dst.LowBits(), src); } void X86_64Assembler::movdqa(const Address& dst, XmmRegister src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovdqa(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0x7F); EmitOperand(src.LowBits(), dst); } /** VEX.128.66.0F.WIG 7F /r VMOVDQA m128, xmm1 */ void X86_64Assembler::vmovdqa(const Address& dst, XmmRegister src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero, ByteOne, ByteTwo; // Instruction VEX Prefix uint8_t rex = dst.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_x && !Rex_b) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode EmitUint8(0x7F); // Instruction Operands EmitOperand(src.LowBits(), dst); } void X86_64Assembler::movdqu(const Address& dst, XmmRegister src) { if (CpuHasAVXorAVX2FeatureFlag()) { vmovdqu(dst, src); return; } AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0x7F); EmitOperand(src.LowBits(), dst); } /** VEX.128.F3.0F.WIG 7F /r VMOVDQU m128, xmm1 */ void X86_64Assembler::vmovdqu(const Address& dst, XmmRegister src) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero, ByteOne, ByteTwo; bool is_twobyte_form = false; // Instruction VEX Prefix uint8_t rex = dst.rex(); bool Rex_x = rex & GET_REX_X; bool Rex_b = rex & GET_REX_B; if (!Rex_b && !Rex_x) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64(); ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_F3); } else { ByteOne = EmitVexPrefixByteOne(src.NeedsRex(), Rex_x, Rex_b, SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, SET_VEX_L_128, SET_VEX_PP_F3); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } // Instruction Opcode EmitUint8(0x7F); // Instruction Operands EmitOperand(src.LowBits(), dst); } void X86_64Assembler::paddb(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xFC); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vpaddb(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); uint8_t ByteOne = 0x00, ByteZero = 0x00, ByteTwo = 0x00; bool is_twobyte_form = false; if (!add_right.NeedsRex()) { is_twobyte_form = true; } else if (!add_left.NeedsRex()) { return vpaddb(dst, add_right, add_left); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, add_right.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xFC); EmitXmmRegisterOperand(dst.LowBits(), add_right); } void X86_64Assembler::psubb(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xF8); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vpsubb(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!add_right.NeedsRex()) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, add_right.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xF8); EmitXmmRegisterOperand(dst.LowBits(), add_right); } void X86_64Assembler::paddw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xFD); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vpaddw(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!add_right.NeedsRex()) { is_twobyte_form = true; } else if (!add_left.NeedsRex()) { return vpaddw(dst, add_right, add_left); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, add_right.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xFD); EmitXmmRegisterOperand(dst.LowBits(), add_right); } void X86_64Assembler::psubw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xF9); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vpsubw(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!add_right.NeedsRex()) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, add_right.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xF9); EmitXmmRegisterOperand(dst.LowBits(), add_right); } void X86_64Assembler::pmullw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xD5); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vpmullw(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vpmullw(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xD5); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::paddd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xFE); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vpaddd(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!add_right.NeedsRex()) { is_twobyte_form = true; } else if (!add_left.NeedsRex()) { return vpaddd(dst, add_right, add_left); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, add_right.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xFE); EmitXmmRegisterOperand(dst.LowBits(), add_right); } void X86_64Assembler::psubd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xFA); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pmulld(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x40); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vpmulld(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; ByteZero = EmitVexPrefixByteZero(/*is_twobyte_form*/ false); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F_38); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); EmitUint8(ByteZero); EmitUint8(ByteOne); EmitUint8(ByteTwo); EmitUint8(0x40); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::paddq(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xD4); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vpaddq(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!add_right.NeedsRex()) { is_twobyte_form = true; } else if (!add_left.NeedsRex()) { return vpaddq(dst, add_right, add_left); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, add_right.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xD4); EmitXmmRegisterOperand(dst.LowBits(), add_right); } void X86_64Assembler::psubq(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xFB); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vpsubq(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!add_right.NeedsRex()) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, add_right.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xFB); EmitXmmRegisterOperand(dst.LowBits(), add_right); } void X86_64Assembler::paddusb(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xDC); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::paddsb(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xEC); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::paddusw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xDD); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::paddsw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xED); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::psubusb(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xD8); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::psubsb(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xE8); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vpsubd(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!add_right.NeedsRex()) { is_twobyte_form = true; } ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, add_right.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xFA); EmitXmmRegisterOperand(dst.LowBits(), add_right); } void X86_64Assembler::psubusw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xD9); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::psubsw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xE9); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvtsi2ss(XmmRegister dst, CpuRegister src) { cvtsi2ss(dst, src, false); } void X86_64Assembler::cvtsi2ss(XmmRegister dst, CpuRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2A); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::cvtsi2ss(XmmRegister dst, const Address& src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2A); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::cvtsi2sd(XmmRegister dst, CpuRegister src) { cvtsi2sd(dst, src, false); } void X86_64Assembler::cvtsi2sd(XmmRegister dst, CpuRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2A); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::cvtsi2sd(XmmRegister dst, const Address& src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2A); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::cvtss2si(CpuRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x2D); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvtss2sd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5A); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvtss2sd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5A); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::cvtsd2si(CpuRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x2D); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvttss2si(CpuRegister dst, XmmRegister src) { cvttss2si(dst, src, false); } void X86_64Assembler::cvttss2si(CpuRegister dst, XmmRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvttsd2si(CpuRegister dst, XmmRegister src) { cvttsd2si(dst, src, false); } void X86_64Assembler::cvttsd2si(CpuRegister dst, XmmRegister src, bool is64bit) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); if (is64bit) { // Emit a REX.W prefix if the operand size is 64 bits. EmitRex64(dst, src); } else { EmitOptionalRex32(dst, src); } EmitUint8(0x0F); EmitUint8(0x2C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvtsd2ss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5A); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvtsd2ss(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5A); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::cvtdq2ps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5B); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::cvtdq2pd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xE6); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::comiss(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2F); EmitXmmRegisterOperand(a.LowBits(), b); } void X86_64Assembler::comiss(XmmRegister a, const Address& b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2F); EmitOperand(a.LowBits(), b); } void X86_64Assembler::comisd(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2F); EmitXmmRegisterOperand(a.LowBits(), b); } void X86_64Assembler::comisd(XmmRegister a, const Address& b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2F); EmitOperand(a.LowBits(), b); } void X86_64Assembler::ucomiss(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2E); EmitXmmRegisterOperand(a.LowBits(), b); } void X86_64Assembler::ucomiss(XmmRegister a, const Address& b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2E); EmitOperand(a.LowBits(), b); } void X86_64Assembler::ucomisd(XmmRegister a, XmmRegister b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2E); EmitXmmRegisterOperand(a.LowBits(), b); } void X86_64Assembler::ucomisd(XmmRegister a, const Address& b) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(a, b); EmitUint8(0x0F); EmitUint8(0x2E); EmitOperand(a.LowBits(), b); } void X86_64Assembler::roundsd(XmmRegister dst, XmmRegister src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x3A); EmitUint8(0x0B); EmitXmmRegisterOperand(dst.LowBits(), src); EmitUint8(imm.value()); } void X86_64Assembler::roundss(XmmRegister dst, XmmRegister src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x3A); EmitUint8(0x0A); EmitXmmRegisterOperand(dst.LowBits(), src); EmitUint8(imm.value()); } void X86_64Assembler::sqrtsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x51); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::sqrtss(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x51); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::xorpd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x57); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::xorpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x57); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::xorps(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x57); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::xorps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x57); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pxor(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xEF); EmitXmmRegisterOperand(dst.LowBits(), src); } /* VEX.128.66.0F.WIG EF /r VPXOR xmm1, xmm2, xmm3/m128 */ void X86_64Assembler::vpxor(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vpxor(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xEF); EmitXmmRegisterOperand(dst.LowBits(), src2); } /* VEX.128.0F.WIG 57 /r VXORPS xmm1,xmm2, xmm3/m128 */ void X86_64Assembler::vxorps(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vxorps(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x57); EmitXmmRegisterOperand(dst.LowBits(), src2); } /* VEX.128.66.0F.WIG 57 /r VXORPD xmm1,xmm2, xmm3/m128 */ void X86_64Assembler::vxorpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vxorpd(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x57); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::andpd(XmmRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x54); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::andpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x54); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::andps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x54); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pand(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xDB); EmitXmmRegisterOperand(dst.LowBits(), src); } /* VEX.128.66.0F.WIG DB /r VPAND xmm1, xmm2, xmm3/m128 */ void X86_64Assembler::vpand(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vpand(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xDB); EmitXmmRegisterOperand(dst.LowBits(), src2); } /* VEX.128.0F 54 /r VANDPS xmm1,xmm2, xmm3/m128 */ void X86_64Assembler::vandps(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vandps(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x54); EmitXmmRegisterOperand(dst.LowBits(), src2); } /* VEX.128.66.0F 54 /r VANDPD xmm1, xmm2, xmm3/m128 */ void X86_64Assembler::vandpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vandpd(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x54); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::andn(CpuRegister dst, CpuRegister src1, CpuRegister src2) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t byte_zero = EmitVexPrefixByteZero(/*is_twobyte_form=*/ false); uint8_t byte_one = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F_38); uint8_t byte_two = EmitVexPrefixByteTwo(/*W=*/ true, X86_64ManagedRegister::FromCpuRegister(src1.AsRegister()), SET_VEX_L_128, SET_VEX_PP_NONE); EmitUint8(byte_zero); EmitUint8(byte_one); EmitUint8(byte_two); // Opcode field EmitUint8(0xF2); EmitRegisterOperand(dst.LowBits(), src2.LowBits()); } void X86_64Assembler::andnpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x55); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::andnps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x55); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pandn(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xDF); EmitXmmRegisterOperand(dst.LowBits(), src); } /* VEX.128.66.0F.WIG DF /r VPANDN xmm1, xmm2, xmm3/m128 */ void X86_64Assembler::vpandn(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xDF); EmitXmmRegisterOperand(dst.LowBits(), src2); } /* VEX.128.0F 55 /r VANDNPS xmm1, xmm2, xmm3/m128 */ void X86_64Assembler::vandnps(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x55); EmitXmmRegisterOperand(dst.LowBits(), src2); } /* VEX.128.66.0F 55 /r VANDNPD xmm1, xmm2, xmm3/m128 */ void X86_64Assembler::vandnpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x55); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::orpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x56); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::orps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x56); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::por(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xEB); EmitXmmRegisterOperand(dst.LowBits(), src); } /* VEX.128.66.0F.WIG EB /r VPOR xmm1, xmm2, xmm3/m128 */ void X86_64Assembler::vpor(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vpor(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xEB); EmitXmmRegisterOperand(dst.LowBits(), src2); } /* VEX.128.0F 56 /r VORPS xmm1,xmm2, xmm3/m128 */ void X86_64Assembler::vorps(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vorps(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x56); EmitXmmRegisterOperand(dst.LowBits(), src2); } /* VEX.128.66.0F 56 /r VORPD xmm1,xmm2, xmm3/m128 */ void X86_64Assembler::vorpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vorpd(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0x56); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::pavgb(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xE0); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pavgw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xE3); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::psadbw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xF6); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pmaddwd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xF5); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::vpmaddwd(XmmRegister dst, XmmRegister src1, XmmRegister src2) { DCHECK(CpuHasAVXorAVX2FeatureFlag()); bool is_twobyte_form = false; uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00; if (!src2.NeedsRex()) { is_twobyte_form = true; } else if (!src1.NeedsRex()) { return vpmaddwd(dst, src2, src1); } AssemblerBuffer::EnsureCapacity ensured(&buffer_); ByteZero = EmitVexPrefixByteZero(is_twobyte_form); X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister()); if (is_twobyte_form) { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } else { ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F); ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66); } EmitUint8(ByteZero); EmitUint8(ByteOne); if (!is_twobyte_form) { EmitUint8(ByteTwo); } EmitUint8(0xF5); EmitXmmRegisterOperand(dst.LowBits(), src2); } void X86_64Assembler::phaddw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x01); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::phaddd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x02); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::haddps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x7C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::haddpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x7C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::phsubw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x05); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::phsubd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x06); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::hsubps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x7D); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::hsubpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x7D); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pminsb(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x38); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pmaxsb(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x3C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pminsw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xEA); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pmaxsw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xEE); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pminsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x39); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pmaxsd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x3D); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pminub(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xDA); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pmaxub(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xDE); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pminuw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x3A); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pmaxuw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x3E); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pminud(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x3B); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pmaxud(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x3F); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::minps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5D); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::maxps(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5F); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::minpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5D); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::maxpd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x5F); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pcmpeqb(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x74); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pcmpeqw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x75); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pcmpeqd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x76); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pcmpeqq(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x29); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pcmpgtb(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x64); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pcmpgtw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x65); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pcmpgtd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x66); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::pcmpgtq(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x38); EmitUint8(0x37); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::shufpd(XmmRegister dst, XmmRegister src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xC6); EmitXmmRegisterOperand(dst.LowBits(), src); EmitUint8(imm.value()); } void X86_64Assembler::shufps(XmmRegister dst, XmmRegister src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xC6); EmitXmmRegisterOperand(dst.LowBits(), src); EmitUint8(imm.value()); } void X86_64Assembler::pshufd(XmmRegister dst, XmmRegister src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x70); EmitXmmRegisterOperand(dst.LowBits(), src); EmitUint8(imm.value()); } void X86_64Assembler::punpcklbw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x60); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::punpcklwd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x61); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::punpckldq(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x62); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::punpcklqdq(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x6C); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::punpckhbw(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x68); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::punpckhwd(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x69); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::punpckhdq(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x6A); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::punpckhqdq(XmmRegister dst, XmmRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0x6D); EmitXmmRegisterOperand(dst.LowBits(), src); } void X86_64Assembler::psllw(XmmRegister reg, const Immediate& shift_count) { DCHECK(shift_count.is_uint8()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, false, false, false, reg.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x71); EmitXmmRegisterOperand(6, reg); EmitUint8(shift_count.value()); } void X86_64Assembler::pslld(XmmRegister reg, const Immediate& shift_count) { DCHECK(shift_count.is_uint8()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, false, false, false, reg.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x72); EmitXmmRegisterOperand(6, reg); EmitUint8(shift_count.value()); } void X86_64Assembler::psllq(XmmRegister reg, const Immediate& shift_count) { DCHECK(shift_count.is_uint8()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, false, false, false, reg.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x73); EmitXmmRegisterOperand(6, reg); EmitUint8(shift_count.value()); } void X86_64Assembler::psraw(XmmRegister reg, const Immediate& shift_count) { DCHECK(shift_count.is_uint8()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, false, false, false, reg.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x71); EmitXmmRegisterOperand(4, reg); EmitUint8(shift_count.value()); } void X86_64Assembler::psrad(XmmRegister reg, const Immediate& shift_count) { DCHECK(shift_count.is_uint8()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, false, false, false, reg.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x72); EmitXmmRegisterOperand(4, reg); EmitUint8(shift_count.value()); } void X86_64Assembler::psrlw(XmmRegister reg, const Immediate& shift_count) { DCHECK(shift_count.is_uint8()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, false, false, false, reg.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x71); EmitXmmRegisterOperand(2, reg); EmitUint8(shift_count.value()); } void X86_64Assembler::psrld(XmmRegister reg, const Immediate& shift_count) { DCHECK(shift_count.is_uint8()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, false, false, false, reg.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x72); EmitXmmRegisterOperand(2, reg); EmitUint8(shift_count.value()); } void X86_64Assembler::psrlq(XmmRegister reg, const Immediate& shift_count) { DCHECK(shift_count.is_uint8()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, false, false, false, reg.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x73); EmitXmmRegisterOperand(2, reg); EmitUint8(shift_count.value()); } void X86_64Assembler::psrldq(XmmRegister reg, const Immediate& shift_count) { DCHECK(shift_count.is_uint8()); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitOptionalRex(false, false, false, false, reg.NeedsRex()); EmitUint8(0x0F); EmitUint8(0x73); EmitXmmRegisterOperand(3, reg); EmitUint8(shift_count.value()); } void X86_64Assembler::fldl(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitOperand(0, src); } void X86_64Assembler::fstl(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitOperand(2, dst); } void X86_64Assembler::fstpl(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitOperand(3, dst); } void X86_64Assembler::fstsw() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x9B); EmitUint8(0xDF); EmitUint8(0xE0); } void X86_64Assembler::fnstcw(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(7, dst); } void X86_64Assembler::fldcw(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitOperand(5, src); } void X86_64Assembler::fistpl(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDF); EmitOperand(7, dst); } void X86_64Assembler::fistps(const Address& dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDB); EmitOperand(3, dst); } void X86_64Assembler::fildl(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDF); EmitOperand(5, src); } void X86_64Assembler::filds(const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDB); EmitOperand(0, src); } void X86_64Assembler::fincstp() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xF7); } void X86_64Assembler::ffree(const Immediate& index) { CHECK_LT(index.value(), 7); AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDD); EmitUint8(0xC0 + index.value()); } void X86_64Assembler::fsin() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xFE); } void X86_64Assembler::fcos() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xFF); } void X86_64Assembler::fptan() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xF2); } void X86_64Assembler::fucompp() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xDA); EmitUint8(0xE9); } void X86_64Assembler::fprem() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xD9); EmitUint8(0xF8); } bool X86_64Assembler::try_xchg_rax(CpuRegister dst, CpuRegister src, void (X86_64Assembler::*prefix_fn)(CpuRegister)) { Register src_reg = src.AsRegister(); Register dst_reg = dst.AsRegister(); if (src_reg != RAX && dst_reg != RAX) { return false; } if (dst_reg == RAX) { std::swap(src_reg, dst_reg); } if (dst_reg != RAX) { // Prefix is needed only if one of the registers is not RAX, otherwise it's a pure NOP. (this->*prefix_fn)(CpuRegister(dst_reg)); } EmitUint8(0x90 + CpuRegister(dst_reg).LowBits()); return true; } void X86_64Assembler::xchgb(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // There is no short version for AL. EmitOptionalByteRegNormalizingRex32(dst, src, /*normalize_both=*/ true); EmitUint8(0x86); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::xchgb(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalByteRegNormalizingRex32(reg, address); EmitUint8(0x86); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::xchgw(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); if (try_xchg_rax(dst, src, &X86_64Assembler::EmitOptionalRex32)) { // A short version for AX. return; } // General case. EmitOptionalRex32(dst, src); EmitUint8(0x87); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::xchgw(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); EmitOptionalRex32(reg, address); EmitUint8(0x87); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::xchgl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (try_xchg_rax(dst, src, &X86_64Assembler::EmitOptionalRex32)) { // A short version for EAX. return; } // General case. EmitOptionalRex32(dst, src); EmitUint8(0x87); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::xchgl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x87); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::xchgq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (try_xchg_rax(dst, src, &X86_64Assembler::EmitRex64)) { // A short version for RAX. return; } // General case. EmitRex64(dst, src); EmitUint8(0x87); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::xchgq(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x87); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::xaddb(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalByteRegNormalizingRex32(src, dst, /*normalize_both=*/ true); EmitUint8(0x0F); EmitUint8(0xC0); EmitRegisterOperand(src.LowBits(), dst.LowBits()); } void X86_64Assembler::xaddb(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalByteRegNormalizingRex32(reg, address); EmitUint8(0x0F); EmitUint8(0xC0); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::xaddw(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0xC1); EmitRegisterOperand(src.LowBits(), dst.LowBits()); } void X86_64Assembler::xaddw(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); EmitOptionalRex32(reg, address); EmitUint8(0x0F); EmitUint8(0xC1); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::xaddl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(src, dst); EmitUint8(0x0F); EmitUint8(0xC1); EmitRegisterOperand(src.LowBits(), dst.LowBits()); } void X86_64Assembler::xaddl(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x0F); EmitUint8(0xC1); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::xaddq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(src, dst); EmitUint8(0x0F); EmitUint8(0xC1); EmitRegisterOperand(src.LowBits(), dst.LowBits()); } void X86_64Assembler::xaddq(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x0F); EmitUint8(0xC1); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpb(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); EmitOptionalRex32(address); EmitUint8(0x80); EmitOperand(7, address); EmitUint8(imm.value() & 0xFF); } void X86_64Assembler::cmpw(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); EmitOperandSizeOverride(); EmitOptionalRex32(address); EmitComplex(7, address, imm, /* is_16_op= */ true); } void X86_64Assembler::cmpl(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); EmitOptionalRex32(reg); EmitComplex(7, Operand(reg), imm); } void X86_64Assembler::cmpl(CpuRegister reg0, CpuRegister reg1) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg0, reg1); EmitUint8(0x3B); EmitOperand(reg0.LowBits(), Operand(reg1)); } void X86_64Assembler::cmpl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x3B); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpl(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x39); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpl(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); EmitOptionalRex32(address); EmitComplex(7, address, imm); } void X86_64Assembler::cmpq(CpuRegister reg0, CpuRegister reg1) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg0, reg1); EmitUint8(0x3B); EmitOperand(reg0.LowBits(), Operand(reg1)); } void X86_64Assembler::cmpq(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // cmpq only supports 32b immediate. EmitRex64(reg); EmitComplex(7, Operand(reg), imm); } void X86_64Assembler::cmpq(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x3B); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpq(const Address& address, const Immediate& imm) { CHECK(imm.is_int32()); // cmpq only supports 32b immediate. AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(address); EmitComplex(7, address, imm); } void X86_64Assembler::addl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x03); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::addl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x03); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::testl(CpuRegister reg1, CpuRegister reg2) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg1, reg2); EmitUint8(0x85); EmitRegisterOperand(reg1.LowBits(), reg2.LowBits()); } void X86_64Assembler::testl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x85); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::testl(CpuRegister reg, const Immediate& immediate) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // For registers that have a byte variant (RAX, RBX, RCX, and RDX) // we only test the byte CpuRegister to keep the encoding short. if (immediate.is_uint8() && reg.AsRegister() < 4) { // Use zero-extended 8-bit immediate. if (reg.AsRegister() == RAX) { EmitUint8(0xA8); } else { EmitUint8(0xF6); EmitUint8(0xC0 + reg.AsRegister()); } EmitUint8(immediate.value() & 0xFF); } else if (reg.AsRegister() == RAX) { // Use short form if the destination is RAX. EmitUint8(0xA9); EmitImmediate(immediate); } else { EmitOptionalRex32(reg); EmitUint8(0xF7); EmitOperand(0, Operand(reg)); EmitImmediate(immediate); } } void X86_64Assembler::testq(CpuRegister reg1, CpuRegister reg2) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg1, reg2); EmitUint8(0x85); EmitRegisterOperand(reg1.LowBits(), reg2.LowBits()); } void X86_64Assembler::testq(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x85); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::testb(const Address& dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitUint8(0xF6); EmitOperand(Register::RAX, dst); CHECK(imm.is_int8()); EmitUint8(imm.value() & 0xFF); } void X86_64Assembler::testl(const Address& dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitUint8(0xF7); EmitOperand(0, dst); EmitImmediate(imm); } void X86_64Assembler::andl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x23); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::andl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x23); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::andl(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitComplex(4, Operand(dst), imm); } void X86_64Assembler::andq(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // andq only supports 32b immediate. EmitRex64(reg); EmitComplex(4, Operand(reg), imm); } void X86_64Assembler::andq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x23); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::andq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x23); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::andw(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_uint16() || imm.is_int16()) << imm.value(); EmitUint8(0x66); EmitOptionalRex32(address); EmitComplex(4, address, imm, /* is_16_op= */ true); } void X86_64Assembler::orl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0B); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::orl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x0B); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::orl(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitComplex(1, Operand(dst), imm); } void X86_64Assembler::orq(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // orq only supports 32b immediate. EmitRex64(dst); EmitComplex(1, Operand(dst), imm); } void X86_64Assembler::orq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x0B); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::orq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x0B); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::xorl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x33); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::xorl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x33); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::xorl(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst); EmitComplex(6, Operand(dst), imm); } void X86_64Assembler::xorq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x33); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::xorq(CpuRegister dst, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // xorq only supports 32b immediate. EmitRex64(dst); EmitComplex(6, Operand(dst), imm); } void X86_64Assembler::xorq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x33); EmitOperand(dst.LowBits(), src); } #if 0 void X86_64Assembler::rex(bool force, bool w, Register* r, Register* x, Register* b) { // REX.WRXB // W - 64-bit operand // R - MODRM.reg // X - SIB.index // B - MODRM.rm/SIB.base uint8_t rex = force ? 0x40 : 0; if (w) { rex |= 0x48; // REX.W000 } if (r != nullptr && *r >= Register::R8 && *r < Register::kNumberOfCpuRegisters) { rex |= 0x44; // REX.0R00 *r = static_cast(*r - 8); } if (x != nullptr && *x >= Register::R8 && *x < Register::kNumberOfCpuRegisters) { rex |= 0x42; // REX.00X0 *x = static_cast(*x - 8); } if (b != nullptr && *b >= Register::R8 && *b < Register::kNumberOfCpuRegisters) { rex |= 0x41; // REX.000B *b = static_cast(*b - 8); } if (rex != 0) { EmitUint8(rex); } } void X86_64Assembler::rex_reg_mem(bool force, bool w, Register* dst, const Address& mem) { // REX.WRXB // W - 64-bit operand // R - MODRM.reg // X - SIB.index // B - MODRM.rm/SIB.base uint8_t rex = mem->rex(); if (force) { rex |= 0x40; // REX.0000 } if (w) { rex |= 0x48; // REX.W000 } if (dst != nullptr && *dst >= Register::R8 && *dst < Register::kNumberOfCpuRegisters) { rex |= 0x44; // REX.0R00 *dst = static_cast(*dst - 8); } if (rex != 0) { EmitUint8(rex); } } void rex_mem_reg(bool force, bool w, Address* mem, Register* src); #endif void X86_64Assembler::addl(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitComplex(0, Operand(reg), imm); } void X86_64Assembler::addw(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_uint16() || imm.is_int16()) << imm.value(); EmitUint8(0x66); EmitOptionalRex32(reg); EmitComplex(0, Operand(reg), imm, /* is_16_op= */ true); } void X86_64Assembler::addq(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // addq only supports 32b immediate. EmitRex64(reg); EmitComplex(0, Operand(reg), imm); } void X86_64Assembler::addq(CpuRegister dst, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, address); EmitUint8(0x03); EmitOperand(dst.LowBits(), address); } void X86_64Assembler::addq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // 0x01 is addq r/m64 <- r/m64 + r64, with op1 in r/m and op2 in reg: so reverse EmitRex64 EmitRex64(src, dst); EmitUint8(0x01); EmitRegisterOperand(src.LowBits(), dst.LowBits()); } void X86_64Assembler::addl(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x01); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::addl(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitComplex(0, address, imm); } void X86_64Assembler::addw(const Address& address, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_uint16() || imm.is_int16()) << imm.value(); EmitUint8(0x66); EmitOptionalRex32(address); EmitComplex(0, address, imm, /* is_16_op= */ true); } void X86_64Assembler::addw(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); EmitOptionalRex32(reg, address); EmitUint8(0x01); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::subl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x2B); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::subl(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitComplex(5, Operand(reg), imm); } void X86_64Assembler::subq(CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // subq only supports 32b immediate. EmitRex64(reg); EmitComplex(5, Operand(reg), imm); } void X86_64Assembler::subq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x2B); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::subq(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x2B); EmitOperand(reg.LowBits() & 7, address); } void X86_64Assembler::subl(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x2B); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cdq() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x99); } void X86_64Assembler::cqo() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(); EmitUint8(0x99); } void X86_64Assembler::idivl(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xF7); EmitUint8(0xF8 | reg.LowBits()); } void X86_64Assembler::idivq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg); EmitUint8(0xF7); EmitUint8(0xF8 | reg.LowBits()); } void X86_64Assembler::divl(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xF7); EmitUint8(0xF0 | reg.LowBits()); } void X86_64Assembler::divq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg); EmitUint8(0xF7); EmitUint8(0xF0 | reg.LowBits()); } void X86_64Assembler::imull(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xAF); EmitOperand(dst.LowBits(), Operand(src)); } void X86_64Assembler::imull(CpuRegister dst, CpuRegister src, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // imull only supports 32b immediate. EmitOptionalRex32(dst, src); // See whether imm can be represented as a sign-extended 8bit value. int32_t v32 = static_cast(imm.value()); if (IsInt<8>(v32)) { // Sign-extension works. EmitUint8(0x6B); EmitOperand(dst.LowBits(), Operand(src)); EmitUint8(static_cast(v32 & 0xFF)); } else { // Not representable, use full immediate. EmitUint8(0x69); EmitOperand(dst.LowBits(), Operand(src)); EmitImmediate(imm); } } void X86_64Assembler::imull(CpuRegister reg, const Immediate& imm) { imull(reg, reg, imm); } void X86_64Assembler::imull(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x0F); EmitUint8(0xAF); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::imulq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x0F); EmitUint8(0xAF); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::imulq(CpuRegister reg, const Immediate& imm) { imulq(reg, reg, imm); } void X86_64Assembler::imulq(CpuRegister dst, CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int32()); // imulq only supports 32b immediate. EmitRex64(dst, reg); // See whether imm can be represented as a sign-extended 8bit value. int64_t v64 = imm.value(); if (IsInt<8>(v64)) { // Sign-extension works. EmitUint8(0x6B); EmitOperand(dst.LowBits(), Operand(reg)); EmitUint8(static_cast(v64 & 0xFF)); } else { // Not representable, use full immediate. EmitUint8(0x69); EmitOperand(dst.LowBits(), Operand(reg)); EmitImmediate(imm); } } void X86_64Assembler::imulq(CpuRegister reg, const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x0F); EmitUint8(0xAF); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::imull(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xF7); EmitOperand(5, Operand(reg)); } void X86_64Assembler::imulq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg); EmitUint8(0xF7); EmitOperand(5, Operand(reg)); } void X86_64Assembler::imull(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0xF7); EmitOperand(5, address); } void X86_64Assembler::mull(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xF7); EmitOperand(4, Operand(reg)); } void X86_64Assembler::mull(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0xF7); EmitOperand(4, address); } void X86_64Assembler::shll(CpuRegister reg, const Immediate& imm) { EmitGenericShift(false, 4, reg, imm); } void X86_64Assembler::shlq(CpuRegister reg, const Immediate& imm) { EmitGenericShift(true, 4, reg, imm); } void X86_64Assembler::shll(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(false, 4, operand, shifter); } void X86_64Assembler::shlq(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(true, 4, operand, shifter); } void X86_64Assembler::shrl(CpuRegister reg, const Immediate& imm) { EmitGenericShift(false, 5, reg, imm); } void X86_64Assembler::shrq(CpuRegister reg, const Immediate& imm) { EmitGenericShift(true, 5, reg, imm); } void X86_64Assembler::shrl(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(false, 5, operand, shifter); } void X86_64Assembler::shrq(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(true, 5, operand, shifter); } void X86_64Assembler::sarl(CpuRegister reg, const Immediate& imm) { EmitGenericShift(false, 7, reg, imm); } void X86_64Assembler::sarl(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(false, 7, operand, shifter); } void X86_64Assembler::sarq(CpuRegister reg, const Immediate& imm) { EmitGenericShift(true, 7, reg, imm); } void X86_64Assembler::sarq(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(true, 7, operand, shifter); } void X86_64Assembler::roll(CpuRegister reg, const Immediate& imm) { EmitGenericShift(false, 0, reg, imm); } void X86_64Assembler::roll(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(false, 0, operand, shifter); } void X86_64Assembler::rorl(CpuRegister reg, const Immediate& imm) { EmitGenericShift(false, 1, reg, imm); } void X86_64Assembler::rorl(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(false, 1, operand, shifter); } void X86_64Assembler::rolq(CpuRegister reg, const Immediate& imm) { EmitGenericShift(true, 0, reg, imm); } void X86_64Assembler::rolq(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(true, 0, operand, shifter); } void X86_64Assembler::rorq(CpuRegister reg, const Immediate& imm) { EmitGenericShift(true, 1, reg, imm); } void X86_64Assembler::rorq(CpuRegister operand, CpuRegister shifter) { EmitGenericShift(true, 1, operand, shifter); } void X86_64Assembler::negl(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xF7); EmitOperand(3, Operand(reg)); } void X86_64Assembler::negq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg); EmitUint8(0xF7); EmitOperand(3, Operand(reg)); } void X86_64Assembler::notl(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xF7); EmitUint8(0xD0 | reg.LowBits()); } void X86_64Assembler::notq(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg); EmitUint8(0xF7); EmitOperand(2, Operand(reg)); } void X86_64Assembler::enter(const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC8); CHECK(imm.is_uint16()) << imm.value(); EmitUint8(imm.value() & 0xFF); EmitUint8((imm.value() >> 8) & 0xFF); EmitUint8(0x00); } void X86_64Assembler::leave() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC9); } void X86_64Assembler::ret() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC3); } void X86_64Assembler::ret(const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xC2); CHECK(imm.is_uint16()); EmitUint8(imm.value() & 0xFF); EmitUint8((imm.value() >> 8) & 0xFF); } void X86_64Assembler::nop() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x90); } void X86_64Assembler::int3() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xCC); } void X86_64Assembler::hlt() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF4); } void X86_64Assembler::j(Condition condition, Label* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; static const int kLongSize = 6; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); if (IsInt<8>(offset - kShortSize)) { EmitUint8(0x70 + condition); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0x0F); EmitUint8(0x80 + condition); EmitInt32(offset - kLongSize); } } else { EmitUint8(0x0F); EmitUint8(0x80 + condition); EmitLabelLink(label); } } void X86_64Assembler::j(Condition condition, NearLabel* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); CHECK(IsInt<8>(offset - kShortSize)); EmitUint8(0x70 + condition); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0x70 + condition); EmitLabelLink(label); } } void X86_64Assembler::jrcxz(NearLabel* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); CHECK(IsInt<8>(offset - kShortSize)); EmitUint8(0xE3); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0xE3); EmitLabelLink(label); } } void X86_64Assembler::jmp(CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg); EmitUint8(0xFF); EmitRegisterOperand(4, reg.LowBits()); } void X86_64Assembler::jmp(const Address& address) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(address); EmitUint8(0xFF); EmitOperand(4, address); } void X86_64Assembler::jmp(Label* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; static const int kLongSize = 5; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); if (IsInt<8>(offset - kShortSize)) { EmitUint8(0xEB); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0xE9); EmitInt32(offset - kLongSize); } } else { EmitUint8(0xE9); EmitLabelLink(label); } } void X86_64Assembler::jmp(NearLabel* label) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); if (label->IsBound()) { static const int kShortSize = 2; int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); CHECK(IsInt<8>(offset - kShortSize)); EmitUint8(0xEB); EmitUint8((offset - kShortSize) & 0xFF); } else { EmitUint8(0xEB); EmitLabelLink(label); } } void X86_64Assembler::rep_movsw() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0xF3); EmitUint8(0xA5); } void X86_64Assembler::rep_movsb() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0xA4); } void X86_64Assembler::rep_movsl() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0xA5); } X86_64Assembler* X86_64Assembler::lock() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF0); return this; } void X86_64Assembler::cmpxchgb(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalByteRegNormalizingRex32(reg, address); EmitUint8(0x0F); EmitUint8(0xB0); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpxchgw(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOperandSizeOverride(); EmitOptionalRex32(reg, address); EmitUint8(0x0F); EmitUint8(0xB1); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpxchgl(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(reg, address); EmitUint8(0x0F); EmitUint8(0xB1); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::cmpxchgq(const Address& address, CpuRegister reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(reg, address); EmitUint8(0x0F); EmitUint8(0xB1); EmitOperand(reg.LowBits(), address); } void X86_64Assembler::mfence() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0xAE); EmitUint8(0xF0); } X86_64Assembler* X86_64Assembler::gs() { // TODO: gs is a prefix and not an instruction AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x65); return this; } void X86_64Assembler::AddImmediate(CpuRegister reg, const Immediate& imm) { int value = imm.value(); if (value != 0) { if (value > 0) { addl(reg, imm); } else { subl(reg, Immediate(value)); } } } void X86_64Assembler::setcc(Condition condition, CpuRegister dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // RSP, RBP, RDI, RSI need rex prefix (else the pattern encodes ah/bh/ch/dh). if (dst.NeedsRex() || dst.AsRegister() > 3) { EmitOptionalRex(true, false, false, false, dst.NeedsRex()); } EmitUint8(0x0F); EmitUint8(0x90 + condition); EmitUint8(0xC0 + dst.LowBits()); } void X86_64Assembler::blsi(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t byte_zero = EmitVexPrefixByteZero(/*is_twobyte_form=*/ false); uint8_t byte_one = EmitVexPrefixByteOne(/*R=*/ false, /*X=*/ false, src.NeedsRex(), SET_VEX_M_0F_38); uint8_t byte_two = EmitVexPrefixByteTwo(/*W=*/true, X86_64ManagedRegister::FromCpuRegister(dst.AsRegister()), SET_VEX_L_128, SET_VEX_PP_NONE); EmitUint8(byte_zero); EmitUint8(byte_one); EmitUint8(byte_two); EmitUint8(0xF3); EmitRegisterOperand(3, src.LowBits()); } void X86_64Assembler::blsmsk(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t byte_zero = EmitVexPrefixByteZero(/*is_twobyte_form=*/ false); uint8_t byte_one = EmitVexPrefixByteOne(/*R=*/ false, /*X=*/ false, src.NeedsRex(), SET_VEX_M_0F_38); uint8_t byte_two = EmitVexPrefixByteTwo(/*W=*/ true, X86_64ManagedRegister::FromCpuRegister(dst.AsRegister()), SET_VEX_L_128, SET_VEX_PP_NONE); EmitUint8(byte_zero); EmitUint8(byte_one); EmitUint8(byte_two); EmitUint8(0xF3); EmitRegisterOperand(2, src.LowBits()); } void X86_64Assembler::blsr(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); uint8_t byte_zero = EmitVexPrefixByteZero(/*is_twobyte_form=*/false); uint8_t byte_one = EmitVexPrefixByteOne(/*R=*/ false, /*X=*/ false, src.NeedsRex(), SET_VEX_M_0F_38); uint8_t byte_two = EmitVexPrefixByteTwo(/*W=*/ true, X86_64ManagedRegister::FromCpuRegister(dst.AsRegister()), SET_VEX_L_128, SET_VEX_PP_NONE); EmitUint8(byte_zero); EmitUint8(byte_one); EmitUint8(byte_two); EmitUint8(0xF3); EmitRegisterOperand(1, src.LowBits()); } void X86_64Assembler::bswapl(CpuRegister dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex(false, false, false, false, dst.NeedsRex()); EmitUint8(0x0F); EmitUint8(0xC8 + dst.LowBits()); } void X86_64Assembler::bswapq(CpuRegister dst) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex(false, true, false, false, dst.NeedsRex()); EmitUint8(0x0F); EmitUint8(0xC8 + dst.LowBits()); } void X86_64Assembler::bsfl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBC); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::bsfl(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBC); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::bsfq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x0F); EmitUint8(0xBC); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::bsfq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x0F); EmitUint8(0xBC); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::bsrl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBD); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::bsrl(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xBD); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::bsrq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x0F); EmitUint8(0xBD); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::bsrq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitRex64(dst, src); EmitUint8(0x0F); EmitUint8(0xBD); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::popcntl(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xB8); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::popcntl(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitOptionalRex32(dst, src); EmitUint8(0x0F); EmitUint8(0xB8); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::popcntq(CpuRegister dst, CpuRegister src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitRex64(dst, src); EmitUint8(0x0F); EmitUint8(0xB8); EmitRegisterOperand(dst.LowBits(), src.LowBits()); } void X86_64Assembler::popcntq(CpuRegister dst, const Address& src) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitRex64(dst, src); EmitUint8(0x0F); EmitUint8(0xB8); EmitOperand(dst.LowBits(), src); } void X86_64Assembler::rdtsc() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x31); } void X86_64Assembler::repne_scasb() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF2); EmitUint8(0xAE); } void X86_64Assembler::repne_scasw() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0xF2); EmitUint8(0xAF); } void X86_64Assembler::repe_cmpsw() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x66); EmitUint8(0xF3); EmitUint8(0xA7); } void X86_64Assembler::repe_cmpsl() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitUint8(0xA7); } void X86_64Assembler::repe_cmpsq() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0xF3); EmitRex64(); EmitUint8(0xA7); } void X86_64Assembler::ud2() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x0B); } void X86_64Assembler::LoadDoubleConstant(XmmRegister dst, double value) { // TODO: Need to have a code constants table. int64_t constant = bit_cast(value); pushq(Immediate(High32Bits(constant))); pushq(Immediate(Low32Bits(constant))); movsd(dst, Address(CpuRegister(RSP), 0)); addq(CpuRegister(RSP), Immediate(2 * sizeof(intptr_t))); } void X86_64Assembler::Align(int alignment, int offset) { CHECK(IsPowerOfTwo(alignment)); // Emit nop instruction until the real position is aligned. while (((offset + buffer_.GetPosition()) & (alignment-1)) != 0) { nop(); } } void X86_64Assembler::Bind(Label* label) { int bound = buffer_.Size(); CHECK(!label->IsBound()); // Labels can only be bound once. while (label->IsLinked()) { int position = label->LinkPosition(); int next = buffer_.Load(position); buffer_.Store(position, bound - (position + 4)); label->position_ = next; } label->BindTo(bound); } void X86_64Assembler::Bind(NearLabel* label) { int bound = buffer_.Size(); CHECK(!label->IsBound()); // Labels can only be bound once. while (label->IsLinked()) { int position = label->LinkPosition(); uint8_t delta = buffer_.Load(position); int offset = bound - (position + 1); CHECK(IsInt<8>(offset)); buffer_.Store(position, offset); label->position_ = delta != 0u ? label->position_ - delta : 0; } label->BindTo(bound); } void X86_64Assembler::EmitOperand(uint8_t reg_or_opcode, const Operand& operand) { CHECK_GE(reg_or_opcode, 0); CHECK_LT(reg_or_opcode, 8); const int length = operand.length_; CHECK_GT(length, 0); // Emit the ModRM byte updated with the given reg value. CHECK_EQ(operand.encoding_[0] & 0x38, 0); EmitUint8(operand.encoding_[0] + (reg_or_opcode << 3)); // Emit the rest of the encoded operand. for (int i = 1; i < length; i++) { EmitUint8(operand.encoding_[i]); } AssemblerFixup* fixup = operand.GetFixup(); if (fixup != nullptr) { EmitFixup(fixup); } } void X86_64Assembler::EmitImmediate(const Immediate& imm, bool is_16_op) { if (is_16_op) { EmitUint8(imm.value() & 0xFF); EmitUint8(imm.value() >> 8); } else if (imm.is_int32()) { EmitInt32(static_cast(imm.value())); } else { EmitInt64(imm.value()); } } void X86_64Assembler::EmitComplex(uint8_t reg_or_opcode, const Operand& operand, const Immediate& immediate, bool is_16_op) { CHECK_GE(reg_or_opcode, 0); CHECK_LT(reg_or_opcode, 8); if (immediate.is_int8()) { // Use sign-extended 8-bit immediate. EmitUint8(0x83); EmitOperand(reg_or_opcode, operand); EmitUint8(immediate.value() & 0xFF); } else if (operand.IsRegister(CpuRegister(RAX))) { // Use short form if the destination is eax. EmitUint8(0x05 + (reg_or_opcode << 3)); EmitImmediate(immediate, is_16_op); } else { EmitUint8(0x81); EmitOperand(reg_or_opcode, operand); EmitImmediate(immediate, is_16_op); } } void X86_64Assembler::EmitLabel(Label* label, int instruction_size) { if (label->IsBound()) { int offset = label->Position() - buffer_.Size(); CHECK_LE(offset, 0); EmitInt32(offset - instruction_size); } else { EmitLabelLink(label); } } void X86_64Assembler::EmitLabelLink(Label* label) { CHECK(!label->IsBound()); int position = buffer_.Size(); EmitInt32(label->position_); label->LinkTo(position); } void X86_64Assembler::EmitLabelLink(NearLabel* label) { CHECK(!label->IsBound()); int position = buffer_.Size(); if (label->IsLinked()) { // Save the delta in the byte that we have to play with. uint32_t delta = position - label->LinkPosition(); CHECK(IsUint<8>(delta)); EmitUint8(delta & 0xFF); } else { EmitUint8(0); } label->LinkTo(position); } void X86_64Assembler::EmitGenericShift(bool wide, int reg_or_opcode, CpuRegister reg, const Immediate& imm) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK(imm.is_int8()); if (wide) { EmitRex64(reg); } else { EmitOptionalRex32(reg); } if (imm.value() == 1) { EmitUint8(0xD1); EmitOperand(reg_or_opcode, Operand(reg)); } else { EmitUint8(0xC1); EmitOperand(reg_or_opcode, Operand(reg)); EmitUint8(imm.value() & 0xFF); } } void X86_64Assembler::EmitGenericShift(bool wide, int reg_or_opcode, CpuRegister operand, CpuRegister shifter) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); CHECK_EQ(shifter.AsRegister(), RCX); if (wide) { EmitRex64(operand); } else { EmitOptionalRex32(operand); } EmitUint8(0xD3); EmitOperand(reg_or_opcode, Operand(operand)); } void X86_64Assembler::EmitOptionalRex(bool force, bool w, bool r, bool x, bool b) { // REX.WRXB // W - 64-bit operand // R - MODRM.reg // X - SIB.index // B - MODRM.rm/SIB.base uint8_t rex = force ? 0x40 : 0; if (w) { rex |= 0x48; // REX.W000 } if (r) { rex |= 0x44; // REX.0R00 } if (x) { rex |= 0x42; // REX.00X0 } if (b) { rex |= 0x41; // REX.000B } if (rex != 0) { EmitUint8(rex); } } void X86_64Assembler::EmitOptionalRex32(CpuRegister reg) { EmitOptionalRex(false, false, false, false, reg.NeedsRex()); } void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, CpuRegister src) { EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, XmmRegister src) { EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, XmmRegister src) { EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, CpuRegister src) { EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitOptionalRex32(const Operand& operand) { uint8_t rex = operand.rex(); if (rex != 0) { EmitUint8(rex); } } void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, const Operand& operand) { uint8_t rex = operand.rex(); if (dst.NeedsRex()) { rex |= 0x44; // REX.0R00 } if (rex != 0) { EmitUint8(rex); } } void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, const Operand& operand) { uint8_t rex = operand.rex(); if (dst.NeedsRex()) { rex |= 0x44; // REX.0R00 } if (rex != 0) { EmitUint8(rex); } } void X86_64Assembler::EmitRex64() { EmitOptionalRex(false, true, false, false, false); } void X86_64Assembler::EmitRex64(CpuRegister reg) { EmitOptionalRex(false, true, false, false, reg.NeedsRex()); } void X86_64Assembler::EmitRex64(const Operand& operand) { uint8_t rex = operand.rex(); rex |= 0x48; // REX.W000 EmitUint8(rex); } void X86_64Assembler::EmitRex64(CpuRegister dst, CpuRegister src) { EmitOptionalRex(false, true, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitRex64(XmmRegister dst, CpuRegister src) { EmitOptionalRex(false, true, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitRex64(CpuRegister dst, XmmRegister src) { EmitOptionalRex(false, true, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitRex64(CpuRegister dst, const Operand& operand) { uint8_t rex = 0x48 | operand.rex(); // REX.W000 if (dst.NeedsRex()) { rex |= 0x44; // REX.0R00 } EmitUint8(rex); } void X86_64Assembler::EmitRex64(XmmRegister dst, const Operand& operand) { uint8_t rex = 0x48 | operand.rex(); // REX.W000 if (dst.NeedsRex()) { rex |= 0x44; // REX.0R00 } EmitUint8(rex); } void X86_64Assembler::EmitOptionalByteRegNormalizingRex32(CpuRegister dst, CpuRegister src, bool normalize_both) { // SPL, BPL, SIL, DIL need the REX prefix. bool force = src.AsRegister() > 3; if (normalize_both) { // Some instructions take two byte registers, such as `xchg bpl, al`, so they need the REX // prefix if either `src` or `dst` needs it. force |= dst.AsRegister() > 3; } else { // Other instructions take one byte register and one full register, such as `movzxb rax, bpl`. // They need REX prefix only if `src` needs it, but not `dst`. } EmitOptionalRex(force, false, dst.NeedsRex(), false, src.NeedsRex()); } void X86_64Assembler::EmitOptionalByteRegNormalizingRex32(CpuRegister dst, const Operand& operand) { uint8_t rex = operand.rex(); // For dst, SPL, BPL, SIL, DIL need the rex prefix. bool force = dst.AsRegister() > 3; if (force) { rex |= 0x40; // REX.0000 } if (dst.NeedsRex()) { rex |= 0x44; // REX.0R00 } if (rex != 0) { EmitUint8(rex); } } void X86_64Assembler::AddConstantArea() { ArrayRef area = constant_area_.GetBuffer(); for (size_t i = 0, e = area.size(); i < e; i++) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitInt32(area[i]); } } size_t ConstantArea::AppendInt32(int32_t v) { size_t result = buffer_.size() * elem_size_; buffer_.push_back(v); return result; } size_t ConstantArea::AddInt32(int32_t v) { // Look for an existing match. for (size_t i = 0, e = buffer_.size(); i < e; i++) { if (v == buffer_[i]) { return i * elem_size_; } } // Didn't match anything. return AppendInt32(v); } size_t ConstantArea::AddInt64(int64_t v) { int32_t v_low = v; int32_t v_high = v >> 32; if (buffer_.size() > 1) { // Ensure we don't pass the end of the buffer. for (size_t i = 0, e = buffer_.size() - 1; i < e; i++) { if (v_low == buffer_[i] && v_high == buffer_[i + 1]) { return i * elem_size_; } } } // Didn't match anything. size_t result = buffer_.size() * elem_size_; buffer_.push_back(v_low); buffer_.push_back(v_high); return result; } size_t ConstantArea::AddDouble(double v) { // Treat the value as a 64-bit integer value. return AddInt64(bit_cast(v)); } size_t ConstantArea::AddFloat(float v) { // Treat the value as a 32-bit integer value. return AddInt32(bit_cast(v)); } uint8_t X86_64Assembler::EmitVexPrefixByteZero(bool is_twobyte_form) { // Vex Byte 0, // Bits [7:0] must contain the value 11000101b (0xC5) for 2-byte Vex // Bits [7:0] must contain the value 11000100b (0xC4) for 3-byte Vex uint8_t vex_prefix = 0xC0; if (is_twobyte_form) { vex_prefix |= TWO_BYTE_VEX; // 2-Byte Vex } else { vex_prefix |= THREE_BYTE_VEX; // 3-Byte Vex } return vex_prefix; } uint8_t X86_64Assembler::EmitVexPrefixByteOne(bool R, bool X, bool B, int SET_VEX_M) { // Vex Byte 1, uint8_t vex_prefix = VEX_INIT; /** Bit[7] This bit needs to be set to '1' otherwise the instruction is LES or LDS */ if (!R) { // R . vex_prefix |= SET_VEX_R; } /** Bit[6] This bit needs to be set to '1' otherwise the instruction is LES or LDS */ if (!X) { // X . vex_prefix |= SET_VEX_X; } /** Bit[5] This bit needs to be set to '1' */ if (!B) { // B . vex_prefix |= SET_VEX_B; } /** Bits[4:0], Based on the instruction documentaion */ vex_prefix |= SET_VEX_M; return vex_prefix; } uint8_t X86_64Assembler::EmitVexPrefixByteOne(bool R, X86_64ManagedRegister operand, int SET_VEX_L, int SET_VEX_PP) { // Vex Byte 1, uint8_t vex_prefix = VEX_INIT; /** Bit[7] This bit needs to be set to '1' otherwise the instruction is LES or LDS */ if (!R) { // R . vex_prefix |= SET_VEX_R; } /**Bits[6:3] - 'vvvv' the source or dest register specifier */ if (operand.IsNoRegister()) { vex_prefix |= 0x78; } else if (operand.IsXmmRegister()) { XmmRegister vvvv = operand.AsXmmRegister(); int inverted_reg = 15 - static_cast(vvvv.AsFloatRegister()); uint8_t reg = static_cast(inverted_reg); vex_prefix |= ((reg & 0x0F) << 3); } else if (operand.IsCpuRegister()) { CpuRegister vvvv = operand.AsCpuRegister(); int inverted_reg = 15 - static_cast(vvvv.AsRegister()); uint8_t reg = static_cast(inverted_reg); vex_prefix |= ((reg & 0x0F) << 3); } /** Bit[2] - "L" If VEX.L = 1 indicates 256-bit vector operation, VEX.L = 0 indicates 128 bit vector operation */ vex_prefix |= SET_VEX_L; // Bits[1:0] - "pp" vex_prefix |= SET_VEX_PP; return vex_prefix; } uint8_t X86_64Assembler::EmitVexPrefixByteTwo(bool W, X86_64ManagedRegister operand, int SET_VEX_L, int SET_VEX_PP) { // Vex Byte 2, uint8_t vex_prefix = VEX_INIT; /** Bit[7] This bits needs to be set to '1' with default value. When using C4H form of VEX prefix, REX.W value is ignored */ if (W) { vex_prefix |= SET_VEX_W; } // Bits[6:3] - 'vvvv' the source or dest register specifier if (operand.IsXmmRegister()) { XmmRegister vvvv = operand.AsXmmRegister(); int inverted_reg = 15 - static_cast(vvvv.AsFloatRegister()); uint8_t reg = static_cast(inverted_reg); vex_prefix |= ((reg & 0x0F) << 3); } else if (operand.IsCpuRegister()) { CpuRegister vvvv = operand.AsCpuRegister(); int inverted_reg = 15 - static_cast(vvvv.AsRegister()); uint8_t reg = static_cast(inverted_reg); vex_prefix |= ((reg & 0x0F) << 3); } /** Bit[2] - "L" If VEX.L = 1 indicates 256-bit vector operation, VEX.L = 0 indicates 128 bit vector operation */ vex_prefix |= SET_VEX_L; // Bits[1:0] - "pp" vex_prefix |= SET_VEX_PP; return vex_prefix; } uint8_t X86_64Assembler::EmitVexPrefixByteTwo(bool W, int SET_VEX_L, int SET_VEX_PP) { // Vex Byte 2, uint8_t vex_prefix = VEX_INIT; /** Bit[7] This bits needs to be set to '1' with default value. When using C4H form of VEX prefix, REX.W value is ignored */ if (W) { vex_prefix |= SET_VEX_W; } /** Bits[6:3] - 'vvvv' the source or dest register specifier */ vex_prefix |= (0x0F << 3); /** Bit[2] - "L" If VEX.L = 1 indicates 256-bit vector operation, VEX.L = 0 indicates 128 bit vector operation */ vex_prefix |= SET_VEX_L; // Bits[1:0] - "pp" if (SET_VEX_PP != SET_VEX_PP_NONE) { vex_prefix |= SET_VEX_PP; } return vex_prefix; } } // namespace x86_64 } // namespace art